1
|
Higueras C, Sainz Á, García-Sancho M, Rodríguez-Franco F, Rey AI. Faecal Short-Chain, Long-Chain, and Branched-Chain Fatty Acids as Markers of Different Chronic Inflammatory Enteropathies in Dogs. Animals (Basel) 2024; 14:1825. [PMID: 38929444 PMCID: PMC11201139 DOI: 10.3390/ani14121825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/28/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Chronic inflammatory enteropathies (CIEs) are classified based on treatment trials, and new methods are being sought for earlier differentiation and characterization. Giardia infection (GIA) is one of the first differential diagnoses and may be present in CIE-affected dogs. The aim of this study was to evaluate the faecal characteristics and faecal fatty acid profile (short, medium, long, and branched-chain fatty acids) in dogs with food-responsive enteropathy (FRE), immunosuppressant-responsive enteropathy (IRE), and dogs infected with Giardia compared to healthy control (HC) animals as a potential non-invasive indicator of intestinal health that helps in the differentiation of CIEs. The C16:1n-7 percentage (p = 0.0001) and C16:1n-7/C16:0 ratio (p = 0.0001) served to differentiate between HC, FRE, and IRE. IRE dogs presented lower levels of short-chain fatty acids (∑SCFAs) (p = 0.0008) and acetic acid (C2) (p = 0.0007) compared to the other three groups and lower propionic acid (C3) (p = 0.0022) compared to HCs. IRE and GIA presented higher faecal fat content (p = 0.0080) and ratio of iso/anteiso branched-chain fatty acids (BCFAs) compared to HC and FRE. Correlations between some fatty acids and desaturation indices with the canine inflammatory bowel disease activity index and faecal characteristics were observed, suggesting that these compounds could play an important role in the pathogenesis of these diseases.
Collapse
Affiliation(s)
- Cristina Higueras
- Department of Animal Production, Animal Nutrition, College of Veterinary Medicine, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Ángel Sainz
- Department of Animal Medicine and Surgery, College of Veterinary Medicine, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain; (Á.S.)
| | - Mercedes García-Sancho
- Department of Animal Medicine and Surgery, College of Veterinary Medicine, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain; (Á.S.)
| | - Fernando Rodríguez-Franco
- Department of Animal Medicine and Surgery, College of Veterinary Medicine, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain; (Á.S.)
| | - Ana I. Rey
- Department of Animal Production, Animal Nutrition, College of Veterinary Medicine, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| |
Collapse
|
2
|
Manchester AC, Ammons DT, Lappin MR, Dow S. Single cell transcriptomic analysis of the canine duodenum in chronic inflammatory enteropathy and health. Front Immunol 2024; 15:1397590. [PMID: 38933260 PMCID: PMC11199541 DOI: 10.3389/fimmu.2024.1397590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Chronic inflammatory enteropathy (CIE) is a common condition in dogs causing recurrent or persistent gastrointestinal clinical signs. Pathogenesis is thought to involve intestinal mucosal inflammatory infiltrates, but histopathological evaluation of intestinal biopsies from dogs with CIE fails to guide treatment, inform prognosis, or correlate with clinical remission. We employed single-cell RNA sequencing to catalog and compare the diversity of cells present in duodenal mucosal endoscopic biopsies from 3 healthy dogs and 4 dogs with CIE. Through characterization of 35,668 cells, we identified 31 transcriptomically distinct cell populations, including T cells, epithelial cells, and myeloid cells. Both healthy and CIE samples contributed to each cell population. T cells were broadly subdivided into GZMAhigh (putatively annotated as tissue resident) and IL7Rhigh (putatively annotated as non-resident) T cell categories, with evidence of a skewed proportion favoring an increase in the relative proportion of IL7Rhigh T cells in CIE dogs. Among the myeloid cells, neutrophils from CIE samples exhibited inflammatory (SOD2 and IL1A) gene expression signatures. Numerous differentially expressed genes were identified in epithelial cells, with gene set enrichment analysis suggesting enterocytes from CIE dogs may be undergoing stress responses and have altered metabolic properties. Overall, this work reveals the previously unappreciated cellular heterogeneity in canine duodenal mucosa and provides new insights into molecular mechanisms which may contribute to intestinal dysfunction in CIE. The cell type gene signatures developed through this study may also be used to better understand the subtleties of canine intestinal physiology in health and disease.
Collapse
Affiliation(s)
- Alison C. Manchester
- Colorado State University, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Fort Collins, CO, United States
| | - Dylan T. Ammons
- Colorado State University, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Fort Collins, CO, United States
| | - Michael R. Lappin
- Colorado State University, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Fort Collins, CO, United States
| | - Steven Dow
- Colorado State University, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Fort Collins, CO, United States
- Colorado State University, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Fort Collins, CO, United States
| |
Collapse
|
3
|
Kojima K, Chambers JK, Nakashima K, Uchida K. Pro-inflammatory cytokine expression and the STAT1/3 pathway in canine chronic enteropathy and intestinal T-cell lymphoma. Vet Pathol 2024; 61:382-392. [PMID: 37906531 DOI: 10.1177/03009858231207017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The accumulation of intraepithelial lymphocytes (IELs) is a histopathological feature of canine chronic enteropathy (CE), and IELs are considered the cells of origin of intestinal T-cell lymphoma (ITCL). However, the pathogenic mechanism of IEL activation in CE remains unclear. This study hypothesized that the expression of proinflammatory cytokines, associated with cytotoxic T/NK-cell activation, is upregulated in CE and ITCL, and examined the expression of IFN-γ, IL-2, IL-12p35, IL-12p40, IL-15, and IL-21 and the downstream signal transducers and activators of transcription (STAT) pathway in the duodenal mucosa of dogs without lesions (n = 11; NC), with IEL-CE (n = 19; CE without intraepithelial lymphocytosis), IEL+CE (n = 29; CE with intraepithelial lymphocytosis), and with ITCL (n = 60). Quantitative polymerase chain reaction (PCR) revealed that IFN-γ and IL-21 were higher in IEL+CE than in IEL-CE or NC. Western blot revealed upregulation of STAT1 and STAT3 in IEL+CE. Double-labeling immunohistochemistry revealed a positive correlation between the Ki67 index of CD3+ T-cells and IFN-γ expression levels. Immunohistochemistry revealed a higher ratio of p-STAT1-positive villi in IEL+CE and ITCL than IEL-CE and NC, which positively correlated with IFN-γ expression levels. Among the 60 ITCL cases, neoplastic lymphocytes were immunopositive for p-STAT1 in 28 cases and p-STAT3 in 29 cases. These results suggest that IFN-γ and IL-21 contribute to the pathogenesis of IEL+CE, and IFN-γ may be involved in T-cell activation and mucosal injury in CE. STAT1 and STAT3 activation in ITCL cells suggests a role for the upregulation of the STAT pathway in the pathogenesis of ITCL.
Collapse
Affiliation(s)
| | | | - Ko Nakashima
- Japan Small Animal Medical Center, Tokorozawa, Japan
| | | |
Collapse
|
4
|
Belchik SE, Oba PM, Lin CY, Swanson KS. Effects of a veterinary gastrointestinal low-fat diet on fecal characteristics, metabolites, and microbiota concentrations of adult dogs treated with metronidazole. J Anim Sci 2024; 102:skae297. [PMID: 39344678 PMCID: PMC11568346 DOI: 10.1093/jas/skae297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/27/2024] [Indexed: 10/01/2024] Open
Abstract
Antibiotics are known to cause loose stools, disrupt the fecal microbiota, and alter fecal bile acid (BA) profiles of dogs. Recovery may be aided by diet, but little research has been conducted. The objective of this study was to determine how a veterinary low-fat diet affected the fecal characteristics, metabolites, BA, and microbiota of dogs receiving antibiotics. Twenty-four healthy adult dogs [7.38 ± 1.95 yr; 7.67 ± 0.76 kg body weight (BW)] were used in an 8-wk completely randomized design study. During a 2-wk baseline, all dogs were fed a leading grocery brand diet (GBD). Over the next 2 wk, dogs were fed GBD and received metronidazole orally (20 mg/kg BW twice daily). At week 4, dogs were randomly allotted to one of two treatments [GBD or Blue Buffalo Natural Veterinary Diet GI Gastrointestinal Support Low-Fat (BB)] and fed for 4 wk. Fecal scores were recorded daily and fresh fecal samples were collected at weeks 2, 4, 5, 6, 7, and 8 for measurement of pH, dry matter content, and metabolite and BA concentrations. Fecal microbiota populations were analyzed using 16S rRNA gene amplicon sequencing and qPCR-based dysbiosis index (DI). All data were analyzed as repeated measures using the Mixed Models procedure of SAS 9.4, testing for effects of treatment, time, and treatment*time and significance set at P < 0.05. Metronidazole increased (P < 0.0001) fecal scores (looser stools), reduced fecal short-chain fatty acid, branched-chain fatty acid, phenol, and indole concentrations, increased primary BA concentrations, and decreased secondary BA concentrations. Metronidazole also reduced fecal bacterial alpha diversity, altered the abundance of 58 bacterial genera, and increased DI. During antibiotic recovery, changes in fecal pH, dry matter percentage, and metabolite and immunoglobulin A concentrations were altered (P < 0.05) by diet. Fecal BA concentrations recovered quickly for all dogs. Change in lithocholic acid was affected (P < 0.0001) by diet, but other BA were not. Recovery of over 25 bacterial genera was impacted by diet (P < 0.05). While many bacterial taxa returned to baseline levels after 4 wk, others did not fully recover. DI and bacterial alpha diversity measures recovered quickly for all dogs but were not impacted by diet. In conclusion, metronidazole drastically altered the fecal microbiota and metabolites of dogs. While most variables returned to baseline by week 8, diet may be used to aid in recovery.
Collapse
Affiliation(s)
- Sara E Belchik
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Patricia M Oba
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | | | - Kelly S Swanson
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Veterinary Clinical Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
5
|
Belchik SE, Oba PM, Lin CY, Swanson KS. Effects of a veterinary gastrointestinal diet on fecal characteristics, metabolites, and microbiota concentrations of adult cats treated with metronidazole. J Anim Sci 2024; 102:skae274. [PMID: 39279199 PMCID: PMC11465373 DOI: 10.1093/jas/skae274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/13/2024] [Indexed: 09/18/2024] Open
Abstract
Antibiotics are used to treat gastrointestinal diseases or infections but are known to negatively affect stool quality and gut microbiota in cats and dogs. Therefore, identifying dietary strategies that may aid in antibiotic recovery is of interest. The objective of this study was to determine how a veterinary gastrointestinal diet affected the fecal characteristics, microbiota, and metabolite and bile acid (BA) concentrations of cats recovering from metronidazole administration. Twenty-four healthy adult cats were used in an 8-wk completely randomized design study. During a 2-wk baseline, all cats consumed a leading grocery brand diet (GBD). Over the next 2 wk, cats consumed GBD and received metronidazole (20 mg/kg body weight twice daily). At week 4, cats were randomly allotted to one of 2 treatments [GBD; BLUE Natural Veterinary Diet GI Gastrointestinal Support (BB)] and fed for 4 wk. Fecal scores were recorded daily and fresh fecal samples were collected at weeks 2, 4, 5, 6, 7, and 8 for measurement of pH, dry matter (DM) %, metabolites, and microbiota. Microbiota was analyzed by 16S rRNA gene sequencing and qPCR, which was used to calculate dysbiosis index. Data were analyzed as repeated measures using the Mixed Models procedure of SAS 9.4, testing for effects of diet, time and diet*time. Metronidazole had dramatic effects on all outcomes, including increased fecal scores (looser stools), reduced fecal pH and DM%, reduced fecal short-chain fatty acid, branched-chain fatty acid, ammonia, phenol, and indole concentrations, and altered fecal BA concentrations (increased primary BA; reduced secondary BA). Metronidazole reduced fecal bacterial alpha diversity, increased dysbiosis index, and altered the relative abundance of 78 bacterial genera. Fecal outcomes partially recovered over the next 4 wk, with some being impacted by diet. Fecal acetate concentrations were higher after metronidazole in cats fed BB. Dysbiosis index and alpha diversity measures slowly recovered over 4 wk, without diet differences. Recovery of 16 bacterial genera was impacted by diet. Fecal BA profiles demonstrated a prolonged impairment of primary to secondary BA conversion, with cholic acid being lower after metronidazole in cats fed BB. In conclusion, our data demonstrate that metronidazole is a powerful antibiotic that has long-lasting effects on the fecal microbiota and metabolites of cats. Outcome variables slowly recovered over time, but a gastrointestinal diet may aid in recovery.
Collapse
Affiliation(s)
- Sara E Belchik
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Patricia M Oba
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | | | - Kelly S Swanson
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Veterinary Clinical Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
6
|
Yu J, Ruaux C, Griebsch C, Boland L, Wong N, Bennett P, Wasinger VC. Serum proteome of dogs with chronic enteropathy. J Vet Intern Med 2023; 37:925-935. [PMID: 37186013 DOI: 10.1111/jvim.16682] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 02/24/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Chronic enteropathy (CE) is common in dogs and can occur with multiple etiologies including food-responsive enteropathy (FRE) and idiopathic inflammatory bowel disease (IBD). HYPOTHESIS/OBJECTIVE To study the protein profile and pathway differences among dogs with FRE, IBD, and healthy controls using serum proteome analysis. ANIMALS Nine CE dogs with signs of gastrointestinal disease and histologically confirmed chronic inflammatory enteropathy and 16 healthy controls. METHODS A cross-sectional study with cases recruited from 2 veterinary hospitals between May 2019 and November 2020 was performed. Serum samples were analyzed using mass spectrometry-based proteomic techniques. RESULTS Proteomic profiles showed marked variation in relative protein abundances. Forty-five proteins were significantly (P ≤ .01) differentially expressed among the dogs with CE and controls with ≥2-fold change in abundance. The fold change of dogs with IBD normalized to controls was more pronounced for the majority of proteins than that seen in the dogs with FRE normalized to control dogs. Proteins involving reactive oxygen species, cytokine activation, acute phase response signaling, and lipid metabolism were altered in dogs with CE. CONCLUSIONS AND CLINICAL IMPORTANCE Cytokine alterations, acute phase response signaling, and lipid metabolism are likely involved in pathogenesis of CE. Although there are insufficient current data to justify the use of proteomic biomarkers for assessment of CE in dogs, our study identifies potential candidates.
Collapse
Affiliation(s)
- Jane Yu
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Craig Ruaux
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Christine Griebsch
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Lara Boland
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Nadia Wong
- McIvor Road Veterinary Centre, Bendigo, Victoria, Australia
| | - Peter Bennett
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Valerie C Wasinger
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
7
|
Scarsella E, Meineri G, Sandri M, Ganz HH, Stefanon B. Characterization of the Blood Microbiome and Comparison with the Fecal Microbiome in Healthy Dogs and Dogs with Gastrointestinal Disease. Vet Sci 2023; 10:vetsci10040277. [PMID: 37104432 PMCID: PMC10144428 DOI: 10.3390/vetsci10040277] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/25/2023] [Accepted: 04/04/2023] [Indexed: 04/28/2023] Open
Abstract
Recent studies have found bacterial DNA in the blood of healthy individuals. To date, most studies on the blood microbiome have focused on human health, but this topic is an expanding research area in animal health as well. This study aims to characterize the blood microbiome of both healthy dogs and those with chronic gastro-enteropathies. For this study, blood and fecal samples were collected from 18 healthy and 19 sick subjects, DNA was extracted through commercial kits, and the V3-V4 regions of the 16S rRNA gene were sequenced on the Illumina platform. The sequences were analyzed for taxonomic annotation and statistical analysis. Alpha and beta diversities of fecal microbiome were significantly different between the two groups of dogs. Principal coordinates analysis revealed that healthy and sick subjects were significantly clustered for both blood and fecal microbiome samples. Moreover, bacterial translocation from the gut to the bloodstream has been suggested because of found shared taxa. Further studies are needed to determine the origin of the blood microbiome and the bacteria viability. The characterization of a blood core microbiome in healthy dogs has potential for use as a diagnostic tool to monitor for the development of gastro-intestinal disease.
Collapse
Affiliation(s)
- Elisa Scarsella
- AnimalBiome, 400 29th Street, Suite 101, Oakland, CA 94609, USA
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, Italy
| | - Giorgia Meineri
- Department of Veterinary Science, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Misa Sandri
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, Italy
| | - Holly H Ganz
- AnimalBiome, 400 29th Street, Suite 101, Oakland, CA 94609, USA
| | - Bruno Stefanon
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, Italy
| |
Collapse
|
8
|
López M, Bertolani C, Sainz A, Tabar M, Roura X. Chronic diarrhea secondary to canine leishmaniosis: Case series. Comp Immunol Microbiol Infect Dis 2022; 90-91:101897. [DOI: 10.1016/j.cimid.2022.101897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022]
|
9
|
Furukawa R, Hara Y, Furuya K, Takahashi K, Nishimura R, Shingaki T, Osada H, Kondo H, Ohmori K. Expression of genes encoding interleukin 15 and its receptor subunits in the duodenal and colonic mucosae of dogs with chronic enteropathy. Vet Anim Sci 2022; 17:100256. [PMID: 35784585 PMCID: PMC9240857 DOI: 10.1016/j.vas.2022.100256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Rintaro Furukawa
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
- Advanced Animal Medical Center, 1075 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka 411-0934, Japan
| | - Yuna Hara
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Keiko Furuya
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Kaho Takahashi
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Rinka Nishimura
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Tomoaki Shingaki
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Hironari Osada
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Hirotaka Kondo
- Laboratory of Veterinary Pathology, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Keitaro Ohmori
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
- Corresponding author.
| |
Collapse
|
10
|
Furukawa R, Takahashi K, Hara Y, Nishimura R, Furuya K, Shingaki T, Osada H, Kondo H, Ohmori K. Clinical characteristics of dogs presenting with vomiting as a gastrointestinal sign of chronic enteropathy. Vet Anim Sci 2022; 17:100255. [PMID: 35769538 PMCID: PMC9234693 DOI: 10.1016/j.vas.2022.100255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/30/2022] Open
Abstract
Some dogs with chronic enteropathy (CE) presented with vomiting without diarrhea. Vomiting was significantly associated with food-responsive enteropathy. Vomiting was significantly associated with higher duodenal eosinophil scores. The survival time was the longest in the vomiting group among dogs with CE.
Vomiting is a major gastrointestinal (GI) sign of chronic enteropathy (CE) in dogs. Previous studies have reported clinical characteristics of dogs with CE, who developed diarrhea with or without vomiting as GI signs. However, to characterize clinical features of dogs with CE appropriately, dogs presenting with vomiting without diarrhea should be included in the analysis. Thus, this study aimed to characterize clinical features and outcomes of dogs that presented with vomiting without diarrhea. Based on their presenting GI signs, we retrospectively classified 66 dogs with CE into “Vomiting”, “Diarrhea”, or “Vomiting and diarrhea” groups and compared clinical and histological characteristics of each group. We found that 18 of the 66 dogs with CE (27%) presented with vomiting without diarrhea as a GI sign. Compared to the other 2 groups, the Vomiting group was significantly associated with food-responsive enteropathy (FRE), Beagle, lower clinical severity scores, higher plasma albumin levels, and higher histological scores for eosinophils in the duodenal lamina propria according to the univariate analysis. The multivariate analysis revealed that FRE and higher histological scores for eosinophils in the duodenal lamina propria were significant variables in the Vomiting group. Moreover, the survival time was the longest in the Vomiting group among dogs with CE. These findings are of clinical significance as they indicate that presenting with vomiting without diarrhea may not only be helpful in differentiating FRE from the other types of CE, but also in predicting the prognosis.
Collapse
Affiliation(s)
- Rintaro Furukawa
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
- Advanced Animal Medical Center, 1075 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka 411-0934, Japan
| | - Kaho Takahashi
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Yuna Hara
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Rinka Nishimura
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Keiko Furuya
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Tomoaki Shingaki
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Hironari Osada
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Hirotaka Kondo
- Laboratory of Veterinary Pathology, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Keitaro Ohmori
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
- Corresponding author.
| |
Collapse
|
11
|
Elucidating the Role of Innate and Adaptive Immune Responses in the Pathogenesis of Canine Chronic Inflammatory Enteropathy-A Search for Potential Biomarkers. Animals (Basel) 2022; 12:ani12131645. [PMID: 35804545 PMCID: PMC9264988 DOI: 10.3390/ani12131645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Canine chronic inflammatory enteropathy (CIE) is a chronic disease affecting the small or large intestine and, in some cases, the stomach of dogs. This gastrointestinal disorder is common and is characterized by recurrent vomiting, diarrhea, and weight loss in affected dogs. The pathogenesis of IBD is not completely understood. Similar to human IBD, potential disease factors include genetics, environmental exposures, and dysregulation of the microbiota and the immune response. Some important components of the innate and adaptive immune response involved in CIE pathogenesis have been described. However, the immunopathogenesis of the disease has not been fully elucidated. In this review, we summarized the literature associated with the different cell types and molecules involved in the immunopathogenesis of CIE, with the aim of advancing the search for biomarkers with possible diagnostic, prognostic, or therapeutic utility. Abstract Canine chronic inflammatory enteropathy (CIE) is one of the most common chronic gastrointestinal diseases affecting dogs worldwide. Genetic and environmental factors, as well as intestinal microbiota and dysregulated host immune responses, participate in this multifactorial disease. Despite advances explaining the immunological and molecular mechanisms involved in CIE development, the exact pathogenesis is still unknown. This review compiles the latest reports and advances that describe the main molecular and cellular mechanisms of both the innate and adaptive immune responses involved in canine CIE pathogenesis. Future studies should focus research on the characterization of the immunopathogenesis of canine CIE in order to advance the establishment of biomarkers and molecular targets of diagnostic, prognostic, or therapeutic utility.
Collapse
|
12
|
Sprague WS, Radin MJ. Introducing the Veterinary Clinical Pathology special issue on gastrointestinal diagnostics in veterinary medicine. Vet Clin Pathol 2022; 50 Suppl 1:5. [PMID: 35170799 DOI: 10.1111/vcp.13118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 11/30/2022]
|