1
|
Tengvall K, Sundström E, Wang C, Bergvall K, Wallerman O, Pederson E, Karlsson Å, Harvey ND, Blott SC, Olby N, Olivry T, Brander G, Meadows JRS, Roosje P, Leeb T, Hedhammar Å, Andersson G, Lindblad-Toh K. Bayesian model and selection signature analyses reveal risk factors for canine atopic dermatitis. Commun Biol 2022; 5:1348. [PMID: 36482174 PMCID: PMC9731970 DOI: 10.1038/s42003-022-04279-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022] Open
Abstract
Canine atopic dermatitis is an inflammatory skin disease with clinical similarities to human atopic dermatitis. Several dog breeds are at increased risk for developing this disease but previous genetic associations are poorly defined. To identify additional genetic risk factors for canine atopic dermatitis, we here apply a Bayesian mixture model adapted for mapping complex traits and a cross-population extended haplotype test to search for disease-associated loci and selective sweeps in four dog breeds at risk for atopic dermatitis. We define 15 associated loci and eight candidate regions under selection by comparing cases with controls. One associated locus is syntenic to the major genetic risk locus (Filaggrin locus) in human atopic dermatitis. One selection signal in common type Labrador retriever cases positions across the TBC1D1 gene (body weight) and one signal of selection in working type German shepherd controls overlaps the LRP1B gene (brain), near the KYNU gene (psoriasis). In conclusion, we identify candidate genes, including genes belonging to the same biological pathways across multiple loci, with potential relevance to the pathogenesis of canine atopic dermatitis. The results show genetic similarities between dog and human atopic dermatitis, and future across-species genetic comparisons are hereby further motivated.
Collapse
Affiliation(s)
- Katarina Tengvall
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| | - Elisabeth Sundström
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Chao Wang
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Kerstin Bergvall
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ola Wallerman
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Eric Pederson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Åsa Karlsson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Naomi D Harvey
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire, UK
| | - Sarah C Blott
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire, UK
| | - Natasha Olby
- Department of Clinical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Thierry Olivry
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC, USA
| | - Gustaf Brander
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jennifer R S Meadows
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Petra Roosje
- Division of Clinical Dermatology, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Åke Hedhammar
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Göran Andersson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Kerstin Lindblad-Toh
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
2
|
Tengvall K, Bergvall K, Olsson M, Ardesjö-Lundgren B, Farias FHG, Kierczak M, Hedhammar Å, Lindblad-Toh K, Andersson G. Transcriptomes from German shepherd dogs reveal differences in immune activity between atopic dermatitis affected and control skin. Immunogenetics 2020; 72:315-323. [PMID: 32556497 PMCID: PMC7320941 DOI: 10.1007/s00251-020-01169-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/28/2020] [Indexed: 11/30/2022]
Abstract
Canine atopic dermatitis (CAD) is an inflammatory and pruritic allergic skin disease with both genetic and environmental risk factors described. We performed mRNA sequencing of non-lesional axillary skin biopsies from nine German shepherd dogs. Obtained RNA sequences were mapped to the dog genome (CanFam3.1) and a high-quality skin transcriptome was generated with 23,510 expressed gene transcripts. Differentially expressed genes (DEGs) were defined by comparing three controls to five treated CAD cases. Using a leave-one-out analysis, we identified seven DEGs: five known to encode proteins with functions related to an activated immune system (CD209, CLEC4G, LOC102156842 (lipopolysaccharide-binding protein-like), LOC480601 (regakine-1-like), LOC479668 (haptoglobin-like)), one (OBP) encoding an odorant-binding protein potentially connected to rhinitis, and the last (LOC607095) encoding a novel long non-coding RNA. Furthermore, high mRNA expression of inflammatory genes was found in axillary skin from an untreated mild CAD case compared with healthy skin. In conclusion, we define genes with different expression patterns in CAD case skin helping us understand post-treatment atopic skin. Further studies in larger sample sets are warranted to confirm and to transfer these results into clinical practice.
Collapse
Affiliation(s)
- K Tengvall
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| | - K Bergvall
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - M Olsson
- Division of Rheumatology, Department Medicine, Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
| | - B Ardesjö-Lundgren
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - F H G Farias
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - M Kierczak
- Department of Cell and Molecular Biology, Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Å Hedhammar
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - K Lindblad-Toh
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - G Andersson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
3
|
Identification of differentially expressed microRNAs in the skin of experimentally sensitized naturally affected atopic beagles by next-generation sequencing. Immunogenetics 2020; 72:241-250. [PMID: 32219493 DOI: 10.1007/s00251-020-01162-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/11/2020] [Indexed: 12/18/2022]
Abstract
Canine atopic dermatitis (AD) is a very common inflammatory skin disease, but limited data are available on the genetic characterization (somatic mutations, microarrays, and genome-wide association study (GWAS)) of skin lesions in affected dogs. microRNAs are good biomarkers in inflammatory and neoplastic diseases in people. The aim of this study was to evaluate microRNA expression in the skin of atopic beagles, before and after exposure to Dermatophagoides farinae. Four atopic and four unrelated age-matched healthy beagle dogs were enrolled. Total RNA was extracted from flash-frozen skin biopsies of healthy and atopic dogs. For the atopic dogs, skin biopsies were taken from non-lesional (day 0) and lesional skin (day 28 of weekly environmental challenge with Dermatophagoides farinae). Small RNA libraries were constructed and sequenced. The microRNA sequences were aligned to CanFam3.1 genome. Differential expressed microRNAs were selected on the basis of fold-change and statistical significance (fold-change ≥ 1.5 and p ≤ 0.05 as thresholds. A total of 277 microRNAs were sequenced. One hundred and twenty-one differentially regulated microRNAs were identified between non-lesional and healthy skin. Among these, two were increased amount and 119 were decreased amount. A total of 45 differentially regulated microRNAs between lesional and healthy skin were identified, 44 were decreased amount and one was increased amount. Finally, only two increased amount microRNAs were present in lesional skin when compared with that of non-lesional skin. This is the first study in which dysregulation of microRNAs has been associated with lesional and non-lesional canine AD. Larger studies are needed to understand the role of microRNA in canine AD.
Collapse
|
4
|
Gedon NKY, Mueller RS. Atopic dermatitis in cats and dogs: a difficult disease for animals and owners. Clin Transl Allergy 2018; 8:41. [PMID: 30323921 PMCID: PMC6172809 DOI: 10.1186/s13601-018-0228-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/10/2018] [Indexed: 12/13/2022] Open
Abstract
The purpose of this review article is to give an overview of atopic dermatitis in companion animals and of recent developments including knowledge on immunological background, novel treatment options and difficulties in disease management. The prevalence of hypersensitivities seems to be increasing. The pathogenetic mechanisms are not fully understood, yet multiple gene abnormalities and altered immunological processes are involved. In dogs and cats, the diagnosis of atopic dermatitis is based on history, clinical examination and exclusion of other differential diagnoses. Intradermal testing or testing for serum allergen-specific Immunoglobulin E is only used to identify allergens for inclusion in the extract for allergen immunotherapy. Symptomatic therapy includes glucocorticoids, ciclosporin, essential fatty acids and antihistamines. A selective janus kinase 1 inhibitor and a caninized monoclonal interleukin-31 antibody are the newest options for symptomatic treatment, although longterm effects still need to be assessed. The chronic and often severe nature of the disease, the costly diagnostic workup, frequent clinical flares and lifelong treatment are challenging for owners, pets and veterinarians. Patience and excellent communication skills are needed to achieve a good owner compliance and satisfactory clinical outcome for the animal.
Collapse
Affiliation(s)
- Natalie Katharina Yvonne Gedon
- Small Animal Medicine Clinic, Centre for Clinical Veterinary Medicine, Ludwig Maximilian University, Veterinaerstraße 13, 80539 Munich, Germany
| | - Ralf Steffen Mueller
- Small Animal Medicine Clinic, Centre for Clinical Veterinary Medicine, Ludwig Maximilian University, Veterinaerstraße 13, 80539 Munich, Germany
| |
Collapse
|