1
|
Marsella R, White S, Fadok VA, Wilson D, Mueller R, Outerbridge C, Rosenkrantz W. Equine allergic skin diseases: Clinical consensus guidelines of the World Association for Veterinary Dermatology. Vet Dermatol 2023; 34:175-208. [PMID: 37154488 DOI: 10.1111/vde.13168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 02/03/2023] [Accepted: 02/26/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Allergic skin diseases are common in horses worldwide. The most common causes are insect bites and environmental allergens. OBJECTIVES To review the current literature and provide consensus on pathogenesis, diagnosis, treatment and prevention. MATERIALS AND METHODS The authors reviewed the literature up to November 2022. Results were presented at North America Veterinary Dermatology Forum (2021) and European Veterinary Dermatology Congress (2021). The report was available to member organisations of the World Association for Veterinary Dermatology for feedback. CONCLUSIONS AND CLINICAL RELEVANCE Insect bite hypersensitivity (IBH) is the best characterised allergic skin disease. An immunoglobulin (Ig)E response against Culicoides salivary antigens is widely documented. Genetics and environmental factors play important roles. Tests with high sensitivity and specificity are lacking, and diagnosis of IBH is based on clinical signs, seasonality and response to insect control. Eosinophils, interleukin (IL)-5 and IL-31 are explored as therapeutic targets. Presently, the most effective treatment is insect avoidance. Existing evidence does not support allergen-specific immunotherapy (ASIT) using commercially available extracts of Culicoides. Hypersensitivity to environmental allergens (atopic dermatitis) is the next most common allergy. A role for IgE is supported by serological investigation, skin test studies and positive response to ASIT. Prospective, controlled, randomised studies are limited, and treatment relies largely on glucocorticoids, antihistamines and ASIT based on retrospective studies. Foods are known triggers for urticaria, yet their role in pruritic dermatitis is unknown. Recurrent urticaria is common in horses, yet our understanding is limited and focussed on IgE and T-helper 2 cell response. Prospective, controlled studies on treatments for urticaria are lacking. Glucocorticoids and antihistamines are primary reported treatments.
Collapse
Affiliation(s)
- R Marsella
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - S White
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - V A Fadok
- Zoetis, US PET CARE, Bellaire, Texas, USA
| | - D Wilson
- School of Clinical Veterinary Sciences, University of Bristol, Bristol, UK
| | - R Mueller
- Medizinische Keleintierklinik, Zentrum für klinische Tiermedizin, LMU, Munich, Germany
| | - C Outerbridge
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, California, USA
| | | |
Collapse
|
2
|
Simonin EM, Wagner B. IgE-binding monocytes upregulate the coagulation cascade in allergic horses. Genes Immun 2023:10.1038/s41435-023-00207-w. [PMID: 37193769 DOI: 10.1038/s41435-023-00207-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/18/2023]
Abstract
IgE-binding monocytes are a rare peripheral immune cell type involved in the allergic response through binding of IgE on their surface. IgE-binding monocytes are present in both healthy and allergic individuals. We performed RNA sequencing to ask how the function of IgE-binding monocytes differs in the context of allergy. Using a large animal model of allergy, equine Culicoides hypersensitivity, we compared the transcriptome of IgE-binding monocytes in allergic and non-allergic horses at two seasonal timepoints: (i) when allergic animals were clinical healthy, in the winter "Remission Phase", and (ii) during chronic disease, in the summer "Clinical Phase". Most transcriptional differences between allergic and non-allergic horses occurred only during the "Remission Phase", suggesting principal differences in monocyte function even in the absence of allergen exposure. F13A1, a subunit of fibrinoligase, was significantly upregulated at both timepoints in allergic horses. This suggested a role for increased fibrin deposition in the coagulation cascade to promote allergic inflammation. IgE-binding monocytes also downregulated CCR10 expression in allergic horses during the "Clinical Phase", suggesting a defect in maintenance of skin homeostasis, which further promotes allergic inflammation. Together, this transcriptional analysis provides valuable clues into the mechanisms used by IgE-binding monocytes in allergic individuals.
Collapse
Affiliation(s)
- Elisabeth M Simonin
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Bettina Wagner
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
3
|
Wang ZH, Feng Y, Hu Q, Wang XL, Zhang L, Liu TT, Zhang JT, Yang X, Fu QY, Fu DN, Hu J, Liu T. Keratinocyte TLR2 and TLR7 contribute to chronic itch through pruritic cytokines and chemokines in mice. J Cell Physiol 2023; 238:257-273. [PMID: 36436135 DOI: 10.1002/jcp.30923] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 11/28/2022]
Abstract
Although neuronal Toll-like receptors (TLRs) (e.g., TLR2, TLR3, and TLR7) have been implicated in itch sensation, the roles of keratinocyte TLRs in chronic itch are elusive. Herein, we evaluated the roles of keratinocyte TLR2 and TLR7 in chronic itch under dry skin and psoriasis conditions, which was induced by either acetone-ether-water treatment or 5% imiquimod cream in mice, respectively. We found that TLR2 and TLR7 signaling were significantly upregulated in dry skin and psoriatic skin in mice. Chronic itch and epidermal hyperplasia induced by dry skin or psoriasis were comparably reduced in TLR2 and TLR7 knockout mice. In the dry skin model, the enhanced messenger RNA (mRNA) expression levels of pruritic CXCL1/2, IL-31, IL-33, ST2, IL-6, IL-17A, TNF-α, and IFN-γ were inhibited in TLR2-/- mice, while CXCL2, IL-31, and IL-6 were inhibited in TLR7-/- mice. In psoriasis model, the enhanced mRNA expression levels of pruritic CXCL1/2, IL-31, IL-33, ST2, IL-6, and TNF-α were inhibited in TLR2-/- mice, while CXCL1/2, IL-31, IL-33, ST2, IL-6, IL-17A, and TNF-α were inhibited in TLR7-/- mice. Incubation with Staphylococcus aureus (S. aureus) peptidoglycan (PGN-SA) (a TLR2 agonist), imiquimod (a TLR7 agonist), and miR142-3p (a putative TLR7 agonist) were sufficient to upregulate the expression of pruritic cytokines or chemokines in cultured keratinocyte HaCaT cells. Finally, pharmacological blockade of C-X-C Motif Chemokine Receptor 1/2 and high mobility group box protein 1 dose-dependently attenuated acute and chronic itch in mice. Together, these results indicate that keratinocyte TLR2 and TLR7 signaling pathways are distinctly involved in the pathogenesis of chronic itch.
Collapse
Affiliation(s)
- Zhi-Hong Wang
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Yu Feng
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Qingfang Hu
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xue-Long Wang
- Department of Thoracic Surgery, Capital Medical University Electric Power Teaching Hospital Beijing, Beijing, China
| | - Li Zhang
- Department of Anesthesiology, The First People's Hospital of Kunshan Affiliated with Jiangsu University, Kunshan, China
| | - Teng-Teng Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Jiang-Tao Zhang
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China
| | - Xiaohua Yang
- The Affiliated Haian Hospital of Nantong University, Haian, China
| | - Qing-Yue Fu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Dan-Ni Fu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Ji Hu
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Tong Liu
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China.,College of Life Sciences, Yanan University, Yanan, China.,Suzhou Key Laboratory of Intelligent Medicine and Equipment, Soochow University, Suzhou, China
| |
Collapse
|
4
|
Expression of Thymic Stromal Lymphopoietin in Immune-Related Dermatoses. Mediators Inflamm 2022; 2022:9242383. [PMID: 36046760 PMCID: PMC9420647 DOI: 10.1155/2022/9242383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/27/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
Thymic stromal lymphopoietin (TSLP), long known to be involved in Th2 response, is also implicated in multiple inflammatory dermatoses and cancers. The purpose of this study was to improve our understanding of the expression of TSLP in the skin of those dermatoses. Lesional specimens of representative immune-related dermatoses, including lichen planus (LP), discoid lupus erythematosus (DLE), eczema, bullous pemphigoid (BP), psoriasis vulgaris (PsV), sarcoidosis, and mycosis fungoides (MF), were retrospectively collected and analyzed by immunohistochemistry. Morphologically, TSLP was extensively expressed in the epidermis of each dermatosis, but the expression was weak in specimens of DLE. In a semiquantitative analysis, TSLP was significantly expressed in the epidermis in LP, BP, eczema, PsV, sarcoidosis, and MF. TSLP expression was higher in the stratum spinosum in LP, eczema, BP, PsV, and MF and higher in the stratum basale in sarcoidosis and PsV. Moreover, we found positive TSLP staining in the dermal infiltrating inflammatory cells of BP, PsV, and sarcoidosis. Our observation of TSLP in different inflammatory dermatoses might provide a novel understanding of TSLP in the mechanism of diseases with distinctly different immune response patterns and suggest a potential novel therapeutic target of those diseases.
Collapse
|
5
|
Marti E, Novotny EN, Cvitas I, Ziegler A, Wilson AD, Torsteinsdottir S, Fettelschoss‐Gabriel A, Jonsdottir S. Immunopathogenesis and immunotherapy of
Culicoides
hypersensitivity in horses: an update. Vet Dermatol 2021. [DOI: 10.1111/vde.13042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Eliane Marti
- Department of Clinical Research and Veterinary Public Health Vetsuisse Faculty‐University of Bern Länggass‐strasse 124 Bern 3012Switzerland
- Dermfocus, Vetsuisse Faculty University of Bern Langgassstrasse 120 Bern 3001 Switzerland
| | - Ella N. Novotny
- Department of Clinical Research and Veterinary Public Health Vetsuisse Faculty‐University of Bern Länggass‐strasse 124 Bern 3012Switzerland
| | - Iva Cvitas
- Department of Clinical Research and Veterinary Public Health Vetsuisse Faculty‐University of Bern Länggass‐strasse 124 Bern 3012Switzerland
| | - Anja Ziegler
- Department of Clinical Research and Veterinary Public Health Vetsuisse Faculty‐University of Bern Länggass‐strasse 124 Bern 3012Switzerland
| | - A. Douglas Wilson
- School of Clinical Veterinary Sciences University of Bristol Langford House Bristol BS40 5DU UK
| | | | - Antonia Fettelschoss‐Gabriel
- Department of Dermatology University Hospital Zurich Wagistrasse 12 Schlieren 8952 Switzerland
- Faculty of Medicine University of Zurich Switzerland
- Evax AG Hörnlistrasse 3 Münchwilen 9542 Switzerland
| | - Sigridur Jonsdottir
- Department of Clinical Research and Veterinary Public Health Vetsuisse Faculty‐University of Bern Länggass‐strasse 124 Bern 3012Switzerland
- Institute for Experimental Pathology, Keldur Biomedical Center University of Iceland Reykjavik Iceland
| |
Collapse
|
6
|
Molecular mechanisms and treatment modalities in equine Culicoides hypersensitivity. Vet J 2021; 276:105741. [PMID: 34416400 DOI: 10.1016/j.tvjl.2021.105741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 07/07/2021] [Accepted: 08/15/2021] [Indexed: 12/25/2022]
Abstract
Equine Culicoides hypersensitivity (CH) is the most common allergic condition in horses affecting the skin. This review focuses on immunopathology and molecular mechanisms of equine CH. The role of eosinophils is emphasized, as well as disease severity and the influence of long-term chronic allergen exposure on T helper (Th) 2 cells. Using current knowledge from human allergic disorders, similar effects are hypothesized in equine patients. Key aspects of CH diagnosis and treatment are discussed, focusing on allergen specific immunotherapy and allergen-independent approaches, such as targeting hypereosinophilia through interleukin-5 and allergic non-histaminic pruritus though interleukin-31.
Collapse
|
7
|
Cvitas I, Oberhänsli S, Leeb T, Dettwiler M, Müller E, Bruggman R, Marti EI. Investigating the epithelial barrier and immune signatures in the pathogenesis of equine insect bite hypersensitivity. PLoS One 2020; 15:e0232189. [PMID: 32343720 PMCID: PMC7188278 DOI: 10.1371/journal.pone.0232189] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/08/2020] [Indexed: 12/05/2022] Open
Abstract
Insect bite hypersensitivity (IBH) is a Th-2, IgE-mediated dermatitis of horses caused by bites of insects of the genus Culicoides that has common features with human atopic dermatitis. Together with Th-2 cells, the epithelial barrier plays an important role in development of type I hypersensitivities. In order to elucidate the role of the epithelial barrier and of the skin immune response in IBH we studied the transcriptome of lesional whole skin of IBH-horses (IBH-LE; n = 9) in comparison to non-lesional skin (IBH-NL; n = 8) as well as to skin of healthy control horses (H; n = 9). To study the "baseline state" of the epithelial barrier, we investigated the transcriptome of non-lesional epidermis in IBH-horses (EPI-IBH-NL; n = 10) in comparison with healthy epidermis from controls (EPI-H; n = 9). IBH-LE skin displayed substantial transcriptomic difference compared to H. IBH-LE was characterized by a downregulation of genes involved in tight junction formation, alterations in keratins and substantial immune signature of both Th-1 and Th-2 types with particular upregulation of IL13, as well as involvement of the hypoxic pathway. IBH-NL shared a number of differentially expressed genes (DEGs) with IBH-LE, but was overall more similar to H skin. In the epidermis, genes involved in metabolism of epidermal lipids, pruritus development, as well as IL25, were significantly differentially expressed between EPI-IBH-NL and EPI-H. Taken together, our data suggests an impairment of the epithelial barrier in IBH-affected horses that may act as a predisposing factor for IBH development. Moreover, these new mechanisms could potentially be used as future therapeutic targets. Importantly, many transcriptional features of equine IBH skin are shared with human atopic dermatitis, confirming equine IBH as a natural model of skin allergy.
Collapse
Affiliation(s)
- Iva Cvitas
- Division of Experimental Clinical Research, Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
- Dermfocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- * E-mail:
| | - Simone Oberhänsli
- Interfaculty Bioinformatics Unit and SIB Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Tosso Leeb
- Dermfocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Institute of Genetics, Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Martina Dettwiler
- Dermfocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Institute of Animal Pathology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Eliane Müller
- Dermfocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Institute of Animal Pathology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Department of Biomedical Research, Molecular Dermatology and Stem Cell Research, University of Bern, Bern, Switzerland
- Department of Dermatology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Remy Bruggman
- Interfaculty Bioinformatics Unit and SIB Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Eliane Isabelle Marti
- Division of Experimental Clinical Research, Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Dermfocus, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|