1
|
Tran JQ, Muench MO, Gaillard B, Darst O, Tomayko MM, Jackman RP. Polyinosinic: polycytidylic acid induced inflammation enhances while lipopolysaccharide diminishes alloimmunity to platelet transfusion in mice. Front Immunol 2023; 14:1281130. [PMID: 38146372 PMCID: PMC10749330 DOI: 10.3389/fimmu.2023.1281130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/20/2023] [Indexed: 12/27/2023] Open
Abstract
Introduction Alloimmune responses against platelet antigens, which dominantly target the major histocompatibility complex (MHC), can cause adverse reactions to subsequent platelet transfusions, platelet refractoriness, or rejection of future transplants. Platelet transfusion recipients include individuals experiencing severe bacterial or viral infections, and how their underlying health modulates platelet alloimmunity is not well understood. Methods This study investigated the effect of underlying inflammation on platelet alloimmunization by modelling viral-like inflammation with polyinosinic-polycytidylic acid (poly(I:C)) or gram-negative bacterial infection with lipopolysaccharide (LPS), hypothesizing that underlying inflammation enhances alloimmunization. Mice were pretreated with poly(I:C), LPS, or nothing, then transfused with non-leukoreduced or leukoreduced platelets. Alloantibodies and allogeneic MHC-specific B cell (allo-B cell) responses were evaluated two weeks later. Rare populations of allo-B cells were identified using MHC tetramers. Results Relative to platelet transfusion alone, prior exposure to poly(I:C) increased the alloantibody response to allogeneic platelet transfusion whereas prior exposure to LPS diminished responses. Prior exposure to poly(I:C) had equivalent, if not moderately diminished, allo-B cell responses relative to platelet transfusion alone and exhibited more robust allo-B cell memory development. Conversely, prior exposure to LPS resulted in diminished allo-B cell frequency, activation, antigen experience, and germinal center formation and altered memory B cell responses. Discussion In conclusion, not all inflammatory environments enhance bystander responses and prior inflammation mediated by LPS on gram-negative bacteria may in fact curtail platelet alloimmunization.
Collapse
Affiliation(s)
- Johnson Q. Tran
- Vitalant Research Institute, San Francisco, CA, United States
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Marcus O. Muench
- Vitalant Research Institute, San Francisco, CA, United States
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Betty Gaillard
- Vitalant Research Institute, San Francisco, CA, United States
| | - Orsolya Darst
- Vitalant Research Institute, San Francisco, CA, United States
| | - Mary M. Tomayko
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, United States
- Department of Pathology, Yale University School of Medicine, New Haven, CT, United States
| | - Rachael P. Jackman
- Vitalant Research Institute, San Francisco, CA, United States
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
2
|
Jackman RP, Darst O, Gaillard B, Tran JQ, Tomayko MM, Muench MO. Enhanced alloresponse to platelet transfusion due to immune dysregulation following ablative chemotherapy in mice. Front Immunol 2023; 14:1281123. [PMID: 38090570 PMCID: PMC10711281 DOI: 10.3389/fimmu.2023.1281123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023] Open
Abstract
Introduction Alloimmunization is common following platelet transfusion and can result in negative outcomes for recipients such as refractoriness to subsequent transfusions and rejection of transplants. Healthy people do not receive blood transfusions, and the diseases and therapies that result in a need to transfuse have significant impacts on the immunological environment to which these alloantigens are introduced. Ablative chemotherapies are common among platelet recipients and have potent immunological effects. In this study, we modeled the impact of chemotherapy on the alloresponse to platelet transfusion. As chemotherapies are generally regarded as immunosuppressive, we hypothesized that that they would result in a diminished alloresponse. Methods Mice were given a combination chemotherapeutic treatment of cytarabine and doxorubicin followed by transfusion of allogeneic platelets, and compared to controls given no treatment, chemotherapy alone, or transfusion alone. Alloantibody responses were measured 2 weeks after transfusion, and cellular responses and growth factors were monitored over time. Results Contrary to our hypothesis, we found that chemotherapy led to increased alloantibody responses to allogeneic platelet transfusion. This enhanced response was antigen-specific and was associated with increased CD4+ and CD8+ T cell responses. Chemotherapy led to rapid lymphocyte depletion followed by reconstitution, non-specific activation of transitional B cells with the highest levels of activation in the least mature subsets, and increased serum levels of B cell activating factor (BAFF). Conclusion These data suggest that ablative chemotherapy can increase the risk of alloimmunization and, if confirmed clinically, that additional measures to protect these patient populations may be warranted.
Collapse
Affiliation(s)
- Rachael P. Jackman
- Vitalant Research Institute, San Francisco, CA, United States
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Orsolya Darst
- Vitalant Research Institute, San Francisco, CA, United States
| | - Betty Gaillard
- Vitalant Research Institute, San Francisco, CA, United States
| | - Johnson Q. Tran
- Vitalant Research Institute, San Francisco, CA, United States
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Mary M. Tomayko
- Department of Dermatology, Yale School of Medicine, New Haven, CT, United States
- Department of Pathology, Yale School of Medicine, New Haven, CT, United States
| | - Marcus O. Muench
- Vitalant Research Institute, San Francisco, CA, United States
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
3
|
Bougie DW, Sutton J, Aster RH. Characterization of glycoprotein IIb/IIIa-specific alloantibodies induced by cross-strain platelet immunization in mice. Transfusion 2021; 61:1278-1285. [PMID: 33483962 DOI: 10.1111/trf.16275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/28/2020] [Accepted: 01/01/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND We previously described a mouse model in which platelet immunization between selected strains leads to production of alloantibodies and severe autoimmune thrombocytopenia and mimics the human condition posttransfusion purpura (PTP). This report describes studies defining epitopes recognized by these alloantibodies. STUDY DESIGN Hybridomas were produced from spleen cells of immunized mice. Glycoprotein (GP) targets of resulting monoclonal antibodies were characterized by immunoprecipitation using platelets from the immunizing strains. Antigens defined by single amino acid (AA) polymorphisms recognized by monoclonal antibodies were identified by mutagenizing target glycoproteins expressed in Chinese hamster ovary cells and observing the effects on antibody binding. RESULTS Three monoclonal antibodies (417.1, 417.3, 425.1) were produced that recognized GPIIb on immunizing platelets. Monoclonal antibodies 417.1 and 417.3 both required G111 and 425.1 required V37, located on the beta propeller domain of GPIIb, for binding to platelets from the immunizing strains C57 and PWK, respectively. Injection of 417.3 and 425.1 into mice caused platelet destruction only in mice with GPIIb containing the targeted AAs. CONCLUSIONS Findings made provide evidence that alloantibodies produced by mice experiencing thrombocytopenia in a mouse model of PTP are specific for single AA polymorphisms that differ in GPIIb/IIIa integrin of the immunizing and immunized strains and therefore closely resemble the potent alloantibodies found in patients with PTP. The observations show that naturally occurring single AA differences in GPIIb/IIIa integrin of various mouse strains are highly immunogenic in the mouse strains studied and readily induce antibodies comparable to human platelet antigen-specific antibodies found in transfused and pregnant humans.
Collapse
Affiliation(s)
- Daniel W Bougie
- Versiti, Blood Research Institute, Milwaukee, Wisconsin, USA
| | - Jessica Sutton
- Versiti, Blood Research Institute, Milwaukee, Wisconsin, USA
| | - Richard H Aster
- Versiti, Blood Research Institute, Milwaukee, Wisconsin, USA.,Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
4
|
Pathogen-reduced PRP blocks T-cell activation, induces Treg cells, and promotes TGF-β expression by cDCs and monocytes in mice. Blood Adv 2020; 4:5547-5561. [PMID: 33166410 DOI: 10.1182/bloodadvances.2020002867] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023] Open
Abstract
Alloimmunization against platelet-rich plasma (PRP) transfusions can lead to complications such as platelet refractoriness or rejection of subsequent transfusions and transplants. In mice, pathogen reduction treatment of PRP with UVB light and riboflavin (UV+R) prevents alloimmunization and appears to induce partial antigen-specific tolerance to subsequent transfusions. Herein, the in vivo responses of antigen-presenting cells and T cells to transfusion with UV+R-treated allogeneic PRP were evaluated to understand the cellular immune responses leading to antigen-specific tolerance. Mice that received UV+R-treated PRP had significantly increased transforming growth factor β (TGF-β) expression by CD11b+ CD4+ CD11cHi conventional dendritic cells (cDCs) and CD11bHi monocytes (P < .05). While robust T-cell responses to transfusions with untreated allogeneic PRP were observed (P < .05), these were blocked by UV+R treatment. Mice given UV+R-treated PRP followed by untreated PRP showed an early significant (P < .01) enrichment in regulatory T (Treg) cells and associated TGF-β production as well as diminished effector T-cell responses. Adoptive transfer of T-cell-enriched splenocytes from mice given UV+R-treated PRP into naive recipients led to a small but significant reduction of CD8+ T-cell responses to subsequent allogeneic transfusion. These data demonstrate that pathogen reduction with UV+R induces a tolerogenic profile by way of CD11b+ CD4+ cDCs, monocytes, and induction of Treg cells, blocking T-cell activation and reducing secondary T-cell responses to untreated platelets in vivo.
Collapse
|
5
|
Jackman RP, Heitman JW, Muench MO. A small allelic variant in donor class I MHC is sufficient to induce alloantibodies following transfusion of standard or pathogen-reduced platelets in mice. Vox Sang 2020; 115:367-376. [PMID: 32201962 DOI: 10.1111/vox.12897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/10/2019] [Accepted: 01/26/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVES Alloimmunization targeting major histocompatibility (MHC) antigens is common following platelet transfusion. Pathogen reduction of platelets can block alloimmunization to MHC in mice and induce partial antigen-specific tolerance to subsequent transfusions. This study utilized small allelic variants to evaluate the relative contributions of class I and class II MHC to the alloresponse against untreated or pathogen-reduced platelets. MATERIALS AND METHODS C57BL/6 (B6) Kbm1 and B6 IAbm12 mice with small variants in the class I Kb and class II IAb alleles, respectively, were used as platelet donors for wild-type B6 recipients. Both untreated and pathogen-reduced platelet-rich plasma (PRP) transfusions were evaluated for immunogenicity by measuring antibody responses and ex vivo cytokine production. RESULTS Both the Kbm1 and IAbm12 alleles induced antibody responses, though the response to Kbm1 was greater. Pathogen reduction blocked the antibody responses to IAbm12 , but not to Kbm1 . Both the Kbm1 and IAbm12 alleles primed ex vivo cytokine responses that were blocked with pathogen reduction, though responses to IAbm12 were broader and larger (Kbm1 responses: IFN-γ, TNFα, and MIP-1β; IAbm12 responses: IFN-γ, TNFα, IL-1β, IL-10, IL-13, and GM-CSF). Pathogen-reduced Kbm1 PRP did not appear to induce any tolerance to subsequent untreated Kbm1 PRP transfusions. CONCLUSION Minor allelic variants in both the class I and class II MHC are capable of inducing an alloresponse to transfusion. The Kbm1 PRP induced alloantibodies even with pathogen reduction and did not show signs of inducing the partial tolerance to subsequent transfusions observed with a larger MHC mismatch.
Collapse
Affiliation(s)
- Rachael P Jackman
- Vitalant Research Institute, San Francisco, California, USA.,University of California, San Francisco, California, USA
| | - John W Heitman
- Vitalant Research Institute, San Francisco, California, USA
| | - Marcus O Muench
- Vitalant Research Institute, San Francisco, California, USA.,University of California, San Francisco, California, USA
| |
Collapse
|
6
|
Tran JQ, Muench MO, Heitman JW, Jackman RP. Pathogen reduction with riboflavin and ultraviolet light induces a quasi-apoptotic state in blood leukocytes. Transfusion 2019; 59:3501-3510. [PMID: 31599981 PMCID: PMC7391079 DOI: 10.1111/trf.15516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/26/2019] [Accepted: 08/19/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Alloimmunization to platelet-rich plasma (PRP) transfusions can cause adverse reactions such as platelet refractoriness or transplant rejection. Pathogen reduction treatment with ultraviolet light and riboflavin (UV + R) of allogeneic PRP was shown to reduce allogeneic antibody responses and confer partial antigen-specific immune tolerance to subsequent transfusions in mice. Studies have shown that UV + R was effective at both rapidly killing donor white blood cells (WBCs) and reducing their ability to stimulate an allogeneic response in vitro. However, the manner in which UV + R induces WBC death and its associated role in the immune response to treated PRP is unknown. METHODS AND MATERIALS This study evaluates whether UV + R causes WBC apoptosis by examining phosphatidylserine exposure on the plasma membrane, membrane asymmetry, caspase activity, and chromatin condensation by flow cytometry. The immunogenicity of WBCs killed with UV + R versus apoptotic or necrotic pathways was also examined in vivo. RESULTS WBCs after UV + R exhibited early apoptotic-like characteristics including phosphatidylserine exposure on the outer leaflet of the plasma membrane and loss of membrane asymmetry, but unlike canonical apoptotic cells, caspase activity and chromatin condensation were not apparent. However, in vivo studies demonstrated, unlike untreated or necrotic WBCs, both apoptotic WBCs and UV + R-treated WBCs failed to prime alloantibody responses to subsequent untreated transfusions. CONCLUSION Overall, the mechanism of WBC death following UV + R treatment shares some membrane characteristics of early apoptosis but is distinct from classic apoptosis. Despite these differences, UV + R-treated and apoptotic WBCs both offer some protection from alloimmunization.
Collapse
Affiliation(s)
| | - Marcus O. Muench
- Vitalant Research Institute, San Francisco CA
- University of California, San Francisco, CA
| | | | - Rachael P. Jackman
- Vitalant Research Institute, San Francisco CA
- University of California, San Francisco, CA
| |
Collapse
|