1
|
Blake MJ, Steer CJ. Chimeric Livers: Interspecies Blastocyst Complementation and Xenotransplantation for End-Stage Liver Disease. Hepat Med 2024; 16:11-29. [PMID: 38379783 PMCID: PMC10878318 DOI: 10.2147/hmer.s440697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 02/10/2024] [Indexed: 02/22/2024] Open
Abstract
Orthotopic liver transplantation (OLT) currently serves as the sole definitive treatment for thousands of patients suffering from end-stage liver disease; and the existing supply of donor livers for OLT is drastically outpaced by the increasing demand. To alleviate this significant gap in treatment, several experimental approaches have been devised with the aim of either offering interim support to patients waiting on the transplant list or bioengineering complete livers for OLT by infusing them with fresh hepatic cells. Recently, interspecies blastocyst complementation has emerged as a promising method for generating complete organs in utero over a short timeframe. When coupled with gene editing technology, it has brought about a potentially revolutionary transformation in regenerative medicine. Blastocyst complementation harbors notable potential for generating complete human livers in large animals, which could be used for xenotransplantation in humans, addressing the scarcity of livers for OLT. Nevertheless, substantial experimental and ethical challenges still need to be overcome to produce human livers in larger domestic animals like pigs. This review compiles the current understanding of interspecies blastocyst complementation and outlines future possibilities for liver xenotransplantation in humans.
Collapse
Affiliation(s)
- Madelyn J Blake
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Clifford J Steer
- Departments of Medicine, and Genetics, Cell Biology and Development, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
2
|
Coppiello G, Barlabé P, Moya-Jódar M, Abizanda G, Pogontke C, Barreda C, Iglesias E, Linares J, Arellano-Viera E, Larequi E, San Martín-Úriz P, Carvajal-Vergara X, Pelacho B, Mazo MM, Pérez-Pomares JM, Ruiz-Villalba A, Ullate-Agote A, Prósper F, Aranguren XL. Generation of heart and vascular system in rodents by blastocyst complementation. Dev Cell 2023; 58:2881-2895.e7. [PMID: 37967560 DOI: 10.1016/j.devcel.2023.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/10/2023] [Accepted: 10/23/2023] [Indexed: 11/17/2023]
Abstract
Generating organs from stem cells through blastocyst complementation is a promising approach to meet the clinical need for transplants. In order to generate rejection-free organs, complementation of both parenchymal and vascular cells must be achieved, as endothelial cells play a key role in graft rejection. Here, we used a lineage-specific cell ablation system to produce mouse embryos unable to form both the cardiac and vascular systems. By mouse intraspecies blastocyst complementation, we rescued heart and vascular system development separately and in combination, obtaining complemented hearts with cardiomyocytes and endothelial cells of exogenous origin. Complemented chimeras were viable and reached adult stage, showing normal cardiac function and no signs of histopathological defects in the heart. Furthermore, we implemented the cell ablation system for rat-to-mouse blastocyst complementation, obtaining xenogeneic hearts whose cardiomyocytes were completely of rat origin. These results represent an advance in the experimentation towards the in vivo generation of transplantable organs.
Collapse
Affiliation(s)
- Giulia Coppiello
- Program of Regenerative Medicine, Centre for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona 31008, Spain.
| | - Paula Barlabé
- Program of Regenerative Medicine, Centre for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona 31008, Spain
| | - Marta Moya-Jódar
- Program of Regenerative Medicine, Centre for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona 31008, Spain
| | - Gloria Abizanda
- Program of Regenerative Medicine, Centre for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona 31008, Spain; Cell Therapy Area, Clínica Universidad de Navarra, Pamplona 31008, Spain
| | - Cristina Pogontke
- Department of Animal Biology, University of Málaga, Málaga 29010, Spain; Biomedical Research Institute of Málaga (IBIMA-Plataforma BIONAND), Málaga 29590, Spain
| | - Carolina Barreda
- Program of Regenerative Medicine, Centre for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona 31008, Spain
| | - Elena Iglesias
- Program of Regenerative Medicine, Centre for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona 31008, Spain
| | - Javier Linares
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany
| | | | - Eduardo Larequi
- Program of Regenerative Medicine, Centre for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona 31008, Spain
| | - Patxi San Martín-Úriz
- Program of Regenerative Medicine, Centre for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona 31008, Spain
| | - Xonia Carvajal-Vergara
- Program of Regenerative Medicine, Centre for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona 31008, Spain
| | - Beatriz Pelacho
- Program of Regenerative Medicine, Centre for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona 31008, Spain
| | - Manuel Maria Mazo
- Program of Regenerative Medicine, Centre for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona 31008, Spain; Cell Therapy Area, Clínica Universidad de Navarra, Pamplona 31008, Spain
| | - José Maria Pérez-Pomares
- Department of Animal Biology, University of Málaga, Málaga 29010, Spain; Biomedical Research Institute of Málaga (IBIMA-Plataforma BIONAND), Málaga 29590, Spain
| | - Adrián Ruiz-Villalba
- Department of Animal Biology, University of Málaga, Málaga 29010, Spain; Biomedical Research Institute of Málaga (IBIMA-Plataforma BIONAND), Málaga 29590, Spain
| | - Asier Ullate-Agote
- Program of Regenerative Medicine, Centre for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona 31008, Spain
| | - Felipe Prósper
- Program of Regenerative Medicine, Centre for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona 31008, Spain; Hematology and Cell Therapy Service, Cancer Center Clínica Universidad de Navarra (CCUN), IdISNA, Pamplona 31008, Spain; Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid 28029, Spain; Red Española de Terapias Avanzadas (RICORS-TERAV), Madrid 28029, Spain
| | - Xabier L Aranguren
- Program of Regenerative Medicine, Centre for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona 31008, Spain.
| |
Collapse
|
3
|
Lee J, Cai L, Kim M, Choi H, Oh D, Jawad A, Lee E, Hyun SH. Tetraploid embryo aggregation produces high-quality blastocysts with an increased trophectoderm in pigs. Front Cell Dev Biol 2023; 11:1239448. [PMID: 38033873 PMCID: PMC10687364 DOI: 10.3389/fcell.2023.1239448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
Tetraploid complementation is an ideal method for demonstrating the differentiation potential of pluripotent stem cells. In this study, we selected the most efficient tetraploid production method for porcine embryos and investigated whether tetraploid blastomere aggregation could enhance the quality of tetraploid embryos. Three methods were investigated to produce tetraploid embryos: First, tetraploid embryos were produced using electro-fusion of two-cell stage parthenogenetic blastomere (FUTP). Second, somatic cell was injected into the mature oocyte and fused to produce tetraploid embryos. Third, oocytes were matured with Cytochalasin B (CB) for the late 22 h of in vitro maturation to inhibit the first polar body (PB1). Following that, non-PB1 oocytes were treated with CB for 4 h after parthenogenetic activation. There was no significant difference in the blastocyst development rate and tetraploid production rate of the embryos produced through the three methods. However, FUTP-derived blastocysts had a significantly lower percentage of apoptotic cells compared to other methods. The developmental competence of embryos, expression of trophectoderm cell marker genes, and distribution of YAP1 protein were investigated in tetraploid embryos produced using the FUTP method. The FUTP method most effectively prevented apoptosis during porcine tetraploid embryo formation. Tetraploid aggregation-derived blastocysts have a high proportion of trophectoderm with increased expression of the CDX2 mRNA and high YAP1 intensity. High-quality blastocysts derived from a tetraploid embryo aggregation can serve as suitable source material for testing the differentiation potential of pluripotent stem cells for blastocyst complementation in pigs.
Collapse
Affiliation(s)
- Joohyeong Lee
- Department of Companion Animal Industry, College of Healthcare and Biotechnology, Semyung University, Jecheon, Republic of Korea
| | - Lian Cai
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
- Graduate School of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju, Republic of Korea
| | - Mirae Kim
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Hyerin Choi
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Dongjin Oh
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Ali Jawad
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
| | - Eunsong Lee
- College of Veterinary Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Sang-Hwan Hyun
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Republic of Korea
- Graduate School of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
4
|
Kwisda K. Unaddressed regulatory issues in xenotransplantation: a hypothetical example. FRONTIERS IN TRANSPLANTATION 2023; 2:1222031. [PMID: 38993861 PMCID: PMC11235213 DOI: 10.3389/frtra.2023.1222031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/22/2023] [Indexed: 07/13/2024]
Abstract
The last few years have seen a significant increase in the use of technology to manipulate genetic sequences and generate animals as a source of xeno-organs. This has made the generation of genetically bespoke organisms a reality. This paper will analyze the regulatory and practical aspects of such an innovative approach to xenotransplantation on the basis of a hypothetical case study applied to Germany and highlight the gaps in the current regulation. This paper thus provides the basis for legal debate within a specific country. In addition, the identified gaps also pose a barrier toward the harmonization of international regulation. This publication therefore lays the groundwork for guiding the international debate regarding the regulatory framework for solid organ xenotransplantation toward specific issues.
Collapse
Affiliation(s)
- Koko Kwisda
- Centre for Ethics and Law in the Life Sciences, Leibniz University Hannover, Hanover, Germany
| |
Collapse
|
5
|
Zhou Q, Li T, Wang K, Zhang Q, Geng Z, Deng S, Cheng C, Wang Y. Current status of xenotransplantation research and the strategies for preventing xenograft rejection. Front Immunol 2022; 13:928173. [PMID: 35967435 PMCID: PMC9367636 DOI: 10.3389/fimmu.2022.928173] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/07/2022] [Indexed: 12/13/2022] Open
Abstract
Transplantation is often the last resort for end-stage organ failures, e.g., kidney, liver, heart, lung, and pancreas. The shortage of donor organs is the main limiting factor for successful transplantation in humans. Except living donations, other alternatives are needed, e.g., xenotransplantation of pig organs. However, immune rejection remains the major challenge to overcome in xenotransplantation. There are three different xenogeneic types of rejections, based on the responses and mechanisms involved. It includes hyperacute rejection (HAR), delayed xenograft rejection (DXR) and chronic rejection. DXR, sometimes involves acute humoral xenograft rejection (AHR) and cellular xenograft rejection (CXR), which cannot be strictly distinguished from each other in pathological process. In this review, we comprehensively discussed the mechanism of these immunological rejections and summarized the strategies for preventing them, such as generation of gene knock out donors by different genome editing tools and the use of immunosuppressive regimens. We also addressed organ-specific barriers and challenges needed to pave the way for clinical xenotransplantation. Taken together, this information will benefit the current immunological research in the field of xenotransplantation.
Collapse
Affiliation(s)
- Qiao Zhou
- Department of Rheumatology and Immunology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Ting Li
- Department of Rheumatology, Wenjiang District People’s Hospital, Chengdu, China
| | - Kaiwen Wang
- School of Medicine, Faculty of Medicine and Health, The University of Leeds, Leeds, United Kingdom
| | - Qi Zhang
- School of Medicine, University of Electronics and Technology of China, Chengdu, China
| | - Zhuowen Geng
- School of Medicine, Faculty of Medicine and Health, The University of Leeds, Leeds, United Kingdom
| | - Shaoping Deng
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
- Institute of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, China
| | - Chunming Cheng
- Department of Radiation Oncology, James Comprehensive Cancer Center and College of Medicine at The Ohio State University, Columbus, OH, United States
- *Correspondence: Chunming Cheng, ; Yi Wang,
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, China
- *Correspondence: Chunming Cheng, ; Yi Wang,
| |
Collapse
|
6
|
Meier RPH, Longchamp A, Mohiuddin M, Manuel O, Vrakas G, Maluf DG, Buhler LH, Muller YD, Pascual M. Recent progress and remaining hurdles toward clinical xenotransplantation. Xenotransplantation 2021; 28:e12681. [PMID: 33759229 DOI: 10.1111/xen.12681] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/12/2021] [Accepted: 02/21/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Xenotransplantation has made tremendous progress over the last decade. METHODS We discuss kidney and heart xenotransplantation, which are nearing initial clinical trials. RESULTS Life sustaining genetically modified kidney xenografts can now last for approximately 500 days and orthotopic heart xenografts for 200 days in non-human primates. Anti-swine specific antibody screening, preemptive desensitization protocols, complement inhibition and targeted immunosuppression are currently being adapted to xenotransplantation with the hope to achieve better control of antibody-mediated rejection (AMR) and improve xenograft longevity. These newest advances could probably facilitate future clinical trials, a significant step for the medical community, given that dialysis remains difficult for many patients and can have prohibitive costs. Performing a successful pig-to-human clinical kidney xenograft, that could last for more than a year after transplant, seems feasible but it still has significant potential hurdles to overcome. The risk/benefit balance is progressively reaching an acceptable equilibrium for future human recipients, e.g. those with a life expectancy inferior to two years. The ultimate question at this stage would be to determine if a "proof of concept" in humans is desirable, or whether further experimental/pre-clinical advances are still needed to demonstrate longer xenograft survival in non-human primates. CONCLUSION In this review, we discuss the most recent advances in kidney and heart xenotransplantation, with a focus on the prevention and treatment of AMR and on the recipient's selection, two aspects that will likely be the major points of discussion in the first pig organ xenotransplantation clinical trials.
Collapse
Affiliation(s)
- Raphael P H Meier
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alban Longchamp
- Department of Vascular Surgery, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Muhammad Mohiuddin
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Oriol Manuel
- Transplantation Center, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Georgios Vrakas
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Daniel G Maluf
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Leo H Buhler
- Faculty of Science and Medicine, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Yannick D Muller
- Division of Immunology and Allergy, University Hospital of Lausanne, Lausanne, Switzerland
| | - Manuel Pascual
- Transplantation Center, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
7
|
Aravalli RN. Generating liver using blastocyst complementation: Opportunities and challenges. Xenotransplantation 2020; 28:e12668. [PMID: 33372360 DOI: 10.1111/xen.12668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/05/2020] [Accepted: 11/26/2020] [Indexed: 12/28/2022]
Abstract
Orthotopic liver transplantation (OLT) is the only definitive treatment option for many patients with end-stage liver disease. Current supply of donor livers for OLT is not keeping up with the growing demand. To overcome this problem, a number of experimental strategies have been developed either to provide a bridge to transplant for patients on the waiting list or to bioengineer whole livers for OLT by replenishing them with fresh supplies of hepatic cells. In recent years, blastocyst complementation has emerged as the most promising approach for generating whole organs and, in combination with gene editing technology, it has revolutionized regenerative medicine. This methodology was successful in producing xenogeneic organs in animal hosts. Blastocyst complementation has the potential to produce whole livers in large animals that could be xenotransplanted in humans, thereby reducing the shortage of livers for OLT. However, significant experimental and ethical barriers remain for the production of human livers in domestic animals, such as the pig. This review summarizes the current knowledge and provides future perspectives for liver xenotransplantation in humans.
Collapse
Affiliation(s)
- Rajagopal N Aravalli
- Department of Electrical and Computer Engineering, College of Science and Engineering, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
8
|
Utility of Common Marmoset ( Callithrix jacchus) Embryonic Stem Cells in Liver Disease Modeling, Tissue Engineering and Drug Metabolism. Genes (Basel) 2020; 11:genes11070729. [PMID: 32630053 PMCID: PMC7397002 DOI: 10.3390/genes11070729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/21/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022] Open
Abstract
The incidence of liver disease is increasing significantly worldwide and, as a result, there is a pressing need to develop new technologies and applications for end-stage liver diseases. For many of them, orthotopic liver transplantation is the only viable therapeutic option. Stem cells that are capable of differentiating into all liver cell types and could closely mimic human liver disease are extremely valuable for disease modeling, tissue regeneration and repair, and for drug metabolism studies to develop novel therapeutic treatments. Despite the extensive research efforts, positive results from rodent models have not translated meaningfully into realistic preclinical models and therapies. The common marmoset Callithrix jacchus has emerged as a viable non-human primate model to study various human diseases because of its distinct features and close physiologic, genetic and metabolic similarities to humans. C. jacchus embryonic stem cells (cjESC) and recently generated cjESC-derived hepatocyte-like cells (cjESC-HLCs) could fill the gaps in disease modeling, liver regeneration and metabolic studies. They are extremely useful for cell therapy to regenerate and repair damaged liver tissues in vivo as they could efficiently engraft into the liver parenchyma. For in vitro studies, they would be advantageous for drug design and metabolism in developing novel drugs and cell-based therapies. Specifically, they express both phase I and II metabolic enzymes that share similar substrate specificities, inhibition and induction characteristics, and drug metabolism as their human counterparts. In addition, cjESCs and cjESC-HLCs are advantageous for investigations on emerging research areas, including blastocyst complementation to generate entire livers, and bioengineering of discarded livers to regenerate whole livers for transplantation.
Collapse
|
9
|
Kwisda K, White L, Hübner D. Ethical arguments concerning human-animal chimera research: a systematic review. BMC Med Ethics 2020; 21:24. [PMID: 32293411 PMCID: PMC7092670 DOI: 10.1186/s12910-020-00465-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 03/06/2020] [Indexed: 12/31/2022] Open
Abstract
Background The burgeoning field of biomedical research involving the mixture of human and animal materials has attracted significant ethical controversy. Due to the many dimensions of potential ethical conflict involved in this type of research, and the wide variety of research projects under discussion, it is difficult to obtain an overview of the ethical debate. This paper attempts to remedy this by providing a systematic review of ethical reasons in academic publications on human-animal chimera research. Methods We conducted a systematic review of the ethical literature concerning human-animal chimeras based on the research question: “What ethical reasons have been given for or against conducting human-animal chimera research, and how have these reasons been treated in the ongoing debate?” Our search extends until the end of the year 2017, including MEDLINE, Embase, PhilPapers and EthxWeb databases, restricted to peer-reviewed journal publications in English. Papers containing ethical reasons were analyzed, and the reasons were coded according to whether they were endorsed, mentioned or rejected. Results Four hundred thirty-one articles were retrieved by our search, and 88 were ultimately included and analyzed. Within these articles, we found 464 passages containing reasons for and against conducting human-animal chimera research. We classified these reasons into five categories and, within these, identified 12 broad and 31 narrow reason types. 15% of the retrieved passages contained reasons in favor of conducting chimera research (Category P), while 85% of the passages contained reasons against it. The reasons against conducting chimera research fell into four further categories: reasons concerning the creation of a chimera (Category A), its treatment (Category B), reasons referring to metaphysical or social issues resulting from its existence (Category C) and to potential downstream effects of chimera research (Category D). A significant proportion of identified passages (46%) fell under Category C. Conclusions We hope that our results, in revealing the conceptual and argumentative structure of the debate and highlighting some its most notable tendencies and prominent positions, will facilitate continued discussion and provide a basis for the development of relevant policy and legislation.
Collapse
Affiliation(s)
- Koko Kwisda
- CELLS - Centre for Ethics and Law in the Life Sciences, Leibniz University Hannover, Otto-Brenner-Strasse 1, 30159, Hannover, Germany.
| | - Lucie White
- Institute of Philosophy, Leibniz University Hannover, Im Moore 21, 30167, Hannover, Germany
| | - Dietmar Hübner
- Institute of Philosophy, Leibniz University Hannover, Im Moore 21, 30167, Hannover, Germany
| |
Collapse
|
10
|
|
11
|
Oldani G, Peloso A, Vijgen S, Wilson EM, Slits F, Gex Q, Morel P, Delaune V, Orci LA, Yamaguchi T, Kobayashi T, Rubbia-Brandt L, Nakauchi H, Lacotte S, Toso C. Chimeric liver transplantation reveals interspecific graft remodelling. J Hepatol 2018; 69:1025-1036. [PMID: 30031887 DOI: 10.1016/j.jhep.2018.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 07/05/2018] [Accepted: 07/10/2018] [Indexed: 01/22/2023]
Abstract
BACKGROUND & AIMS A major limitation in the field of liver transplantation is the shortage of transplantable organs. Chimeric animals carrying human tissue have the potential to solve this problem. However, currently available chimeric organs retain a high level of xenogeneic cells, and the transplantation of impure organs needs to be tested. METHODS We created chimeric livers by injecting Lewis rat hepatocytes into C57Bl/6Fah-/-Rag2-/-Il2rg-/- mice, and further transplanted them into newly weaned Lewis rats (45 ± 3 g) with or without suboptimal immunosuppression (tacrolimus 0.6 mg/kg/day for 56 or 112 days). Control donors included wild-type C57Bl/6 mice (xenogeneic) and Lewis rats (syngeneic). RESULTS Without immunosuppression, recipients of chimeric livers experienced acute rejection, and died within 8 to 11 days. With immunosuppression, they all survived for >112 days with normal weight gain compared to syngeneic controls, while all xenogeneic controls died within 98 days due to rejection with Banff scores >6 (p = 0.0014). The chimeric grafts underwent post-transplant remodelling, growing by 670% on average. Rat hepatocytes fully replaced mouse hepatocytes starting from day 56 (absence of detectable mouse serum albumin, histological clearance of mouse hepatocytes). In addition, rat albumin levels reached those of syngeneic recipients. Four months after transplantation of chimeric livers, we observed the development of diffuse mature rat bile ducts through transdifferentiation of hepatocytes (up to 72% of cholangiocytes), and patchy areas of portal endothelium originating from the host (seen in one out of five recipients). CONCLUSIONS Taken together, these data demonstrate the efficacy of transplanting rat-to-mouse chimeric livers into rats, with a high potential for post-transplant recipient-oriented graft remodelling. Validation in a large animal model is still needed. LAY SUMMARY Chimeric animals are composed of cells from different species. Chimeric animals carrying human tissue have the potential to increase the availability of transplantable organs. We transplanted rat-to-mouse liver grafts into newly weaned rats. The chimeric grafts underwent post-transplant remodelling with rat hepatocytes replacing all mouse hepatocytes within 56 days. In addition, we observed the post-transplant development of diffuse mature rat bile ducts through the transformation of hepatocytes, and patchy areas of portal endothelium originating from the host. These data demonstrate the efficacy of transplanting rat-to-mouse chimeric livers into rats, with a high potential for post-transplant graft remodelling.
Collapse
Affiliation(s)
- Graziano Oldani
- Division of Abdominal Surgery, Department of Surgery, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Hepato-Pancreato-Biliary Centre, Geneva University Hospitals, Geneva, Switzerland.
| | - Andrea Peloso
- Division of Abdominal Surgery, Department of Surgery, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Hepato-Pancreato-Biliary Centre, Geneva University Hospitals, Geneva, Switzerland
| | - Sandrine Vijgen
- Hepato-Pancreato-Biliary Centre, Geneva University Hospitals, Geneva, Switzerland; Division of Clinical Pathology, Department of Pathology and Immunology, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Florence Slits
- Division of Abdominal Surgery, Department of Surgery, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Quentin Gex
- Division of Abdominal Surgery, Department of Surgery, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Philippe Morel
- Division of Abdominal Surgery, Department of Surgery, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Vaihere Delaune
- Division of Abdominal Surgery, Department of Surgery, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Hepato-Pancreato-Biliary Centre, Geneva University Hospitals, Geneva, Switzerland
| | - Lorenzo A Orci
- Division of Abdominal Surgery, Department of Surgery, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Hepato-Pancreato-Biliary Centre, Geneva University Hospitals, Geneva, Switzerland
| | - Tomoyuki Yamaguchi
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Toshihiro Kobayashi
- Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Japan
| | - Laura Rubbia-Brandt
- Hepato-Pancreato-Biliary Centre, Geneva University Hospitals, Geneva, Switzerland; Division of Clinical Pathology, Department of Pathology and Immunology, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Hiromitsu Nakauchi
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan; Institute for Stem Cell Biology and Regenerative Medicine, Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Stéphanie Lacotte
- Division of Abdominal Surgery, Department of Surgery, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Christian Toso
- Division of Abdominal Surgery, Department of Surgery, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Hepato-Pancreato-Biliary Centre, Geneva University Hospitals, Geneva, Switzerland.
| |
Collapse
|
12
|
Loike JD, Kadish A. Ethical rejections of xenotransplantation? The potential and challenges of using human-pig chimeras to create organs for transplantation. EMBO Rep 2018; 19:embr.201846337. [PMID: 29991538 DOI: 10.15252/embr.201846337] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
| | - Alan Kadish
- Touro College and University System, New York, NY, USA
| |
Collapse
|
13
|
Meier RPH, Muller YD, Balaphas A, Morel P, Pascual M, Seebach JD, Buhler LH. Xenotransplantation: back to the future? Transpl Int 2018; 31:465-477. [PMID: 29210109 DOI: 10.1111/tri.13104] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/05/2017] [Accepted: 11/26/2017] [Indexed: 12/26/2022]
Abstract
The field of xenotransplantation has fluctuated between great optimism and doubts over the last 50 years. The initial clinical attempts were extremely ambitious but faced technical and ethical issues that prompted the research community to go back to preclinical studies. Important players left the field due to perceived xenozoonotic risks and the lack of progress in pig-to-nonhuman-primate transplant models. Initial apparently unsurmountable issues appear now to be possible to overcome due to progress of genetic engineering, allowing the generation of multiple-xenoantigen knockout pigs that express human transgenes and the genomewide inactivation of porcine endogenous retroviruses. These important steps forward were made possible by new genome editing technologies, such as CRISPR/Cas9, allowing researchers to precisely remove or insert genes anywhere in the genome. An additional emerging perspective is the possibility of growing humanized organs in pigs using blastocyst complementation. This article summarizes the current advances in xenotransplantation research in nonhuman primates, and it describes the newly developed genome editing technology tools and interspecific organ generation.
Collapse
Affiliation(s)
- Raphael P H Meier
- Visceral and Transplant Surgery, University Hospitals of Geneva, Geneva, Switzerland
| | - Yannick D Muller
- Division of Clinical Immunology and Allergy, Department of Medical Specialties, University Hospitals and Medical Faculty, Geneva, Switzerland.,Transplantation Center, Lausanne University Hospital, Lausanne, Switzerland
| | - Alexandre Balaphas
- Visceral and Transplant Surgery, University Hospitals of Geneva, Geneva, Switzerland
| | - Philippe Morel
- Visceral and Transplant Surgery, University Hospitals of Geneva, Geneva, Switzerland
| | - Manuel Pascual
- Transplantation Center, Lausanne University Hospital, Lausanne, Switzerland
| | - Jörg D Seebach
- Division of Clinical Immunology and Allergy, Department of Medical Specialties, University Hospitals and Medical Faculty, Geneva, Switzerland
| | - Leo H Buhler
- Visceral and Transplant Surgery, University Hospitals of Geneva, Geneva, Switzerland
| |
Collapse
|
14
|
Ezelerab M, Burlak C. Xenotransplantation literature update, July/August 2017. Xenotransplantation 2017; 24. [PMID: 28891168 DOI: 10.1111/xen.12340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 08/20/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Mohammed Ezelerab
- Starzl Transplantation Institute, University of Pittsburgh, E1540 Biomedical Science Tower (BST), Pittsburgh, PA, USA
| | - Christopher Burlak
- Department of Surgery, Schultz Diabetes Institute, University of Minnesota School of Medicine, Minneapolis, MN, USA
| |
Collapse
|
15
|
Bühler L, Schuurman HJ. Creation of chimeric animals by blastocyst complementation; Editorial commentary. Xenotransplantation 2017; 24. [PMID: 28782891 DOI: 10.1111/xen.12325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Léo Bühler
- Department of Surgery, University Hospitals of Geneva, Geneva, Switzerland
| | | |
Collapse
|