1
|
Li Y, Yuan W, Zhong M, Qi J, Zheng X, Xie X, Li T, Zhang H, Jiang X, Peng L, Dai H. A murine groin site cardiac transplantation model-applicable tool for studying roles of peripheral lymph nodes in transplantation. Xenotransplantation 2024; 31:e12817. [PMID: 37548057 DOI: 10.1111/xen.12817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023]
Abstract
The murine heterotopic cardiac transplantation model has been widely used to study antigen-specific immune responses or new immunosuppressive agents, which have a strong correlation with peripheral lymph nodes. Thus, a new organ transplantation model that is applicable to related studies is needed. Here, we describe a groin-site murine heart transplantation model using a cuff technique, in which the donor aorta and pulmonary artery are anastomosed to the truncated femoral vessels of the recipient. The mean survival time (MST) of the grafts in BALB/c-to-C57BL/6 allo-transplant group was 7.2 ± 0.3 days, and 1.9 ± 0.2 days in BALB/c-to-Sprague-Dawley (SD) rat xeno-transplant group. H&E results show that donor hearts from both groups demonstrate typical pathological features at the endpoint. Evans Blue tracing revealed that the popliteal lymph nodes of the grafted side hindlimb are larger than those of the contralateral side. Moreover, IHC staining for CD3, CD20 shows that the germinal center and cortex region of the grafted side of popliteal lymph nodes is apparently increased than that of the contralateral side. To sum up, this model may serve as an ideal model to study the role of peripheral lymph nodes in organ transplant rejection. In addition, extra-peritoneal grafting makes a step forward in animal welfare under the 3Rs' principle (Replacement, Reduction, Refinement).
Collapse
Affiliation(s)
- Yaguang Li
- Department of Kidney Transplantation, The Second Xiangya Hospital, of Central South University, Changsha, China
- Clinical Research Center for Organ Transplantation in Hunan Province, Central South University, Changsha, China
| | - Wenjia Yuan
- Department of Kidney Transplantation, The Second Xiangya Hospital, of Central South University, Changsha, China
- Clinical Research Center for Organ Transplantation in Hunan Province, Central South University, Changsha, China
| | - Mingda Zhong
- Department of Kidney Transplantation, The Second Xiangya Hospital, of Central South University, Changsha, China
| | - Julia Qi
- Peking University Health Science Center, Beijing, China
| | - Xinguo Zheng
- Department of Kidney Transplantation, The Second Xiangya Hospital, of Central South University, Changsha, China
- Clinical Research Center for Organ Transplantation in Hunan Province, Central South University, Changsha, China
| | - Xubiao Xie
- Department of Kidney Transplantation, The Second Xiangya Hospital, of Central South University, Changsha, China
- Clinical Research Center for Organ Transplantation in Hunan Province, Central South University, Changsha, China
| | - Tengfang Li
- Department of Kidney Transplantation, The Second Xiangya Hospital, of Central South University, Changsha, China
- Clinical Research Center for Organ Transplantation in Hunan Province, Central South University, Changsha, China
| | - Hedong Zhang
- Department of Kidney Transplantation, The Second Xiangya Hospital, of Central South University, Changsha, China
- Clinical Research Center for Organ Transplantation in Hunan Province, Central South University, Changsha, China
| | - Xin Jiang
- Department of Organ Transplantation, The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, China
| | - Longkai Peng
- Department of Kidney Transplantation, The Second Xiangya Hospital, of Central South University, Changsha, China
- Clinical Research Center for Organ Transplantation in Hunan Province, Central South University, Changsha, China
| | - Helong Dai
- Department of Kidney Transplantation, The Second Xiangya Hospital, of Central South University, Changsha, China
- Clinical Research Center for Organ Transplantation in Hunan Province, Central South University, Changsha, China
- Clinical Immunology Center, Central South University, Changsha, China
| |
Collapse
|
2
|
Fei Q, Liu J, Qiao L, Zhang M, Xia H, Lu D, Wu D, Wang J, Li R, Li J, Yang F, Liu D, Xie B, Hui W, Qian B. Mst1 attenuates myocardial ischemia/reperfusion injury following heterotopic heart transplantation in mice through regulating Keap1/Nrf2 axis. Biochem Biophys Res Commun 2023; 644:140-148. [PMID: 36646002 DOI: 10.1016/j.bbrc.2022.12.087] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/17/2022] [Accepted: 12/30/2022] [Indexed: 01/09/2023]
Abstract
Ischemia reperfusion (I/R) injury remains a frequent adverse event that accompanies heart transplantation. Oxidative stress and aberrant production of free radicals were regarded as the culprit of cell death and tissue damage in post-transplant IR injury. Mst1 has been identified as a mediator of oxidative stress and Nrf2 regulates anti-oxidative enzymes, however, the interaction between Mst1 and Nrf2 anti-oxidative stress pathway remains to be clarified in the event of cardiac IR injury. Herein, the model of ischemia-reperfusion injury in heterotopic heart transplantation mice was firstly established.. We observed that cardiac IR induced upregulation of Mst1 and activation of Nrf2/HO-1pathway in mice receiving heterotopic heart transplantation. Further Cobalt dichloride-induced oxidative stress model of RAW264.7 macrophage cells were then established to mimic cardiac I/R injury, results showed that exposure to CoCl2 induced the upregulation of Mst1 and activation of Keap1/Nrf2 pathway, and genetic ablation of Mst-1 and inhibition of Keap1/Nrf2 pathway aggravated oxidative damage in those cells. Additional in vivo study showed that transfection of Mst1 shRNA spurred ROS generation and worsened cardiac damage in IR mice. Meanwhile, Mst1-KD mice receiving heart transplantation showed markedly downregulation of Nrf2, HO-1 yet upregulation of Keap1, indicating diminished protective effect against tissue damage caused by IR probably owing to the frustration of Keap1/Nrf2 pathway. Taken together, our findings demonstrated the protective effect of Mst1 from cardiac IR injury via triggering Keap1/Nrf2 axis and suppressing ROS generation, which shed light on the promising role of Mst1 in transitional management of IR injury resulted from cardiac transplantation.
Collapse
Affiliation(s)
- Qi Fei
- Department of Pulmonary and Critical Care Medicine, Peking University Shenzhen Hospital, Futian District, Shenzhent, 518036, Guangdong, People's Republic of China
| | - Justin Liu
- Department of Statistics, University of California, Riverside, 900 University Ave, Riverside, CA, 92521, USA
| | - Li Qiao
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, 230601, People's Republic of China
| | - Meng Zhang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, 230601, People's Republic of China
| | - Haidong Xia
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, 230601, People's Republic of China
| | - Daoqiang Lu
- School of Medicine, Foshan University, Foshan, 528000, Guangdong, People's Republic of China
| | - Di Wu
- School of Medicine, Foshan University, Foshan, 528000, Guangdong, People's Republic of China
| | - Jun Wang
- School of Medicine, Foshan University, Foshan, 528000, Guangdong, People's Republic of China
| | - Riwang Li
- School of Medicine, Foshan University, Foshan, 528000, Guangdong, People's Republic of China
| | - Jie Li
- School of Medicine, Foshan University, Foshan, 528000, Guangdong, People's Republic of China
| | - Fang Yang
- School of Medicine, Foshan University, Foshan, 528000, Guangdong, People's Republic of China
| | - Dahai Liu
- School of Medicine, Foshan University, Foshan, 528000, Guangdong, People's Republic of China.
| | - Baiyi Xie
- Department of Urology Surgery, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China.
| | - Wenqiao Hui
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agriculture Sciences, Hefei, Anhui, 230031, China.
| | - Ban Qian
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, 230601, People's Republic of China.
| |
Collapse
|
3
|
Ma Y, Xie B, Guo J, Chen Y, Zhong M, Lin Q, Hua J, Zhong J, Luo X, Yan G, Dai H, Qi Z. Leflunomide Inhibits rat-to-Mouse Cardiac Xenograft Rejection by Suppressing Adaptive Immune Cell Response and NF-κB Signaling Activation. Cell Transplant 2021; 30:9636897211054503. [PMID: 34814739 PMCID: PMC8647224 DOI: 10.1177/09636897211054503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Xenotransplantation is a potential solution for the severe shortage of human donor organs and tissues. The generation of humanized animal models attenuates strong innate immune responses, such as complement-mediated hyperacute rejection. However, acute vascular rejection and cell mediated rejection remain primary barriers to xenotransplantation, which limits its clinical application. In this study, we systematically investigated the immunosuppressive effect of LEF using a rat-to-mouse heart xenotransplantation model. SD rat xenogeneic hearts were transplanted into C57BL/6 mice, and survived 34.5 days after LEF treatment. In contrast, BALB/c allogeneic hearts were transplanted into C57BL/6 mice, and survived 31 days after LEF treatment. Compared to normal saline treatment, LEF treatment decreased xenoreactive T cells and CD19+ B cells in recipient splenocytes. Most importantly, LEF treatment protected myocardial cells by decreasing xenoreactive T and B cell infiltration, inflammatory gene expression, and IgM deposition in grafts. In vivo assays revealed that LEF treatment eliminated xenoreactive and alloreactive T and B lymphocytes by suppressing the activation of the NF-κB signaling pathway. Taken together, these observations complement the evidence supporting the potential use of LEF in xenotransplantation.
Collapse
Affiliation(s)
- Yunhan Ma
- Fujian Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China.,School of Medicine, Xiamen University, Xiamen, China.,Department of Clinical Sciences, Malmö, Lund University, Malmö, Sweden.,Yunhan Ma and Baiyi Xie contributed equally to this work
| | - Baiyi Xie
- Department of Urology Surgery, Ruikang Hospital affiliated to Guangxi University of Chinese Medicine, Nanning, China.,Yunhan Ma and Baiyi Xie contributed equally to this work
| | - Junjun Guo
- School of Medicine, Xiamen University, Xiamen, China
| | - Yingyu Chen
- Fujian Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China.,School of Medicine, Xiamen University, Xiamen, China
| | - Mengya Zhong
- School of Medicine, Xiamen University, Xiamen, China
| | - Qingru Lin
- Fujian Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China.,School of Medicine, Xiamen University, Xiamen, China
| | - Jianyu Hua
- Fujian Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China.,School of Medicine, Xiamen University, Xiamen, China
| | - Jiaying Zhong
- Fujian Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China.,School of Medicine, Xiamen University, Xiamen, China
| | - Xuewei Luo
- Medicinal College, Guangxi University, Nanning, China
| | - Guoliang Yan
- Fujian Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China.,School of Medicine, Xiamen University, Xiamen, China
| | - Helong Dai
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China.,Clinical Immunology Center, Central South University, Changsha, China
| | - Zhongquan Qi
- Fujian Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, China.,Medicinal College, Guangxi University, Nanning, China
| |
Collapse
|