1
|
Stewart AG, Fishman JA. Surveillance and prevention of infection in clinical xenotransplantation. Clin Microbiol Rev 2025; 38:e0015023. [PMID: 39887237 PMCID: PMC11905366 DOI: 10.1128/cmr.00150-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025] Open
Abstract
SUMMARYXenotransplantation, the transplantation of living organs, tissues, or cells between species, carries the potential to address the global shortage of human organs for patients with end-stage organ failure. Recent advances in genetic engineering have improved prospects for clinical xenotransplantation by reducing immune and inflammatory responses to grafts, controlling coagulation on endothelial surfaces, and modifying viral risks, including the porcine endogenous retrovirus (PERV). Management of infectious risks posed by clinical xenotransplantation requires meticulous attention to the biosecure breeding and microbiological surveillance of source animals and recipients and consideration of novel infection control requirements. Infectious risks in xenotransplantation stem from both known human pathogens in immunosuppressed transplant recipients and from porcine organisms for which the clinical manifestations, microbial assays, and therapies are generally limited. Both known and unknown zoonoses may be transmitted from pigs to humans. Some pig-specific pathogens do not infect human cells but have systemic manifestations when active within the xenograft, including porcine cytomegalovirus/porcine roseolovirus (PCMV/PRV), which contributes to graft rejection and consumptive coagulopathy. The role of porcine endogenous retrovirus (PERV) in humans remains uncertain despite the absence of documented transmissions and the availability of swine with inactivated genomic PERV. New technologies, such as metagenomic sequencing and multi-omics approaches, will be essential for detection of novel infections and for understanding interactions between the xenograft, the host's immune system, and potential pathogens. These approaches will allow development of infection control protocols, pathogen surveillance requirements, and tailored antimicrobial therapies to enhance the safety and success of clinical xenotransplantation.
Collapse
Affiliation(s)
- Adam G. Stewart
- Transplant Infectious Disease and Compromised Host Program, MGH Transplant Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Jay A. Fishman
- Transplant Infectious Disease and Compromised Host Program, MGH Transplant Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Jhelum H, Kunec D, Papatsiros V, Kaufer BB, Denner J. Reliable Polymerase Chain Reaction Methods for Screening for Porcine Endogenous Retroviruses-C (PERV-C) in Pigs. Viruses 2025; 17:164. [PMID: 40006919 PMCID: PMC11860680 DOI: 10.3390/v17020164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/17/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Porcine endogenous retrovirus C (PERV-C) is a gammaretrovirus present in the genome of many, but not all, pigs. It is an ecotropic virus, able to infect only pig cells. In contrast, PERV-A and PERV-B, which are present in all pigs, can infect cells of multiple host species, including humans, thereby posing a risk for xenotransplantation when pigs are used as donor animals. Notably, PERV-C can recombine with PERV-A to produce PERV-A/C recombinants that can infect human cells and replicate to higher titers compared to the paternal PERV-A. The objective of this study is to evaluate the reliability of both existing and newly developed polymerase chain reactions (PCR) methods for detecting PERV-C, with the aim of selecting PERV-C-free pigs to be used for xenotransplantation. To detect PERV-C by PCR, specific primers targeting the region of the envelope protein gene, which differs from that of PERV-A and PERV-B due to its unique receptor binding site, must be employed. In this study, new PCR assays were developed to detect PERV-C and a total of ten PCR assays and one real-time PCR assay were evaluated for their reliability in detecting PERV-C. These assays were used to screen indigenous Greek black pigs, Auckland Island pigs, and German slaughterhouse pigs. Two of the PCR assays consistently yielded reliable results, whereas the other PCRs and the real-time PCR gave false positive results. Using the reliable assays, it was shown that one out of four indigenous Greek black pigs (using the same method in a previous publication 11 of 21 pigs were found PERV-C-negative), one out of ten German slaughterhouse pigs, the pig kidney cell line PK15, and all the Auckland Island pigs were PERV-C-negative. The reliable PCR assays will enable the screening of PERV-C-negative donor pigs to be used in xenotransplantation. Most importantly, all the Auckland Island pigs that were genetically modified in Germany for use in clinical trials were PERV-C-negative.
Collapse
Affiliation(s)
- Hina Jhelum
- Institute of Virology, Free University Berlin, 14163 Berlin, Germany; (H.J.); (D.K.); (B.B.K.)
| | - Dusan Kunec
- Institute of Virology, Free University Berlin, 14163 Berlin, Germany; (H.J.); (D.K.); (B.B.K.)
| | - Vasileios Papatsiros
- Faculty of Veterinary Medicine, Clinic of Medicine (Farm Animal Medicine), University of Thessaly, GR 43100 Karditsa, Greece;
| | - Benedikt B. Kaufer
- Institute of Virology, Free University Berlin, 14163 Berlin, Germany; (H.J.); (D.K.); (B.B.K.)
| | - Joachim Denner
- Institute of Virology, Free University Berlin, 14163 Berlin, Germany; (H.J.); (D.K.); (B.B.K.)
| |
Collapse
|
3
|
Denner J, Jhelum H, Ban J, Krabben L, Kaufer BB. How to Detect Porcine Endogenous Retrovirus (PERV) Infections in Patients After Transplantation of Pig Organs. Xenotransplantation 2025; 32:e70028. [PMID: 39994944 PMCID: PMC11850954 DOI: 10.1111/xen.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Porcine endogenous retroviruses (PERVs) are integrated into the genome of all pigs and can infect human cells in culture. However, no PERV infections have been reported in recipients following preclinical or clinical xenotransplantation or deliberate infection experiments. Detection of PERV infection in transplanted recipients is challenging due to microchimerism, such as the presence of pig cells containing PERV proviruses in the recipient. Based on our previous publications on PERV detection in xenotransplant recipients, particularly from the first clinical trials, we developed a comprehensive strategy to screen for PERV infections. Recipients can be monitored for increasing levels of viral genomic RNA and mRNA using real-time reverse transcriptase (RT)-PCR, which can indicate PERV expression and replication. To test this strategy, explanted pig hearts and organs from baboons after pig heart transplantation were analyzed. No PERV genomic RNA or mRNA was detected in these tissues, although both were found in PERV-producing human control cells. Screening for antibodies against PERV as indirect evidence of infection is the method of choice. Recombinant viral proteins were prepared for use in Western blot assays. Animal antisera generated through immunization with recombinant PERV proteins served as positive controls. No antibodies against PERV were detected in transplanted baboons, even though microchimerism was observed in many of the animals' organs. For effective antibody screening, at least two PERV proteins should be used as antigens.
Collapse
Affiliation(s)
- Joachim Denner
- Institute of VirologyFree University BerlinBerlinGermany
| | - Hina Jhelum
- Institute of VirologyFree University BerlinBerlinGermany
| | - Jinzhao Ban
- Institute of VirologyFree University BerlinBerlinGermany
| | - Ludwig Krabben
- Institute of VirologyFree University BerlinBerlinGermany
| | | |
Collapse
|
4
|
Denner J. Monitoring for PERV Following Xenotransplantation. Transpl Int 2024; 37:13491. [PMID: 39434857 PMCID: PMC11491343 DOI: 10.3389/ti.2024.13491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/16/2024] [Indexed: 10/23/2024]
Abstract
Porcine endogenous retroviruses (PERVs) are integrated in the genome of all pigs. PERV-A, PERV-B and PERV-C can be released as infectious virus particles and PERV-A and PERV-B can infect human cells in culture. PERV-C does not infect human cells, but high-titer recombinant PERV-A/C can infect them. Retroviruses are able to induce immunosuppression and/or tumors in the infected host. Numerous methods have been developed to study PERV in donor pigs. No PERV infections were observed in infection experiments as well as in preclinical and clinical xenotransplantation trials. Despite this, several strategies have been developed to prevent PERV infection of the recipient. PCR-based and immunological methods are required to screen xenotransplant recipients. Since the proviruses are integrated into the pig genome, PERV infection has to be distinguished from microchimerism, e.g., the presence of pig cells in the recipient, which is common in xenotransplantation. Sensitive PCR methods using pig short interspersed nuclear elements (SINE) sequences allow to detect pig cells easily. Virus infection can also be detected by an increase of viral genomic or mRNA in human cells. The method of choice, however, is to screen for specific antibodies against PERV using different recombinant PERV proteins, purified viruses or peptides.
Collapse
Affiliation(s)
- Joachim Denner
- Institute of Virology, Free University Berlin, Berlin, Germany
| |
Collapse
|
5
|
Saharia KK, Hall VG, Chesdachai S, Porrett P, Fishman JA, Pouch SM. Heart of the matter-infection and xenotransplantation. Transpl Infect Dis 2024; 26:e14206. [PMID: 38055610 DOI: 10.1111/tid.14206] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/12/2023] [Indexed: 12/08/2023]
Abstract
In this clinicopathological conference, invited experts discussed a previously published case of a patient with nonischemic cardiomyopathy who underwent heart transplantation from a genetically modified pig source animal. His complex course included detection of porcine cytomegalovirus by plasma microbial cell-free DNA and eventual xenograft failure. The objectives of the session included discussion of selection of immunosuppressive regimens and prophylactic antimicrobials for human xenograft recipients, description of infectious disease risk assessment and mitigation in potential xenograft donors and understanding of screening and therapeutic strategies for potential xenograft-related infections.
Collapse
Affiliation(s)
- Kapil K Saharia
- Institute of Human Virology, Division of Infectious Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Victoria G Hall
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Supavit Chesdachai
- Division of Public Health, Infectious Diseases and Occupational Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Paige Porrett
- University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| | - Jay A Fishman
- Transplant Infectious Disease and Compromised Host Program, MGH Transplant Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Stephanie M Pouch
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
6
|
Fischer N, Gulich B, Keßler B, Längin M, Fishman JA, Wolf E, Boller K, Tönjes RR, Godehardt AW. PCR and peptide based PCMV detection in pig - development and application of a combined testing procedure differentiating newly from latent infected pigs. Xenotransplantation 2023; 30:e12803. [PMID: 37120823 DOI: 10.1111/xen.12803] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/21/2023] [Accepted: 03/23/2023] [Indexed: 05/02/2023]
Abstract
Porcine cytomegalovirus (PCMV) is widely distributed in pigs and difficult to detect due to latency. PCMV infection of source pigs was associated with early graft failure after cardiac and renal xenotransplantation into nonhuman primates. Importantly, PCMV infection of the first genetically modified pig heart into a human may have contributed to the reduced survival of the patient. Sensitive and reliable assays for detection of latent PCMV infection are thus indispensable. Here, we report the development of five peptide-induced rabbit antisera specific for PCMV glycoprotein B (gB) and their validation for detection of PCMV in infected pig fallopian tube (PFT) cells by immunofluorescence and electron microscopy (EM). The anti-gB antibodies were also used for detection by Western blot analysis of PCMV purified from the supernatant of infected PFT cells. Sera of infected versus non-infected pigs have been compared. In parallel, PCMV viral load in blood samples of the animals was quantified by a novel highly sensitive nested-PCR and qPCR assay. A combination of four partly overlapping peptides from the gB C-terminus was used to establish a diagnostic ELISA for PCMV gB specific pig antibodies which is able to differentiate infected from non-infected animals and to quantify maternal antibodies in neonates. The combination of a highly sensitive nested PCR for direct virus detection with a sensitive peptide-based ELISA detecting anti-PCMV gB-antibodies, supplemented by Western blot analysis and/or immunohistochemistry for virus detection will reliably differentiate pigs with active infection, latently infected pigs, and non-infected pigs. It may significantly improve the virologic safety of xenotransplantation.
Collapse
Affiliation(s)
- Nicole Fischer
- Division of Haematology, Cell and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany
| | - Barbara Gulich
- Division of Haematology, Cell and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany
| | - Barbara Keßler
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich, Germany
| | | | - Jay A Fishman
- Transplant Infectious Disease and Compromised Host Program, MGH Transplant Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich, Germany
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich, Germany
| | - Klaus Boller
- Division of Immunology, Paul-Ehrlich-Institut, Langen, Germany
| | - Ralf R Tönjes
- Division of Haematology, Cell and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany
| | - Antonia W Godehardt
- Division of Haematology, Cell and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|
7
|
Rodrigues Costa M, Fischer N, Gronewold A, Gulich B, Godehardt AW, Tönjes RR. Isolation of an Ecotropic Porcine Endogenous Retrovirus PERV-C from a Yucatan SLA D/D Inbred Miniature Swine. J Virol 2023; 97:e0006223. [PMID: 36883860 PMCID: PMC10062142 DOI: 10.1128/jvi.00062-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 02/06/2023] [Indexed: 03/09/2023] Open
Abstract
Xenotransplantation may compensate the limited number of human allografts for transplantation using pigs as organ donors. Porcine endogenous retroviruses inherit infectious potential if pig cells, tissues, or organs were transplanted to immunosuppressed human recipients. Particularly, ecotropic PERV-C that could recombine with PERV-A to highly replication-competent human-tropic PERV-A/C should be excluded from pig breeds designed for xenotransplantation. Because of their low proviral background, SLAD/D (SLA, swine leukocyte antigen) haplotype pigs are potential candidates as organ donors as they do not bear replication-competent PERV-A and -B, even if they carry PERV-C. In this work, we characterized their PERV-C background isolating a full-length PERV-C proviral clone number 561 from a SLAD/D haplotype pig genome displayed in a bacteriophage lambda library. The provirus truncated in env due to cloning in lambda was complemented by PCR, and the recombinants were functionally characterized, confirming an increased infectivity in vitro compared to other PERV-C. Recombinant clone PERV-C(561) was chromosomally mapped by its 5'-proviral flanking sequences. Full-length PCR using 5'-and 3'-flanking primers specific to the PERV-C(561) locus verified that this specific SLAD/D haplotype pig harbors at least one full-length PERV-C provirus. The chromosomal location is different from that of the previously described PERV-C(1312) provirus, which was derived from the porcine cell-line MAX-T. The sequence data presented here provide further knowledge about PERV-C infectivity and contribute to targeted knockout in order to generate PERV-C-free founder animals. IMPORTANCE Yucatan SLAD/D haplotype miniature swine are candidates as organ donors for xenotransplantation. A full-length replication-competent PERV-C provirus was characterized. The provirus was chromosomally mapped in the pig genome. In vitro, the virus showed increased infectivity compared to other functional PERV-C isolates. Data may be used for targeted knockout to generate PERV-C free founder animals.
Collapse
Affiliation(s)
| | - Nicole Fischer
- Division of Hematology, Cell and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany
| | - Antonia Gronewold
- Division of Hematology, Cell and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany
| | - Barbara Gulich
- Division of Hematology, Cell and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany
| | - Antonia W. Godehardt
- Division of Hematology, Cell and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany
| | - Ralf R. Tönjes
- Division of Hematology, Cell and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|
8
|
Liu Y, Niu Y, Ma X, Xiang Y, Wu D, Li W, Wang T, Niu D. Porcine endogenous retrovirus: classification, molecular structure, regulation, function, and potential risk in xenotransplantation. Funct Integr Genomics 2023; 23:60. [PMID: 36790562 DOI: 10.1007/s10142-023-00984-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023]
Abstract
Xenotransplantation with porcine organs has been recognized as a promising solution to alleviate the shortage of organs for human transplantation. Porcine endogenous retrovirus (PERV), whose proviral DNAs are integrated in the genome of all pig breeds, is a main microbiological risk for xenotransplantation. Over the last decades, some advances on PERVs' studies have been achieved. Here, we reviewed the current progress of PERVs including the classification, molecular structure, regulation, function in immune system, and potential risk in xenotransplantation. We also discussed the problem of insufficient study on PERVs as well as the questions need to be answered in the future work.
Collapse
Affiliation(s)
- Yu Liu
- College of Animal Science and Technology & College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Yifan Niu
- College of Animal Science and Technology & College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Xiang Ma
- College of Animal Science and Technology & College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China.,College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.,Jinhua Jinfan Feed Co., Ltd, Jinhua, Zhejiang, 321000, China
| | - Yun Xiang
- Jinhua Academy of Agricultural Sciences, Jinhua, Zhejiang, 321000, China
| | - De Wu
- Postdoctoral Research Station, Jinhua Development Zone, Jinhua, Zhejiang, 321000, China
| | - Weifen Li
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Tao Wang
- Nanjing Kgene Genetic Engineering Co., Ltd, Nanjing, Jiangsu, 211300, China.
| | - Dong Niu
- College of Animal Science and Technology & College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China.
| |
Collapse
|
9
|
Affiliation(s)
- Jay A Fishman
- From the Transplant and Immunocompromised Host Program, Infectious Disease Division and Transplant Center, Massachusetts General Hospital and Harvard Medical School, Boston
| |
Collapse
|
10
|
Zheng S, Zhong H, Zhou X, Chen M, Li W, Zi Y, Chi Y, Wang J, Zheng W, Zou Q, Lai L, Tang C. Efficient and Safe Editing of Porcine Endogenous Retrovirus Genomes by Multiple-Site Base-Editing Editor. Cells 2022; 11:cells11243975. [PMID: 36552739 PMCID: PMC9776866 DOI: 10.3390/cells11243975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 12/13/2022] Open
Abstract
Gene-modified miniature pigs serve as alternative tissue and organ donors for xenotransplantation to alleviate the shortage of human allogenic organs. However, the high copy number of porcine endogenous retrovirus (PERV) genomes integrates with the porcine genome, which has a potential risk of cross-species transmission and hinders the clinical practice of xenotransplantation. Recently, CRISPR/Cas9 has been used to inactivate PERVs. However, Cas9 also triggers severe DNA damage at multiple integrated PERV sites in the porcine genome, which induces senescence and apoptosis of porcine cells. In this study, the cytosine base editor (CBE), an efficient and safe editor that does not cause DNA double strand breaks (DSBs), was used for PERV editing to reduce cytotoxic effects. Seven sgRNAs were set to target gag and pol loci of PERVs to induce premature stop codons. We found that approximately 10% of cell clones were completely inactivated for PERVs in pig ST cells, and the plasmid that was used for editing the PERVs did not integrate into host genome and influence the karyotype of the modified cells. Our studies offer a powerful and safe strategy for further generating PERV-knockout pigs using base editors.
Collapse
Affiliation(s)
- Shuwen Zheng
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Haiwen Zhong
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoqing Zhou
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Min Chen
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Wansheng Li
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Yin Zi
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Yue Chi
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Jinling Wang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Wei Zheng
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Qingjian Zou
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
- Correspondence: (Q.Z.); (L.L.); (C.T.); Tel.: +86-188-2094-8706 (Q.Z.)
| | - Liangxue Lai
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Correspondence: (Q.Z.); (L.L.); (C.T.); Tel.: +86-188-2094-8706 (Q.Z.)
| | - Chengcheng Tang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
- Correspondence: (Q.Z.); (L.L.); (C.T.); Tel.: +86-188-2094-8706 (Q.Z.)
| |
Collapse
|
11
|
Nashan B. Porcine cytomegalovirus in xenotransplantation: The new frontier in human transplantation? HEALTH CARE SCIENCE 2022; 1:11-13. [PMID: 38939358 PMCID: PMC11080633 DOI: 10.1002/hcs2.7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/26/2022] [Indexed: 06/29/2024]
Affiliation(s)
- Björn Nashan
- Department of Organ Transplantation CenterFirst Affiliated Hospital of University of Science and Technology of ChinaHefeiAnhuiChina
| |
Collapse
|
12
|
Wadiwala IJ, Garg P, Yazji JH, Alamouti-fard E, Alomari M, Hussain MWA, Elawady MS, Jacob S. Evolution of Xenotransplantation as an Alternative to Shortage of Donors in Heart Transplantation. Cureus 2022; 14:e26284. [PMID: 35754438 PMCID: PMC9230910 DOI: 10.7759/cureus.26284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2022] [Indexed: 12/03/2022] Open
Abstract
This review aims to show and illustrate the history, current, ethical considerations, and limitations concerning xenotransplantation. Due to the current shortage of available donor organs for transplantation, many alternative sources are being examined to solve the donor shortage. One of them is xenotransplantation which refers to the transplantation of organs from one species to another. Compared to other nonhuman primates (NHP), pigs are ideal species for organ harvesting as they rapidly grow to human size in a handful of months. There is much advancement in the genetic engineering of pigs, which have hearts structurally and functionally similar to the human heart. The role of genetic engineering is to overcome the immune barriers in xenotransplantation and can be used in hyperacute rejection and T cell-mediated rejection. It is technically difficult to use large animal models for orthotopic, life-sustaining heart transplantation. Despite the fact that some religious traditions, such as Jewish and Muslim, prohibit the ingestion of pork products, few religious leaders consider that donating porcine organs is ethical because it saves human life. Although recent technologies have lowered the risk of a xenograft producing a novel virus that causes an epidemic, the risk still exists. It has major implications for the informed consent procedure connected with clinical research on heart xenotransplantation.
Collapse
|
13
|
Fischer N, Gulich B, Tönjes RR, Godehardt AW. Limited environmental stability of infectious porcine endogenous retrovirus type C; Usage of reverse transcriptase in combination with viral RNA as markers for infectious virus. Xenotransplantation 2022; 29:e12738. [DOI: 10.1111/xen.12738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Nicole Fischer
- Division of Medical Biotechnology Paul‐Ehrlich‐Institut Langen Germany
| | - Barbara Gulich
- Division of Medical Biotechnology Paul‐Ehrlich‐Institut Langen Germany
| | - Ralf R. Tönjes
- Division of Medical Biotechnology Paul‐Ehrlich‐Institut Langen Germany
| | | |
Collapse
|
14
|
Denner J. Porcine Endogenous Retroviruses and Xenotransplantation, 2021. Viruses 2021; 13:v13112156. [PMID: 34834962 PMCID: PMC8625113 DOI: 10.3390/v13112156] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/06/2021] [Accepted: 10/20/2021] [Indexed: 12/25/2022] Open
Abstract
Porcine endogenous retroviruses (PERVs) are integrated in the genome of all pigs, and some of them are able to infect human cells. Therefore, PERVs pose a risk for xenotransplantation, the transplantation of pig cells, tissues, or organ to humans in order to alleviate the shortage of human donor organs. Up to 2021, a huge body of knowledge about PERVs has been accumulated regarding their biology, including replication, recombination, origin, host range, and immunosuppressive properties. Until now, no PERV transmission has been observed in clinical trials transplanting pig islet cells into diabetic humans, in preclinical trials transplanting pig cells and organs into nonhuman primates with remarkable long survival times of the transplant, and in infection experiments with several animal species. Nevertheless, in order to prevent virus transmission to the recipient, numerous strategies have been developed, including selection of PERV-C-free animals, RNA interference, antiviral drugs, vaccination, and genome editing. Furthermore, at present there are no more experimental approaches to evaluate the full risk until we move to the clinic.
Collapse
Affiliation(s)
- Joachim Denner
- Department of Veterinary Medicine, Institute of Virology, Free University Berlin, 14163 Berlin, Germany
| |
Collapse
|
15
|
Cooper DKC, Hara H. "You cannot stay in the laboratory forever"*: Taking pig kidney xenotransplantation from the laboratory to the clinic. EBioMedicine 2021; 71:103562. [PMID: 34517284 PMCID: PMC8441149 DOI: 10.1016/j.ebiom.2021.103562] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/02/2021] [Accepted: 08/16/2021] [Indexed: 11/18/2022] Open
Abstract
Progress in life-supporting kidney transplantation in the genetically-engineered pig-to-nonhuman primate model has been encouraging, with pig kidneys sometimes supporting life for > 1 year. What steps need to be taken by (i) the laboratory team, and (ii) the clinical team to prepare for the first clinical trial? The major topics include (i) what currently-available genetic modifications are optimal to reduce the possibility of graft rejection, (ii) what immunosuppressive therapeutic regimen is optimal, and (iii) what steps need to be taken to minimize the risk of transfer of an infectious microorganism with the graft. We suggest that patients who are unlikely to live long enough to receive a kidney from a deceased human donor would benefit from the opportunity of a period of dialysis-free support by a pig kidney, and the experience gained would enable xenotransplantation to progress much more rapidly than if we remain in the laboratory.
Collapse
Affiliation(s)
- David K C Cooper
- Xenotransplantation Program, Division of Transplantation, Department of Surgery, University of Alabama at Birmingham, 752 Lyons-Harrison Research Building, 701 19th Street South, Birmingham, AL 35294, USA.
| | - Hidetaka Hara
- Xenotransplantation Program, Division of Transplantation, Department of Surgery, University of Alabama at Birmingham, 752 Lyons-Harrison Research Building, 701 19th Street South, Birmingham, AL 35294, USA
| |
Collapse
|
16
|
CRISPR/Cas Technology in Pig-to-Human Xenotransplantation Research. Int J Mol Sci 2021; 22:ijms22063196. [PMID: 33801123 PMCID: PMC8004187 DOI: 10.3390/ijms22063196] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 02/06/2023] Open
Abstract
CRISPR/Cas (clustered regularly interspaced short palindromic repeats linked to Cas nuclease) technology has revolutionized many aspects of genetic engineering research. Thanks to it, it became possible to study the functions and mechanisms of biology with greater precision, as well as to obtain genetically modified organisms, both prokaryotic and eukaryotic. The changes introduced by the CRISPR/Cas system are based on the repair paths of the single or double strand DNA breaks that cause insertions, deletions, or precise integrations of donor DNA. These changes are crucial for many fields of science, one of which is the use of animals (pigs) as a reservoir of tissues and organs for xenotransplantation into humans. Non-genetically modified animals cannot be used to save human life and health due to acute immunological reactions resulting from the phylogenetic distance of these two species. This review is intended to collect and summarize the advantages as well as achievements of the CRISPR/Cas system in pig-to-human xenotransplantation research. In addition, it demonstrates barriers and limitations that require careful evaluation before attempting to experiment with this technology.
Collapse
|
17
|
Lu T, Yang B, Wang R, Qin C. Xenotransplantation: Current Status in Preclinical Research. Front Immunol 2020; 10:3060. [PMID: 32038617 PMCID: PMC6989439 DOI: 10.3389/fimmu.2019.03060] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022] Open
Abstract
The increasing life expectancy of humans has led to a growing numbers of patients with chronic diseases and end-stage organ failure. Transplantation is an effective approach for the treatment of end-stage organ failure; however, the imbalance between organ supply and the demand for human organs is a bottleneck for clinical transplantation. Therefore, xenotransplantation might be a promising alternative approach to bridge the gap between the supply and demand of organs, tissues, and cells; however, immunological barriers are limiting factors in clinical xenotransplantation. Thanks to advances in gene-editing tools and immunosuppressive therapy as well as the prolonged xenograft survival time in pig-to-non-human primate models, clinical xenotransplantation has become more viable. In this review, we focus on the evolution and current status of xenotransplantation research, including our current understanding of the immunological mechanisms involved in xenograft rejection, genetically modified pigs used for xenotransplantation, and progress that has been made in developing pig-to-pig-to-non-human primate models. Three main types of rejection can occur after xenotransplantation, which we discuss in detail: (1) hyperacute xenograft rejection, (2) acute humoral xenograft rejection, and (3) acute cellular rejection. Furthermore, in studies on immunological rejection, genetically modified pigs have been generated to bridge cross-species molecular incompatibilities; in the last decade, most advances made in the field of xenotransplantation have resulted from the production of genetically engineered pigs; accordingly, we summarize the genetically modified pigs that are currently available for xenotransplantation. Next, we summarize the longest survival time of solid organs in preclinical models in recent years, including heart, liver, kidney, and lung xenotransplantation. Overall, we conclude that recent achievements and the accumulation of experience in xenotransplantation mean that the first-in-human clinical trial could be possible in the near future. Furthermore, we hope that xenotransplantation and various approaches will be able to collectively solve the problem of human organ shortage.
Collapse
Affiliation(s)
- Tianyu Lu
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China.,NHC Key Laboratory of Human Disease Comparative Medicine, The Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
| | - Bochao Yang
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China.,NHC Key Laboratory of Human Disease Comparative Medicine, The Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
| | - Ruolin Wang
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China.,NHC Key Laboratory of Human Disease Comparative Medicine, The Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
| | - Chuan Qin
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China.,NHC Key Laboratory of Human Disease Comparative Medicine, The Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
| |
Collapse
|
18
|
Zhang Y, Xing X, Huang L, Wu Y, Li P, Li R, Liu G. Screening pigs for xenotransplantation in China: investigation of porcine endogenous retrovirus in Diannan small-eared pigs. Virus Genes 2020; 56:202-208. [PMID: 31916138 DOI: 10.1007/s11262-019-01722-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 12/12/2019] [Indexed: 12/28/2022]
Abstract
Porcine endogenous retrovirus (PERV), which integrates as a provirus into the genome of pig cells, is an important biosafety issue in xenotransplantation. Screening and analyzing the presence and expression of PERV will provide essential parameters for assessing the biosafety of donor sources. In the present study, we investigated the prevalence of PERV in Diannan small-eared pigs, a unique closed colony that is distributed in southern Yunnan Province in southwestern China. PCR was performed to amplify env-A, env-B, env-C, pol, gag, and mtDNA in peripheral blood samples. The results revealed that PERV env-A, env-B, pol, and gag were detected in all individuals, but env-C was deficient in most pigs, suggesting that the main subtypes of PERVs in Diannan small-eared pigs are PERV-A and PERV-B. Furthermore, PERV pol and the porcine housekeeping gene GAPDH were detected by RT-PCR in all peripheral blood samples, indicating that PERV had transcriptional activity. Finally, the consensus sequences of PERV-A and PERV-B were amplified and digested with KpnI and MboI. Interestingly, a total of seven digestion patterns were obtained, which is less than that observed in other pig breeds. The PCR products were cloned into the pUCm-T vector and sequenced. The results showed that all of the inserts were highly homologous to either PERV-A or PERV-B, and the ratios of PERV-A and PERV-B were 21.1% and 78.9%, respectively. These data suggest that Diannan small-eared pigs may be a candidate donor source for xenotransplantation.
Collapse
Affiliation(s)
- Yunfei Zhang
- Center for Medical Experiments, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Xiaowei Xing
- Center for Medical Experiments, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Lihua Huang
- Center for Medical Experiments, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Yong Wu
- Clinical Laboratory, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Peng Li
- Department of General Surgery, Yanan Hospital Affiliated to Kunming Medical University, Kunming, 650051, Yunnan, China
| | - Ruhong Li
- Department of General Surgery, Yanan Hospital Affiliated to Kunming Medical University, Kunming, 650051, Yunnan, China.
| | - Gang Liu
- The Institute of Reproduction and Stem Cell Engineering, Central South University, Changsha, 410078, Hunan, China.
| |
Collapse
|