1
|
Cortázar TM, Vega NA, Acosta J, Reyes-Montaño EA, Ballen-Vanegas MA, Ricaurte O. Galactia lindenii lectin type-II: Its potential use in thyroid cancer diagnosis. Acta Histochem 2025; 127:152250. [PMID: 40188650 DOI: 10.1016/j.acthis.2025.152250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 03/10/2025] [Accepted: 03/28/2025] [Indexed: 04/08/2025]
Abstract
Galactia lindenii lectin type-II (GLL-II) belongs to the group of the legume lectins. The present study investigated the GLL-II staining patterns in histological sections of neoplastic and non-neoplastic thyroid tissues. Besides, hemagglutination assays (HA) using the GLL-II on red blood cells of different glycomic profiles were performed, complementing previous results. The differential staining in Papillary Thyroid Cancer, Invasive Encapsulated Follicular Variant Papillary Thyroid Carcinoma, Hashimoto's thyroiditis, and non-neoplastic thyroid with goiter changes, together with the HA results, allowed us to propose the potential utility of GLL-II as part of lectin platforms used to discriminate between human thyroid pathological samples from normal ones. The present study shed light on potential applications of GLL-II in determining alterations of glycosylation patterns in specific cells, tissues, or body fluids, as well as glycotopes biomarkers of healthy or pathological conditions.
Collapse
Affiliation(s)
- Tania M Cortázar
- Protein Research Group, Chemistry Department, Faculty of Sciences, Universidad Nacional de Colombia, Bogotá 11001, Colombia.
| | - Nohora A Vega
- Protein Research Group, Chemistry Department, Faculty of Sciences, Universidad Nacional de Colombia, Bogotá 11001, Colombia.
| | - Jinneth Acosta
- Molecular Pathology Group, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá 11001, Colombia
| | - Edgar A Reyes-Montaño
- Protein Research Group, Chemistry Department, Faculty of Sciences, Universidad Nacional de Colombia, Bogotá 11001, Colombia
| | - Manuel A Ballen-Vanegas
- Department of Morphology, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá 11001, Colombia
| | - Orlando Ricaurte
- Molecular Pathology Group, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá 11001, Colombia
| |
Collapse
|
2
|
Peng WC, Zhai YY, Li MK, Zhang CX, Du JX, Jiang YY, Pan DK, Wu JW. Evaluation of Physiological Integrity in Six-Gene-Edited Bama Miniature Pigs as a Model for Xenotransplantation. Biotechnol J 2025; 20:e70030. [PMID: 40371941 DOI: 10.1002/biot.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 04/17/2025] [Accepted: 04/22/2025] [Indexed: 05/16/2025]
Abstract
Genetically engineered pigs exhibit significant potential as a solution to organ scarcity in xenotransplantation. Nonetheless, a formidable challenge lies in overcoming the rejection of porcine organs by the human immune system. In this study, we generated a six-gene-edited pig model by simultaneously knocking out three major xenoantigens, GGTA1, CMAH, and β4GalNT2, along with the incorporation of coagulation regulatory factor THBD, and two complement regulatory proteins, hCD55 and hCD46, in Bama miniature pigs. These pigs exhibit genetic modifications designed to reduce xenograft rejection while maintaining normal physiology. Assessments of vital organ structure and function, including the heart, liver, spleen, lungs, and kidneys in the gene-edited pigs, showed no abnormalities. The pigs with human transgene knock-in THBD and complement genes exhibited no significant alterations in coagulation function and immune performance. These healthy features hold promise for further xenotransplantation. In conclusion, we successfully constructed six-gene-edited miniature pigs. This work serves as a valuable reference for gene editing strategies for xenotransplantation pig models.
Collapse
Affiliation(s)
- Wen Chuan Peng
- College of Animal Science and Technology, Key Laboratory of Animal Genetics Breeding and Reproduction of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuan Yuan Zhai
- College of Animal Science and Technology, Key Laboratory of Animal Genetics Breeding and Reproduction of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, China
| | - Meng Ke Li
- College of Animal Science and Technology, Key Laboratory of Animal Genetics Breeding and Reproduction of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, China
| | - Chu Xiong Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Genetics Breeding and Reproduction of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, China
| | - Jia Xiang Du
- Chengdu Clonorgan Biotechnology Co., Ltd, Chengdu, Sichuan, China
| | - Yan Yan Jiang
- Chengdu Clonorgan Biotechnology Co., Ltd, Chengdu, Sichuan, China
| | - Deng Ke Pan
- Chengdu Clonorgan Biotechnology Co., Ltd, Chengdu, Sichuan, China
| | - Jiang Wei Wu
- College of Animal Science and Technology, Key Laboratory of Animal Genetics Breeding and Reproduction of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
3
|
Sanatkar SA, Kinoshita K, Maenaka A, Hara H, Cooper DKC. The Evolution of Immunosuppressive Therapy in Pig-to-Nonhuman Primate Organ Transplantation. Transpl Int 2025; 37:13942. [PMID: 39872238 PMCID: PMC11770881 DOI: 10.3389/ti.2024.13942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 11/27/2024] [Indexed: 01/30/2025]
Abstract
An overview is provided of the evolution of strategies towards xenotransplantation during the past almost 40 years, focusing on advances in gene-editing of the organ-source pigs, pre-transplant treatment of the recipient, immunosuppressive protocols, and adjunctive therapy. Despite initial challenges, including hyperacute rejection resulting from natural (preformed) antibody binding and complement activation, significant progress has been made through gene editing of the organ-source pigs and refinement of immunosuppressive regimens. Major steps were the identification and deletion of expression of the three known glycan xenoantigens on pig vascular endothelial cells, the transgenic expression of human "protective" proteins, e.g., complement-regulatory, coagulation-regulatory, and anti-inflammatory proteins, and the administration of an immunosuppressive regimen based on blockade of the CD40/CD154 T cell co-stimulation pathway. Efforts to address systemic inflammation followed. The synergy between gene editing and judicious immunomodulation appears to largely prevent graft rejection and is associated with a relatively good safety profile. Though there remains an incidence of severe or persistent proteinuria (nephrotic syndrome) in a minority of cases. This progress offers renewed hope for patients in need of life-saving organ transplants.
Collapse
Affiliation(s)
- S. A. Sanatkar
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - K. Kinoshita
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - A. Maenaka
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - H. Hara
- The Transplantation Institute at the Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - D. K. C. Cooper
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
4
|
Feng H, Zhang M, Xia Q, Du J, Li T, Chen S, Wang Y, Pan D, Zhu L, Chen G. Evaluation of Complement-Dependent Cytotoxicity Assays for Gene-Edited Pig-to-Human Xenotransplantation. Xenotransplantation 2025; 32:e70021. [PMID: 39960350 DOI: 10.1111/xen.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
BACKGROUND Gene-edited pigs for xenotransplantation usually contain one or more transgenes encoding human complement regulatory proteins (CRPs). Because of species differences, human CRP(s) expressed in gene-edited pigs may have difficulty inhibiting the activation of exogenous rabbit complement added to a complement-dependent cytotoxicity (CDC) assay. The use of human complement instead of rabbit complement in CDC experiments may more accurately reflect the actual regulatory activity of human CRP(s). METHODS Peripheral blood mononuclear cells (PBMCs) were obtained from one GTKO pig and two GTKO/hCD55 pigs with a high or low level of hCD55 expression. After incubation of heat-inactivated normal human sera (HINHS) with porcine PBMCs, CDC levels were measured after the addition of commercial rabbit complement or human complement. In addition, a modified one-step CDC method was established using pooled normal human sera (NHS) without the addition of an exogenous complement. RESULTS There was no significant difference in the binding of IgM/IgG to PBMCs from the three pigs. Both rabbit and human complement-mediated a significant cytotoxic effect on GTKO pig PBMCs (98.97% vs. 82.73%). Even the high expression of hCD55 only had a very limited inhibitory effect on rabbit complement-mediated cytotoxicity (81.70% vs. 98.97%). However, regardless of whether the expression level was high or low, hCD55 had a very remarkable inhibitory effect on human complement-mediated cytotoxicity (2.94% and 23.83% vs. 82.73%; p < 0.01). Similar results were obtained using the modified one-step CDC method. In addition, the inhibitory effect of hCD55 on C3c and C5b-9 deposition on pig PBMCs was positively correlated with the expression level of hCD55. CONCLUSION The use of human complement instead of rabbit complement in CDC assays can better reflect the actual cytotoxic effect of human xenoantibodies against pig PBMCs expressing human CRP(s), and thus may have potential application to gene-edited pig-to-human xenotransplantation.
Collapse
Affiliation(s)
- Hao Feng
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation, Wuhan, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Man Zhang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation, Wuhan, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Qiangbing Xia
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation, Wuhan, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Jiaxiang Du
- Chengdu Clonorgan Biotechnology Co., Ltd., Chengdu, China
| | - Tao Li
- Department of Organ Transplantation, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
- The Transplantation Institute of Hainan Medical University, Haikou, China
| | - Song Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation, Wuhan, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Yi Wang
- Chengdu Clonorgan Biotechnology Co., Ltd., Chengdu, China
| | - Dengke Pan
- Department of Organ Transplantation, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
- The Transplantation Institute of Hainan Medical University, Haikou, China
| | - Lan Zhu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation, Wuhan, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Gang Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation, Wuhan, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
5
|
Feng H, Zhang M, Xia Q, Du J, Li T, Chen S, Wang Y, Pan D, Zhu L, Chen G. Evaluation of Complement-Dependent Cytotoxicity Assays for Gene-Edited Pig-to-Human Xenotransplantation. Xenotransplantation 2025; 32:e70012. [PMID: 39825616 DOI: 10.1111/xen.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
BACKGROUND Gene-edited pigs for xenotransplantation usually contain one or more transgenes encoding human complement regulatory proteins (CRPs). Because of species differences, human CRP(s) expressed in gene-edited pigs may have difficulty inhibiting the activation of exogenous rabbit complement added to a complement-dependent cytotoxicity (CDC) assay. The use of human complement instead of rabbit complement in CDC experiments may more accurately reflect the actual regulatory activity of human CRP(s). METHODS Peripheral blood mononuclear cells (PBMCs) were obtained from one GTKO pig and two GTKO/hCD55 pigs with a high or low level of hCD55 expression. After incubation of heat-inactivated normal human sera (HINHS) with porcine PBMCs, CDC levels were measured after the addition of commercial rabbit complement or human complement. In addition, a modified one-step CDC method was established using pooled normal human sera (NHS) without the addition of exogenous complement. RESULTS There was no significant difference in the binding of IgM/IgG to PBMCs from the three pigs. Both rabbit and human complement mediated a significant cytotoxic effect on GTKO pig PBMCs (98.97% vs. 82.73%). Even the high expression of hCD55 only had a very limited inhibitory effect on rabbit complement-mediated cytotoxicity (81.70% vs. 98.97%). However, regardless of whether the expression level was high or low, hCD55 had a very remarkable inhibitory effect on human complement-mediated cytotoxicity (2.94% and 23.83% vs. 82.73%; p < 0.01). Similar results were obtained using the modified one-step CDC method. In addition, the inhibitory effect of hCD55 on C3c and C5b-9 deposition on pig PBMCs was positively correlated with the expression level of hCD55. CONCLUSION The use of human complement instead of rabbit complement in CDC assays can better reflect the actual cytotoxic effect of human xenoantibodies against pig PBMCs expressing human CRP(s), and thus may have potential application to gene-edited pig-to-human xenotransplantation.
Collapse
Affiliation(s)
- Hao Feng
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China
- NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Man Zhang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China
- NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Qiangbing Xia
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China
- NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Jiaxiang Du
- Chengdu Clonorgan Biotechnology Co., Ltd., Chengdu, China
| | - Tao Li
- Department of Organ Transplantation, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
- The Transplantation Institute of Hainan Medical University, Haikou, China
| | - Song Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China
- NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Yi Wang
- Department of Organ Transplantation, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
- The Transplantation Institute of Hainan Medical University, Haikou, China
| | - Dengke Pan
- Chengdu Clonorgan Biotechnology Co., Ltd., Chengdu, China
| | - Lan Zhu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China
- NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Gang Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China
- NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
6
|
Cooper DK, Riella LV, Kawai T, Fishman JA, Williams WW, Elias N, Madsen JC, Pierson RN. The Time Has Come: The Case for Initiating Pilot Clinical Trials of Pig Kidney Xenotransplantation. Ann Surg 2024; 281:00000658-990000000-01072. [PMID: 39263749 PMCID: PMC11723495 DOI: 10.1097/sla.0000000000006529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
In vitro studies indicate that kidney transplantation from gene-edited pigs in which expression of all three of the known glycan xenoantigens has been deleted may be more challenging in nonhuman primates (NHPs) than it will be in human recipients. Furthermore, pig-to-human xenotransplantation offers several other advantages - (i) the patient can communicate with the surgical team; (ii) recipient microbiological monitoring and environment will be clinical-grade; and (iii) sophisticated graft monitoring and imaging techniques, (v) therapeutic interventions, e.g., dialysis, plasmapheresis, and (v) intensive care can be deployed that are not easily available in NHP laboratory models. We suggest, therefore, that progress to develop safe, informative human clinical trials will be accelerated if pilot clinical cases are initiated. The selection of patients for kidney xenotransplantation can include those who are at high risk of dying imminently, e.g., those experiencing increasing vascular access challenges with no realistic alternative therapy available, and those who have been accepted onto the waitlist for an allograft, but who are unlikely ever to receive one. Patients with an increased risk of dying include those with (i) age >60 years, (ii) blood groups O or B, and (iii) diabetic nephropathy. UNOS data indicate that an average of 25 patients on the kidney waitlist in the USA die or are removed from the list every day (i.e., >9,000 each year). Given the improved xenograft survival observed in preclinical studies, we suggest that it is time to plan a small pilot clinical trial for healthy dialysis patients who understand the risks and potential benefits of kidney xenotransplantation.
Collapse
Affiliation(s)
- David K.C. Cooper
- Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Center for Transplantation Sciences, Boston, MA, USA
| | - Leonardo V. Riella
- Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Center for Transplantation Sciences, Boston, MA, USA
- Department of Medicine, Nephrology Division, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - Tatsuo Kawai
- Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Center for Transplantation Sciences, Boston, MA, USA
| | - Jay A. Fishman
- Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Center for Transplantation Sciences, Boston, MA, USA
- MGH Transplant Center, Transplant Infectious Disease and Compromised Host Program, Boston, MA
| | - Winfred W. Williams
- Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Center for Transplantation Sciences, Boston, MA, USA
- Department of Medicine, Nephrology Division, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - Nahel Elias
- Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Center for Transplantation Sciences, Boston, MA, USA
| | - Joren C. Madsen
- Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Center for Transplantation Sciences, Boston, MA, USA
- Department of Surgery, Cardiac Surgery Division, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - Richard N. Pierson
- Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Center for Transplantation Sciences, Boston, MA, USA
- Department of Surgery, Cardiac Surgery Division, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| |
Collapse
|
7
|
Zhang M, Feng H, Du J, Chen S, Zhu L, Wang Y, Pan D, Chen G. Comparative Inhibitory Effects of Tacrolimus, Cyclosporine, and Rapamycin on Human Anti-Pig Xenogeneic Mixed Lymphocyte Reactions. Xenotransplantation 2024; 31:e12876. [PMID: 39031102 DOI: 10.1111/xen.12876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/16/2024] [Accepted: 06/14/2024] [Indexed: 07/22/2024]
Abstract
BACKGROUND Long-term immunosuppressive maintenance therapy is necessary to prevent the rejection of xenografts. However, it is still unclear which oral immunosuppressant is most suitable for pig-to-human xenotransplantation . METHODS A xenogeneic mixed lymphocyte reaction (MLR) system was established using peripheral blood mononuclear cells (PBMCs) isolated from wildtype (WT) or GTKO/CMAHKO/β4GalNT2KO (TKO) pigs as stimulator cells and human PBMCs as responder cells. Various concentrations of tacrolimus (Tac), cyclosporine (CsA), or rapamycin (Rapa) were added to the MLR system as interventions. The inhibitory effects of the three immunosuppressants on the proliferation and cytokine production of human T cells were studied and compared. The inhibitory effect of anti-CD154 mAb alone or in combination with Tac/CsA/Rapa on xenoreactive MLR was also investigated. RESULTS PBMCs from both WT and TKO pigs stimulated significant proliferation of human T cells. Tac had a strong inhibitory effect on human T-cell proliferation stimulated by pig PBMCs. CsA inhibited human T-cell proliferation in a typical dose-dependent manner. When Tac and CsA concentrations reached 5 and 200 ng/mL, respectively, the proliferation rates of CD3+/CD4+/CD8+ T cells were reduced almost to a negative level. Even at high concentrations, Rapa had only a moderate inhibitory effect on xenogeneic MLR. The inhibitory effects of these three immunosuppressants on xenogeneic T-cell responses were further confirmed by the detection of CD25 expression and supernatant cytokines (IL-2, IL-6, IFN-γ, TNF-α, IL-4, IL-10, and IL-17). Although anti-CD154 mAb monotherapy showed only moderate inhibitory effects on xenoreactive T-cell proliferation, low-dose anti-CD154 mAb combined with low-dose Tac, CSA, or Rapa could produce significant synergistic inhibitory effects. CONCLUSION Tac is more efficient than CsA or Rapa in inhibiting xenogeneic T-cell responses in vitro. If used in combination with anti-CD154 mAb, all the three immunosuppressants can achieve satisfactory synergistic inhibitory effects.
Collapse
Affiliation(s)
- Man Zhang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China
- NHC Key Laboratory of Organ Transplantation, Wuhan, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Hao Feng
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China
- NHC Key Laboratory of Organ Transplantation, Wuhan, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Jiaxiang Du
- Chengdu Clonorgan Biotechnology Co., Ltd, Chengdu, China
| | - Song Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China
- NHC Key Laboratory of Organ Transplantation, Wuhan, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Lan Zhu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China
- NHC Key Laboratory of Organ Transplantation, Wuhan, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Yi Wang
- Department of Organ Transplantation, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
- The Transplantation Institute of Hainan Medical University, Haikou, China
| | - Dengke Pan
- Chengdu Clonorgan Biotechnology Co., Ltd, Chengdu, China
| | - Gang Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China
- NHC Key Laboratory of Organ Transplantation, Wuhan, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
8
|
Cooper DKC, Mou L, Bottino R. A brief review of the current status of pig islet xenotransplantation. Front Immunol 2024; 15:1366530. [PMID: 38464515 PMCID: PMC10920266 DOI: 10.3389/fimmu.2024.1366530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 02/07/2024] [Indexed: 03/12/2024] Open
Abstract
An estimated 1.5 million Americans suffer from Type I diabetes mellitus, and its incidence is increasing worldwide. Islet allotransplantation offers a treatment, but the availability of deceased human donor pancreases is limited. The transplantation of islets from gene-edited pigs, if successful, would resolve this problem. Pigs are now available in which the expression of the three known xenoantigens against which humans have natural (preformed) antibodies has been deleted, and in which several human 'protective' genes have been introduced. The transplantation of neonatal pig islets has some advantages over that of adult pig islets. Transplantation into the portal vein of the recipient results in loss of many islets from the instant blood-mediated inflammatory reaction (IBMIR) and so the search for an alternative site continues. The adaptive immune response can be largely suppressed by an immunosuppressive regimen based on blockade of the CD40/CD154 T cell co-stimulation pathway, whereas conventional therapy (e.g., based on tacrolimus) is less successful. We suggest that, despite the need for effective immunosuppressive therapy, the transplantation of 'free' islets will prove more successful than that of encapsulated islets. There are data to suggest that, in the absence of rejection, the function of pig islets, though less efficient than human islets, will be sufficient to maintain normoglycemia in diabetic recipients. Pig islets transplanted into immunosuppressed nonhuman primates have maintained normoglycemia for periods extending more than two years, illustrating the potential of this novel form of therapy.
Collapse
Affiliation(s)
- David K. C. Cooper
- Center for Transplantation Sciences, Massachusetts General Hospital/Harvard Medical School, Boston, MA, United States
| | - Lisha Mou
- Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
- MetaLife Center, Shenzhen Institute of Translational Medicine, Shenzhen, Guangdong, China
| | - Rita Bottino
- Imagine Islet Center, Imagine Pharma, Pittsburgh, PA, United States
| |
Collapse
|
9
|
Cooper DKC, Cozzi E. Clinical Pig Heart Xenotransplantation-Where Do We Go From Here? Transpl Int 2024; 37:12592. [PMID: 38371908 PMCID: PMC10869462 DOI: 10.3389/ti.2024.12592] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/15/2024] [Indexed: 02/20/2024]
Affiliation(s)
- David K. C. Cooper
- Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Emanuele Cozzi
- Department of Cardiac, Thoracic and Vascular Sciences, Padua University Hospital, Padova, Italy
| |
Collapse
|
10
|
Schmalkuche K, Rother T, Besli S, Schwinzer R, Blasczyk R, Petersen B, Figueiredo C. Human PD-L1 overexpression decreases xenogeneic human T-cell immune responses towards porcine kidneys. Front Immunol 2024; 15:1279050. [PMID: 38352884 PMCID: PMC10861674 DOI: 10.3389/fimmu.2024.1279050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/11/2024] [Indexed: 02/16/2024] Open
Abstract
Xenotransplantation offers a promising alternative to circumvent the lack of donated human organs available for transplantation. Different attempts to improve the survival of xenografts led to the generation of transgenic pigs expressing various combinations of human protective genes or knocked out for specific antigens. Currently, testing the efficiency of porcine organs carrying different genetic modifications in preventing xenogeneic immune responses completely relies on in vitro assays, humanized mouse models, or non-human primate transplantation models. However, these tests are often associated with major concerns due to reproducibility and generation of insufficient data as well as they raise ethical, logistical, and economic issues. In this study, we investigated the feasibility of specifically assessing the strength of human T-cell responses towards the kidneys of wild-type (WT) or transgenic pigs overexpressing human programmed death-1 ligand 1 (hPD-L1) during ex vivo kidney perfusion (EVKP). Human T cells were shown to adhere to the endothelium and transmigrate into WT and hPD-L1 kidneys. However, transcript levels of TNF-a and IFN-y as well as cytotoxic molecules such as granzyme B and perforin secreted by human T cells were significantly decreased in the tissue of hPD-L1 kidneys in comparison to WT kidneys. These results were confirmed via in vitro assays using renal endothelial cells (ECs) isolated from WT and hPD-L1 transgenic pigs. Both CD4+ and CD8+ T cells showed significantly lower proliferation rates after exposure to hPD-L1 porcine renal ECs in comparison to WT ECs. In addition, the secretion of pro-inflammatory cytokines was significantly reduced in cultures using hPD-L1 ECs in comparison to WT ECs. Remarkably, hPD-L1 EC survival was significantly increased in cytotoxic assays. This study demonstrates the feasibility of evaluating the human response of specific immune subsets such as human T cells towards the whole xenograft during EVKP. This may represent a robust strategy to assess the potency of different genetic modifications to prevent xenogeneic immune responses and thereby predict the risk of immune rejection of new genetically engineered xenografts.
Collapse
Affiliation(s)
- Katharina Schmalkuche
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
- Transregional Collaborative Research Centre 127, Hannover Medical School, Hannover, Germany
| | - Tamina Rother
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Sevval Besli
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Reinhard Schwinzer
- Transregional Collaborative Research Centre 127, Hannover Medical School, Hannover, Germany
- Transplantation Laboratory, Clinic for General, Visceral and Transplantation-Surgery, Hannover Medical School, Hannover, Germany
| | - Rainer Blasczyk
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Björn Petersen
- Transregional Collaborative Research Centre 127, Hannover Medical School, Hannover, Germany
- Department of Biotechnology, Institute of Farm Animal Genetics, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Neustadt am Rübenberge, Germany
| | - Constanca Figueiredo
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
- Transregional Collaborative Research Centre 127, Hannover Medical School, Hannover, Germany
| |
Collapse
|
11
|
Chornenkyy Y, Yamamoto T, Hara H, Stowell SR, Ghiran I, Robson SC, Cooper DKC. Future prospects for the clinical transfusion of pig red blood cells. Blood Rev 2023; 61:101113. [PMID: 37474379 PMCID: PMC10968389 DOI: 10.1016/j.blre.2023.101113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/23/2023] [Accepted: 07/09/2023] [Indexed: 07/22/2023]
Abstract
Transfusion of allogeneic human red blood cell (hRBCs) is limited by supply and compatibility between individual donors and recipients. In situations where the blood supply is constrained or when no compatible RBCs are available, patients suffer. As a result, alternatives to hRBCs that complement existing RBC transfusion strategies are needed. Pig RBCs (pRBCs) could provide an alternative because of their abundant supply, and functional similarities to hRBCs. The ability to genetically modify pigs to limit pRBC immunogenicity and augment expression of human 'protective' proteins has provided major boosts to this research and opens up new therapeutic avenues. Although deletion of expression of xenoantigens has been achieved in genetically-engineered pigs, novel genetic methods are needed to introduce human 'protective' transgenes into pRBCs at the high levels required to prevent hemolysis and extend RBC survival in vivo. This review addresses recent progress and examines future prospects for clinical xenogeneic pRBC transfusion.
Collapse
Affiliation(s)
- Yevgen Chornenkyy
- Department of Pathology, McGaw Medical Center of Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Takayuki Yamamoto
- Center for Transplantation Science, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA; Division of Transplantation, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA.
| | - Hidetaka Hara
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Sean R Stowell
- Joint Program in Transfusion Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ionita Ghiran
- Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, USA
| | - Simon C Robson
- Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, USA
| | - David K C Cooper
- Center for Transplantation Science, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Habibabady Z, McGrath G, Kinoshita K, Maenaka A, Ikechukwu I, Elias GF, Zaletel T, Rosales I, Hara H, Pierson RN, Cooper DKC. Antibody-mediated rejection in xenotransplantation: Can it be prevented or reversed? Xenotransplantation 2023; 30:e12816. [PMID: 37548030 PMCID: PMC11101061 DOI: 10.1111/xen.12816] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023]
Abstract
Antibody-mediated rejection (AMR) is the commonest cause of failure of a pig graft after transplantation into an immunosuppressed nonhuman primate (NHP). The incidence of AMR compared to acute cellular rejection is much higher in xenotransplantation (46% vs. 7%) than in allotransplantation (3% vs. 63%) in NHPs. Although AMR in an allograft can often be reversed, to our knowledge there is no report of its successful reversal in a pig xenograft. As there is less experience in preventing or reversing AMR in models of xenotransplantation, the results of studies in patients with allografts provide more information. These include (i) depletion or neutralization of serum anti-donor antibodies, (ii) inhibition of complement activation, (iii) therapies targeting B or plasma cells, and (iv) anti-inflammatory therapy. Depletion or neutralization of anti-pig antibody, for example, by plasmapheresis, is effective in depleting antibodies, but they recover within days. IgG-degrading enzymes do not deplete IgM. Despite the expression of human complement-regulatory proteins on the pig graft, inhibition of systemic complement activation may be necessary, particularly if AMR is to be reversed. Potential therapies include (i) inhibition of complement activation (e.g., by IVIg, C1 INH, or an anti-C5 antibody), but some complement inhibitors are not effective in NHPs, for example, eculizumab. Possible B cell-targeted therapies include (i) B cell depletion, (ii) plasma cell depletion, (iii) modulation of B cell activation, and (iv) enhancing the generation of regulatory B and/or T cells. Among anti-inflammatory agents, anti-IL6R mAb and TNF blockers are increasingly being tested in xenotransplantation models, but with no definitive evidence that they reverse AMR. Increasing attention should be directed toward testing combinations of the above therapies. We suggest that treatment with a systemic complement inhibitor is likely to be most effective, possibly combined with anti-inflammatory agents (if these are not already being administered). Ultimately, it may require further genetic engineering of the organ-source pig to resolve the problem entirely, for example, knockout or knockdown of SLA, and/or expression of PD-L1, HLA E, and/or HLA-G.
Collapse
Affiliation(s)
- Zahra Habibabady
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Gannon McGrath
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Kohei Kinoshita
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Akihiro Maenaka
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Ileka Ikechukwu
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Gabriela F. Elias
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Tjasa Zaletel
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Ivy Rosales
- Department of Pathology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Hidetaka Hara
- Yunnan Xenotransplantation Engineering Research Center, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Richard N. Pierson
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - David K. C. Cooper
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Hara H, Yamamoto T, Wei HJ, Cooper DK. What Have We Learned From In Vitro Studies About Pig-to-primate Organ Transplantation? Transplantation 2023; 107:1265-1277. [PMID: 36536507 PMCID: PMC10205677 DOI: 10.1097/tp.0000000000004458] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Natural preformed and de novo antibodies against pig antigens are a major cause of pig xenograft rejection in nonhuman primates (NHPs). In vivo studies in pig-to-NHP models are time consuming. In vitro assays, for example, antibody binding to pig cells, complement-dependent cytotoxicity assays, provide valuable information quickly and inexpensively. Using in vitro assays for several years, it has been documented that (1) during the first year of life, humans and NHPs develop anti-wild-type pig antibodies, but humans develop no or minimal antibody to triple-knockout (TKO) pig cells. (2) Some adult humans have no or minimal antibodies to TKO pig cells and are therefore unlikely to rapidly reject a TKO organ, particularly if the organ also expresses human "protective" proteins. (3) There is good correlation between immunoglobulin (Ig)M (but no t IgG) binding and complement injury. (4) All Old World NHPs develop antibodies to TKO pig cells and are not optimal recipients of TKO organs. (5) galactosyltransferase gene-knockout/β4GalNT2KO pigs are preferred for Old World NHPs. (6) Humans develop anti-pig IgE and IgA antibodies against pig cells, but their role remains uncertain. (7) In a small percentage of allosensitized humans, antibodies that cross-react with swine leukocyte antigens may be detrimental to a pig organ xenograft. (8) Prior sensitization to pig antigens is unlikely to be detrimental to a subsequent allograft. (9) Deletion of expression of Gal and Neu5Gc is associated with a reduction in the T-cell response to pig cells. All of these valuable observations have largely predicted the results of in vivo studies.
Collapse
Affiliation(s)
- Hidetaka Hara
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Takayuki Yamamoto
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - Hong-Jiang Wei
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - David K.C. Cooper
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| |
Collapse
|
14
|
Reichart B, Cooper DKC, Längin M, Tönjes RR, Pierson RN, Wolf E. Cardiac xenotransplantation: from concept to clinic. Cardiovasc Res 2023; 118:3499-3516. [PMID: 36461918 PMCID: PMC9897693 DOI: 10.1093/cvr/cvac180] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 12/05/2022] Open
Abstract
For many patients with terminal/advanced cardiac failure, heart transplantation is the most effective, durable treatment option, and offers the best prospects for a high quality of life. The number of potentially life-saving donated human organs is far fewer than the population who could benefit from a new heart, resulting in increasing numbers of patients awaiting replacement of their failing heart, high waitlist mortality, and frequent reliance on interim mechanical support for many of those deemed among the best candidates but who are deteriorating as they wait. Currently, mechanical assist devices supporting left ventricular or biventricular heart function are the only alternative to heart transplant that is in clinical use. Unfortunately, the complication rate with mechanical assistance remains high despite advances in device design and patient selection and management, and the quality of life of the patients even with good outcomes is only moderately improved. Cardiac xenotransplantation from genetically multi-modified (GM) organ-source pigs is an emerging new option as demonstrated by the consistent long-term success of heterotopic (non-life-supporting) abdominal and life-supporting orthotopic porcine heart transplantation in baboons, and by a recent 'compassionate use' transplant of the heart from a GM pig with 10 modifications into a terminally ill patient who survived for 2 months. In this review, we discuss pig heart xenotransplantation as a concept, including pathobiological aspects related to immune rejection, coagulation dysregulation, and detrimental overgrowth of the heart, as well as GM strategies in pigs to prevent or minimize these problems. Additional topics discussed include relevant results of heterotopic and orthotopic heart transplantation experiments in the pig-to-baboon model, microbiological and virologic safety concepts, and efficacy requirements for initiating formal clinical trials. An adequate regulatory and ethical framework as well as stringent criteria for the selection of patients will be critical for the safe clinical development of cardiac xenotransplantation, which we expect will be clinically tested during the next few years.
Collapse
Affiliation(s)
- Bruno Reichart
- Walter Brendel Centre for Experimental Medicine, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - David K C Cooper
- Center for Transplantation Sciences, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02129, USA
- Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114, USA
| | - Matthias Längin
- Department of Anaesthesiology, University Hospital, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Ralf R Tönjes
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, Langen 63225, Germany
| | - Richard N Pierson
- Center for Transplantation Sciences, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02129, USA
- Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114, USA
| | - Eckhard Wolf
- Gene Centre and Centre for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, Munich 81377, Germany
| |
Collapse
|
15
|
Pierson RN, Allan JS, Cooper DK, D’Alessandro DA, Fishman JA, Kawai T, Lewis GD, Madsen JC, Markmann JF, Riella LV. Expert Opinion Special Feature: Patient Selection for Initial Clinical Trials of Pig Organ Transplantation. Transplantation 2022; 106:1720-1723. [PMID: 35761442 PMCID: PMC10124765 DOI: 10.1097/tp.0000000000004197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Richard N. Pierson
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - James S. Allan
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - David K.C. Cooper
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - David A. D’Alessandro
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Jay A. Fishman
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Tatsuo Kawai
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Gregory D. Lewis
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Joren C. Madsen
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - James F. Markmann
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Leonardo V. Riella
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
16
|
Zhou Q, Li T, Wang K, Zhang Q, Geng Z, Deng S, Cheng C, Wang Y. Current status of xenotransplantation research and the strategies for preventing xenograft rejection. Front Immunol 2022; 13:928173. [PMID: 35967435 PMCID: PMC9367636 DOI: 10.3389/fimmu.2022.928173] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/07/2022] [Indexed: 12/13/2022] Open
Abstract
Transplantation is often the last resort for end-stage organ failures, e.g., kidney, liver, heart, lung, and pancreas. The shortage of donor organs is the main limiting factor for successful transplantation in humans. Except living donations, other alternatives are needed, e.g., xenotransplantation of pig organs. However, immune rejection remains the major challenge to overcome in xenotransplantation. There are three different xenogeneic types of rejections, based on the responses and mechanisms involved. It includes hyperacute rejection (HAR), delayed xenograft rejection (DXR) and chronic rejection. DXR, sometimes involves acute humoral xenograft rejection (AHR) and cellular xenograft rejection (CXR), which cannot be strictly distinguished from each other in pathological process. In this review, we comprehensively discussed the mechanism of these immunological rejections and summarized the strategies for preventing them, such as generation of gene knock out donors by different genome editing tools and the use of immunosuppressive regimens. We also addressed organ-specific barriers and challenges needed to pave the way for clinical xenotransplantation. Taken together, this information will benefit the current immunological research in the field of xenotransplantation.
Collapse
Affiliation(s)
- Qiao Zhou
- Department of Rheumatology and Immunology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Ting Li
- Department of Rheumatology, Wenjiang District People’s Hospital, Chengdu, China
| | - Kaiwen Wang
- School of Medicine, Faculty of Medicine and Health, The University of Leeds, Leeds, United Kingdom
| | - Qi Zhang
- School of Medicine, University of Electronics and Technology of China, Chengdu, China
| | - Zhuowen Geng
- School of Medicine, Faculty of Medicine and Health, The University of Leeds, Leeds, United Kingdom
| | - Shaoping Deng
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
- Institute of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, China
| | - Chunming Cheng
- Department of Radiation Oncology, James Comprehensive Cancer Center and College of Medicine at The Ohio State University, Columbus, OH, United States
- *Correspondence: Chunming Cheng, ; Yi Wang,
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, China
- *Correspondence: Chunming Cheng, ; Yi Wang,
| |
Collapse
|
17
|
Hansen-Estruch C, Porrett PM, Kumar V, Locke JE. The science of xenotransplantation for nephrologists. Curr Opin Nephrol Hypertens 2022; 31:387-393. [PMID: 35703221 DOI: 10.1097/mnh.0000000000000800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PURPOSE OF REVIEW The field of xenotransplantation has seen remarkable progress since its inception with recent preclinical trials in human recipients pushing kidney xenotransplantation one-step closer to clinical reality. In this review, we update practicing clinicians on recent advances in kidney xenotransplantation given the proximity of clinical trials in humans. RECENT FINDINGS Early studies in the field established the physiologic basis of xenotransplantation and suggested that the pig kidney will support human physiology. Genetic engineering of source pigs has greatly reduced the immunogenicity of kidney grafts, and studies in nonhuman primates have demonstrated the viability of kidney xenotransplants for months after transplantation. Finally, a recent study in a novel preclinical human model demonstrated that key findings in NHP experiments are generalizable to humans, namely, the absence of hyperacute rejection. SUMMARY Overall, it appears that critical physiologic, immunologic and technical barriers to implementation of clinical trials in humans have been overcome.
Collapse
Affiliation(s)
| | - Paige M Porrett
- Comprehensive Transplant Institute, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Vineeta Kumar
- Comprehensive Transplant Institute, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jayme E Locke
- Comprehensive Transplant Institute, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
18
|
Rothblatt M. Commentary on achievement of first life-saving xenoheart transplant. Xenotransplantation 2022; 29:e12746. [PMID: 35471736 DOI: 10.1111/xen.12746] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 12/21/2022]
Abstract
Two months of post-transplant survival were achieved in an end-stage heart disease patient with a porcine heart from a pig whose genome had been modified in 10 of its genes. This first-ever life-saving cardiac xenotransplantation was the result of decades of work and close coordination by researchers in genetic engineering, animal cloning, immunology, ex vivo organ perfusion, and thoracic surgery.
Collapse
Affiliation(s)
- Martine Rothblatt
- United Therapeutics Corporation, Public Benefit Company, 1000 Spring Street, Silver Spring, Maryland, 20910, USA
| |
Collapse
|
19
|
Feng H, Li T, Du J, Xia Q, Wang L, Chen S, Zhu L, Pan D, Wang Y, Chen G. Both Natural and Induced Anti-Sda Antibodies Play Important Roles in GTKO Pig-to-Rhesus Monkey Xenotransplantation. Front Immunol 2022; 13:849711. [PMID: 35422817 PMCID: PMC9004458 DOI: 10.3389/fimmu.2022.849711] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/07/2022] [Indexed: 01/30/2023] Open
Abstract
Sda, produced by the B4GALNT2 enzyme, has been recognized as an important xenoantigen for pig-to-nonhuman primate xenotransplantation. However, little is known about Sda expression in pigs and its immunogenicity in xenotransplantation. In this study, peripheral blood mononuclear cells (PBMCs) were isolated from wildtype, GTKO (with high, moderate, and low Sda expression), GTKO/β4GalNT2KO, GTKO/CMAHKO, or GTKO/CMAHKO/β4GalNT2KO pigs. Anti-pig IgM/IgG binding and complement-dependent cytotoxicity (CDC) to pig PBMCs was measured by flow cytometry using pooled rhesus monkey sera (n=20) or human sera (n=20). As compared to wild-type pigs (n=12), GTKO pigs (n=17) had a significantly higher mean level of Sda expression on PBMCs and showed a greater individual difference in expression. Both the overall binding of monkey serum IgM/IgG antibody to GTKO pig PBMCs and CDC against these PBMCs decreased significantly with a progressive reduction in Sda expression, showing a clear dose-effect relationship. Both the monkey serum antibody binding and CDC decreased significantly after the additional deletion of Sda, whereas the binding of human serum antibody and CDC against the GTKO pig PBMCs were markedly reduced after the deletion of Neu5Gc in the pigs. In addition, anti-Sda antibody accounted for > 50% of the induced anti-non-Gal antibody at the time of rejection in two rhesus monkeys that received GTKO/hCD55 pig kidney xenotransplantation, and the anti-Sda antibody showed significant cytotoxic activity against GTKO pig cells. We conclude that both natural and induced anti-Sda antibodies play important roles in GTKO pig-to-rhesus monkey xenotransplantation, thus providing further evidence for GTKO/β4GalNT2KO pigs as the preferred organ source for rhesus monkeys as a preclinical model of xenotransplantation.
Collapse
Affiliation(s)
- Hao Feng
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education and National Health Commission (NHC), Chinese Academy of Medical Sciences, Wuhan, China
| | - Tao Li
- Department of Organ Transplantation, The Transplantation Institute of Hainan Medical University, The Second Affiliated Hospital of Hainan Medical University, Hainan, China
| | - Jiaxiang Du
- Genetic Engineering Department, Chengdu Clonorgan Biotechnology Co., Ltd, Chengdu, China
| | - Qiangbing Xia
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education and National Health Commission (NHC), Chinese Academy of Medical Sciences, Wuhan, China
| | - Lu Wang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education and National Health Commission (NHC), Chinese Academy of Medical Sciences, Wuhan, China
| | - Song Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education and National Health Commission (NHC), Chinese Academy of Medical Sciences, Wuhan, China
| | - Lan Zhu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education and National Health Commission (NHC), Chinese Academy of Medical Sciences, Wuhan, China
| | - Dengke Pan
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Yi Wang
- Department of Organ Transplantation, The Transplantation Institute of Hainan Medical University, The Second Affiliated Hospital of Hainan Medical University, Hainan, China
| | - Gang Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education and National Health Commission (NHC), Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
20
|
Mou L, Shi G, Cooper DK, Lu Y, Chen J, Zhu S, Deng J, Huang Y, Ni Y, Zhan Y, Cai Z, Pu Z. Current Topics of Relevance to the Xenotransplantation of Free Pig Islets. Front Immunol 2022; 13:854883. [PMID: 35432379 PMCID: PMC9010617 DOI: 10.3389/fimmu.2022.854883] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Pig islet xenotransplantation is a potential treatment for patients with type 1 diabetes. Current efforts are focused on identifying the optimal pig islet source and overcoming the immunological barrier. The optimal age of the pig donors remains controversial since both adult and neonatal pig islets have advantages. Isolation of adult islets using GMP grade collagenase has significantly improved the quantity and quality of adult islets, but neonatal islets can be isolated at a much lower cost. Certain culture media and coculture with mesenchymal stromal cells facilitate neonatal islet maturation and function. Genetic modification in pigs affords a promising strategy to prevent rejection. Deletion of expression of the three known carbohydrate xenoantigens (Gal, Neu5Gc, Sda) will certainly be beneficial in pig organ transplantation in humans, but this is not yet proven in islet transplantation, though the challenge of the '4th xenoantigen' may prove problematic in nonhuman primate models. Blockade of the CD40/CD154 costimulation pathway leads to long-term islet graft survival (of up to 965 days). Anti-CD40mAbs have already been applied in phase II clinical trials of islet allotransplantation. Fc region-modified anti-CD154mAbs successfully prevent the thrombotic complications reported previously. In this review, we discuss (I) the optimal age of the islet-source pig, (ii) progress in genetic modification of pigs, (iii) the immunosuppressive regimen for pig islet xenotransplantation, and (iv) the reduction in the instant blood-mediated inflammatory reaction.
Collapse
Affiliation(s)
- Lisha Mou
- Department of Hepatopancreatobiliary Surgery, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Guanghan Shi
- Department of Hepatopancreatobiliary Surgery, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- Faculty of Arts and Science, University of Toronto, Toronto, ON, Canada
| | - David K.C. Cooper
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA, United States
| | - Ying Lu
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Jiao Chen
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Shufang Zhu
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Jing Deng
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Yuanyuan Huang
- Department of Life Science, Bellevue College, Bellevue, WA, United States
| | - Yong Ni
- Department of Hepatopancreatobiliary Surgery, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Yongqiang Zhan
- Department of Hepatopancreatobiliary Surgery, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Zhiming Cai
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Zuhui Pu
- Imaging Department, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| |
Collapse
|
21
|
Feng H, Li T, Du J, Xia Q, Wang L, Chen S, Zhu L, Pan D, Wang Y, Chen G. Both Natural and Induced Anti-Sda Antibodies Play Important Roles in GTKO Pig-to-Rhesus Monkey Xenotransplantation. Front Immunol 2022. [DOI: 10.3389/fimmu.2022.849711
expr 981672748 + 872648996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Sda, produced by the B4GALNT2 enzyme, has been recognized as an important xenoantigen for pig-to-nonhuman primate xenotransplantation. However, little is known about Sda expression in pigs and its immunogenicity in xenotransplantation. In this study, peripheral blood mononuclear cells (PBMCs) were isolated from wildtype, GTKO (with high, moderate, and low Sda expression), GTKO/β4GalNT2KO, GTKO/CMAHKO, or GTKO/CMAHKO/β4GalNT2KO pigs. Anti-pig IgM/IgG binding and complement-dependent cytotoxicity (CDC) to pig PBMCs was measured by flow cytometry using pooled rhesus monkey sera (n=20) or human sera (n=20). As compared to wild-type pigs (n=12), GTKO pigs (n=17) had a significantly higher mean level of Sda expression on PBMCs and showed a greater individual difference in expression. Both the overall binding of monkey serum IgM/IgG antibody to GTKO pig PBMCs and CDC against these PBMCs decreased significantly with a progressive reduction in Sda expression, showing a clear dose-effect relationship. Both the monkey serum antibody binding and CDC decreased significantly after the additional deletion of Sda, whereas the binding of human serum antibody and CDC against the GTKO pig PBMCs were markedly reduced after the deletion of Neu5Gc in the pigs. In addition, anti-Sda antibody accounted for > 50% of the induced anti-non-Gal antibody at the time of rejection in two rhesus monkeys that received GTKO/hCD55 pig kidney xenotransplantation, and the anti-Sda antibody showed significant cytotoxic activity against GTKO pig cells. We conclude that both natural and induced anti-Sda antibodies play important roles in GTKO pig-to-rhesus monkey xenotransplantation, thus providing further evidence for GTKO/β4GalNT2KO pigs as the preferred organ source for rhesus monkeys as a preclinical model of xenotransplantation.
Collapse
|
22
|
Cooper DKC. The 2021 IXA Keith Reemtsma Lecture: Moving xenotransplantation to the clinic. Xenotransplantation 2022; 29:e12723. [PMID: 34967057 PMCID: PMC8995333 DOI: 10.1111/xen.12723] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/05/2021] [Indexed: 01/03/2023]
Abstract
Keith Reemtsma was a pioneer in xenotransplantation, the Honorary Founding President of the International Xenotransplantation Association (in 1998), and a wonderful personality. It is a privilege to be invited to give this lecture in his memory. If he were alive today, he would be delighted to see the progress that has been made in pig organ transplantation into nonhuman primate recipients. This progress has largely resulted from two major advances: (i) the increasing availability of pigs with multiple genetic manipulations aimed at protecting the cells of the organ from the primate immune response and (ii) the introduction of novel immunosuppressive agents that block the CD40/CD154 costimulation pathway. There is strong evidence from numerous in vitro studies that the transplantation of a triple-knockout pig organ, particularly if expressing several human protective proteins, into a patient is likely to be significantly more successful than if that same organ is transplanted into a nonhuman primate recipient. With this fact in mind, and in view of the advances currently being made, the time has surely come when we need to consider moving from the laboratory to the clinic. However, there are still questions we need to definitively resolve: (i) What exact genetic modifications do we need in the organ-source pig? (ii) What exact immunosuppressive regimen will we choose? (iii) How will we monitor the immune response and diagnose and treat rejection? and (iv) How do we plan to prevent or treat potential infectious complications? Furthermore, when these matters have been resolved, which patients will be offered a pig organ in the first trial? We have suggested that patients who are very unlikely to survive until a suitable deceased human donor kidney becomes available are those who should be considered for the initial trials. Assessing public attitudes to xenotransplantation is also important before embarking on a clinical trial. I suggest that progress is much more likely to be made from a small clinical trial than if we persist in carrying out experiments in an animal model that no longer mimics the clinical situation.
Collapse
Affiliation(s)
- David K C Cooper
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
23
|
Li T, Feng H, Du J, Xia Q, Cooper DKC, Jiang H, He S, Pan D, Chen G, Wang Y. Serum Antibody Binding and Cytotoxicity to Pig Cells in Chinese Subjects: Relevance to Clinical Renal Xenotransplantation. Front Immunol 2022; 13:844632. [PMID: 35418974 PMCID: PMC8996717 DOI: 10.3389/fimmu.2022.844632] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/18/2022] [Indexed: 11/20/2022] Open
Abstract
Kidney xenotransplantation is expected to contribute to resolving the shortage of kidneys from deceased human donors. Although progress in experimental life-supporting pig renal xenotransplantation has been encouraging, there are still issues to be considered before a clinical trial can be initiated. We attempted to clarify some of these by an in vitro study. Blood was drawn from healthy volunteers (Volunteers, n=20), patients with end-stage renal disease (ESRD, n=20) pre-operation (Pre), and on Day 1 (POD 1) and Day 14 (POD 14) after renal allotransplantation, brain-dead organ donors (DBD, n=20), and renal allotransplant recipients who were currently experiencing T cell-mediated rejection (Allo-TCMR, n=20). Serum IgM/IgG binding to, and complement-dependent cytotoxicity (CDC) of, PBMCs and RBCs from (a) wild-type (WT), (b) α1,3-galactosyltransferase gene-knockout (GTKO), (c) GTKO/beta-1,4-N-acety1 galactosaminyltransferase 2-knockout (GTKO/β4GalNT2KO), (d) GTKO/cytidine monophosphate-N-acetylneuraminic acid hydroxylase-knockout (GTKO/CMAHKO), and (e) GTKO/β4GalNT2KO/CMAHKO/hCD55 (TKO/hCD55) pigs were measured by flow cytometry. We obtained the following results: (i) Serum IgM/IgG binding and CDC in Volunteers were significantly greater to WT, GTKO, and GTKO/β4GalNT2KO PBMCs or RBCs than to GTKO/CMAHKO and TKO/hCD55 cells; (ii) ESRD, DBD, and Allo-TCMR serum antibody binding and CDC to WT pig PBMCs were significantly greater than to GTKO, GTKO/β4GalNT2KO, GTKO/CMAHKO, and TKO/hCD55 cells; (iii) antibody binding to GTKO/CMAHKO pig cells was significantly lower in hemodialysis than peritoneal dialysis patients. (iv) Two of twenty allotransplantation recipients' serum IgG binding to GTKO pig PBMCs increased on POD14 compared with Pre, but IgG binding to GTKO pig RBCs did not; (v) In all sera, the lowest antibody binding and CDC were to GTKO/CMAHKO and TKO/CD55 pig cells. We conclude (i) CMAHKO in the pig may be critical to the success of clinical pig kidney xenotransplantation, and may be the most important after GTKO, at least in Chinese patients; (ii) subjects with ESRD, or who are immunosuppressed after kidney allotransplantation, and DBD, have lower levels of antibody binding and CDC to genetically-engineered pig cells than do volunteers; (iii) TKO pigs with selected human 'protective' transgenes, e.g., CD55, are likely to prove to be the optimal sources of kidneys for clinical xenotransplantation.
Collapse
Affiliation(s)
- Tao Li
- Department of Organ Transplantation, The Second Affiliated Hospital of Hainan Medical University, The Transplantation Institute of Hainan Medical University, Haikou, China
| | - Hao Feng
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education and National Health Commission (NHC), Chinese Academy of Medical Sciences, Wuhan, China
| | - Jiaxiang Du
- Genetic Engineering Department, Chengdu Clonorgan Biotechnology Co., Ltd., Chengdu, China
| | - Qiangbing Xia
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education and National Health Commission (NHC), Chinese Academy of Medical Sciences, Wuhan, China
| | - David K. C. Cooper
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, United States
| | - Hongtao Jiang
- Department of Organ Transplantation, The Second Affiliated Hospital of Hainan Medical University, The Transplantation Institute of Hainan Medical University, Haikou, China
| | - Songzhe He
- Department of Organ Transplantation, The Second Affiliated Hospital of Hainan Medical University, The Transplantation Institute of Hainan Medical University, Haikou, China
| | - Dengke Pan
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, China
- *Correspondence: Yi Wang, ; Gang Chen, ; Dengke Pan,
| | - Gang Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education and National Health Commission (NHC), Chinese Academy of Medical Sciences, Wuhan, China
- *Correspondence: Yi Wang, ; Gang Chen, ; Dengke Pan,
| | - Yi Wang
- Department of Organ Transplantation, The Second Affiliated Hospital of Hainan Medical University, The Transplantation Institute of Hainan Medical University, Haikou, China
- Department of Urology, Second Affiliated Hospital of University of South China, Hengyang, China
- *Correspondence: Yi Wang, ; Gang Chen, ; Dengke Pan,
| |
Collapse
|
24
|
Feng H, Li T, Du J, Xia Q, Wang L, Chen S, Zhu L, Pan D, Wang Y, Chen G. Both Natural and Induced Anti-Sda Antibodies Play Important Roles in GTKO Pig-to-Rhesus Monkey Xenotransplantation. Front Immunol 2022. [PMID: 35422817 PMCID: PMC9004458 DOI: 10.3389/fimmu.2022.849711&set/a 866800723+810249609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Sda, produced by the B4GALNT2 enzyme, has been recognized as an important xenoantigen for pig-to-nonhuman primate xenotransplantation. However, little is known about Sda expression in pigs and its immunogenicity in xenotransplantation. In this study, peripheral blood mononuclear cells (PBMCs) were isolated from wildtype, GTKO (with high, moderate, and low Sda expression), GTKO/β4GalNT2KO, GTKO/CMAHKO, or GTKO/CMAHKO/β4GalNT2KO pigs. Anti-pig IgM/IgG binding and complement-dependent cytotoxicity (CDC) to pig PBMCs was measured by flow cytometry using pooled rhesus monkey sera (n=20) or human sera (n=20). As compared to wild-type pigs (n=12), GTKO pigs (n=17) had a significantly higher mean level of Sda expression on PBMCs and showed a greater individual difference in expression. Both the overall binding of monkey serum IgM/IgG antibody to GTKO pig PBMCs and CDC against these PBMCs decreased significantly with a progressive reduction in Sda expression, showing a clear dose-effect relationship. Both the monkey serum antibody binding and CDC decreased significantly after the additional deletion of Sda, whereas the binding of human serum antibody and CDC against the GTKO pig PBMCs were markedly reduced after the deletion of Neu5Gc in the pigs. In addition, anti-Sda antibody accounted for > 50% of the induced anti-non-Gal antibody at the time of rejection in two rhesus monkeys that received GTKO/hCD55 pig kidney xenotransplantation, and the anti-Sda antibody showed significant cytotoxic activity against GTKO pig cells. We conclude that both natural and induced anti-Sda antibodies play important roles in GTKO pig-to-rhesus monkey xenotransplantation, thus providing further evidence for GTKO/β4GalNT2KO pigs as the preferred organ source for rhesus monkeys as a preclinical model of xenotransplantation.
Collapse
Affiliation(s)
- Hao Feng
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education and National Health Commission (NHC), Chinese Academy of Medical Sciences, Wuhan, China
| | - Tao Li
- Department of Organ Transplantation, The Transplantation Institute of Hainan Medical University, The Second Affiliated Hospital of Hainan Medical University, Hainan, China
| | - Jiaxiang Du
- Genetic Engineering Department, Chengdu Clonorgan Biotechnology Co., Ltd, Chengdu, China
| | - Qiangbing Xia
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education and National Health Commission (NHC), Chinese Academy of Medical Sciences, Wuhan, China
| | - Lu Wang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education and National Health Commission (NHC), Chinese Academy of Medical Sciences, Wuhan, China
| | - Song Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education and National Health Commission (NHC), Chinese Academy of Medical Sciences, Wuhan, China
| | - Lan Zhu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education and National Health Commission (NHC), Chinese Academy of Medical Sciences, Wuhan, China
| | - Dengke Pan
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Yi Wang
- Department of Organ Transplantation, The Transplantation Institute of Hainan Medical University, The Second Affiliated Hospital of Hainan Medical University, Hainan, China
| | - Gang Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education and National Health Commission (NHC), Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
25
|
Foote JB, Jagdale A, Yamamoto T, Hara H, Bikhet MH, Schuurman HJ, Nguyen HQ, Ezzelarab M, Ayares D, Anderson DJ, Fatima H, Eckhoff DE, Cooper DKC, Iwase H. Histopathology of pig kidney grafts with/without expression of the carbohydrate Neu5Gc in immunosuppressed baboons. Xenotransplantation 2021; 28:e12715. [PMID: 34644438 DOI: 10.1111/xen.12715] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/19/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Pigs deficient in three glycosyltransferase enzymes (triple-knockout [TKO] pigs, that is, not expressing the three known carbohydrate xenoantigens) and expressing 'protective' human transgenes are considered a likely source of organs for transplantation into human recipients. Some human sera have no or minimal natural antibody binding to red blood cells (RBCs) and peripheral blood mononuclear cells (PBMCs) from TKO pigs. However, all Old World monkeys exhibit natural antibody binding to TKO pig cells. The xenoantigen targets of Old World monkey natural antibodies are postulated to be carbohydrate moieties exposed when the expression of the carbohydrate N-glycolylneuraminic acid (Neu5Gc) is deleted. The aim of this study was to compare the survival in baboons and histopathology of renal grafts from pigs that either (a) expressed Neu5Gc (GTKO pigs; Group 1) or (b) did not express Neu5Gc (GTKO/CMAHKO [DKO] or TKO pigs; Group 2). METHODS Life-supporting renal transplants were carried out using GTKO (n = 5) or DKO/TKO (n = 5) pig kidneys under an anti-CD40mAb-based immunosuppressive regimen. RESULTS Group 1 baboons survived longer than Group 2 baboons (median 237 vs. 35 days; mean 196 vs. 57 days; p < 0.07) and exhibited histopathological features of antibody-mediated rejection in only two kidneys. Group 2 exhibited histopathological features of antibody-mediated rejection in all five grafts, with IgM and IgG binding to renal interstitial arteries and peritubular capillaries. Rejection-free survival was significantly longer in Group 1 (p < 0.05). CONCLUSIONS The absence of expression of Neu5Gc on pig kidney grafts is associated with increased binding of baboon antibodies to pig endothelium and reduced graft survival.
Collapse
Affiliation(s)
- Jeremy B Foote
- Department of Microbiology and Animal Resources Program, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Abhijit Jagdale
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Takayuki Yamamoto
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Hidetaka Hara
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mohamed H Bikhet
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Huy Q Nguyen
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mohamed Ezzelarab
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Douglas J Anderson
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Huma Fatima
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Devin E Eckhoff
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Surgery, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts, USA
| | - David K C Cooper
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Hayato Iwase
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
26
|
Yamamoto T, Bikhet MH, Marques MB, Nguyen HQ, Cui Y, Javed M, Raza SS, Ayares D, Iwase H, Cooper DKC, Hara H. Initial experimental experience of triple-knockout pig red blood cells as potential sources for transfusion in alloimmunized patients with sickle cell disease. Transfusion 2021; 61:3104-3118. [PMID: 34553390 DOI: 10.1111/trf.16667] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/22/2021] [Accepted: 08/22/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Blood transfusion remains important in the treatment of patients with sickle cell disease (SCD). However, alloimmunization after blood transfusion is associated with patient morbidity and mortality. Triple-knockout (TKO) pigs (i.e., pigs in which the three known xenoantigens to which humans have anti-pig antibodies have been deleted) may be an alternative source of RBCs for these patients because many humans have no preformed antibodies to TKO pig RBCs (pRBCs). METHODS AND MATERIALS In an in vitro study, plasma from alloimmunized (n = 12) or non-alloimmunized (n = 12) SCD patients was used to determine IgM/IgG binding to, and CDC of, TKO pRBCs. In an in vivo study, after an estimated 25% of blood volume was withdrawn from two capuchin monkeys, CFSE-labeled TKO pRBCs were transfused. Loss of TKO pRBCs was monitored by flow cytometry, and 7 weeks later, 25% of blood was withdrawn, and CFSE-labeled monkey RBCs were transfused. RESULTS The in vitro study demonstrated that plasma from neither alloimmunized nor non-alloimmunized SCD patients bound IgM/IgG to, or induced CDC of, TKO pRBCs. In the in vivo study, survival of TKO pRBCs in the two capuchin monkeys was of 5 and 7 days, respectively, whereas after allotransfusion, survival was >28 days. CONCLUSIONS In conclusion, (1) in the present limited study, no antibodies were detected that cross-reacted with TKO pRBCs, and (2) TKO pigs may possibly be an alternate source of RBCs in an emergency if no human RBCs are available.
Collapse
Affiliation(s)
- Takayuki Yamamoto
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Mohamed H Bikhet
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Marisa B Marques
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Huy Q Nguyen
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yehua Cui
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mariyam Javed
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Syed Sikandar Raza
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Hayato Iwase
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - David K C Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Hidetaka Hara
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
27
|
Bikhet M, Iwase H, Yamamoto T, Jagdale A, Foote JB, Ezzelarab M, Anderson DJ, Locke JE, Eckhoff DE, Hara H, Cooper DKC. What Therapeutic Regimen Will Be Optimal for Initial Clinical Trials of Pig Organ Transplantation? Transplantation 2021; 105:1143-1155. [PMID: 33534529 DOI: 10.1097/tp.0000000000003622] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We discuss what therapeutic regimen might be acceptable/successful in the first clinical trial of genetically engineered pig kidney or heart transplantation. As regimens based on a calcineurin inhibitor or CTLA4-Ig have proved unsuccessful, the regimen we administer to baboons is based on induction therapy with antithymocyte globulin, an anti-CD20 mAb (Rituximab), and cobra venom factor, with maintenance therapy based on blockade of the CD40/CD154 costimulation pathway (with an anti-CD40 mAb), with rapamycin, and a corticosteroid. An anti-inflammatory agent (etanercept) is administered for the first 2 wk, and adjuvant therapy includes prophylaxis against thrombotic complications, anemia, cytomegalovirus, and pneumocystis. Using this regimen, although antibody-mediated rejection certainly can occur, we have documented no definite evidence of an adaptive immune response to the pig xenograft. This regimen could also form the basis for the first clinical trial, except that cobra venom factor will be replaced by a clinically approved agent, for example, a C1-esterase inhibitor. However, none of the agents that block the CD40/CD154 pathway are yet approved for clinical use, and so this hurdle remains to be overcome. The role of anti-inflammatory agents remains unproven. The major difference between this suggested regimen and those used in allotransplantation is the replacement of a calcineurin inhibitor with a costimulation blockade agent, but this does not appear to increase the complications of the regimen.
Collapse
Affiliation(s)
- Mohamed Bikhet
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Hayato Iwase
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Takayuki Yamamoto
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Abhijit Jagdale
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Jeremy B Foote
- Department of Microbiology and Animal Resources Program, University of Alabama at Birmingham, Birmingham, AL
| | - Mohamed Ezzelarab
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Douglas J Anderson
- Division of Transplantation, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Jayme E Locke
- Division of Transplantation, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Devin E Eckhoff
- Division of Transplantation, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Hidetaka Hara
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - David K C Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
28
|
Hara H, Nguyen H, Wang ZY, Jagdale A, Bikhet M, Yamamoto T, Iwase H, Ayares D, Cooper DKC. Evidence that sensitization to triple-knockout pig cells will not be detrimental to subsequent allotransplantation. Xenotransplantation 2021; 28:e12701. [PMID: 34053125 DOI: 10.1111/xen.12701] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/22/2021] [Accepted: 05/10/2021] [Indexed: 11/28/2022]
Abstract
The current evidence is that sensitization to a pig xenograft does not result in the development of antibodies that cross-react with alloantigens, and therefore, sensitization to a pig xenograft would not be detrimental to the outcome of a subsequent allograft. This evidence relates almost entirely to the transplantation of cells or organs from wild-type or α1,3-galactosyltransferase gene-knockout (GTKO) pigs. However, it is not known whether recipients of triple-knockout (TKO) pig grafts who become sensitized to TKO pig antigens develop antibodies that cross-react with alloantigens and thus be detrimental to a subsequent organ allotransplant. We identified a single baboon (B1317) in which no (or minimal) serum anti-TKO pig antibodies could be measured-in our experience unique among baboons. We sensitized it by repeated subcutaneous injections of TKO pig peripheral blood mononuclear cells (PBMCs) in the absence of any immunosuppressive therapy. After TKO pig PBMC injection, there was a transient increase in anti-TKO pig IgM, followed by a sustained increase in IgG binding to TKO cells. In contrast, there was no serum IgM or IgG binding to PBMCs from any of a panel of baboon PBMCs (n = 8). We conclude that sensitization to TKO pig PBMCs in the baboon did not result in the development of antibodies that also bound to baboon cells, suggesting that there would be no detrimental effect of sensitization on a subsequent organ allotransplant.
Collapse
Affiliation(s)
- Hidetaka Hara
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Huy Nguyen
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zheng-Yu Wang
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Abhijit Jagdale
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mohamed Bikhet
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Takayuki Yamamoto
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hayato Iwase
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - David K C Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
29
|
Meier RPH, Longchamp A, Mohiuddin M, Manuel O, Vrakas G, Maluf DG, Buhler LH, Muller YD, Pascual M. Recent progress and remaining hurdles toward clinical xenotransplantation. Xenotransplantation 2021; 28:e12681. [PMID: 33759229 DOI: 10.1111/xen.12681] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/12/2021] [Accepted: 02/21/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Xenotransplantation has made tremendous progress over the last decade. METHODS We discuss kidney and heart xenotransplantation, which are nearing initial clinical trials. RESULTS Life sustaining genetically modified kidney xenografts can now last for approximately 500 days and orthotopic heart xenografts for 200 days in non-human primates. Anti-swine specific antibody screening, preemptive desensitization protocols, complement inhibition and targeted immunosuppression are currently being adapted to xenotransplantation with the hope to achieve better control of antibody-mediated rejection (AMR) and improve xenograft longevity. These newest advances could probably facilitate future clinical trials, a significant step for the medical community, given that dialysis remains difficult for many patients and can have prohibitive costs. Performing a successful pig-to-human clinical kidney xenograft, that could last for more than a year after transplant, seems feasible but it still has significant potential hurdles to overcome. The risk/benefit balance is progressively reaching an acceptable equilibrium for future human recipients, e.g. those with a life expectancy inferior to two years. The ultimate question at this stage would be to determine if a "proof of concept" in humans is desirable, or whether further experimental/pre-clinical advances are still needed to demonstrate longer xenograft survival in non-human primates. CONCLUSION In this review, we discuss the most recent advances in kidney and heart xenotransplantation, with a focus on the prevention and treatment of AMR and on the recipient's selection, two aspects that will likely be the major points of discussion in the first pig organ xenotransplantation clinical trials.
Collapse
Affiliation(s)
- Raphael P H Meier
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alban Longchamp
- Department of Vascular Surgery, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Muhammad Mohiuddin
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Oriol Manuel
- Transplantation Center, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Georgios Vrakas
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Daniel G Maluf
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Leo H Buhler
- Faculty of Science and Medicine, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Yannick D Muller
- Division of Immunology and Allergy, University Hospital of Lausanne, Lausanne, Switzerland
| | - Manuel Pascual
- Transplantation Center, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
30
|
Affiliation(s)
- Konrad Fischer
- Chair of Livestock Biotechnology, Technical University of Munich, Freising, Germany
| | - Angelika Schnieke
- Chair of Livestock Biotechnology, Technical University of Munich, Freising, Germany.
| |
Collapse
|
31
|
Rao JS, Burlak C. Xenotransplantation literature update for September - October 2020. Xenotransplantation 2020; 28:e12665. [PMID: 33314409 DOI: 10.1111/xen.12665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 11/20/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Joseph Sushil Rao
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, USA.,Solid Organ Transplantation, Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Christopher Burlak
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
32
|
Clinical trials of pig heart transplantation. J Heart Lung Transplant 2020; 39:1509-1511. [DOI: 10.1016/j.healun.2020.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/17/2020] [Indexed: 11/24/2022] Open
|
33
|
Yamamoto T, Hara H, Ayares D, Cooper DKC. The problem of the "4th xenoantigen" after pig organ transplantation in non-human primates may be overcome by expression of human "protective" proteins. Xenotransplantation 2020; 28:e12658. [PMID: 33135299 DOI: 10.1111/xen.12658] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Takayuki Yamamoto
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hidetaka Hara
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - David K C Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
34
|
Schuurman H, Hoogendoorn K. Solid organ xenotransplantation at the interface between research and clinical development: Regulatory aspects. Xenotransplantation 2020; 27:e12608. [DOI: 10.1111/xen.12608] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 05/04/2020] [Indexed: 12/20/2022]
Affiliation(s)
| | - Karin Hoogendoorn
- Interdivisional GMP Facility Hospital Pharmacy Leiden University Medical Center Leiden The Netherlands
| |
Collapse
|