1
|
Stewart AG, Fishman JA. Surveillance and prevention of infection in clinical xenotransplantation. Clin Microbiol Rev 2025; 38:e0015023. [PMID: 39887237 PMCID: PMC11905366 DOI: 10.1128/cmr.00150-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025] Open
Abstract
SUMMARYXenotransplantation, the transplantation of living organs, tissues, or cells between species, carries the potential to address the global shortage of human organs for patients with end-stage organ failure. Recent advances in genetic engineering have improved prospects for clinical xenotransplantation by reducing immune and inflammatory responses to grafts, controlling coagulation on endothelial surfaces, and modifying viral risks, including the porcine endogenous retrovirus (PERV). Management of infectious risks posed by clinical xenotransplantation requires meticulous attention to the biosecure breeding and microbiological surveillance of source animals and recipients and consideration of novel infection control requirements. Infectious risks in xenotransplantation stem from both known human pathogens in immunosuppressed transplant recipients and from porcine organisms for which the clinical manifestations, microbial assays, and therapies are generally limited. Both known and unknown zoonoses may be transmitted from pigs to humans. Some pig-specific pathogens do not infect human cells but have systemic manifestations when active within the xenograft, including porcine cytomegalovirus/porcine roseolovirus (PCMV/PRV), which contributes to graft rejection and consumptive coagulopathy. The role of porcine endogenous retrovirus (PERV) in humans remains uncertain despite the absence of documented transmissions and the availability of swine with inactivated genomic PERV. New technologies, such as metagenomic sequencing and multi-omics approaches, will be essential for detection of novel infections and for understanding interactions between the xenograft, the host's immune system, and potential pathogens. These approaches will allow development of infection control protocols, pathogen surveillance requirements, and tailored antimicrobial therapies to enhance the safety and success of clinical xenotransplantation.
Collapse
Affiliation(s)
- Adam G. Stewart
- Transplant Infectious Disease and Compromised Host Program, MGH Transplant Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Jay A. Fishman
- Transplant Infectious Disease and Compromised Host Program, MGH Transplant Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Singh AK, Goerlich CE, Zhang T, Lewis B, Hershfeld A, Braileanu G, Kurvi K, Rice K, Sentz F, Mudd S, Odonkor P, Strauss E, Williams B, Burke A, Gupta A, Drachenberg CB, Ayares D, Griffith BP, Mohiuddin MM. Genetically engineered pig heart transplantation in non-human primates. COMMUNICATIONS MEDICINE 2025; 5:6. [PMID: 39774817 PMCID: PMC11707197 DOI: 10.1038/s43856-025-00731-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Improvement in gene modifications of donor pigs has led to the prevention of early cardiac xenograft rejection and significantly prolonged cardiac xenograft survival in both heterotopic and orthotopic preclinical non-human primate (NHP) models. This progress formed the basis for FDA approval for compassionate use transplants in two patients. METHODS Based on our earlier report of 9-month survival of seven gene-edited (7-GE) hearts transplanted (life-supporting orthotopic) in baboons, we transplanted 10 gene-edited pig hearts into baboons (n = 4) using non-ischemic continuous perfusion preservation (NICP) and immunosuppression regimen based on co-stimulation blockade by anti-CD40 monoclonal antibody. This pivotal study expands on the 7-GE backbone, with 3 additional gene edits, using 10-GE pigs as donors to baboon recipients. RESULTS 10 GE cardiac xenografts provide life-supporting function up to 225 days (mean 128 ± 36 days) in a non-human primate model. Undetectable or latent porcine cytomegalovirus (PCMV) does not influence cardiac xenograft survival in this study but still needs more exploration with a larger cohort. Xenograft histology demonstrates adipose (Fat) deposition (n = 1), chronic vasculopathy (n = 1), micro and macro thrombosis, and acute cellular rejection (n = 1). CONCLUSIONS These data demonstrate that 10 GE cardiac xenografts have variable cardiac xenograft survival in NHP due to perhaps presence of 4th antigen and require further study. However, these 10GE organs may be suitable for clinical cardiac xenotransplantation and have already been utilized in two human cases.
Collapse
Affiliation(s)
- Avneesh K Singh
- Department of Surgery, The University of Maryland School of Medicine, Baltimore, MD, USA
| | - Corbin E Goerlich
- Department of Surgery, The University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Tianshu Zhang
- Department of Surgery, The University of Maryland School of Medicine, Baltimore, MD, USA
| | - Billeta Lewis
- Department of Surgery, The University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alena Hershfeld
- Department of Surgery, The University of Maryland School of Medicine, Baltimore, MD, USA
| | - Gheorghe Braileanu
- Department of Surgery, The University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Kathryn Rice
- Department of Pathology, The University of Maryland School of Medicine, Baltimore, MD, USA
| | - Faith Sentz
- Department of Surgery, The University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sarah Mudd
- Department of Surgery, The University of Maryland School of Medicine, Baltimore, MD, USA
| | - Patrick Odonkor
- Department of Anesthesiology, The University of Maryland School of Medicine, Baltimore, MD, USA
| | - Erik Strauss
- Department of Anesthesiology, The University of Maryland School of Medicine, Baltimore, MD, USA
| | - Brittney Williams
- Department of Anesthesiology, The University of Maryland School of Medicine, Baltimore, MD, USA
| | - Allen Burke
- Department of Pathology, The University of Maryland School of Medicine, Baltimore, MD, USA
| | - Anuj Gupta
- Department of Medicine, Division of Cardiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Cinthia B Drachenberg
- Department of Pathology, The University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Bartley P Griffith
- Department of Surgery, The University of Maryland School of Medicine, Baltimore, MD, USA
| | - Muhammad M Mohiuddin
- Department of Surgery, The University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
3
|
Mao H, Li J, Gao M, Liu X, Zhang H, Zhuang Y, He T, Zuo W, Bai L, Bao J. Targeted Integration of siRNA against Porcine Cytomegalovirus (PCMV) Enhances the Resistance of Porcine Cells to PCMV. Microorganisms 2024; 12:837. [PMID: 38674781 PMCID: PMC11051760 DOI: 10.3390/microorganisms12040837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
In the world's first pig-to-human cardiac cytomegalovirus (PCMV), xenotransplant and elevated levels of porcine key factors contributing to patient mortality were considered. This has renewed attention on PCMV, a virus widely prevalent in pigs. Currently, there are no effective drugs or vaccines targeting PCMV, and its high detection difficulty poses challenges for prevention and control research. In this study, antiviral small hairpin RNA (shRNA) was selected and inserted into the Rosa26 and miR-17-92 loci of pigs via a CRISPR/Cas9-mediated knock-in strategy. Further in vitro viral challenge experiments demonstrated that these genetically edited pig cells could effectively limit PCMV replication. Through this process, we constructed a PCMV-infected cell model, validated partial viral interference sites, enhanced gene knock-in efficiency, performed gene editing at two different gene loci, and ultimately demonstrated that RNA interference (RNAi) technology combined with CRISPR/Cas9 has the potential to generate pig cells with enhanced antiviral infection capabilities. This opens up possibilities for the future production of pig populations with antiviral functionalities.
Collapse
Affiliation(s)
- Hongzhen Mao
- Department of Pathology, Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, National Health Commission of China, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jinyang Li
- Department of Pathology, Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, National Health Commission of China, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Pathology, Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mengyu Gao
- Department of Pathology, Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, National Health Commission of China, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinmei Liu
- Department of Pathology, Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, National Health Commission of China, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Haohan Zhang
- Department of Pathology, Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, National Health Commission of China, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yijia Zhuang
- Department of Pathology, Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, National Health Commission of China, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tianyi He
- Department of Pathology, Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, National Health Commission of China, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wei Zuo
- Key Laboratory of Transplant Engineering and Immunology, National Health Commission of China, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Organ Regeneration, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Lang Bai
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ji Bao
- Department of Pathology, Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, National Health Commission of China, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
4
|
McCall MA. Pig Models in Retinal Research and Retinal Disease. Cold Spring Harb Perspect Med 2024; 14:a041296. [PMID: 37553210 PMCID: PMC10982707 DOI: 10.1101/cshperspect.a041296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
The pig has been used as a large animal model in biomedical research for many years and its use continues to increase because induced mutations phenocopy several inherited human diseases. In addition, they are continuous breeders, can be propagated by artificial insemination, have large litter sizes (on the order of mice), and can be genetically manipulated using all of the techniques that are currently available in mice. The pioneering work of Petters and colleagues set the stage for the use of the pig as a model of inherited retinal disease. In the last 10 years, the pig has become a model of choice where specific disease-causing mutations that are not phenocopied in rodents need to be studied and therapeutic approaches explored. The pig is not only used for retinal eye disease but also for the study of the cornea and lens. This review attempts to show how broad the use of the pig has become and how it has contributed to the assessment of treatments for eye disease. In the last 10 years, there have been several reviews that included the use of the pig in biomedical research (see body of the review) that included information about retinal disease. None directly discuss the use of the pig as an animal model for retinal diseases, including inherited diseases, where a single genetic mutation has been identified or for multifactorial diseases such as glaucoma and diabetic retinopathy. Although the pig is used to explore diseases of the cornea and lens, this review focuses on how and why the pig, as a large animal model, is useful for research in neural retinal disease and its treatment.
Collapse
Affiliation(s)
- Maureen A McCall
- Departments of Ophthalmology & Visual Sciences and Anatomical Sciences & Neurobiology, University of Louisville, Louisville, Kentucky 40202, USA
| |
Collapse
|
5
|
Kwon OK, Jeong ES, Lee KW, Choi MR, Sonn CH, Cho B, Shim J, Choi K, Kim SJ, Park JB. Monitoring Porcine Cytomegalovirus in Both Donors and Recipients is Crucial for Recipient's Survival in Pig-to-Cynomolgus Xenotransplantation. Transplant Proc 2024; 56:686-691. [PMID: 38378341 DOI: 10.1016/j.transproceed.2024.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/16/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND Xenotransplantation, particularly when involving pig donors, presents challenges related to the transmission of porcine cytomegalovirus (pCMV) and its potential impact on recipient outcomes. This study aimed to investigate the relationship between pCMV positivity in both donors and recipients and the survival time of cynomolgus monkey recipients after xenogeneic kidney transplantation. METHODS We conducted 20 cynomolgus xenotransplants using 18 transgenic pigs. On the surgery day, donor pig blood was sampled, and DNA was extracted from serum and peripheral blood mononuclear cells. Recipient DNA extraction followed the same protocol from pre-transplantation to post-transplantation. Porcine cytomegalovirus detection used real-time polymerase chain reaction (real-time PCR) with the ViroReal kit, achieving a sensitivity of 50 copies/reaction. A Ct value of 37.0 was the pCMV positivity threshold. RESULTS Of 20 cynomolgus recipients, when donors tested negative for pCMV, recipients also showed negative results in 9 cases. In 4 cases where donors were negative, recipients tested positive. All 5 cases with pCMV-positive donors resulted in positive assessments for recipients. Detection of donor pCMV correlated with shorter recipient survival. Continuous recipient positivity during observation correlated with shorter survival, whereas transient detection showed no significant change in survival rates. However, donor pig phenotypes and transplantation protocols did not significantly impact survival. CONCLUSION The detection of pCMV in both donors and recipients plays a crucial role in xenotransplantation outcomes. These findings suggest the importance of monitoring and managing pCMV in xenotransplantation to enhance long-term outcomes.
Collapse
Affiliation(s)
- O Kyung Kwon
- Transplantation Research Center, Samsung Medical Center, Seoul, Republic of Korea; Department of Health Sciences & Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul 06355, Republic of Korea
| | - Eun Sung Jeong
- Department of Surgery, Dongguk University Ilsan Hospital, Dongguk University School of Medicine, Goyang, Republic of Korea
| | - Kyo Won Lee
- Transplantation Research Center, Samsung Medical Center, Seoul, Republic of Korea; Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Mi Ran Choi
- Transplantation Research Center, Samsung Medical Center, Seoul, Republic of Korea; Department of Health Sciences & Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul 06355, Republic of Korea
| | - Chung Hee Sonn
- Transplantation Research Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Bumrae Cho
- GenNBio Co, Ltd, 80, Dreamsandan 2-ro, Cheongbuk-eup, Pyeongtaek-si, Gyeonggi-do, Republic of Korea
| | - Joohyun Shim
- Optipharm Inc., Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Kimyung Choi
- Optipharm Inc., Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Sung Joo Kim
- GenNBio Co, Ltd, 80, Dreamsandan 2-ro, Cheongbuk-eup, Pyeongtaek-si, Gyeonggi-do, Republic of Korea
| | - Jae Berm Park
- Transplantation Research Center, Samsung Medical Center, Seoul, Republic of Korea; Department of Health Sciences & Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul 06355, Republic of Korea; Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Mohiuddin MM, Singh AK, Scobie L, Goerlich CE, Grazioli A, Saharia K, Crossan C, Burke A, Drachenberg C, Oguz C, Zhang T, Lewis B, Hershfeld A, Sentz F, Tatarov I, Mudd S, Braileanu G, Rice K, Paolini JF, Bondensgaard K, Vaught T, Kuravi K, Sorrells L, Dandro A, Ayares D, Lau C, Griffith BP. Graft dysfunction in compassionate use of genetically engineered pig-to-human cardiac xenotransplantation: a case report. Lancet 2023; 402:397-410. [PMID: 37393920 PMCID: PMC10552929 DOI: 10.1016/s0140-6736(23)00775-4] [Citation(s) in RCA: 118] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND A genetically engineered pig cardiac xenotransplantation was done on Jan 7, 2022, in a non-ambulatory male patient, aged 57 years, with end-stage heart failure, and on veno-arterial extracorporeal membrane oxygenation support, who was ineligible for an allograft. This report details our current understanding of factors important to the xenotransplantation outcome. METHODS Physiological and biochemical parameters critical for the care of all heart transplant recipients were collected in extensive clinical monitoring in an intensive care unit. To ascertain the cause of xenograft dysfunction, we did extensive immunological and histopathological studies, including electron microscopy and quantification of porcine cytomegalovirus or porcine roseolovirus (PCMV/PRV) in the xenograft, recipient cells, and tissue by DNA PCR and RNA transcription. We performed intravenous immunoglobulin (IVIG) binding to donor cells and single-cell RNA sequencing of peripheral blood mononuclear cells. FINDINGS After successful xenotransplantation, the graft functioned well on echocardiography and sustained cardiovascular and other organ systems functions until postoperative day 47 when diastolic heart failure occurred. At postoperative day 50, the endomyocardial biopsy revealed damaged capillaries with interstitial oedema, red cell extravasation, rare thrombotic microangiopathy, and complement deposition. Increased anti-pig xenoantibodies, mainly IgG, were detected after IVIG administration for hypogammaglobulinaemia and during the first plasma exchange. Endomyocardial biopsy on postoperative day 56 showed fibrotic changes consistent with progressive myocardial stiffness. Microbial cell-free DNA testing indicated increasing titres of PCMV/PRV cell-free DNA. Post-mortem single-cell RNA sequencing showed overlapping causes. INTERPRETATION Hyperacute rejection was avoided. We identified potential mediators of the observed endothelial injury. First, widespread endothelial injury indicates antibody-mediated rejection. Second, IVIG bound strongly to donor endothelium, possibly causing immune activation. Finally, reactivation and replication of latent PCMV/PRV in the xenograft possibly initiated a damaging inflammatory response. The findings point to specific measures to improve xenotransplant outcomes in the future. FUNDING The University of Maryland School of Medicine, and the University of Maryland Medical Center.
Collapse
Affiliation(s)
- Muhammad M Mohiuddin
- Program in Cardiac Xenotransplantation, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Avneesh K Singh
- Program in Cardiac Xenotransplantation, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Linda Scobie
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Corbin E Goerlich
- Program in Cardiac Xenotransplantation, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alison Grazioli
- Cardiac Surgery Intensive Care Unit, University of Maryland Medical Center, Baltimore, MD, USA
| | - Kapil Saharia
- Institute of Human Virology, Division of Infectious Disease, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Claire Crossan
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Allen Burke
- Department of Pathology, University of Maryland Medical Center, Baltimore, MD, USA
| | - Cinthia Drachenberg
- Department of Pathology, University of Maryland Medical Center, Baltimore, MD, USA
| | - Cihan Oguz
- Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tianshu Zhang
- Program in Cardiac Xenotransplantation, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Billeta Lewis
- Program in Cardiac Xenotransplantation, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alena Hershfeld
- Program in Cardiac Xenotransplantation, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Faith Sentz
- Program in Cardiac Xenotransplantation, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ivan Tatarov
- Program in Cardiac Xenotransplantation, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sarah Mudd
- Program in Cardiac Xenotransplantation, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Gheorghe Braileanu
- Program in Cardiac Xenotransplantation, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kathryn Rice
- Department of Pathology, University of Maryland Medical Center, Baltimore, MD, USA
| | | | | | | | | | | | | | | | - Christine Lau
- Program in Cardiac Xenotransplantation, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bartley P Griffith
- Program in Cardiac Xenotransplantation, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
7
|
Mao H, Li J, Liao G, Gao M, Yang G, Bao J. The prevention strategies of swine viruses related to xenotransplantation. Virol J 2023; 20:121. [PMID: 37312151 PMCID: PMC10262131 DOI: 10.1186/s12985-023-02090-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/02/2023] [Indexed: 06/15/2023] Open
Abstract
Xenotransplantation is considered a solution for the shortage of organs, and pigs play an indispensable role as donors in xenotransplantation. The biosecurity of pigs, especially the zoonotic viruses carried by pigs, has attracted attention. This review introduces several viruses, including porcine endogenous retroviruses that are integrated into the pig genome in a DNA form, herpesviruses that have been proven to clearly affect recipient survival time in previous xenotransplant surgeries, the zoonotic hepatitis E virus, and the widely distributed porcine circoviruses. The detail virus information, such as structure, caused diseases, transmission pathways, and epidemiology was introduced in the current review. Diagnostic and control measures for these viruses, including detection sites and methods, vaccines, RNA interference, antiviral pigs, farm biosecurity, and drugs, are discussed. The challenges faced, including those posed by other viruses and newly emerged viruses, and the challenges brought by the modes of transmission of the viruses are also summarized.
Collapse
Affiliation(s)
- Hongzhen Mao
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Center of Infectious Diseases & Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinyang Li
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Guangneng Liao
- Experimental Animal Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mengyu Gao
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Guang Yang
- Experimental Animal Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ji Bao
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
8
|
Hansen S, Menandro ML, Franzo G, Krabben L, Marino SF, Kaufer B, Denner J. Presence of porcine cytomegalovirus, a porcine roseolovirus, in wild boars in Italy and Germany. Arch Virol 2023; 168:55. [PMID: 36609605 PMCID: PMC9825524 DOI: 10.1007/s00705-022-05690-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/27/2022] [Indexed: 01/09/2023]
Abstract
Porcine cytomegalovirus (PCMV), a porcine roseolovirus (PRV) that is closely related to human herpesviruses 6 and 7, is commonly found in commercial pigs. PCMV/PRV is important in xenotransplantation, because in preclinical trials in which pig organs were transplanted into non-human primates, transmission of PCMV/PRV was shown to be associated with significantly reduced survival of the xenotransplants. PCMV/PRV was also transmitted in the first transplantation of a pig heart into a human patient worldwide and apparently contributed to the death of the patient. The prevalence of PCMV/PRV in wild boars is largely unknown. In this study, we screened wild boars from several areas of northern Italy and Germany to test for the presence of PCMV/PRV using PCR-based and Western blot assays. By Western blot analysis, 54% and 82% of Italian and German wild boars, respectively, were found to be PCMV/PRV positive, while 36% and 60%, respectively, tested positive by real-time polymerase chain reaction (PCR). These data indicate that the virus is common in German and Italian wild boars and that the Western blot assay detected a PCMV/PRV infection more often than did real-time PCR. The data also indicate that pigs raised for xenotransplantation should be protected from contact with materials from wild boars and commercial pigs.
Collapse
Affiliation(s)
- Sabrina Hansen
- Institute of Virology, Free University Berlin, 14163, Berlin, Germany
| | - Maria Luisa Menandro
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, 35020, Legnaro, Italy
| | - Giovanni Franzo
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, 35020, Legnaro, Italy
| | - Ludwig Krabben
- Institute of Virology, Free University Berlin, 14163, Berlin, Germany
| | - Stephen F Marino
- Parasites in Foodstuffs, Department of Biological Safety, Unit Diagnostics, German Federal Institute for Risk Assessment, 10589, Berlin, Germany
| | - Benedikt Kaufer
- Institute of Virology, Free University Berlin, 14163, Berlin, Germany
| | - Joachim Denner
- Institute of Virology, Free University Berlin, 14163, Berlin, Germany.
| |
Collapse
|
9
|
Halecker S, Hansen S, Krabben L, Ebner F, Kaufer B, Denner J. How, where and when to screen for porcine cytomegalovirus (PCMV) in donor pigs for xenotransplantation. Sci Rep 2022; 12:21545. [PMID: 36513687 PMCID: PMC9747970 DOI: 10.1038/s41598-022-25624-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
Porcine cytomegalovirus (PCMV), that is actually a porcine roseolovirus (PRV), is a common herpesvirus in domestic pigs and wild boars. In xenotransplantation, PCMV/PRV has been shown to significantly reduce the survival time of pig kidneys and hearts in preclinical trials with different non-human primates. Furthermore, PCMV/PRV has been transmitted in the first pig to human heart xenotransplantation and contributed to the death of the patient. Although transmitted to the recipient, there is no evidence that PCMV/PRV can infect primate cells including human cells. PCMV/PRV is closely related to the human herpesviruses 6 and 7, and only distantly related to the human CMV (HCMV). Antiviral drugs used for the treatment of HCMV are less effective against PCMV/PRV. However, there are well described strategies to eliminate the virus from pig facilities. In order to detect the virus and to eliminate it, highly sensitive detection methods and the knowledge of how, where and when to screen the donor pigs is required. Here, a comparative testing of organs from pigs of different ages using polymerase chain reaction (PCR)-based and immunological methods was performed. Testing young piglets, PCMV/PRV was detected effectively by PCR in blood, bronchoalveolar lavage fluid, tonsils and heart. In adult animals, detection by PCR was not successful in most cases, because the virus load was below the detection limit or the virus was in its latent stage. Therefore, detection of antibodies against selected recombinant proteins corresponding to epitopes detected by nearly all infected animals in a Western blot assay is advantageous. By contrast, immunological testing is not beneficial in young animals as piglets might have PCMV/PRV-specific antibodies obtained from their infected mother via the colostrum. Using a thoughtful combination of PCR-based and immunological methods, detection of PCMV/PRV in donor pigs for xenotransplantation is feasible and a controlled elimination of the virus by early weaning or other methods is possible.
Collapse
Affiliation(s)
- S Halecker
- Institute of Virology, Free University, Berlin, Germany
| | - S Hansen
- Institute of Virology, Free University, Berlin, Germany
| | - L Krabben
- Institute of Virology, Free University, Berlin, Germany
| | - F Ebner
- Institute of Immunology, Free University, Berlin, Germany
| | - B Kaufer
- Institute of Virology, Free University, Berlin, Germany
| | - J Denner
- Institute of Virology, Free University, Berlin, Germany.
| |
Collapse
|
10
|
Denner J, Schuurman HJ. Early testing of porcine organ xenotransplantation products in humans: Microbial safety as illustrated for porcine cytomegalovirus. Xenotransplantation 2022; 29:e12783. [PMID: 36336900 DOI: 10.1111/xen.12783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/20/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Joachim Denner
- Institute of Virology, Free University Berlin, Berlin, Germany
| | | |
Collapse
|