1
|
Nguyet LTY, Ounjai P, Ngamwongsatit N, Kaeoket K. The immune response of pregnant sow after vaccination with crude fimbriae (F4) extracts vaccine and immunoprotection of nursery pig against pathogenic E. coli (F4 +ETEC). Acta Trop 2024; 254:107173. [PMID: 38503364 DOI: 10.1016/j.actatropica.2024.107173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/22/2024] [Accepted: 03/05/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND Neonatal and post-weaning diarrhea is a concern disease caused by enterotoxigenic Escherichia coli fimbriae F4 (F4+ETEC) in pig farms. Diarrhea outbreaks are often severe and costly due to the high prevalence and spread of the disease within the same herd. Vaccine is one of strategic solution in protecting pig against F4+ETEC infection in particular pig farm. In present study, we conducted two trials of vaccination with crude F4 fimbriae extract vaccine in pregnant sow and nursery pigs. METHODS In experiment 1 (20 sows; non-vaccinated control, n=10), we vaccinated pregnant sows (n=10) twice at 4 wk and 2 wk before farrowing and evaluated impact of vaccination on maternal immunity. The sow serum and colostrum were collected before vaccination, 2 and 4 weeks after vaccination, 6 hours after farrowing, respectively, and the piglet's serum from both groups (2 piglet/sow, 10 piglets from each group) were also collected on 3 days old to measure F4 specific IgG, F4 specific IgA using in house ELISA kit. In experiment 2, to optimize doses and dosage of candidate vaccine in piglets, 18 piglets (3 piglets/group) were allocated into five immunized groups and one control group (unimmunized group), we immunized piglets twice at 4 and 6 weeks old with difference doses (i.e., 0, 50, 100, 150, 200 µg), and for a dose 150 µg, we immunized with two dosages at 1 ml and 2 ml. Piglets were challenged with a 3 ml dose of 3 × 109 CFU/ml bacterial culture of enterotoxigenic Escherichia coli (F4+ETEC) in order to evaluate the efficacy of vaccine. After challenging, the clinical sign of the piglets was daily observed and the rectal swab was performed every day for investigation of the fecal shedding of Escherichia coli (F4+ETEC) by using PCR technique. Serum were collected before, 2 and 4 weeks after vaccination and 1 week after challenge to measure F4 specific IgG, F4 specific IgA using in house ELISA kit and cytokines levels (i.e., IL-1 beta, IL-6, IL-8 and TNF alpha) before and 1 week after challenge using commercial ELISA kit. RESULTS The levels of antibody results showed that in experiment 1, the anti-F4 antibody levels both F4 specific IgG and F4 specific IgA in serum and colostrum of vaccinated sow increased significantly after vaccination. The piglets of immunized sows have antibody level both F4 specific IgG and F4 specific IgA in their serum higher than those piglets of unimmunized sows significantly (p < 0.01). In experiment 2, irrespective of different doses and dosage, there is no difference in term of F4 specific IgG and F4 specific IgA levels among immunized groups. However, all of vaccinated piglets showed F4 specific IgG and F4 specific IgA levels higher and the elimination of Escherichia coli (F4+ETEC) in feces post challenge faster (< 3 days) than unvaccinated group (> 5 days). For cytokines levels, a higher level of IL-1 beta, IL-6, IL-8 and TNF alpha at 1 week after challenge in vaccinated groups was found when compared with the levels in non-vaccinated group. CONCLUSIONS Our results suggest that crude F4 fimbriae extract autogenous vaccine is a candidate vaccine for protecting piglets against diarrhea disease caused by enterotoxigenic Escherichia coli (F4+ETEC) and vaccination the pregnant sow twice before farrowing is one of strategies to provide maternal derived antibody to the newborn piglets for against enterotoxigenic Escherichia coli (F4+ETEC) during early life.
Collapse
Affiliation(s)
- Luong Thi Yen Nguyet
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Puey Ounjai
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Natharin Ngamwongsatit
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand; Laboratory of Bacteria, Veterinary Diagnostic Center, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Kampon Kaeoket
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
2
|
Ji F, Yang H, Wang Q, Li J, Zhou H, Liu S. Porcine intestinal antimicrobial peptide as an in-feed antibiotic alternative improves intestinal digestion and immunity by shaping the gut microbiota in weaned piglets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 14:43-55. [PMID: 37234948 PMCID: PMC10208801 DOI: 10.1016/j.aninu.2023.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 02/25/2023] [Accepted: 04/05/2023] [Indexed: 05/28/2023]
Abstract
Antibiotic resistance of pathogens, which is caused by the abuse of in-feed antibiotics, threatens the sustainable development of livestock production. The present study aimed to investigate the efficiency of porcine intestinal antimicrobial peptide (PIAP) as an alternative to in-feed antibiotics in terms of growth performance, intestinal morphology, digestive enzymes and immunity, and microbiota community of the post-weaning piglets. A total of 204 piglets (Duroc × Landrace × Yorkshire, weaned at 28 d age) with a similar body weight of 7.97 ± 1.04 kg were randomly allocated to 4 groups (51 piglets per group): (1) control group: basal diet; (2) AB group: antibiotic, basal diet + chlortetracycline (1000 mg/kg from d 1 to 24; 500 mg/kg from d 25 to 37); (3) P1 group: basal diet + a relatively low dose of PIAP (400 mg/kg from d 1 to 24; 300 mg/kg from d 25 to 37); (4) P2 group, basal diet + a relatively high dose of PIAP (600 mg/kg from d 1 to 24; 500 mg/kg from d 25 to 37). The results showed that serum indicators of hepatocyte damage and relative organ weight were not affected by these treatments (P > 0.05). Compared with the AB treatment, the P1 treatment remarkably decreased jejunal crypt depth and increased jejunal and ileal villus height:crypt depth ratio (P < 0.05). The values of jejunal maltase, lactase, sucrase, intestinal alkaline phosphatase, and secretory immunoglobulin A (SIgA) in the P1 group were sharply increased compared with those in the control and P2 groups (P < 0.05). Compared with the control group, the P1 group decreased serum concentrations of D-lactate, diamine oxidase, and endotoxin (P < 0.05), and increased the abundance of Lactobacillus reuteri (P < 0.05) in the colonic feces. Furthermore, there was a positive correlation between the abundance of L. reuteri and the concentrations of maltase, lactase, sucrase, and SIgA (P < 0.05). Collectively, dietary supplementation with a relatively low dose of PIAP (400 mg/kg from d 1 to 24; 300 mg/kg from d 25 to 37) demonstrates beneficial effects on intestinal morphology, digestive enzymes, immunity, and permeability by shaping the gut microbiota composition in weaned piglets. This study will provide a valuable reference for using PIAP as an in-feed antibiotic alternative in swine production.
Collapse
Affiliation(s)
- Fengjie Ji
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Huansheng Yang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Qiye Wang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Jianzhong Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Hanlin Zhou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Shengmin Liu
- Hainan Agri-Farming Animal Husbandry Group Co., Ltd., Haikou, 570226, China
| |
Collapse
|
3
|
Barros MM, Castro J, Araújo D, Campos AM, Oliveira R, Silva S, Outor-Monteiro D, Almeida C. Swine Colibacillosis: Global Epidemiologic and Antimicrobial Scenario. Antibiotics (Basel) 2023; 12:antibiotics12040682. [PMID: 37107044 PMCID: PMC10135039 DOI: 10.3390/antibiotics12040682] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Swine pathogenic infection caused by Escherichia coli, known as swine colibacillosis, represents an epidemiological challenge not only for animal husbandry but also for health authorities. To note, virulent E. coli strains might be transmitted, and also cause disease, in humans. In the last decades, diverse successful multidrug-resistant strains have been detected, mainly due to the growing selective pressure of antibiotic use, in which animal practices have played a relevant role. In fact, according to the different features and particular virulence factor combination, there are four different pathotypes of E. coli that can cause illness in swine: enterotoxigenic E. coli (ETEC), Shiga toxin-producing E. coli (STEC) that comprises edema disease E. coli (EDEC) and enterohemorrhagic E. coli (EHEC), enteropathogenic E. coli (EPEC), and extraintestinal pathogenic E. coli (ExPEC). Nevertheless, the most relevant pathotype in a colibacillosis scenario is ETEC, responsible for neonatal and postweaning diarrhea (PWD), in which some ETEC strains present enhanced fitness and pathogenicity. To explore the distribution of pathogenic ETEC in swine farms and their diversity, resistance, and virulence profiles, this review summarizes the most relevant works on these subjects over the past 10 years and discusses the importance of these bacteria as zoonotic agents.
Collapse
Affiliation(s)
- Maria Margarida Barros
- I.P—National Institute for Agrarian and Veterinariay Research (INIAV), Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (M.M.B.); (J.C.); (D.A.); (A.M.C.); (R.O.); (S.S.)
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
| | - Joana Castro
- I.P—National Institute for Agrarian and Veterinariay Research (INIAV), Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (M.M.B.); (J.C.); (D.A.); (A.M.C.); (R.O.); (S.S.)
| | - Daniela Araújo
- I.P—National Institute for Agrarian and Veterinariay Research (INIAV), Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (M.M.B.); (J.C.); (D.A.); (A.M.C.); (R.O.); (S.S.)
| | - Ana Maria Campos
- I.P—National Institute for Agrarian and Veterinariay Research (INIAV), Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (M.M.B.); (J.C.); (D.A.); (A.M.C.); (R.O.); (S.S.)
| | - Ricardo Oliveira
- I.P—National Institute for Agrarian and Veterinariay Research (INIAV), Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (M.M.B.); (J.C.); (D.A.); (A.M.C.); (R.O.); (S.S.)
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Sónia Silva
- I.P—National Institute for Agrarian and Veterinariay Research (INIAV), Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (M.M.B.); (J.C.); (D.A.); (A.M.C.); (R.O.); (S.S.)
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Divanildo Outor-Monteiro
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
| | - Carina Almeida
- I.P—National Institute for Agrarian and Veterinariay Research (INIAV), Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (M.M.B.); (J.C.); (D.A.); (A.M.C.); (R.O.); (S.S.)
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- Correspondence:
| |
Collapse
|
4
|
Do KH, Seo K, Jung M, Lee WK, Lee WK. Comparative Genetic Characterization of Pathogenic Escherichia coli Isolated from Patients and Swine Suffering from Diarrhea in Korea. Animals (Basel) 2023; 13:ani13071154. [PMID: 37048407 PMCID: PMC10093510 DOI: 10.3390/ani13071154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/16/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
The aim of this study was to compare the virulence factors and antimicrobial resistance of the most common pathogenic Escherichia coli strains in swine and patients with diarrhea in Korea. We examined virulence genes and antimicrobial susceptibility in 85 and 61 E. coli strains isolated from swine and patients with diarrhea, respectively. The most prevalent pathogen in swine was enterotoxigenic E. coli (ETEC) (47.1%), followed by Shiga toxin-producing E. coli (STEC) (32.9%). Similarly, the majority of the patient isolates (50.8%) were proven to be STEC, the most common pathotype, followed by ETEC (23.0%). We found that swine isolates had significantly higher resistance than patient isolates, especially to fluoroquinolones (ciprofloxacin: 37.5% and 16.1%; norfloxacin: 29.7% and 16.1%, respectively). Additionally, sequence type (ST) 100 (swine: 21; patients: 4), ST 1 (swine: 21, patients: 2), ST 10 (swine: 8; patients: 6), ST 641 (swine: 3, patients: 2), and ST 88 (swine: 2, patients: 11) were detected in both swine and humans. In addition, we confirmed that isolates from swine and patients had similar virulence traits and were phylogenetically similar. According to these findings, swine and humans are susceptible to cross infection and the transfer of antimicrobial resistance.
Collapse
|
5
|
Do KH, Seo K, Lee WK. Antimicrobial resistance, virulence genes, and phylogenetic characteristics of pathogenic Escherichia coli isolated from patients and swine suffering from diarrhea. BMC Microbiol 2022; 22:199. [PMID: 35974313 PMCID: PMC9380393 DOI: 10.1186/s12866-022-02604-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/01/2022] [Indexed: 11/10/2022] Open
Abstract
Background Escherichia (E.) coli causes colibacillosis in swine and humans, and is frequently associated with antimicrobial resistance. In this study we aimed to compare antimicrobial resistance, O-serogroups, virulence genes, and multi-locus sequence type of E. coli between isolates from pigs and patients suffering from diarrhea, and the most prevalent pathogenic E. coli strain from swine isolates in Korea. Methods We tested 64 and 50 E. coli strains from pigs and patients suffering from diarrhea for antimicrobial susceptibility test, virulence genes, O-serogroups, and multi-locus sequence typing. Results We confirmed that isolates from swine showed significantly higher resistance than from those from patients, especially to fluoroquinolone (ciprofloxacin: 37.5 and 10.0%; norfloxacin: 29.7 and 8.0%, respectively). Stx1 (46.0%) was most frequently detected in patients followed by stx2 (38.0%). There was no significant difference in stx2 (swine: 23.4%, patients: 38.0%). In isolates from patients, O157 (12.0%) was the most prevalent O-serogroup, and two isolates (3.1%) from pigs were confirmed to have O157. Additionally, sequence type (ST) 10 (swine: 6 isolates, patients: 2 isolates) and ST 88 (swine: 2 isolates, patients: 1 isolate) were simultaneously detected. Conclusions We found that both isolates from swine and human had the stx2 gene, which could cause severe disease. Moreover, antimicrobial resistance was significantly higher in pigs than in patients. These results suggest that pig could act as a reservoir in human infection and antimicrobial resistance could be transferred to human from pigs. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02604-z.
Collapse
Affiliation(s)
- Kyung-Hyo Do
- Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Kwangwon Seo
- Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Wan-Kyu Lee
- Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
6
|
Nguyet LTY, Keeratikunakorn K, Kaeoket K, Ngamwongsatit N. Antibiotic resistant Escherichia coli from diarrheic piglets from pig farms in Thailand that harbor colistin-resistant mcr genes. Sci Rep 2022; 12:9083. [PMID: 35641591 PMCID: PMC9156692 DOI: 10.1038/s41598-022-13192-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/23/2022] [Indexed: 12/17/2022] Open
Abstract
Antibiotic-resistant Escherichia coli is one of the most serious problems in pig production. This study aimed to determine the antibiotic susceptibility and genotypes profiles of diarrhoeagenic E. coli that causes diarrhea in piglets. Thirty-seven pathogenic E. coli strains were used in this study. These were isolated from rectal swabs of diarrheic piglets from farms in Thailand from 2018 to 2019. Escherichia coli isolates were highly resistant to amoxicillin (100%), followed by oxytetracycline (91.9%), enrofloxacin (89.2%), trimethoprim/sulfamethoxazole (86.5%), amoxicillin: clavulanic acid (81.1%), colistin and gentamicin (75.7%), ceftriaxone and ceftiofur (64.9%), ceftazidime (35.1%) and 97.3% showed multidrug-resistance (MDR). There were 8 (21.6%) mcr-1 carriers, 10 (27.0%) mcr-3 carriers and 10 (27.0%) co-occurrent mcr-1 and mcr-3 isolates. The phenotype-genotype correlation of colistin resistance was statistically significant (performed using Cohen's kappa coefficient (κ = 0.853; p < 0.001)). In addition, PCR results determined that 28 of 37 (75.7%) isolates carried the int1 gene, and 85.7% int1-positive isolates also carried the mcr gene. Genetic profiling of E. coli isolates performed by ERIC-PCR showed diverse genetics, differentiated into thirteen groups with 65% similarity. Knowledge of the molecular origins of multidrug-resistant E. coli should be helpful for when attempting to utilize antibiotics in the pig industry. In terms of public health awareness, the possibility of transmitting antibiotic-resistant E. coli from diarrheic piglets to other bacteria in pigs and humans should be of concern.
Collapse
Affiliation(s)
- Luong Thi Yen Nguyet
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Krittika Keeratikunakorn
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Kampon Kaeoket
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand.
| | - Natharin Ngamwongsatit
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand.
- Laboratory of Bacteria, Veterinary Diagnostic Center, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand.
| |
Collapse
|
7
|
Awawdeh L, Turni C, Mollinger JL, Henning J, Cobbold RN, Trott DJ, Gibson JS. Antimicrobial susceptibility, plasmid replicon typing, phylogenetic grouping, and virulence potential of avian pathogenic and faecal Escherichia coli isolated from meat chickens in Australia. Avian Pathol 2022; 51:349-360. [PMID: 35417283 DOI: 10.1080/03079457.2022.2065969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Globally, avian colibacillosis is a leading cause of morbidity and mortality in poultry, associated with economic losses and welfare problems. Here, clinical avian pathogenic E. coli isolates (CEC; n=50) and faecal E. coli isolates from healthy (FEC; n=187) Australian meat chickens collected between 2006 and 2014 were subjected to antimicrobial susceptibility testing, phylogenetic grouping, plasmid replicon (PR) typing, multilocus sequence typing, and virulence gene (VG) profiling. Extended-spectrum cephalosporin (ESC)- and fluoroquinolone (FQ)-resistant E. coli isolates underwent further genetic characterisation. Significant proportions of CEC and FEC were respectively susceptible (13/50 [26%]; 48/187 [26%],) or MDR (9/50 [18%]; 26/187 [14%]) to 20 tested antimicrobials. Phylogenetic groups A and C, and PR types IncFIB and IncFrep were most commonly represented. Five tested CEC-associated VGs were more prevalent in CEC (≥90%) compared to FEC isolates (≤58%). Some isolates (CEC n=3; FEC n=7) were resistant to ESCs and/or FQs and possessed signature mutations in chromosomal FQ target genes and plasmid-mediated qnrS, blaCMY-2, and blaDHA-1 genes. Sequence type 354 (n=4), associated with extraintestinal infections in a broad range of hosts, was prevalent among the ESC- and/or FQ-resistant FEC.This study confirmed the existence of a small reservoir of ESC- and FQ-resistant E. coli in Australian commercial meat chickens despite the absence of use in the industry of these drug classes. Otherwise, a diversity of VGs and PR types in both faecal and clinical E. coli populations were identified. It's hypothesised that the source of ESC- and FQ-resistant E. coli may be external to poultry production facilities.Highlights1. Low-level resistance to older and newer generation antimicrobial drugs detected2. The most common sequence type (ST) associated with FQ resistance was ST354 (4/10)3. A small proportion of CEC (n=3) and FEC (n=7) were resistant to ESCs and/or FQs.
Collapse
Affiliation(s)
- L Awawdeh
- School of Veterinary Science, The University of Queensland, Gatton, Queensland 4343, Australia.,Eastern Institute of Technology, Hawke's Bay, 501 Gloucester Street, Taradale, Napier 4112, New Zealand
| | - C Turni
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Dutton Park, Queensland 4102, Austalia
| | - J L Mollinger
- Department of Agriculture and Fisheries, Health & Food Science Precinct, Coopers Plains, Queensland 4108, Australia
| | - J Henning
- School of Veterinary Science, The University of Queensland, Gatton, Queensland 4343, Australia
| | - R N Cobbold
- School of Veterinary Science, The University of Queensland, Gatton, Queensland 4343, Australia
| | - D J Trott
- Australian Centre for Antimicrobial Resistance Ecology, The University of Adelaide, Roseworthy Campus, Mudla Wirra Rd, Roseworthy, 5371, Australia
| | - J S Gibson
- School of Veterinary Science, The University of Queensland, Gatton, Queensland 4343, Australia
| |
Collapse
|
8
|
Validation of Selective Agars for Detection and Quantification of Escherichia coli Strains Resistant to Critically Important Antimicrobials. Microbiol Spectr 2021; 9:e0066421. [PMID: 34756091 PMCID: PMC8579925 DOI: 10.1128/spectrum.00664-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Success in the global fight against antimicrobial resistance (AMR) is likely to improve if surveillance can be performed on an epidemiological scale. An approach based on agars with incorporated antimicrobials has enormous potential to achieve this. However, there is a need to identify the combinations of selective agars and key antimicrobials yielding the most accurate counts of susceptible and resistant organisms. A series of experiments involving 1,202 plates identified the best candidate combinations from six commercially available agars and five antimicrobials, using 18 Escherichia coli strains as either pure cultures or inocula-spiked feces. The effects of various design factors on colony counts were analyzed in generalized linear models. Without antimicrobials, Brilliance E. coli and CHROMagar ECC agars yielded 28.9% and 23.5% more colonies, respectively, than MacConkey agar. The order of superiority of agars remained unchanged when fecal samples with or without spiking of resistant E. coli strains were inoculated onto agars with or without specific antimicrobials. When antimicrobials were incorporated at various concentrations, it was revealed that ampicillin, tetracycline, and ciprofloxacin were suitable for incorporation into Brilliance and CHROMagar agars at all defined concentrations. Gentamicin was suitable for incorporation only at 8 and 16 μg/ml, while ceftiofur was suitable only at 1 μg/ml. CHROMagar extended-spectrum β-lactamase (ESBL) agar supported growth of a wider diversity of extended-spectrum-cephalosporin-resistant E. coli strains. The findings demonstrate the potential for agars with incorporated antimicrobials to be combined with laboratory-based robotics to deliver AMR surveillance on a vast scale with greater sensitivity of detection and strategic relevance. IMPORTANCE Established models of surveillance for AMR in livestock typically have a low sampling intensity, which creates a tremendous barrier to understanding the variation of resistance among animal and food enterprises. However, developments in laboratory robotics now make it possible to rapidly and affordably process large volumes of samples. Combined with modern selective agars incorporating antimicrobials, this forms the basis of a novel surveillance process for identifying resistant bacteria by chromogenic reactions, including accurately detecting and quantifying the presence of bacteria even when they are present at low concentrations. Because Escherichia coli is a widely preferred indicator bacterium for AMR surveillance, this study identifies the optimal selective agar for quantifying resistant E. coli strains by assessing the growth performance on agars with antimicrobials. The findings are the first step toward exploiting laboratory robotics in an up-scaled approach to AMR surveillance in livestock, with wider adaptations in food, clinical microbiology, and public health.
Collapse
|
9
|
Laird TJ, Abraham S, Jordan D, Pluske JR, Hampson DJ, Trott DJ, O'Dea M. Porcine enterotoxigenic Escherichia coli: Antimicrobial resistance and development of microbial-based alternative control strategies. Vet Microbiol 2021; 258:109117. [PMID: 34049073 DOI: 10.1016/j.vetmic.2021.109117] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/13/2021] [Indexed: 12/17/2022]
Abstract
Strains of enterotoxigenic Escherichia coli (ETEC) causing post-weaning diarrhoea (PWD) in piglets have a widespread and detrimental impact on animal health and the economics of pork production. Traditional approaches to control and prevention have placed a strong emphasis on antimicrobial use (AMU) to the extent that current prevalent porcine ETEC strains have developed moderate to severe resistance. This complicates treatment of ETEC infection by limiting therapeutic options, increasing diagnostic costs and increasing mortality rates. Management factors, the use of supra-physiological levels of zinc oxide and selected feed additives have all been documented to lower the incidence of ETEC infection in pigs; however, each intervention has its own limitations and cannot solely be relied upon as an alternative to AMU. Consequently, treatment options for porcine ETEC are moving towards the use of newer antimicrobials of higher public health significance. This review focuses on microorganisms and microbial-derived products that could provide a naturally evolved solution to ETEC infection and disease. This category holds a plethora of yet to be explored possibilities, however studies based around bacteriophage therapy, probiotics and the use of probiotic fermentation products as postbiotics have demonstrated promise. Ultimately, pig producers and veterinarians need these solutions to reduce the reliance on critically important antimicrobials (CIAs), to improve economic and animal welfare outcomes, and to lessen the One Health threat potentiated by the dissemination of AMR through the food chain.
Collapse
Affiliation(s)
- Tanya J Laird
- Antimicrobial Resistance and Infectious Diseases Laboratory, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia.
| | - Sam Abraham
- Antimicrobial Resistance and Infectious Diseases Laboratory, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia.
| | - David Jordan
- NSW Department of Primary Industries, Wollongbar, New South Wales, Australia
| | - John R Pluske
- Antimicrobial Resistance and Infectious Diseases Laboratory, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| | - David J Hampson
- Antimicrobial Resistance and Infectious Diseases Laboratory, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| | - Darren J Trott
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| | - Mark O'Dea
- Antimicrobial Resistance and Infectious Diseases Laboratory, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| |
Collapse
|
10
|
Zhao H, Xu Y, Li X, Li G, Zhao H, Wang L. Expression and Purification of a Recombinant Enterotoxin Protein Using Different E. coli Host Strains and Expression Vectors. Protein J 2021; 40:245-254. [PMID: 33721189 DOI: 10.1007/s10930-021-09973-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2021] [Indexed: 11/24/2022]
Abstract
Infection by Enterotoxigenic Escherichia coli is a common cause of diarrhea in animals. The development of vaccines against enterotoxins can effectively control the infection. We have previously constructed a recombinant antigen SLS fused by STa, LTB and STb enterotoxin and it showed a high immunogenicity in mice. Herein, we evaluated the expression of SLS in three different E. coli cells with corresponding plasmids. SLS proteins expressed in E. coli BL21 (DE3) and Rosetta-gami B (DE3) were aggregated as inclusion bodies, and the proteins solubility were not obviously promoted in low temperature combined with adjustment of inducer concentration. In contrast, SLS protein with maltose-binding protein (MBP) yielded from TB1 (DE3) cells were partially soluble. After increasing the IPTG concentration in the medium up to 2 mM and incubating at 37 ℃ for 4 h, the soluble protein yield reached the highest level (4.533 mg/0.2 L culture), which was significantly higher than the expression of SLS protein in Rosetta-gami B (DE3) (P < 0.05). Therefore, the TB1-pMAL expression system can be used for mass extraction and purification of SLS antigen prior to measuring its immunogenicity in pregnant mammals.
Collapse
Affiliation(s)
- Hong Zhao
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Yongping Xu
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.,Dalian SEM Bio-Engineering Technology Co. Ltd., Dalian, 116620, China
| | - Xiaoyu Li
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Gen Li
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Haofei Zhao
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Lili Wang
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
11
|
Bonetti A, Tugnoli B, Rossi B, Giovagnoni G, Piva A, Grilli E. Nature-Identical Compounds and Organic Acids Reduce E. coli K88 Growth and Virulence Gene Expression In Vitro. Toxins (Basel) 2020; 12:E468. [PMID: 32717891 PMCID: PMC7472126 DOI: 10.3390/toxins12080468] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 12/30/2022] Open
Abstract
Post-weaning diarrhoea (PWD) is one of the long-standing challenges in pig husbandry. Due to the risks of resistance caused by antibiotics (AB) misuse, conventional treatments against Escherichia coli K88 (E. coli K88), the PWD etiological agent, urgently need to be replaced. Organic acids (OA) and nature-identical compounds (NIC) are currently finding a central role in infection management thanks to their recognized antimicrobial activity. This study investigated the susceptibility of an E. coli K88 field strain to a wide panel of AB, NIC, and OA. Secondly, we evaluated the ability of sub-lethal doses of the most active compounds to modulate the expression of E. coli K88 virulence genes. Results showed that the bacterial strain was resistant to many of the tested antibiotics, but an antimicrobial action was registered for selected NIC and OA. The quantitative PCR analysis revealed that thymol, carvacrol, eugenol, and benzoic acid were able to downregulate (p < 0.05) the expression of bacterial genes related to motility, adhesion to enterocytes, heat-labile (LT) and heat-stable (ST) toxin secretion, quorum sensing, and biofilm formation. Therefore, this study demonstrated that selected OA and NIC not only control E. coli K88 growth but also modulate the expression of many virulence genes at sub-lethal doses, thus offering new insights on their mechanism of action and suggesting a powerful tool to manage PWD.
Collapse
Affiliation(s)
- Andrea Bonetti
- Dipartimento di Scienze Mediche Veterinarie (DIMEVET), Università di Bologna, via Tolara di Sopra 50, 40064 Ozzano dell’Emilia (BO), Italy; (A.B.); (G.G.); (A.P.)
| | - Benedetta Tugnoli
- Vetagro S.p.A., via Porro 2, 42124 Reggio Emilia, Italy; (B.T.); (B.R.)
| | - Barbara Rossi
- Vetagro S.p.A., via Porro 2, 42124 Reggio Emilia, Italy; (B.T.); (B.R.)
| | - Giulia Giovagnoni
- Dipartimento di Scienze Mediche Veterinarie (DIMEVET), Università di Bologna, via Tolara di Sopra 50, 40064 Ozzano dell’Emilia (BO), Italy; (A.B.); (G.G.); (A.P.)
| | - Andrea Piva
- Dipartimento di Scienze Mediche Veterinarie (DIMEVET), Università di Bologna, via Tolara di Sopra 50, 40064 Ozzano dell’Emilia (BO), Italy; (A.B.); (G.G.); (A.P.)
- Vetagro S.p.A., via Porro 2, 42124 Reggio Emilia, Italy; (B.T.); (B.R.)
| | - Ester Grilli
- Dipartimento di Scienze Mediche Veterinarie (DIMEVET), Università di Bologna, via Tolara di Sopra 50, 40064 Ozzano dell’Emilia (BO), Italy; (A.B.); (G.G.); (A.P.)
- Vetagro Inc., 116 W. Jackson Blvd., Suite #320, Chicago, IL 60604, USA
| |
Collapse
|
12
|
Wang B, Deng B, Yong F, Zhou H, Qu C, Zhou Z. Comparison of the fecal microbiomes of healthy and diarrheic captive wild boar. Microb Pathog 2020; 147:104377. [PMID: 32653436 DOI: 10.1016/j.micpath.2020.104377] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/20/2020] [Accepted: 07/02/2020] [Indexed: 12/16/2022]
Abstract
Diarrhea caused by Enterotoxigenic Escherichia coli (ETEC) is one of the most common clinical diseases observed in captive wild boars, is usually caused by an imbalance in the gut microbiome, and is responsible for piglets significant mortality. However, little research has been undertaken into the structure and function of the intestinal microbial communities in wild boar with diarrhea influenced by enterotoxigenic E. coli. In this study, fecal samples were collected and 16S-rRNA gene sequencing was used to compare the intestinal microbiome of healthy captive wild boar and wild boar with diarrhea on the same farm. We found that the intestinal microbial diversity of healthy wild boar (HWB) was relatively high, while that of diarrheic wild boar (DWB) was significantly lower. Line Discriminant Analysis Effect Size showed that at the genus level, the abundance of Escherichia-Shigella and Fusobacterium was significantly higher in DWB. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States analysis showed that the expression of genes in pathways including infectious diseases: bacterial, metabolism of amino acids, membrane transport, and signal transduction was significantly higher in DWB. In summary, this study provides a theoretical basis for the design of appropriate means of diarrhea treatment in captive wild boar.
Collapse
Affiliation(s)
- Bi Wang
- Wildlife Resource College, Northeast Forestry University, Harbin, China
| | - Bo Deng
- Livestock Service Center of Wujia Town, Rongchang District, Chongqing, China
| | - Fan Yong
- Nanjing Institute of Environmental Sciences of Ministry of Ecology and Environment, Nanjing, China
| | - Huixia Zhou
- Shehong Agricultural Product Quality and Safety Inspection Station, Suining, China
| | - Chunpu Qu
- School of Forestry, Northeast Forestry University, Harbin, China.
| | - Zhengyan Zhou
- Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, College of Life Science and Bioengineering, Shenyang University, Shenyang, China; Institute of Herpetology, Shenyang Normal University, Shenyang, China.
| |
Collapse
|
13
|
Xu X, Pan Y, Xu B, Yan Y, Yin B, Wang Y, Hu S, Ma L. Effects of Cortex Phellodendri extract on post-weaning piglets diarrhoea. Vet Med Sci 2020; 6:901-909. [PMID: 32585771 PMCID: PMC7738706 DOI: 10.1002/vms3.304] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 05/04/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
The diarrhoea incidence rate is often high among weaning piglets. In light of the fact that Cortex phellodendri has long been used to treat diarrhoea in China, this study aimed to evaluate the effects of Cortex Phellodendri Extract (CPE) on diarrhoea in weaning piglets and the mechanism behind such effects. In the first trial, 36 diarrhoeal weaning piglets were randomly divided into three groups. The control group was injected with 20 mg oxytetracycline/kg BW, while the two treatment groups were orally administered with 10 mg and 20 mg CPE/kg BW respectively. In the second trial, 96 weaning piglets were randomly divided into two groups. The control group was fed basal diet, while 300 mg CPE/kg BW was added to the diet of the treatment group. The pathogenic bacteria were then isolated and identified from the diarrhoeal faecal samples. Cell adhesion and RT‐PCR tests were used to investigate the effect of CPE on the adhesion of pathogenic bacteria to IPEC‐J2 cells. 16S rDNA‐based high‐throughput sequencing was used to analyse faecal microflora. The results showed that CPE reduced the diarrhoea incidence rate (p < 0.05) and diarrhoea index (p < 0.05) compared to control group, and increased the richness and evenness of weaning piglets’ gut microbiota. Escherichia coli (E. coil) was identified as the causative organism. Cell adhesion and RT‐PCR tests suggested that CPE reduced the adhesion of E. coli to IPEC‐J2 cells (p < 0.05) and the expression of fae and faeG gene (p < 0.05) responsible for encoding E. coli fimbriae protein.
Collapse
Affiliation(s)
- Xiaofan Xu
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yunxin Pan
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Baoyang Xu
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yiqin Yan
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Boqi Yin
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yanqing Wang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shuxin Hu
- Hubei New Agricultural Technology Company, Wuhan, China
| | - Libao Ma
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
14
|
Norris JM, Zhuo A, Govendir M, Rowbotham SJ, Labbate M, Degeling C, Gilbert GL, Dominey-Howes D, Ward MP. Factors influencing the behaviour and perceptions of Australian veterinarians towards antibiotic use and antimicrobial resistance. PLoS One 2019; 14:e0223534. [PMID: 31600264 PMCID: PMC6786536 DOI: 10.1371/journal.pone.0223534] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 09/23/2019] [Indexed: 11/18/2022] Open
Abstract
Antimicrobial resistance (AMR) is a global crisis with impacts on the future health and welfare of humans and animals. Determining key factors that influence veterinarians' antimicrobial prescribing behaviours can bridge the gap between prescribing guidelines and clinical usage. Veterinarians practicing in Australia were surveyed on their frequency in prescribing different antibiotics; factors influencing their antibiotic prescribing behaviours; and their perceptions of current drivers of AMR. Antibiotics were prescribed in a third of consultations with key differences in the frequency of use of specific antibiotics by small companion animal (SCA), equine and livestock veterinarians, which broadly aligned with antibiotic registration restrictions in Australia. SCA veterinarians reported prescribing broad-spectrum antibiotics of higher importance to human health more frequently than livestock veterinarians. Factors that were reported as 'strong' or 'moderate' barriers to appropriate antibiotic prescribing were the 1) cost of culture and susceptibility testing and 2) lack of access to rapid and affordable diagnostic tests. Fear of losing clients, colleague pressure, and lack of their own understanding about antibiotics were considered to be 'no' or 'somewhat' of a barrier to appropriate prescribing by respondents. SCA veterinarians placed greater importance on the contribution of antibiotic use in livestock to AMR, than antibiotic use in companion animals. Despite reporting use of fewer, mostly narrow spectrum antibiotics of lower importance to human and animal health, livestock veterinarians were generally more aware of their potential contribution to AMR. This study provides insights into the similarities and differences in SCA, equine and livestock veterinarians practicing in Australia and informs sector-specific strategies to improve antimicrobial stewardship.
Collapse
Affiliation(s)
- Jacqueline M. Norris
- Sydney School of Veterinary Science, The University of Sydney, Sydney, New South Wales, Australia
- Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- * E-mail:
| | - Annie Zhuo
- School of Geosciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Merran Govendir
- Sydney School of Veterinary Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Samantha J. Rowbotham
- Menzies Centre for Health Policy, Sydney School of Public Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Maurizio Labbate
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Chris Degeling
- Australian Centre for Health Engagement, Evidence & Values, School of Health and Society - Faculty of Social Sciences, University of Wollongong, Wollongong, New South Wales, Australia
- Wollongong Antimicrobial Resistance Research Alliance (WARRA), University of Wollongong, Wollongong, New South Wales, Australia
| | - Gwendolyn L. Gilbert
- Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, New South Wales, Australia
| | - Dale Dominey-Howes
- Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- School of Geosciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Michael P. Ward
- Sydney School of Veterinary Science, The University of Sydney, Sydney, New South Wales, Australia
- Westmead Institute for Medical Research, Sydney, New South Wales, Australia
| |
Collapse
|
15
|
van Breda LK, Mitchell P, Cutler R. Antimicrobial stewardship in the Australian pork industry. Aust Vet J 2019; 97:365-367. [PMID: 31441036 DOI: 10.1111/avj.12838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/08/2019] [Indexed: 12/01/2022]
Affiliation(s)
- L K van Breda
- Australian Pork Limited, Research and Innovation, Barton, Australian Capital Territory, Australia
| | - P Mitchell
- PIC Australia, Grong Grong, New South Wales, Australia
| | - R Cutler
- Ross Cutler & Associates Pty Ltd, Ocean Grove, Victoria, Australia
| |
Collapse
|
16
|
Kallau NHG, Wibawan IWT, Lukman DW, Sudarwanto MB. Detection of multi-drug resistant (MDR) Escherichia coli and tet gene prevalence at a pig farm in Kupang , Indonesia. J Adv Vet Anim Res 2018; 5:388-396. [PMID: 31453148 PMCID: PMC6702907 DOI: 10.5455/javar.2018.e289] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE The purpose of this study was to detect the incidence of multi-drug resistant (MDR) and the spread of tet genes that encode tetracycline (TE) resistance in E. coli in pig farms in the city of Kupang, Indonesia. MATERIALS AND METHODS Samples of pig feces have been obtained from 96 pig farms in Kupang city, Indonesia. Escherichia coli bacteria were isolated and identified morphologically and biochemically, and finally confirmed by the API test. The disk diffusion method has been used to observe the antibiotic sensitivity effects and has been followed by observing resistant genes encoding TE resistance using the multiplex polymerase chain reaction (m-PCR) method to detect the presence of tet genes such as tet (A), tet (B), tet (C), tet (D), and tet (E), respectively. RESULTS A total of 82 (85.4%) of E. coli isolates have been found in all pig feces samples obtained from 96 pig farms in Kupang city. This study has shown a high level of antibiotic resistance dominated by erythromycin (85.4%) and cephalothin (58.5%) and followed by several other antibiotics with a percentage below 34.1%. The prevalence of MDR E. coli was 57.3% by showing 39 different patterns. The most common pattern was showed by the Cephalothin-Colistin-Erythromycin pattern. The resistance of E. coli to TE appears to be related to the presence of tet (A) and tet (E) genes. CONCLUSION This study has encouraged the need for public awareness (farmers) of the wise use of antibiotics in preventing the spread of resistant bacteria that can cause health problems in animals and humans.
Collapse
Affiliation(s)
- Novalino Harold Geoffrey Kallau
- Department of Animal Disease and Veterinary Public Health, Faculty of Veterinary Medicine, Nusa Cendana University, Kupang, Indonesia
| | - I Wayan Teguh Wibawan
- Department of Animal Disease and Veterinary Public Health, Faculty of Veterinary Medicine, Bogor Agricultural University, Bogor, Indonesia
| | - Denny Widaya Lukman
- Department of Animal Disease and Veterinary Public Health, Faculty of Veterinary Medicine, Nusa Cendana University, Kupang, Indonesia
- Department of Animal Disease and Veterinary Public Health, Faculty of Veterinary Medicine, Bogor Agricultural University, Bogor, Indonesia
| | - Mirnawati Bachrum Sudarwanto
- Department of Animal Disease and Veterinary Public Health, Faculty of Veterinary Medicine, Nusa Cendana University, Kupang, Indonesia
- Department of Animal Disease and Veterinary Public Health, Faculty of Veterinary Medicine, Bogor Agricultural University, Bogor, Indonesia
| |
Collapse
|
17
|
Kidsley AK, Abraham S, Bell JM, O'Dea M, Laird TJ, Jordan D, Mitchell P, McDevitt CA, Trott DJ. Antimicrobial Susceptibility of Escherichia coli and Salmonella spp. Isolates From Healthy Pigs in Australia: Results of a Pilot National Survey. Front Microbiol 2018; 9:1207. [PMID: 30038598 PMCID: PMC6047343 DOI: 10.3389/fmicb.2018.01207] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 05/17/2018] [Indexed: 02/01/2023] Open
Abstract
This study investigated the frequency of antimicrobial non-susceptibility (defined as the frequency of isolates with minimum inhibitory concentrations above the CLSI susceptible clinical breakpoint) among E. coli and Salmonella spp. isolated from healthy Australian finisher pigs. E. coli (n = 201) and Salmonella spp. (n = 69) were isolated from cecal contents of slaughter-age pigs, originating from 19 farms distributed throughout Australia during July-December 2015. Isolates underwent minimum inhibitory concentration (MIC) susceptibility testing to 11 antimicrobials. The highest frequencies of non-susceptibility among respective isolates of E. coli and Salmonella spp. were to ampicillin (60.2 and 20.3%), tetracycline (68.2 and 26.1%), chloramphenicol (47.8 and 7.3%), and trimethoprim/sulfamethoxazole (33.8 and 11.6%). Four E. coli isolates had MICs above the wild-type epidemiological cut-off value for ciprofloxacin, with two isolates from the same farm classified as clinically resistant (MICs of > 4 μg/ml), a noteworthy finding given that fluoroquinolones (FQs) are not legally available for use in Australian food-producing animals. Three of these four E. coli isolates belonged to the sequence type (ST) 10, which has been isolated from both humans and production animals, whilst one isolate belonged to a new ST (7573) and possessed qnrS1. This study shows that non-susceptibility to first line antimicrobials is common among E. coli and Salmonella spp. isolates from healthy slaughter age pigs in Australia. However, very low levels of non-susceptibility to critically important antimicrobials (CIAs), namely third generation cephalosporins and fluoroquinolones were observed. Nevertheless, the isolation of two ciprofloxacin-resistant E. coli isolates from Australian pigs demonstrates that even in the absence of local antimicrobial selection pressure, fluoroquinolone-resistant E. coli clonal lineages may enter livestock production facilities despite strict biosecurity.
Collapse
Affiliation(s)
- Amanda K. Kidsley
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, Australia
- Australian Centre for Antimicrobial Resistance Ecology, University of Adelaide, Adelaide, SA, Australia
| | - Sam Abraham
- Antimicrobial Resistance and Infectious Diseases Laboratory, School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia
| | - Jan M. Bell
- Australian Centre for Antimicrobial Resistance Ecology, University of Adelaide, Adelaide, SA, Australia
| | - Mark O'Dea
- Antimicrobial Resistance and Infectious Diseases Laboratory, School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia
| | - Tanya J. Laird
- Antimicrobial Resistance and Infectious Diseases Laboratory, School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia
| | - David Jordan
- New South Wales Department of Primary Industries, Wollongbar, NSW, Australia
| | - Pat Mitchell
- Australian Pork Limited, Canberra, ACT, Australia
| | - Christopher A. McDevitt
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Darren J. Trott
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, Australia
- Australian Centre for Antimicrobial Resistance Ecology, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
18
|
McLellan JE, Pitcher AJ, Ballard SA, Grabsch EA, Bell JM, Barton M, Grayson ML. Superbugs in the supermarket? Assessing the rate of contamination with third-generation cephalosporin-resistant gram-negative bacteria in fresh Australian pork and chicken. Antimicrob Resist Infect Control 2018; 7:30. [PMID: 29484175 PMCID: PMC5824441 DOI: 10.1186/s13756-018-0322-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/16/2018] [Indexed: 11/23/2022] Open
Abstract
Background Antibiotic misuse in food-producing animals is potentially associated with human acquisition of multidrug-resistant (MDR; resistance to ≥ 3 drug classes) bacteria via the food chain. We aimed to determine if MDR Gram-negative (GNB) organisms are present in fresh Australian chicken and pork products. Methods We sampled raw, chicken drumsticks (CD) and pork ribs (PR) from 30 local supermarkets/butchers across Melbourne on two occasions. Specimens were sub-cultured onto selective media for third-generation cephalosporin-resistant (3GCR) GNBs, with species identification and antibiotic susceptibility determined for all unique colonies. Isolates were assessed by PCR for SHV, TEM, CTX-M, AmpC and carbapenemase genes (encoding IMP, VIM, KPC, OXA-48, NDM). Results From 120 specimens (60 CD, 60 PR), 112 (93%) grew a 3GCR-GNB (n = 164 isolates; 86 CD, 78 PR); common species were Acinetobacter baumannii (37%), Pseudomonas aeruginosa (13%) and Serratia fonticola (12%), but only one E. coli isolate. Fifty-nine (36%) had evidence of 3GCR alone, 93/163 (57%) displayed 3GCR plus resistance to one additional antibiotic class, and 9/163 (6%) were 3GCR plus resistance to two additional classes. Of 158 DNA specimens, all were negative for ESBL/carbapenemase genes, except 23 (15%) which were positive for AmpC, with 22/23 considered to be inherently chromosomal, but the sole E. coli isolate contained a plasmid-mediated CMY-2 AmpC. Conclusions We found low rates of MDR-GNBs in Australian chicken and pork meat, but potential 3GCR-GNBs are common (93% specimens). Testing programs that only assess for E. coli are likely to severely underestimate the diversity of 3GCR organisms in fresh meat.
Collapse
Affiliation(s)
- Jade E. McLellan
- Department of Medicine, Austin Health, University of Melbourne, Melbourne, VIC Australia
| | - Ashleigh J. Pitcher
- Department of Medicine, Austin Health, University of Melbourne, Melbourne, VIC Australia
| | - Susan A. Ballard
- Infectious Diseases & Microbiology Departments, Austin Health, Melbourne, VIC Australia
| | - Elizabeth A. Grabsch
- Infectious Diseases & Microbiology Departments, Austin Health, Melbourne, VIC Australia
| | - Jan M. Bell
- Infectious Diseases and Microbiology, SA Pathology, Adelaide, South Australia Australia
| | - Mary Barton
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia Australia
| | - M. Lindsay Grayson
- Department of Medicine, Austin Health, University of Melbourne, Melbourne, VIC Australia
- Infectious Diseases & Microbiology Departments, Austin Health, Melbourne, VIC Australia
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC Australia
| |
Collapse
|
19
|
Nirupama KR, O R VK, Pruthvishree BS, Sinha DK, Murugan MS, Krishnaswamy N, Singh BR. Molecular characterisation of bla OXA-48 carbapenemase-, extended-spectrum β-lactamase- and Shiga toxin-producing Escherichia coli isolated from farm piglets in India. J Glob Antimicrob Resist 2018; 13:201-205. [PMID: 29408382 DOI: 10.1016/j.jgar.2018.01.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/11/2018] [Accepted: 01/11/2018] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVES The aim of this study was to characterise carbapenemase-, extended-spectrum β-lactamase (ESBL)- and Shiga toxin-producing Escherichia coli isolated from farm piglets in India. METHODS Faecal samples (n=741) from 10 organised pig farms, including non-diarrhoeic (n=546) and diarrhoeic (n=195) piglets, were processed for isolation of carbapenem-resistant and ESBL-producing E. coli. RESULTS A total of 27 and 243 isolates were phenotypically confirmed as carbapenem-resistant and ESBL-producers, respectively. The meropenem minimum inhibitory concentration (MIC) of carbapenem-resistant isolates ranged from 8-128μg/mL. On genotypic screening of the 27 carbapenem-resistant isolates, 3 isolates were positive for the blaOXA-48 carbapenemase gene; no other carbapenemase genes were detected. The 243 ESBL-producing isolates were positive for blaCTX-M-1 (n=135), qnrA (n=92), qnrB (n=112), qnrS (n=49), tetA (n=42), tetB (n=45) and sul1 (n=43). The Shiga toxin virulence markers stx1 and stx2 were detected in 41 and 38 of the 243 phenotypic ESBL-producing isolates, respectively. Multilocus sequence typing (MLST) of blaOXA-48-positive E. coli isolates showed ST10- and ST5053-like sequence types. CONCLUSION This is the first report on the presence of blaOXA-48-carrying E. coli in piglets in India, which pose a potential risk to public health.
Collapse
Affiliation(s)
- K R Nirupama
- Division of Epidemiology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Vinodh Kumar O R
- Division of Epidemiology, ICAR-Indian Veterinary Research Institute, Bareilly, India.
| | - B S Pruthvishree
- Division of Epidemiology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - D K Sinha
- Division of Epidemiology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - M Senthil Murugan
- Division of Epidemiology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Narayanan Krishnaswamy
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - B R Singh
- Division of Epidemiology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|