1
|
Davidson SM, Andreadou I, Antoniades C, Bartunek J, Basso C, Brundel BJJM, Byrne RA, Chiva-Blanch G, da Costa Martins P, Evans PC, Girão H, Giricz Z, Gollmann-Tepeköylü C, Guzik T, Gyöngyösi M, Hübner N, Joner M, Kleinbongard P, Krieg T, Liehn E, Madonna R, Maguy A, Paillard M, Pesce M, Petersen SE, Schiattarella GG, Sluijter JPG, Steffens S, Streckfuss-Bömeke K, Thielmann M, Tucker A, Van Linthout S, Wijns W, Wojta J, Wu JC, Perrino C. Opportunities and challenges for the use of human samples in translational cardiovascular research: a scientific statement of the ESC Working Group on Cellular Biology of the Heart, the ESC Working Group on Cardiovascular Surgery, the ESC Council on Basic Cardiovascular Science, the ESC Scientists of Tomorrow, the European Association of Percutaneous Cardiovascular Interventions of the ESC, and the Heart Failure Association of the ESC. Cardiovasc Res 2025:cvaf023. [PMID: 40084813 DOI: 10.1093/cvr/cvaf023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/23/2024] [Accepted: 10/21/2024] [Indexed: 03/16/2025] Open
Abstract
Animal models offer invaluable insights into disease mechanisms but cannot entirely mimic the variability and heterogeneity of human populations, nor the increasing prevalence of multi-morbidity. Consequently, employing human samples-such as whole blood or fractions, valvular and vascular tissues, myocardium, pericardium, or human-derived cells-is essential for enhancing the translational relevance of cardiovascular research. For instance, myocardial tissue slices, which preserve crucial structural and functional characteristics of the human heart, can be used in vitro to examine drug responses. Human blood serves as a rich source of biomarkers, including extracellular vesicles, various types of RNA (miRNA, lncRNA, and circRNAs), circulating inflammatory cells, and endothelial colony-forming cells, facilitating detailed studies of cardiovascular diseases. Primary cardiomyocytes and vascular cells isolated from human tissues are invaluable for mechanistic investigations in vitro. In cases where these are unavailable, human induced pluripotent stem cells serve as effective substitutes, albeit with specific limitations. However, the use of human samples presents challenges such as ethical approvals, tissue procurement and storage, variability in patient genetics and treatment regimens, and the selection of appropriate control samples. Biobanks are central to the efficient use of these scarce and valuable resources. This scientific statement discusses opportunities to implement the use of human samples for cardiovascular research within specific clinical contexts, offers a practical framework for acquiring and utilizing different human materials, and presents examples of human sample applications for specific cardiovascular diseases, providing a valuable resource for clinicians, translational and basic scientists engaged in cardiovascular research.
Collapse
Affiliation(s)
- Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, London, UK
| | - Ioanna Andreadou
- School of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Charalambos Antoniades
- RDM Division of Cardiovascular Medicine, Acute Multidisciplinary Imaging and Interventional Centre, University of Oxford, Headley Way, Headington, Oxford OX3 9DU, UK
| | - Jozef Bartunek
- Cardiovascular Center Aalst, OLV Hospital, Aalst, Belgium
| | - Cristina Basso
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, Cardiovascular Pathology, University of Padua, Padua, Italy
| | - Bianca J J M Brundel
- Physiology, Amsterdam UMC Location Vrije Universiteit, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, The Netherlands
| | - Robert A Byrne
- Cardiovascular Research Institute Dublin, Mater Private Network, Dublin, Ireland
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Gemma Chiva-Blanch
- Faculty of Health Sciences, Universitat Oberta de Catalunya, Barcelona, Spain
- Department of Endocrinology and Nutrition, August Pi i Sunyer Biomedical Research Institute, Hospital Clínic of Barcelona, Barcelona, Spain
- Biomedical Network Research Centre on Obesity and Nutrition Physiopathology, Instituto de Salud Carlos III, Madrid, Spain
| | - Paula da Costa Martins
- Department of Molecular Genetics, Faculty of Sciences and Engineering, Maastricht, The Netherlands
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Paul C Evans
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Henrique Girão
- Center for Innovative Biomedicine and Biotechnology, Clinical Academic Centre of Coimbra, Faculty of Medicine, University of Coimbra, Coimbra Institute for Clinical and Biomedical Research, Coimbra, Portugal
| | - Zoltan Giricz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Can Gollmann-Tepeköylü
- Department for Cardiac Surgery, Cardiac Regeneration Research, Medical University of Innsbruck, Anichstraße 35 A, 6020 Innsbruck, Austria
| | - Tomasz Guzik
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Mariann Gyöngyösi
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Norbert Hübner
- Max Delbrück Center in the Helmholtz Association, Berlin, Germany
- Charite-Universitätsmedizin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
| | - Michael Joner
- Department of Cardiology, German Heart Center Munich, Technical University of Munich, Lazarettstrasse 36, 80636 Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Petra Kleinbongard
- Faculty of Medicine University of Duisburg-Essen, Institute of Pathophysiology, Duisburg-Essen, Germany
| | - Thomas Krieg
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Elisa Liehn
- Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Rosalinda Madonna
- Cardiology Division, Department of Pathology, University of Pisa, Pisa, Italy
| | - Ange Maguy
- Department of Physiology, University of Bern, Bern, Switzerland
| | - Melanie Paillard
- Laboratoire CarMeN-IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, Univ-Lyon, 69500 Bron, France
| | - Maurizio Pesce
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino, IRCCS, Milan, Italy
- Department of Aerospace and Mechanical Engineering, Politecnico di Torino, Italy
- Department of Cell Biology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Steffen E Petersen
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University London, Charterhouse Square, London, UK
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, West Smithfield, London, UK
- Health Data Research UK, London, UK
- Alan Turing Institute, London, UK
| | - Gabriele G Schiattarella
- German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
- Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, 80131 Naples, Italy
- Deutsches Herzzentrum der Charité (DHZC), Charité-Universitätsmedizin Berlin, Berlin, Germany
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Joost P G Sluijter
- Department of Cardiology, Laboratory of Experimental Cardiology, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Sabine Steffens
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität, Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Katrin Streckfuss-Bömeke
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
- Clinic for Cardiology and Pneumology, University Medicine Göttingen, Germany and German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| | - Matthias Thielmann
- West-German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Art Tucker
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University London, Charterhouse Square, London, UK
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, West Smithfield, London, UK
| | - Sophie Van Linthout
- Berlin Institute of Health at Charité, BIH Center for Regenerative Therapies, Universitätmedizin Berlin, Berlin, Germany
- Max Delbrück Center in the Helmholtz Association, Berlin, Germany
| | - William Wijns
- The Lambe Institute for Translational Research and Curam, University of Galway, Galway, Ireland
| | - Johann Wojta
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
- Core Facilities, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford, CA, USA
| | - Cinzia Perrino
- Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, 80131 Naples, Italy
| |
Collapse
|
2
|
Bierhuizen MFA, Amesz JH, Langmuur SJJ, Lam B, Knops P, Veen KM, Manintveld OC, Kluin J, de Groot NMS, Taverne YJHJ. Acute Biomechanical Effects of Cardiac Contractility Modulation in Living Myocardial Slices from End-Stage Heart Failure Patients. Bioengineering (Basel) 2025; 12:174. [PMID: 40001693 PMCID: PMC11851609 DOI: 10.3390/bioengineering12020174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/31/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Proof-of-concept to determine the direct biomechanical effects of cardiac contractility modulation (CCM) on living myocardial slices (LMS) from patients with end-stage heart failure (HF). Left ventricular LMS from patients with end-stage HF were produced and cultured in a biomimetic system with mechanical loading and electrical stimulation. CCM stimulation (80 mA, 40 ms delay, 21 ms duration) enhanced maximum contractile force (CCM: 1229 µN (587-2658) vs. baseline: 1066 µN (529-2128), p = 0.05) and area under the contractile curve (CCM: 297 (151-562) vs. baseline: 243 (129-464), p = 0.05) but did not significantly impact contractile duration, time to peak, or time to relaxation. Increasing CCM stimulation delay, duration, and amplitude resulted in a higher fraction of LMS with a positive inotropic response. Furthermore, CCM attenuated the negative force-frequency relationship in HF-LMS. CCM stimulation enhanced contractile force in HF-LMS. The fraction of LMS exerting a positive inotropic response to CCM increased with increasing delay, duration, and amplitude settings, suggesting that personalizing stimulation parameters could optimize the beneficial effects of CCM. CCM is a novel device-based therapy that may improve contractile function, ejection fraction, functional outcomes, and quality of life in patients with heart failure. However, continuous efforts are needed to identify true responders to CCM therapy, understand the exact mechanisms, and optimize the contractile response to CCM stimulation. The present study revealed that CCM enhanced the contractile force of HF-LMS in a stimulation setting-dependent manner, reaching a larger fraction of the myocardium while increasing delay, duration, and amplitude. This understanding may contribute to the individualization of CCM stimulation settings.
Collapse
Affiliation(s)
- Mark F. A. Bierhuizen
- Department of Cardiology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands; (M.F.A.B.)
- Translational Cardiothoracic Surgery Research Lab, Department of Cardiothoracic Surgery Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Jorik H. Amesz
- Translational Cardiothoracic Surgery Research Lab, Department of Cardiothoracic Surgery Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Sanne J. J. Langmuur
- Translational Cardiothoracic Surgery Research Lab, Department of Cardiothoracic Surgery Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Bobby Lam
- Department of Cardiology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands; (M.F.A.B.)
- Translational Cardiothoracic Surgery Research Lab, Department of Cardiothoracic Surgery Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Paul Knops
- Department of Cardiology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands; (M.F.A.B.)
- Translational Cardiothoracic Surgery Research Lab, Department of Cardiothoracic Surgery Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Kevin M. Veen
- Translational Cardiothoracic Surgery Research Lab, Department of Cardiothoracic Surgery Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Olivier C. Manintveld
- Department of Cardiology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands; (M.F.A.B.)
| | - Jolanda Kluin
- Translational Cardiothoracic Surgery Research Lab, Department of Cardiothoracic Surgery Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Natasja M. S. de Groot
- Department of Cardiology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands; (M.F.A.B.)
- Translational Cardiothoracic Surgery Research Lab, Department of Cardiothoracic Surgery Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Yannick J. H. J. Taverne
- Translational Cardiothoracic Surgery Research Lab, Department of Cardiothoracic Surgery Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|