1
|
Che K, Yang Y, Zhang J, Feng L, Xie Y, Li Q, Qiu J. Oral pyruvate prevents high-intensity interval exercise-induced metabolic acidosis in rats by promoting lactate dehydrogenase reaction. Front Nutr 2023; 10:1096986. [PMID: 37090767 PMCID: PMC10117856 DOI: 10.3389/fnut.2023.1096986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 03/20/2023] [Indexed: 04/25/2023] Open
Abstract
Introduction There is no denying the clinical benefits of exogenous pyruvate in the treatment of pathological metabolic acidosis. However, whether it can prevent exercise physiological metabolic acidosis, delay the occurrence of exercise fatigue, and improve the beneficial effects of exercise and its internal mechanism remain unclear. Methods We randomly divided 24 male SD rats into 3 groups: one group was a control without exercise (CC, n = 8), and the other two groups were supplemented with 616 mg/kg/day pyruvate (EP, n = 8) or distilled water of equal volume (EC, n = 8). These groups completed acute high-intensity interval exercise (HIIE) after 7 days of supplementation. The acid metabolism variables were measured immediately after exercise including blood pH (pHe), base excess (BE), HCO3 -, blood lactic acid and skeletal muscle pH (pHi). The redox state was determined by measuring the oxidized coenzyme I/reduced coenzyme I (nicotinamide adenine dinucleotide [NAD+]/reduced NAD+ [NADH]) ratio and lactate/pyruvate (L/P) ratio. In addition, the activities of lactate dehydrogenase A (LDHA), hexokinase (HK), phosphofructokinase (PFK) and pyruvate kinase (PK) were determined by ELISA. Results Pyruvate supplementation significantly reversed the decrease of pHe, BE, HCO3 - and pHi values after HIIE (p < 0.001), while significantly increased the activities of LDHA (p = 0.048), HK (p = 0.006), and PFK (p = 0.047). Compared with the CC, the NAD+/NADH (p = 0.008) ratio and the activities of LDHA (p = 0.002), HK (p < 0.001), PFK (p < 0.001), and PK (p = 0.006) were significantly improved in EP group. Discussion This study provides compelling evidence that oral pyruvate attenuates HIIE-induced intracellular and extracellular acidification, possibly due to increased activity of LDHA, which promotes the absorption of H+ in the LDH reaction. The beneficial effects of improving the redox state and glycolysis rate were also shown. Our results suggest that pyruvate can be used as an oral nutritional supplement to buffer HIIE induced metabolic acidosis.
Collapse
Affiliation(s)
- Kaixuan Che
- Department of Exercise Biochemistry, Exercise Science School, Beijing Sport University, Beijing, China
| | - Yanping Yang
- Department of Exercise Biochemistry, Exercise Science School, Beijing Sport University, Beijing, China
| | - Jun Zhang
- Department of Exercise Biochemistry, Exercise Science School, Beijing Sport University, Beijing, China
| | - Lin Feng
- Department of Exercise Biochemistry, Exercise Science School, Beijing Sport University, Beijing, China
| | - Yan Xie
- Department of Exercise Biochemistry, Exercise Science School, Beijing Sport University, Beijing, China
| | - Qinlong Li
- Department of Exercise Physiology, Exercise Science School, Beijing Sport University, Beijing, China
| | - Junqiang Qiu
- Department of Exercise Biochemistry, Exercise Science School, Beijing Sport University, Beijing, China
- Beijing Sports Nutrition Engineering Research Center, Beijing, China
- *Correspondence: Junqiang Qiu,
| |
Collapse
|
2
|
Takahashi Y, Sarkar J, Yamada J, Matsunaga Y, Nonaka Y, Banjo M, Sakaguchi R, Shinya T, Hatta H. Enhanced skeletal muscle glycogen repletion after endurance exercise is associated with higher plasma insulin and skeletal muscle hexokinase 2 protein levels in mice: comparison of level running and downhill running model. J Physiol Biochem 2021; 77:469-480. [PMID: 33765231 DOI: 10.1007/s13105-021-00806-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/26/2021] [Indexed: 12/27/2022]
Abstract
To identify factors that influence post-exercise muscle glycogen repletion, we compared the glycogen recovery after level running with downhill running, an experimental model of impaired post-exercise glycogen recovery. Male Institute of Cancer Research (ICR) mice performed endurance level running (no inclination) or downhill running (-5° inclination) on a treadmill. In Experiment 1, to determine whether these two types of exercise resulted in different post-exercise glycogen repletion patterns, tissues were harvested immediately post-exercise or 2 days post-exercise. Compared to the control (sedentary) group, level running induced significant glycogen supercompensation in the soleus muscle at 2 days post-exercise (p = 0.002). Downhill running did not induce glycogen supercompensation. In Experiment 2, mice were orally administered glucose 1 day post-exercise; this induced glycogen supercompensation in soleus and plantaris muscle only in the level running group (soleus: p = 0.005, plantaris: p = 0.003). There were significant positive main effects of level running compared to downhill running on the plasma insulin (p = 0.017) and C-peptide concentration (p = 0.011). There was no difference in the glucose transporter 4 level or the phosphorylated states of proteins related to insulin signaling and metabolism in skeletal muscle. The level running group showed significantly higher hexokinase 2 (HK2) protein content in both soleus (p = 0.046) and plantaris muscles (p =0.044) at 1 day after exercise compared to the downhill running group. Our findings suggest that post-exercise skeletal muscle glycogen repletion might be partly influenced by plasma insulin and skeletal muscle HK2 protein levels.
Collapse
Affiliation(s)
- Yumiko Takahashi
- Department of Sports Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan.
| | - Juli Sarkar
- Department of Sports Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan
| | - Jumpei Yamada
- Department of Sports Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan
| | - Yutaka Matsunaga
- Department of Sports Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan
| | - Yudai Nonaka
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Mai Banjo
- Department of Sports Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan
| | - Ryo Sakaguchi
- Department of Sports Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan
| | - Terunaga Shinya
- Department of Sports Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan
| | - Hideo Hatta
- Department of Sports Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan
| |
Collapse
|
3
|
Fisher G, Gower BA, Ovalle F, Behrens CE, Hunter GR. Acute Effects of Exercise Intensity on Insulin Sensitivity under Energy Balance. Med Sci Sports Exerc 2019; 51:988-994. [PMID: 30550514 PMCID: PMC6465116 DOI: 10.1249/mss.0000000000001872] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Exercise is known to improve insulin sensitivity (SI); however, studies to date have been confounded by negative energy deficits after exercise. PURPOSE The primary objective of this study was to assess the effect of 8 to 16 wk of aerobic exercise training on the SI of untrained women under rigorously controlled energy-balanced conditions. The secondary objective was to determine if one acute bout of moderate-intensity continuous (MIC) or high-intensity interval (HII) exercise further affected SI. METHODS Insulin sensitivity was assessed in 28 untrained women at baseline, after 8 to 16 wk of training with no-exercise (NE) before assessment, 22 h after MIC (50% V˙O2peak), and 22 h after HII (84% V˙O2peak) using a hyperinsulinemic-euglycemic clamp. Participants were in a whole-room indirect calorimeter during each condition, and food intake was adjusted to ensure energy balance across 23 h before each clamp. RESULTS There were no significant differences in acute energy balance between each condition. Results indicated a significant main effect of time, such that SI was higher during the HII condition compared with both baseline and NE (P < 0.05). No significant differences in SI were observed after NE or MIC. CONCLUSIONS Widely reported improvements in SI in response to chronic exercise training may be mediated in part by shifts in energy balance. However, an acute bout of HII exercise may increase SI even in the context of energy balance.
Collapse
Affiliation(s)
- Gordon Fisher
- Department of Human Studies, University of Alabama at Birmingham, Birmingham, AL
- Department of Nutrition Science, University of Alabama at Birmingham, Birmingham, AL
| | - Barbara A Gower
- Department of Nutrition Science, University of Alabama at Birmingham, Birmingham, AL
| | - Fernando Ovalle
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Christian E Behrens
- Department of Nutrition Science, University of Alabama at Birmingham, Birmingham, AL
| | - Gary R Hunter
- Department of Human Studies, University of Alabama at Birmingham, Birmingham, AL
- Department of Nutrition Science, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
4
|
Dirks ML, Stephens FB, Jackman SR, Galera Gordo J, Machin DJ, Pulsford RM, van Loon LJC, Wall BT. A single day of bed rest, irrespective of energy balance, does not affect skeletal muscle gene expression or insulin sensitivity. Exp Physiol 2018; 103:860-875. [DOI: 10.1113/ep086961] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/04/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Marlou L. Dirks
- Department of Sport and Health Sciences; College of Life and Environmental Sciences; University of Exeter; Exeter UK
| | - Francis B. Stephens
- Department of Sport and Health Sciences; College of Life and Environmental Sciences; University of Exeter; Exeter UK
| | - Sarah R. Jackman
- Department of Sport and Health Sciences; College of Life and Environmental Sciences; University of Exeter; Exeter UK
| | - Jesús Galera Gordo
- Department of Sport and Health Sciences; College of Life and Environmental Sciences; University of Exeter; Exeter UK
| | - David J. Machin
- Department of Sport and Health Sciences; College of Life and Environmental Sciences; University of Exeter; Exeter UK
| | - Richard M. Pulsford
- Department of Sport and Health Sciences; College of Life and Environmental Sciences; University of Exeter; Exeter UK
| | - Luc J. C. van Loon
- Department of Human Biology; NUTRIM School of Nutrition and Translational Research in Metabolism; Maastricht University Medical Centre; Maastricht The Netherlands
| | - Benjamin T. Wall
- Department of Sport and Health Sciences; College of Life and Environmental Sciences; University of Exeter; Exeter UK
| |
Collapse
|
5
|
Gonzalez JT, Richardson JD, Chowdhury EA, Koumanov F, Holman GD, Cooper S, Thompson D, Tsintzas K, Betts JA. Molecular adaptations of adipose tissue to 6 weeks of morning fasting vs. daily breakfast consumption in lean and obese adults. J Physiol 2018; 596:609-622. [PMID: 29193093 PMCID: PMC5813615 DOI: 10.1113/jp275113] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/13/2017] [Indexed: 12/12/2022] Open
Abstract
KEY POINTS In lean individuals, 6 weeks of extended morning fasting increases the expression of genes involved in lipid turnover (ACADM) and insulin signalling (IRS2) in subcutaneous abdominal adipose tissue. In obese individuals, 6 weeks of extended morning fasting increases IRS2 expression in subcutaneous abdominal adipose tissue. The content and activation status of key proteins involved in insulin signalling and glucose transport (GLUT4, Akt1 and Akt2) were unaffected by extended morning fasting. Therefore, any observations of altered adipose tissue insulin sensitivity with extended morning fasting do not necessarily require changes in insulin signalling proximal to Akt. Insulin-stimulated adipose tissue glucose uptake rates are lower in obese versus lean individuals, but this difference is abolished when values are normalised to whole-body fat mass. This suggests a novel hypothesis which proposes that the reduced adipose glucose uptake in obesity is a physiological down-regulation to prevent excessive de novo lipogenesis. ABSTRACT This study assessed molecular responses of human subcutaneous abdominal adipose tissue (SCAT) to 6 weeks of morning fasting. Forty-nine healthy lean (n = 29) and obese (n = 20) adults provided SCAT biopsies before and after 6 weeks of morning fasting (FAST; 0 kcal until 12.00 h) or daily breakfast consumption (BFAST; ≥700 kcal before 11.00 h). Biopsies were analysed for mRNA levels of selected genes, and GLUT4 and Akt protein content. Basal and insulin-stimulated Akt activation and tissue glucose uptake rates were also determined. In lean individuals, lipid turnover and insulin signalling genes (ACADM and IRS2) were up-regulated with FAST versus BFAST (ACADM: 1.14 (95% CI: 0.97-1.30) versus 0.80 (95% CI: 0.64-0.96), P = 0.007; IRS2: 1.75 (95% CI: 1.33-2.16) versus 1.09 (95% CI: 0.67-1.51), P = 0.03, respectively). In obese individuals, no differential (FAST versus BFAST) expression was observed in genes involved in lipid turnover (all P > 0.1). GLUT4, Akt protein content and insulin-stimulated Akt phosphorylation were unaffected by FAST versus BFAST in both lean and obese cohorts (all P > 0.1). Lower insulin-stimulated glucose uptake rates in obese versus lean individuals were eradicated when normalised to whole-body fat mass (P = 0.416). We conclude that morning fasting up-regulates lipid turnover genes in SCAT of lean individuals. Secondly, altered SCAT insulin sensitivity with morning fasting is unlikely to be explained by signalling proximal to Akt. Finally, lower insulin-stimulated SCAT glucose uptake rates in obese individuals are proportional to whole-body fat mass, suggesting a compensatory down-regulation, presumably to prevent excessive de novo lipogenesis in adipose tissue. This trial was registered as ISRCTN31521726.
Collapse
Affiliation(s)
| | | | | | - Francoise Koumanov
- Department for HealthUniversity of BathBathBA2 7AYUK
- Department of Biology & BiochemistryUniversity of BathBathBA2 7AYUK
| | | | - Scott Cooper
- School of Life SciencesQueen's Medical CentreNottinghamNG7 2UHUK
| | | | - Kostas Tsintzas
- School of Life SciencesQueen's Medical CentreNottinghamNG7 2UHUK
| | | |
Collapse
|
6
|
Metabolic and molecular changes associated with the increased skeletal muscle insulin action 24-48 h after exercise in young and old humans. Biochem Soc Trans 2018; 46:111-118. [PMID: 29330356 DOI: 10.1042/bst20170198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/23/2017] [Accepted: 11/24/2017] [Indexed: 12/25/2022]
Abstract
The molecular and metabolic mechanisms underlying the increase in insulin sensitivity (i.e. increased insulin-stimulated skeletal muscle glucose uptake, phosphorylation and storage as glycogen) observed from 12 to 48 h following a single bout of exercise in humans remain unresolved. Moreover, whether these mechanisms differ with age is unclear. It is well established that a single bout of exercise increases the translocation of the glucose transporter, GLUT4, to the plasma membrane. Previous research using unilateral limb muscle contraction models in combination with hyperinsulinaemia has demonstrated that the increase in insulin sensitivity and glycogen synthesis 24 h after exercise is also associated with an increase in hexokinase II (HKII) mRNA and protein content, suggesting an increase in the capacity of the muscle to phosphorylate glucose and divert it towards glycogen synthesis. Interestingly, this response is altered in older individuals for up to 48 h post exercise and is associated with molecular changes in skeletal muscle tissue that are indicative of reduced lipid oxidation, increased lipogenesis, increased inflammation and a relative inflexibility of changes in intramyocellular lipid (IMCL) content. Reduced insulin sensitivity (insulin resistance) is generally related to IMCL content, particularly in the subsarcolemmal (SSL) region, and both are associated with increasing age. Recent research has demonstrated that ageing per se appears to cause an exacerbated lipolytic response to exercise that may result in SSL IMCL accumulation. Further research is required to determine if increased IMCL content affects HKII expression in the days after exercise in older individuals, and the effect of this on skeletal muscle insulin action.
Collapse
|
7
|
Ouyang Z, Li W, Meng Q, Zhang Q, Wang X, Elgehama A, Wu X, Shen Y, Sun Y, Wu X, Xu Q. A natural compound jaceosidin ameliorates endoplasmic reticulum stress and insulin resistance via upregulation of SERCA2b. Biomed Pharmacother 2017; 89:1286-1296. [PMID: 28320096 DOI: 10.1016/j.biopha.2017.03.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 12/14/2022] Open
Abstract
Increased endoplasmic reticulum (ER) stress has emerged as a vital contributor to dysregulated glucose homeostasis, and impaired function of sarco-endoplasmic reticulum Ca2+-ATPase 2b (SERCA2b) is one of the central mechanisms underlying ER stress. In this study, we reported that SERCA2b upregulation contributed to the amelioration of ER stress and insulin resistance by a small natural compound jaceosidin. In a model of differentiated C2C12 myotubes, jaceosidin-triggered SERCA2b upregulation enhanced insulin sensitivity and decreased ER stress. Moreover, the activity of Ca2+-ATPase in thapsigargin-treated myotubes was also augmented by jaceosidin. Furthermore, jaceosidin significantly suppressed blood glucose levels, improved glucose tolerance and lowered body weight, but did not alter food intake in insulin-resistant obese mice. In addition, this compound markedly reduced lipid accumulation, suppressed the expression of lipogenic genes in liver and ameliorated liver injury. The ameliorative effects of jaceosidin were due to its ability to reduce ER stress via increasing the expression of SERCA2b in the muscles of obese mice. Taken together, jaceosidin could improve ER stress and attenuate insulin resistance via SERCA2b upregulation in mice skeletal muscles.
Collapse
Affiliation(s)
- Zijun Ouyang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Wanshuai Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qianqian Meng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qi Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xingqi Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ahmed Elgehama
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xudong Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yan Shen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xuefeng Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| |
Collapse
|
8
|
Carrig S, Bijjiga E, Wopat MJ, Martino AT. Insulin Therapy Improves Adeno-Associated Virus Transduction of Liver and Skeletal Muscle in Mice and Cultured Cells. Hum Gene Ther 2016; 27:892-905. [PMID: 27358030 DOI: 10.1089/hum.2016.073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Adeno-associated virus (AAV) gene transfer is a promising treatment for genetic abnormalities. Optimal AAV vectors are showing success in clinical trials. Gene transfer to skeletal muscle and liver is being explored as a potential therapy for some conditions, that is, α1-antitrypsin (AAT) disorder and hemophilia B. Exploring approaches that enhance transduction of liver and skeletal muscle, using these vectors, is beneficial for gene therapy. Regulating hormones as an approach to improve AAV transduction is largely unexplored. In this study we tested whether insulin therapy improves liver and skeletal muscle gene transfer. In vitro studies demonstrated that the temporary coadministration (2, 8, and 24 hr) of insulin significantly improves AAV2-CMV-LacZ transduction of cultured liver cells and differentiated myofibers, but not of lung cells. In addition, there was a dose response related to this improved transduction. Interestingly, when insulin was not coadministered with the virus but given 24 hr afterward, there was no increase in the transgene product. Insulin receptor gene (INSR) expression levels were increased 5- to 13-fold in cultured liver cells and differentiated myofibers when compared with lung cells. Similar INSR gene expression profiles occurred in mouse tissues. Insulin therapy was performed in mice, using a subcutaneously implanted insulin pellet or a high-carbohydrate diet. Insulin treatment began just before intramuscular delivery of AAV1-CMV-schFIX or liver-directed delivery of AAV8-CMV-schFIX and continued for 28 days. Both insulin augmentation therapies improved skeletal muscle- and liver-directed gene transduction in mice as seen by a 3.0- to 4.5-fold increase in human factor IX (hFIX) levels. The improvement was observed even after the insulin therapy ended. Monitoring insulin showed that insulin levels increased during the brief period of rAAV delivery and during the entire insulin augmentation period (28 days). This study demonstrates that AAV transduction of liver or skeletal muscle can be improved by insulin therapy.
Collapse
Affiliation(s)
- Sean Carrig
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University , Queens, New York
| | - Enoch Bijjiga
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University , Queens, New York
| | - Mitchell J Wopat
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University , Queens, New York
| | - Ashley T Martino
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University , Queens, New York
| |
Collapse
|
9
|
Effect of silymarin on gluconeogenesis and lactate production in exercising rats. Food Sci Biotechnol 2016; 25:119-124. [PMID: 30263496 DOI: 10.1007/s10068-016-0108-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/12/2016] [Accepted: 03/17/2016] [Indexed: 12/30/2022] Open
Abstract
In this study, we investigated the effects of silymarin (SM) on gluconeogenesis during exercise in rats. After 4 weeks of exercise, blood samples, liver, and skeletal muscle tissues were collected, and the levels of triglycerides (TG), lactate, peroxisome proliferator activated receptor gamma (PPARγ), phosphoenol pyruvate carboxykinase (PEPCK), pyruvate dehydrogenase kinase 4 (PDK4), and phosphorylated 5-AMP activated protein kinase (AMPK) were measured. The TG and lactate level of the serum were reduced. In addition, the expression of Akt, PEPCK, and PPARγ in liver was decreased as well as the expression of AMPK in muscle. On the contrary, the level of PDK4 in muscle was increased. These results showed that that administration of SM ameliorated exerciseinduced gluconeogenesis and β-oxidation through the regulation of PPARγ, PEPCK, and PDK4. Thus, intake of SM during exercise may improve endurance by modulating of the metabolism of glucose, lipids, and lactate.
Collapse
|
10
|
Glade MJ, Smith K. A glance at … exercise and glucose uptake. Nutrition 2015; 31:893-7. [PMID: 25933500 DOI: 10.1016/j.nut.2014.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 12/03/2014] [Indexed: 10/24/2022]
Affiliation(s)
| | - Kyl Smith
- Progressive Laboratories Inc., Irving, Texas
| |
Collapse
|
11
|
Wall BT, Dirks ML, Snijders T, Stephens FB, Senden JM, Verscheijden ML, van Loon LJ. Short-term muscle disuse atrophy is not associated with increased intramuscular lipid deposition or a decline in the maximal activity of key mitochondrial enzymes in young and older males. Exp Gerontol 2015; 61:76-83. [DOI: 10.1016/j.exger.2014.11.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/11/2014] [Accepted: 11/27/2014] [Indexed: 01/06/2023]
|
12
|
Kulkarni SS, Salehzadeh F, Fritz T, Zierath JR, Krook A, Osler ME. Mitochondrial regulators of fatty acid metabolism reflect metabolic dysfunction in type 2 diabetes mellitus. Metabolism 2012; 61:175-85. [PMID: 21816445 DOI: 10.1016/j.metabol.2011.06.014] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 06/17/2011] [Accepted: 06/20/2011] [Indexed: 10/25/2022]
Abstract
The delicate homeostatic balance between glucose and fatty acid metabolism in relation to whole-body energy regulation is influenced by mitochondrial function. We determined expression and regulation of mitochondrial enzymes including pyruvate dehydrogenase kinase (PDK) 4, PDK2, carnitine palmitoyltransferase 1b, and malonyl-coenzyme A decarboxylase in skeletal muscle from people with normal glucose tolerance (NGT) or type 2 diabetes mellitus (T2DM). Vastus lateralis biopsies were obtained from NGT (n = 79) or T2DM (n = 33) men and women matched for age and body mass index. A subset of participants participated in a 4-month lifestyle intervention program consisting of an unsupervised walking exercise. Muscle biopsies were analyzed for expression and DNA methylation status. Primary myotubes were derived from biopsies obtained from NGT individuals for metabolic studies. Cultured skeletal muscle was exposed to agents mimicking exercise activation for messenger RNA (mRNA) expression analysis. The mRNA expression of PDK4, PDK2, and malonyl-coenzyme A decarboxylase was increased in skeletal muscle from T2DM patients. Methylation of the PDK4 promoter was reduced in T2DM and inversely correlated with PDK4 expression. Moreover, PDK4 expression was positively correlated with body mass index, blood glucose, insulin, C peptide, and hemoglobin A(1c). A lifestyle intervention program resulted in increased PDK4 mRNA expression in NGT individuals, but not in those with T2DM. Exposure to caffeine or palmitate increased PDK4 mRNA in a cultured skeletal muscle system. Our findings reveal that skeletal muscle expression of PDK4 and related genes regulating mitochondrial function reflects alterations in substrate utilization and clinical features associated with T2DM. Furthermore, hypomethylation of the PDK4 promoter in T2DM coincided with an impaired response of PDK4 mRNA after exercise.
Collapse
MESH Headings
- Aged
- Biopsy
- Case-Control Studies
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/therapy
- Exercise Therapy
- Fatty Acids/metabolism
- Female
- Gene Expression Regulation, Enzymologic/physiology
- Humans
- Male
- Metabolic Diseases/etiology
- Metabolic Diseases/genetics
- Metabolic Diseases/metabolism
- Metabolic Diseases/therapy
- Middle Aged
- Mitochondria, Muscle/enzymology
- Mitochondria, Muscle/pathology
- Mitochondrial Proteins/genetics
- Mitochondrial Proteins/metabolism
- Mitochondrial Proteins/physiology
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Risk Reduction Behavior
- Walking/physiology
Collapse
Affiliation(s)
- Sameer S Kulkarni
- Department of Molecular Medicine and Surgery, Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|