1
|
Lu W, Wen J. Anti-Inflammatory Effects of Hydrogen Sulfide in Axes Between Gut and Other Organs. Antioxid Redox Signal 2025; 42:341-360. [PMID: 39655451 DOI: 10.1089/ars.2023.0531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Significance: Hydrogen sulfide (H2S), a ubiquitous small gaseous signaling molecule, plays a critical role in various diseases, such as inflammatory bowel disease (IBD), rheumatoid arthritis (RA), ischemic stroke, and myocardial infarction (MI) via reducing inflammation, inhibiting oxidative stress, and cell apoptosis. Recent Advances: Uncontrolled inflammation is closely related to pathological process of ischemic stroke, RA, MI, and IBD. Solid evidence has revealed the axes between gut and other organs like joint, brain, and heart, and indicated that H2S-mediated anti-inflammatory effect against IBD, RA, MI, and ischemic stroke might be related to regulating the functions of axes between gut and other organs. Critical Issues: We reviewed endogenous H2S biogenesis and the H2S-releasing donors, and revealed the anti-inflammatory effects of H2S in IBD, ischemic stroke, RA, and MI. Importantly, this review outlined the potential role of H2S in the gut-joint axis, gut-brain axis, and gut-heart axis as a gasotransmitter. Future Direction: The rate, location, and timing of H2S release from its donors determine its potential success or failure as a useful therapeutic agent and should be focused on in the future research. Therefore, there is still a need to explore internal and external sources monitoring and controlling H2S concentration. Moreover, more efficient H2S-releasing compounds are needed; a better understanding of their chemistry and properties should be further developed. Antioxid. Redox Signal. 42, 341-360.
Collapse
Affiliation(s)
- Weizhuo Lu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Medical Branch, Hefei Technology College, Hefei, China
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
2
|
Lei W, Liu J, Zhang W, Xu J, Bo T, Wang Z, Wang W. Photocatalytic degradation of methylene blue by CdS quantum dots biosynthesized by cysteine synthetase TtCsa1 from Tetrahymena thermophila. Int J Biol Macromol 2025; 305:141166. [PMID: 39971067 DOI: 10.1016/j.ijbiomac.2025.141166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/21/2025] [Accepted: 02/15/2025] [Indexed: 02/21/2025]
Abstract
H2S is a crucial endogenous gaseous signaling molecule involved in various metabolic pathways and is associated with the biological response to heavy metal stress. The biomineralization of CdS serves as a critical mechanism for responding to cadmium stress and removing Cd2+ in different organisms. CdS is also a widely utilized semiconductor material for the photocatalytic degradation of dyes. In this study, we found that cysteine synthetase 1 (TtCsa1) is involved in CdS formation under cadmium stress in Tetrahymena thermophila. TtCsa1 also catalyzed CdS formation in vitro, and the synthesized CdS material exhibited controllable particle size and photoluminescence. Concurrently, cysteine and glutathione functioned as capping agents to regulate CdS particle size. The biosynthetically produced CdS degraded 90 % of methylene blue under UV light. Furthermore, CdS-ZnS nanocomposites were synthesized by adding Zn2+ into the CdS biosynthetic system, which decreased the size of CdS particles and increased the degradation rate of methylene blue. The results indicate that the CdS biosynthesized by TtCsa1 from Tetrahymena thermophila is effective in the photocatalytic degradation of organic dyes.
Collapse
Affiliation(s)
- Wenliang Lei
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Juan Liu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Wenyong Zhang
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Jing Xu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Tao Bo
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Zhiwen Wang
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Wei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; Shanxi Key Laboratory of Biotechnology, Taiyuan 030006, China.
| |
Collapse
|
3
|
Lu W, Wen J. The relationship among H 2S, neuroinflammation and MMP-9 in BBB injury following ischemic stroke. Int Immunopharmacol 2025; 146:113902. [PMID: 39724730 DOI: 10.1016/j.intimp.2024.113902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Blood-brain barrier (BBB) is located at the interface between the central nervous system (CNS) and the circulatory system, which maintains the microenvironmental homeostasis of the CNS. BBB damage is a result of CNS diseases, including ischemic stroke, and is a cause of CNS deterioration. Cerebral ischemia unleashes a profound inflammatory response to remove the damaged tissue in the CNS and prepare the brain for repair. However, the excessive neuroinflammation following stroke onset is associated with BBB breakdown, resulting in neuronal injury and worse neurological outcomes. Additionally, matrix metalloproteinases (MMPs) are likewise responsible for the BBB injury and participate in the pathological processes of neuroinflammation following ischemic stroke. Hydrogen sulfide (H2S) is one of gaseous signaling and freely diffusing molecules. Low concentration of H2S yields the neuroprotection against BBB damage following stroke. This review discussed the current knowledge about the detrimental roles of neuroinflammation and MMPs in BBB injury following ischemic stroke. Specifically, we provided an updated overview of H2S in protecting against BBB injury following ischemic stroke via anti-neuroinflammation and inhibiting MMP-9.
Collapse
Affiliation(s)
- Weizhuo Lu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China; Medical Branch, Hefei Technology College, Hefei, China.
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
4
|
Suzuki Y, Yamada T, Enoki Y, Matsumoto K, Komatsu T, Taguchi K. Hydrosulphide-methaemoglobin-albumin cluster: a hydrogen sulphide donor. J Mater Chem B 2024; 12:11515-11522. [PMID: 39415591 DOI: 10.1039/d4tb01621a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Methaemoglobin (metHb) possesses inherent characteristics that facilitate reversible binding to hydrogen sulphide. Exogenous hydrogen sulphide supplementation imparts beneficial bioactive effects, including antioxidant and anti-inflammatory; hence, we hypothesized that the metHb-hydrogen sulphide complex could act as a hydrogen sulphide donor for medication. In this study, we prepared a hydrosulphide-metHb-albumin (H2S-metHb-albumin) cluster and examined its applicability as a hydrogen sulphide donor in the mice model of hepatic ischemia-reperfusion injury. Structural analysis revealed that the H2S-metHb-albumin cluster exhibited a nanostructure wherein one metHb was wrapped by an average of three albumins, and hydrogen sulphide was bound to the haem. Additionally, the H2S-metHb-albumin cluster exhibited low-pH responsiveness, leading to sustained release of hydrogen sulphide. Owing to these structural and pharmaceutical characteristics, the severity of hepatic ischemia-reperfusion injury was alleviated via antioxidant and anti-inflammatory effects of the H2S-metHb-albumin cluster treatment. The protective effects were more potent in the H2S-metHb-albumin cluster compared to that in a conventional hydrogen sulphide donor (sodium hydrogen sulphide). No abnormal signs of toxic and biological responses were observed after the H2S-metHb-albumin cluster administration, confirming high biological compatibility. These results successfully establish the proof of concept that the H2S-metHb-albumin cluster is a promising hydrogen sulphide donor. To the best of our knowledge, this is the first report demonstrating the remarkable potential of metHb as a biomaterial for hydrogen sulphide donors.
Collapse
Affiliation(s)
- Yuto Suzuki
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Taiga Yamada
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Yuki Enoki
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Kazuaki Matsumoto
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Teruyuki Komatsu
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Kazuaki Taguchi
- Division of Pharmacodynamics, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| |
Collapse
|
5
|
Abolfazli S, Ebrahimi N, Morabi E, Asgari Yazdi MA, Zengin G, Sathyapalan T, Jamialahmadi T, Sahebkar A. Hydrogen Sulfide: Physiological Roles and Therapeutic Implications against COVID-19. Curr Med Chem 2024; 31:3132-3148. [PMID: 37138436 DOI: 10.2174/0929867330666230502111227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/19/2023] [Accepted: 02/10/2023] [Indexed: 05/05/2023]
Abstract
The COVID-19 pandemic due to severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) poses a major menace to economic and public health worldwide. Angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2) are two host proteins that play an essential function in the entry of SARS-- COV-2 into host cells. Hydrogen sulfide (H2S), a new gasotransmitter, has been shown to protect the lungs from potential damage through its anti-inflammatory, antioxidant, antiviral, and anti-aging effects. It is well known that H2S is crucial in controlling the inflammatory reaction and the pro-inflammatory cytokine storm. Therefore, it has been suggested that some H2S donors may help treat acute lung inflammation. Furthermore, recent research illuminates a number of mechanisms of action that may explain the antiviral properties of H2S. Some early clinical findings indicate a negative correlation between endogenous H2S concentrations and COVID-19 intensity. Therefore, reusing H2S-releasing drugs could represent a curative option for COVID-19 therapy.
Collapse
Affiliation(s)
- Sajad Abolfazli
- Student Research Committee, School of Pharmacy, Mazandaran University of Medical Science, Sari, Iran
| | - Nima Ebrahimi
- Student Research Committee, School of Pharmacy, Mashhad University of Medical Science, Mashhad, Iran
| | - Etekhar Morabi
- Student Research Committee, School of Pharmacy, Shahid Sadoughi University of Medical Science, Yazd, Iran
| | | | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey
| | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, United Kingdom of Great Britain and Northern Ireland
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Gunduz H, Almammadov T, Dirak M, Acari A, Bozkurt B, Kolemen S. A mitochondria-targeted chemiluminescent probe for detection of hydrogen sulfide in cancer cells, human serum and in vivo. RSC Chem Biol 2023; 4:675-684. [PMID: 37654504 PMCID: PMC10467614 DOI: 10.1039/d3cb00070b] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/14/2023] [Indexed: 09/02/2023] Open
Abstract
Hydrogen sulfide (H2S) as a critical messenger molecule plays vital roles in regular cell function. However, abnormal levels of H2S, especially mitochondrial H2S, are directly correlated with the formation of pathological states including neurodegenerative diseases, cardiovascular disorders, and cancer. Thus, monitoring fluxes of mitochondrial H2S concentrations both in vitro and in vivo with high selectivity and sensitivity is crucial. In this direction, herein we developed the first ever example of a mitochondria-targeted and H2S-responsive new generation 1,2-dioxetane-based chemiluminescent probe (MCH). Chemiluminescent probes offer unique advantages compared to conventional fluorophores as they do not require external light irradiation to emit light. MCH exhibited a dramatic turn-on response in its luminescence signal upon reacting with H2S with high selectivity. It was used to detect H2S activity in different biological systems ranging from cancerous cells to human serum and tumor-bearing mice. We anticipate that MCH will pave the way for development of new organelle-targeted chemiluminescence agents towards imaging of different analytes in various biological models.
Collapse
Affiliation(s)
- Hande Gunduz
- Nanofabrication and Nanocharacterization Center for Scientific and Technological Advanced Research, Koç University Istanbul 34450 Turkey
- Department of Chemistry, Koç University, Rumelifeneri Yolu Istanbul 34450 Turkey
| | - Toghrul Almammadov
- Department of Chemistry, Koç University, Rumelifeneri Yolu Istanbul 34450 Turkey
| | - Musa Dirak
- Department of Chemistry, Koç University, Rumelifeneri Yolu Istanbul 34450 Turkey
| | - Alperen Acari
- Koç University Research Center for Translational Medicine (KUTTAM) Istanbul 34450 Turkey
| | - Berkan Bozkurt
- Koç University Research Center for Translational Medicine (KUTTAM) Istanbul 34450 Turkey
- Graduate School of Health Sciences, Koç University, Rumelifeneri Yolu Istanbul 34450 Turkey
| | - Safacan Kolemen
- Department of Chemistry, Koç University, Rumelifeneri Yolu Istanbul 34450 Turkey
- Koç University Research Center for Translational Medicine (KUTTAM) Istanbul 34450 Turkey
- Koç University Surface Science and Technology Center (KUYTAM) Istanbul 34450 Turkey
| |
Collapse
|
7
|
Deng G, Muqadas M, Adlat S, Zheng H, Li G, Zhu P, Nasser MI. Protective Effect of Hydrogen Sulfide on Cerebral Ischemia-Reperfusion Injury. Cell Mol Neurobiol 2023; 43:15-25. [PMID: 35066714 PMCID: PMC11415178 DOI: 10.1007/s10571-021-01166-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/01/2021] [Indexed: 01/07/2023]
Abstract
The brain is the most sensitive organ to hypoxia in the human body. Hypoxia in the brain will lead to damage to local brain tissue. When the blood supply of ischemic brain tissue is restored, the damage will worsen, that is, cerebral ischemia-reperfusion injury. Hydrogen sulfide (H2S) is a gaseous signal molecule and a novel endogenous neuroregulator. Indeed, different concentrations of H2S have different effects on neurons. Low concentration of H2S can play an important protective role in cerebral ischemia-reperfusion injury by inducing anti-oxidative stress injury, inhibition of inflammatory response, inhibition of cell apoptosis, reduction of cerebrovascular endothelial cell injury, regulation of autophagy, and other ways, which provides a new idea for clinical diagnosis and treatment of related diseases. This review aims to report the recent research progress on the dual effect of H2S on brain tissue during cerebral ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Gang Deng
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510100, Guangdong, People's Republic of China
- Guangdong Academy of Medical Sciences, 106 ZhongshanEr Road, Guangzhou, 510080, People's Republic of China
| | - Masood Muqadas
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510100, Guangdong, People's Republic of China
- Guangdong Academy of Medical Sciences, 106 ZhongshanEr Road, Guangzhou, 510080, People's Republic of China
| | - Salah Adlat
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510100, Guangdong, People's Republic of China
- Guangdong Academy of Medical Sciences, 106 ZhongshanEr Road, Guangzhou, 510080, People's Republic of China
| | - Haiyun Zheng
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510100, Guangdong, People's Republic of China
- Guangdong Academy of Medical Sciences, 106 ZhongshanEr Road, Guangzhou, 510080, People's Republic of China
| | - Ge Li
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510100, Guangdong, People's Republic of China.
- Guangdong Academy of Medical Sciences, 106 ZhongshanEr Road, Guangzhou, 510080, People's Republic of China.
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510100, Guangdong, People's Republic of China.
- Guangdong Academy of Medical Sciences, 106 ZhongshanEr Road, Guangzhou, 510080, People's Republic of China.
| | - M I Nasser
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510100, Guangdong, People's Republic of China.
- Guangdong Academy of Medical Sciences, 106 ZhongshanEr Road, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
8
|
Zhang Q, Wang L, Yin Y, Shen J, Xie J, Yuan J. Hydrogen sulfide releasing hydrogel for alleviating cardiac inflammation and protecting against myocardial ischemia-reperfusion injury. J Mater Chem B 2022; 10:5344-5351. [PMID: 35792619 DOI: 10.1039/d2tb00971d] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Myocardial infarction is one of the leading causes of death worldwide. Thus, protection against myocardial ischemia-reperfusion injury is particularly important to improve the prognosis of myocardial infarction. Recently, hydrogen sulfide (H2S) has been reported to possess a protective effect against myocardial ischemia-reperfusion injury. However, an effective gas delivery system to release H2S controllably at an appropriate concentration needs to be further investigated. In this study, a new H2S-releasing hydrogel system was constructed and applied in an experimental I/R model of rats. The administration of the hydrogel significantly ameliorated microvascular obstruction, prevented myocardial fibrosis, and attenuated cardiac inflammation. This suggested that the novel H2S-releasing hydrogel represented a promising therapeutic strategy targeting myocardial ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Cardiology, Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing, 210093, China.
| | - Lijuan Wang
- National and Local Joint Engineering Research Center of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.
| | - Yong Yin
- Department of Cardiology, Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing, 210093, China.
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.
| | - Jun Xie
- Department of Cardiology, Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing, 210093, China.
| | - Jiang Yuan
- National and Local Joint Engineering Research Center of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
9
|
Cirino G, Szabo C, Papapetropoulos A. Physiological roles of hydrogen sulfide in mammalian cells, tissues and organs. Physiol Rev 2022; 103:31-276. [DOI: 10.1152/physrev.00028.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
H2S belongs to the class of molecules known as gasotransmitters, which also includes nitric oxide (NO) and carbon monoxide (CO). Three enzymes are recognized as endogenous sources of H2S in various cells and tissues: cystathionine g-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). The current article reviews the regulation of these enzymes as well as the pathways of their enzymatic and non-enzymatic degradation and elimination. The multiple interactions of H2S with other labile endogenous molecules (e.g. NO) and reactive oxygen species are also outlined. The various biological targets and signaling pathways are discussed, with special reference to H2S and oxidative posttranscriptional modification of proteins, the effect of H2S on channels and intracellular second messenger pathways, the regulation of gene transcription and translation and the regulation of cellular bioenergetics and metabolism. The pharmacological and molecular tools currently available to study H2S physiology are also reviewed, including their utility and limitations. In subsequent sections, the role of H2S in the regulation of various physiological and cellular functions is reviewed. The physiological role of H2S in various cell types and organ systems are overviewed. Finally, the role of H2S in the regulation of various organ functions is discussed as well as the characteristic bell-shaped biphasic effects of H2S. In addition, key pathophysiological aspects, debated areas, and future research and translational areas are identified A wide array of significant roles of H2S in the physiological regulation of all organ functions emerges from this review.
Collapse
Affiliation(s)
- Giuseppe Cirino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece & Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece
| |
Collapse
|
10
|
Sun HJ, Wu ZY, Nie XW, Wang XY, Bian JS. An Updated Insight Into Molecular Mechanism of Hydrogen Sulfide in Cardiomyopathy and Myocardial Ischemia/Reperfusion Injury Under Diabetes. Front Pharmacol 2021; 12:651884. [PMID: 34764865 PMCID: PMC8576408 DOI: 10.3389/fphar.2021.651884] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular diseases are the most common complications of diabetes, and diabetic cardiomyopathy is a major cause of people death in diabetes. Molecular, transcriptional, animal, and clinical studies have discovered numerous therapeutic targets or drugs for diabetic cardiomyopathy. Within this, hydrogen sulfide (H2S), an endogenous gasotransmitter alongside with nitric oxide (NO) and carbon monoxide (CO), is found to play a critical role in diabetic cardiomyopathy. Recently, the protective roles of H2S in diabetic cardiomyopathy have attracted enormous attention. In addition, H2S donors confer favorable effects in myocardial infarction, ischaemia-reperfusion injury, and heart failure under diabetic conditions. Further studies have disclosed that multiplex molecular mechanisms are responsible for the protective effects of H2S against diabetes-elicited cardiac injury, such as anti-oxidative, anti-apoptotic, anti-inflammatory, and anti-necrotic properties. In this review, we will summarize the current findings on H2S biology and pharmacology, especially focusing on the novel mechanisms of H2S-based protection against diabetic cardiomyopathy. Also, the potential roles of H2S in diabetes-aggravated ischaemia-reperfusion injury are discussed.
Collapse
Affiliation(s)
- Hai-Jian Sun
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zhi-Yuan Wu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xiao-Wei Nie
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xin-Yu Wang
- Department of Endocrinology, The First Affiliated Hospital of Shenzhen University (Shenzhen Second People's Hospital), Shenzhen, China
| | - Jin-Song Bian
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China.,National University of Singapore (Suzhou) Research Institute, Suzhou, China
| |
Collapse
|
11
|
Özatik FY, Özatik O, Tekşen Y, Yiğitaslan S, Arı NS. Protective and therapeutic effect of hydrogen sulfide on hemorrhagic cystitis and testis dysfunction induced with cyclophosphamide. Turk J Med Sci 2021; 51:1531-1543. [PMID: 33550762 PMCID: PMC8283498 DOI: 10.3906/sag-2003-10] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 02/06/2021] [Indexed: 11/03/2022] Open
Abstract
Backround/aim Cyclophosphamide (CP) is a drug used for treatment of many malignant diseases. However, it can cause serious side effects such as hemorrhagic cystitis and male infertility. Hydrogen sulfide (H2S) is a gaseous mediator and is suggested to have antioxidant, antiinflammatory, and antiapoptotic effects. In this study, dose-dependent effects of H2S donor sodium hydrosulfide (NaHS) on cyclophosphamide-induced hemorrhagic cystitis and testicular dysfunction were investigated in rats. Material and methods Rats were divided into 5 groups (n = 8): control, CP, NaHS25 μmol/kg, NaHS50 μmol/kg, and NaHS100 μmol/ kg. After treatment for 7 days intraperitoneally (ip), a single ip dose of CP 200 mg/kg was given on the 8th day. Then, treatment was continued for 7 days. In bladder and testicular tissues, IL 6, IL 10, cGMP, NO, H2S, FSH, LH, and testosterone levels were measured by ELISA. Histopathological examination with H&E staining, as well as immunohistochemical staining for acrolein in bladder and caspase-3 and APAF-1 in testis were performed. Results NaHS prevented the increased IL 6 and IL 10 values induced by CP as well as prevented the decrease in cGMP values associated with CP. There was no significant change in FSH values, but the LH value, which increased with CP, decreased with 25, 50, and 100 μmol/kg NaHS. In contrast, testosterone decreased in the CP group and increased in the treatment groups. NaHS was effective in many biochemical and histopathological parameters at 25 and 50 μmol/kg doses, and this effect decreased at 100 μmol/kg dose. Conclusion H2S has a protective and therapeutic effect on hemorrhagic cystitis and testicular dysfunction induced by cyclophosphamide. It can be suggested that H2S is a promising molecule in facilitating cancer treatment.
Collapse
Affiliation(s)
- Fikriye Yasemin Özatik
- Department of Pharmacology, Faculty of Medicine, Kütahya Health Sciences University, Kütahya, Turkey
| | - Orhan Özatik
- Department of Histology and Embriology, Faculty of Medicine, Kütahya Health Sciences University, Kütahya, Turkey
| | - Yasemin Tekşen
- Department of Pharmacology, Faculty of Medicine, Kütahya Health Sciences University, Kütahya, Turkey
| | - Semra Yiğitaslan
- Department of Pharmacology, Faculty of Medicine, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Neziha Senem Arı
- Department of Histology and Embriology, Evliya Celebi Training and Research Hospital, Kütahya Health Sciences University, Kütahya, Turkey
| |
Collapse
|
12
|
Zhang CS, Han Q, Song ZW, Jia HY, Shao TP, Chen YP. Hydrogen gas post-conditioning attenuates early neuronal pyroptosis in a rat model of subarachnoid hemorrhage through the mitoK ATP signaling pathway. Exp Ther Med 2021; 22:836. [PMID: 34149882 PMCID: PMC8200808 DOI: 10.3892/etm.2021.10268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 05/12/2021] [Indexed: 12/14/2022] Open
Abstract
Neuronal pyroptosis serves an important role in the progress of neurologic dysfunction following subarachnoid hemorrhage (SAH), which is predominantly caused by a ruptured aneurysm. Hydrogen gas has been previously reported to be an effective anti-inflammatory agent against ischemia-associated diseases by regulating mitochondrial function. The objective of the present study was to investigate the potential neuroprotective effects of hydrogen gas post-conditioning against neuronal pyroptosis after SAH, with specific focus on the mitochondrial ATP-sensitive K+ (mitoKATP) channels. Following SAH induction by endovascular perforation, rats were treated with inhalation of 2.9% hydrogen gas for 2 h post-perforation. Neurologic deficits, brain water content, reactive oxygen species (ROS) levels, neuronal pyroptosis, phosphorylation of ERK1/2, p38 MAPK and pyroptosis-associated proteins IL-1β and IL-18 were evaluated 24 h after perforation by a modified Garcia method, ratio of wet/dry weight, 2',7'-dichlorofluorescin diacetate, immunofluorescence and western blot assays, respectively. An inhibitor of the mitoKATP channel, 5-hydroxydecanoate sodium (5-HD), was used to assess the potential role of the mitoKATP-ERK1/2-p38 MAPK signal pathway. Hydrogen gas post-conditioning significantly alleviated brain edema and improved neurologic function, reduced ROS production and neuronal pyroptosis, suppressed the expression of IL-1β and IL-18 whilst upregulating ERK1/2 phosphorylation, but downregulated p38 MAPK activation 24 h post-SAH. These aforementioned effects neuroprotective were partially reversed by 5-HD treatment. Therefore, these observations suggest that post-conditioning with hydrogen gas ameliorated SAH-induced neuronal pyroptosis at least in part through the mitoKATP/ERK1/2/p38 MAPK signaling pathway.
Collapse
Affiliation(s)
- Chuan-Suo Zhang
- Department of Radioactive Intervention, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Qian Han
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Zhao-Wei Song
- Department of Radioactive Intervention, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Hong-Yan Jia
- Department of Radioactive Intervention, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Tian-Peng Shao
- Department of Radioactive Intervention, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Yan-Peng Chen
- Department of Radioactive Intervention, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| |
Collapse
|
13
|
Ichinoseki-Sekine N, Smuder AJ, Morton AB, Hinkley JM, Mor Huertas A, Powers SK. Hydrogen sulfide donor protects against mechanical ventilation-induced atrophy and contractile dysfunction in the rat diaphragm. Clin Transl Sci 2021; 14:2139-2145. [PMID: 34080307 PMCID: PMC8604213 DOI: 10.1111/cts.13081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 11/28/2022] Open
Abstract
Mechanical ventilation (MV) is a clinical tool providing adequate alveolar ventilation in patients that require respiratory support. Although a life-saving intervention for critically ill patients, prolonged MV results in the rapid development of inspiratory muscle weakness due to both diaphragmatic atrophy and contractile dysfunction; collectively known as "ventilator-induced diaphragm dysfunction" (VIDD). VIDD is a severe clinical problem because diaphragmatic weakness is a risk factor for difficulties in weaning patients from MV. Currently, no standard treatment to prevent VIDD exists. Nonetheless, growing evidence reveals that hydrogen sulfide (H2 S) possesses cytoprotective properties capable of protecting skeletal muscles against several hallmarks of VIDD, including oxidative damage, accelerated proteolysis, and mitochondrial damage. Therefore, we used an established animal model of MV to test the hypothesis that treatment with sodium sulfide (H2 S donor) will defend against VIDD. Our results confirm that sodium sulfide was sufficient to protect the diaphragm against both MV-induced fiber atrophy and contractile dysfunction. H2 S prevents MV-induced damage to diaphragmatic mitochondria as evidenced by protection against mitochondrial uncoupling. Moreover, treatment with sodium sulfide prevented the MV-induced activation of the proteases, calpain, and caspase-3 in the diaphragm. Taken together, these results support the hypothesis that treatment with a H2 S donor protects the diaphragm against VIDD. These outcomes provide the first evidence that H2 S has therapeutic potential to protect against MV-induced diaphragm weakness and to reduce difficulties in weaning patients from the ventilator. Study Highlights WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC? Mechanical ventilation (MV) results in diaphragm atrophy and contractile dysfunction, known as ventilator-induced diaphragm dysfunction (VIDD). VIDD is important because diaphragm weakness is a risk factor for problems in weaning patients from MV. Currently, no accepted treatment exists to protect against VIDD. Growing evidence reveals that hydrogen sulfide (H2 S) donors protect skeletal muscle against ischemia-reperfusion-induced injury. Nonetheless, it is unknown if treatment with a H2 S donor can protect against VIDD. WHAT QUESTION DID THIS STUDY ADDRESS? Can treatment with an H2 S donor protect against VIDD? WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE? This study provides the first evidence that treatment with a H2 S donor protects against VIDD. HOW MIGHT THIS CHANGE CLINICAL PHARMACOLOGY OR TRANSLATIONAL SCIENCE? These new findings provide the basis for further exploration of H2 S donors as a therapy to prevent VIDD and reduce the risk of problems in weaning patients from MV.
Collapse
Affiliation(s)
- Noriko Ichinoseki-Sekine
- Graduate School of Arts and Sciences, The Open University of Japan, Chiba, Japan.,School of Health and Sports Science, Juntendo University, Inzai, Japan
| | - Ashley J Smuder
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Aaron B Morton
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - James M Hinkley
- AdventHealth Translational Research Institute, Orlando, Florida, USA
| | - Andres Mor Huertas
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
14
|
Ma Y, Xu Z, Sun Q, Wang L, Liu H, Yu F. A semi-naphthorhodafluor-based red-emitting fluorescent probe for tracking of hydrogen polysulfide in living cells and zebrafish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 247:119105. [PMID: 33161265 DOI: 10.1016/j.saa.2020.119105] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Hydrogen polysulfides (H2Sn, n ≥ 2) is recently regarded as a potential signaling molecule which shows a higher efficiency than hydrogen sulfides (H2S) in regulating enzymes and ion channels. However, the development of specific fluorescent probes for H2Sn with long-wavelength emission (>600 nm) are still rare. In this work, a semi-naphthorhodafluor-based red-emitting fluorescent probe SNARF-H2Sn containing a phenyl 2-(benzoylthio) benzoate responsive unit was constructed. SNARF-H2Sn was capable of selectively detecting H2Sn over other reactive sulfur species. Treatment with H2Sn would result in a > 1000-fold fluorescence enhancement within 10 min. SNARF-H2Sn showed a low limit of detection down to 6.7 nM, and further enabled to visualize exogenous/endogenous H2Sn in living A549 cells and zebrafish.
Collapse
Affiliation(s)
- Yingying Ma
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China; Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Zhencai Xu
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Qi Sun
- Key Laboratory for Green Chemical Process of Ministry of Education and School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Linlin Wang
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China; Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Heng Liu
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China; Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China.
| | - Fabiao Yu
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China.
| |
Collapse
|
15
|
Zaorska E, Gawryś-Kopczyńska M, Ostaszewski R, Ufnal M, Koszelewski D. Evaluation of thionolactones as a new type of hydrogen sulfide (H 2S) donors for a blood pressure regulation. Bioorg Chem 2021; 108:104650. [PMID: 33486369 DOI: 10.1016/j.bioorg.2021.104650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/11/2020] [Accepted: 01/07/2021] [Indexed: 11/19/2022]
Abstract
Hydrogen sulfide (H2S) is a gaseous molecule that exhibits various biological effects. For example, H2S has been recognized as a blood pressure-lowering agent. Presented in this report is a new modifiable platform for H2S supply, its preparation and H2S release kinetics from a series of structurally diversified thionolactones. Furthermore, the properties of the obtained H2S donors were evaluated in both in vitro and in vivo studies. The kinetic parameters of H2S release were determined and compared with NaHS and pyrrolidine-2-thione, a thiolactame analog, using a fluorescence detection method based on 7-azido-4-methyl-2H-chromen-2-one probe. We have shown that H2S release rates from the developed compounds are controllable through structural modifications. This study shows that both the thiono-lactone ring's size and the presence of a methyl group in the thiono-lactone ring significantly influenced the rate of H2S release. Finally, we have found a significant hypotensive response to intravenous administration of the developed donors in anesthetized rats.
Collapse
Affiliation(s)
- Ewelina Zaorska
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Pawińskiego 3c, 02-106 Warsaw, Poland
| | - Marta Gawryś-Kopczyńska
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Pawińskiego 3c, 02-106 Warsaw, Poland
| | - Ryszard Ostaszewski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Marcin Ufnal
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Pawińskiego 3c, 02-106 Warsaw, Poland.
| | - Dominik Koszelewski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
16
|
Kasamatsu S. Persulfide-Dependent Regulation of Electrophilic Redox Signaling in Neural Cells. Antioxid Redox Signal 2020; 33:1320-1331. [PMID: 32536194 DOI: 10.1089/ars.2020.8130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Significance: Redox homeostasis is precisely modulated by intricate systems that regulate production, elimination, and metabolism of electrophilic substances (electrophiles) in the nervous system. Since the first report of the endogenous production of reactive persulfide species in cells, such as cysteine persulfides (CysSSH), these reactive species have been a topic of extreme interest in the field of redox biology; persulfides/polysulfides possess unique chemical properties and are involved in multiple cellular functions. Recent Advances: Electrophilic signaling is mainly regulated by endogenous electrophiles that are generated from reactive oxygen species, nitric oxide, and their derivatives during stress responses, as well as by exogenous electrophiles, including compounds in foods and environmental pollutants, such as methylmercury (MeHg). Among diverse electrophiles that are endogenously generated, 8-nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP) possesses unique redox properties, of which the biosynthetic pathway, signaling mechanism, and metabolism in cells have been elucidated. Critical Issues: Persulfides, such as CysSSH, that are endogenously produced are critically involved in 8-nitro-cGMP metabolism. Exposure of neurons to the exogenous neurotoxicant, MeHg, causes severe neurodegeneration via disruption of persulfide-dependent 8-nitro-cGMP metabolism. Future Directions: Accumulating evidence indicates that persulfides are involved in various cellular functions under physiological and pathological conditions. These new aspects of redox biology related to persulfides may be frontiers of cell research, medical and clinical investigations of neurodegenerative diseases, as well as other fields. 8-Nitro-cGMP-mediated signaling and its persulfide-dependent metabolism in cells could, therefore, be potential targets for drug development, which may lead to the discovery of new therapeutic agents for many diseases, including neurodegenerative diseases.
Collapse
Affiliation(s)
- Shingo Kasamatsu
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Osaka, Japan
| |
Collapse
|
17
|
Kasamatsu S, Kakihana Y, Koga T, Yoshioka H, Ihara H. Generation of Rat Monoclonal Antibody to Detect Hydrogen Sulfide and Polysulfides in Biological Samples. Antioxidants (Basel) 2020; 9:antiox9111160. [PMID: 33233376 PMCID: PMC7700152 DOI: 10.3390/antiox9111160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 02/02/2023] Open
Abstract
Hydrogen sulfide (H2S) is endogenously produced by enzymes and via reactive persulfide/polysulfide degradation; it participates in a variety of biological processes under physiological and pathological conditions. H2S levels in biological fluids, such as plasma and serum, are correlated with the severity of various diseases. Therefore, development of a simple and selective H2S measurement method would be advantageous. This study aimed to generate antibodies specifically recognizing H2S derivatives and develop a colorimetric immunoassay for measuring H2S in biological samples. We used N-ethylmaleimide (NEM) as an H2S detection agent that forms a stable bis-S-adduct (NEM-S-NEM). We also prepared bis-S-heteroadduct with 3-maleimidopropionic acid, which, in conjugation with bovine serum albumin, was to immunize Japanese white rabbits and Wistar rats to enable generation of polyclonal and monoclonal antibodies, respectively. The generated antibodies were evaluated by competitive enzyme-linked immunosorbent assay. We could obtain two stable hybridoma cell lines producing monoclonal antibodies specific for NEM-S-NEM. By immunoassay with the monoclonal antibody, the H2S level in mouse plasma was determined as 0.2 μM, which was identical to the level detected by mass spectrometry. Taken together, these monoclonal antibodies can be a useful tool for a simple and highly selective immunoassay to detect H2S in biological samples.
Collapse
Affiliation(s)
| | | | | | | | - Hideshi Ihara
- Correspondence: ; Tel.: +81-72-254-9753; Fax: +81-72-254-9163
| |
Collapse
|
18
|
Polysulfide and Hydrogen Sulfide Ameliorate Cisplatin-Induced Nephrotoxicity and Renal Inflammation through Persulfidating STAT3 and IKKβ. Int J Mol Sci 2020; 21:ijms21207805. [PMID: 33096924 PMCID: PMC7589167 DOI: 10.3390/ijms21207805] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/17/2020] [Accepted: 10/20/2020] [Indexed: 12/29/2022] Open
Abstract
Cisplatin, a widely used chemotherapy for the treatment of various tumors, is clinically limited due to its extensive nephrotoxicity. Inflammatory response in tubular cells is a driving force for cisplatin-induced nephrotoxicity. The plant-derived agents are widely used to relieve cisplatin-induced renal dysfunction in preclinical studies. Polysulfide and hydrogen sulfide (H2S) are ubiquitously expressed in garlic, and both of them are documented as potential agents for preventing and treating inflammatory disorders. This study was designed to determine whether polysulfide and H2S could attenuate cisplatin nephrotoxicity through suppression of inflammatory factors. In renal proximal tubular cells, we found that sodium tetrasulfide (Na2S4), a polysulfide donor, and sodium hydrosulfide (NaHS) and GYY4137, two H2S donors, ameliorated cisplatin-caused renal toxicity through suppression of the massive production of inflammatory cytokines, including tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), and cyclooxygenase-2 (COX-2). Mechanistically, the anti-inflammatory actions of Na2S4 and H2S may be mediated by persulfidation of signal transducer and activator of transcription 3 (STAT3) and inhibitor kappa B kinase β (IKKβ), followed by decreased phosphorylation of STAT3 and IKKβ. Moreover, the nuclear translocation of nuclear transcription factor kappa B (NF-κB), and phosphorylation and degradation of nuclear factor kappa B inhibitor protein alpha (IκBα) induced by cisplatin, were also mitigated by both polysulfide and H2S. In mice, after treatment with polysulfide and H2S donors, cisplatin-associated renal dysfunction was strikingly ameliorated, as evidenced by measurement of serum blood urea nitrogen (BUN) and creatinine levels, renal morphology, and the expression of renal inflammatory factors. Our present work suggests that polysulfide and H2S could afford protection against cisplatin nephrotoxicity, possibly via persulfidating STAT3 and IKKβ and inhibiting NF-κB-mediated inflammatory cascade. Our results might shed light on the potential benefits of garlic-derived polysulfide and H2S in chemotherapy-induced renal damage.
Collapse
|
19
|
The reactions of hydropersulfides (RSSH) with myoglobin. Arch Biochem Biophys 2020; 687:108391. [DOI: 10.1016/j.abb.2020.108391] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/30/2022]
|
20
|
Visualizing hydrogen sulfide in living cells and zebrafish using a red-emitting fluorescent probe via selenium-sulfur exchange reaction. Anal Chim Acta 2020; 1109:37-43. [DOI: 10.1016/j.aca.2020.02.061] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/12/2020] [Accepted: 02/17/2020] [Indexed: 12/21/2022]
|
21
|
Bustaffa E, Cori L, Manzella A, Nuvolone D, Minichilli F, Bianchi F, Gorini F. The health of communities living in proximity of geothermal plants generating heat and electricity: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:135998. [PMID: 31862594 DOI: 10.1016/j.scitotenv.2019.135998] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
Since the 1990s, in areas with natural geothermal manifestations studies on the association between exposure to pollutants and health effect have become increasingly relevant. These emissions consist of water vapor mixed with carbon dioxide, hydrogen sulfide (H2S), methane and, to a lesser extent, rare gases and trace elements in volatile forms. Considering the indications of the World Health Organization and the growth in the use of geothermal energy for energy production, this review aims to report studies exploring the health status of the populations living in areas where geothermal energy is used to produce heat and electricity. Studies on the health effects of the general population exposed to emissions from both natural geothermal events and plants using geothermal energy at domestic or commercial level have been considered between 1999 and 2019. Studies were classified into those based on health indicators and those based on proxy-individual level exposure metrics. Both statistically significant results (p<0.05) and interesting signals were commented. The 19 studies selected (New Zealand, Iceland and Italy) provide heterogeneous results, with an increased risk for several tumor sites. Exposure to H2S low concentrations is positively associated with an increment of respiratory symptoms, anti-asthma drugs use, mortality for respiratory diseases and lung cancer. Exposure to H2S high levels is inversely related to cancer mortality but associated with an increase in hospitalization for respiratory diseases, central nervous system disorders and cardiovascular diseases. The results indicate that the health of populations residing in areas rich in geothermal emissions presents some critical elements to be explored. The two major limitations of the studies are the ecological design and the inadequate exposure assessment. The authors suggested the prosecution and the systematization of health surveillance and human biomonitoring activities associated with permanent control of atmospheric emissions from both industrial and natural plants.
Collapse
Affiliation(s)
- Elisa Bustaffa
- Unit of Environmental Epidemiology and Diseases Registries, Institute of Clinical Physiology, National Research Council, IFC-CNR, via Moruzzi 1, Pisa 56124, Italy.
| | - Liliana Cori
- Unit of Environmental Epidemiology and Diseases Registries, Institute of Clinical Physiology, National Research Council, IFC-CNR, via Moruzzi 1, Pisa 56124, Italy
| | - Adele Manzella
- Institute of Geosciences and Earth Resources, National Research Council, IGG-CNR, via Moruzzi 1, Pisa 56124, Italy
| | - Daniela Nuvolone
- Epidemiology Unit, Regional Health Agency of Tuscany, Via Pietro Dazzi 1, Florence 50100, Italy
| | - Fabrizio Minichilli
- Unit of Environmental Epidemiology and Diseases Registries, Institute of Clinical Physiology, National Research Council, IFC-CNR, via Moruzzi 1, Pisa 56124, Italy
| | - Fabrizio Bianchi
- Unit of Environmental Epidemiology and Diseases Registries, Institute of Clinical Physiology, National Research Council, IFC-CNR, via Moruzzi 1, Pisa 56124, Italy
| | - Francesca Gorini
- Unit of Environmental Epidemiology and Diseases Registries, Institute of Clinical Physiology, National Research Council, IFC-CNR, via Moruzzi 1, Pisa 56124, Italy
| |
Collapse
|
22
|
Strianese M, Lamberti M, Persico A, Pellecchia C. Reactivity of monohydrogensulfide with a suite of pyridoxal-based complexes: A combined NMR, ESI-MS, UV–visible and fluorescence study. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Wang H, Shi X, Qiu M, Lv S, Liu H. Hydrogen Sulfide Plays an Important Protective Role through Influencing Endoplasmic Reticulum Stress in Diseases. Int J Biol Sci 2020; 16:264-271. [PMID: 31929754 PMCID: PMC6949148 DOI: 10.7150/ijbs.38143] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/10/2019] [Indexed: 02/06/2023] Open
Abstract
The endoplasmic reticulum is an important organelle responsible for protein synthesis, modification, folding, assembly and transport of new peptide chains. When the endoplasmic reticulum protein folding ability is impaired, the unfolded or misfolded proteins accumulate to lead to endoplasmic reticulum stress. Hydrogen sulfide is an important signaling molecule that regulates many physiological and pathological processes. Recent studies indicate that H2S plays an important protective role in many diseases through influencing endoplasmic reticulum stress, but its mechanism is not fully understood. This article reviewed the progress about the effect of H2S on endoplasmic reticulum stress and its mechanisms involved in diseases in recent years to provide theoretical basis for in-depth study.
Collapse
Affiliation(s)
- Honggang Wang
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475000, China
| | - Xingzhuo Shi
- School of Life Science, Henan University, Kaifeng, Henan, 475000, China
| | - Mengyuan Qiu
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475000, China
| | - Shuangyu Lv
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475000, China
| | - Huiyang Liu
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475000, China
| |
Collapse
|
24
|
Hsieh MH, Tsai HW, Lin KJ, Wu ZY, Hu HY, Chang Y, Wei HJ, Sung HW. An in situ slow-releasing H2S donor depot with long-term therapeutic effects for treating ischemic diseases. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109954. [DOI: 10.1016/j.msec.2019.109954] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 06/11/2019] [Accepted: 07/05/2019] [Indexed: 01/06/2023]
|
25
|
Ma C, Xu Z, Lv H. Low n-6/ n-3 PUFA ratio improves inflammation and myocardial ischemic reperfusion injury. Biochem Cell Biol 2019; 97:621-629. [PMID: 31580709 DOI: 10.1139/bcb-2018-0342] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This study investigated the potential effect of n-6/n-3 polyunsaturated fatty acids (PUFA) on inflammation and myocardial ischemic reperfusion injury (MIRI) in rats, together with the underlying protective mechanisms, and screen out most effective ratio of n-6/n-3 within limits. The rats with pre-infarct treatment were distributed among 5 groups according to the n-6/n-3 ratio (36:1; 1:1, 5:1, 10:1, 50:1); for the post-infarct treatment, the rats were distributed among 6 groups, including the control group (36:1) which was subjected to a sham procedure; the model group (36:1); and 4 test groups (n-6/n-3 ratio: 1:1, 5:1, 10:1, 50:1). All of the rats were fed a purple perilla seed oil and safflower oil-based fatty emulsion. The serum levels of monocyte chemoattractant protein-1 (MCP-1), interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α were determined using enzyme-linked immunosorbent assay. Staining with triphenyl tetrazolium chloride, hematoxylin and eosin, or Masson's trichrome was performed for histological examination. Cardiomyocyte apoptosis was examined by TUNEL assay. Western blotting was performed to examine the expression levels of apoptosis-related proteins and signaling pathway proteins. Our data indicate that in both the pre-infarct treatment and post-infarct treatment, low ratios of n-6/n-3 PUFAs significantly inhibited the levels of serum inflammatory factors, the infarct size of MIRI rats, number of cardiomyocytes undergoing apoptosis, and the expression levels of caspase-3, Bcl-2, and Bax in the MIRI group. Thus a low ratio of n-6/n-3 PUFAs ameliorates inflammation and myocardial ischemic reperfusion injury.
Collapse
Affiliation(s)
- Caiyan Ma
- Cardiovascular Department, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, 310012, People's Republic of China.,Cardiovascular Department, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, 310012, People's Republic of China
| | - Zehang Xu
- Cardiovascular Department, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, 310012, People's Republic of China.,Cardiovascular Department, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, 310012, People's Republic of China
| | - Heng Lv
- Cardiovascular Department, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, 310012, People's Republic of China.,Cardiovascular Department, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, 310012, People's Republic of China
| |
Collapse
|
26
|
Kar S, Kambis TN, Mishra PK. Hydrogen sulfide-mediated regulation of cell death signaling ameliorates adverse cardiac remodeling and diabetic cardiomyopathy. Am J Physiol Heart Circ Physiol 2019; 316:H1237-H1252. [PMID: 30925069 PMCID: PMC6620689 DOI: 10.1152/ajpheart.00004.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/18/2019] [Accepted: 03/28/2019] [Indexed: 02/07/2023]
Abstract
The death of cardiomyocytes is a precursor for the cascade of hypertrophic and fibrotic remodeling that leads to cardiomyopathy. In diabetes mellitus (DM), the metabolic environment of hyperglycemia, hyperlipidemia, and oxidative stress causes cardiomyocyte cell death, leading to diabetic cardiomyopathy (DMCM), an independent cause of heart failure. Understanding the roles of the cell death signaling pathways involved in the development of cardiomyopathies is crucial to the discovery of novel targeted therapeutics and biomarkers for DMCM. Recent evidence suggests that hydrogen sulfide (H2S), an endogenous gaseous molecule, has cardioprotective effects against cell death. However, very little is known about signaling by which H2S and its downstream targets regulate myocardial cell death in the DM heart. This review focuses on H2S in the signaling of apoptotic, autophagic, necroptotic, and pyroptotic cell death in DMCM and other cardiomyopathies, abnormalities in H2S synthesis in DM, and potential H2S-based therapeutic strategies to mitigate myocardial cell death to ameliorate DMCM.
Collapse
Affiliation(s)
- Sumit Kar
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center , Omaha, Nebraska
| | - Tyler N Kambis
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center , Omaha, Nebraska
| | - Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center , Omaha, Nebraska
- Department of Anesthesiology, University of Nebraska Medical Center , Omaha, Nebraska
| |
Collapse
|
27
|
Bi X, Zhang G, Wang X, Nguyen C, May HI, Li X, Al-Hashimi AA, Austin RC, Gillette TG, Fu G, Wang ZV, Hill JA. Endoplasmic Reticulum Chaperone GRP78 Protects Heart From Ischemia/Reperfusion Injury Through Akt Activation. Circ Res 2018; 122:1545-1554. [PMID: 29669712 DOI: 10.1161/circresaha.117.312641] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/30/2018] [Accepted: 04/17/2018] [Indexed: 12/14/2022]
Abstract
RATIONALE Restoration of coronary artery blood flow is the most effective means of ameliorating myocardial damage triggered by ischemic heart disease. However, coronary reperfusion elicits an increment of additional injury to the myocardium. Accumulating evidence indicates that the unfolded protein response (UPR) in cardiomyocytes is activated by ischemia/reperfusion (I/R) injury. Xbp1s (spliced X-box binding protein 1), the most highly conserved branch of the unfolded protein response, is protective in response to cardiac I/R injury. GRP78 (78 kDa glucose-regulated protein), a master regulator of the UPR and an Xbp1s target, is upregulated after I/R. However, its role in the protective response of Xbp1s during I/R remains largely undefined. OBJECTIVE To elucidate the role of GRP78 in the cardiomyocyte response to I/R using both in vitro and in vivo approaches. METHODS AND RESULTS Simulated I/R injury to cultured neonatal rat ventricular myocytes induced apoptotic cell death and strong activation of the UPR and GRP78. Overexpression of GRP78 in neonatal rat ventricular myocytes significantly protected myocytes from I/R-induced cell death. Furthermore, cardiomyocyte-specific overexpression of GRP78 ameliorated I/R damage to the heart in vivo. Exploration of underlying mechanisms revealed that GRP78 mitigates cellular damage by suppressing the accumulation of reactive oxygen species. We go on to show that the GRP78-mediated cytoprotective response involves plasma membrane translocation of GRP78 and interaction with PI3 kinase, culminating in stimulation of Akt. This response is required as inhibition of the Akt pathway significantly blunted the antioxidant activity and cardioprotective effects of GRP78. CONCLUSIONS I/R induction of GRP78 in cardiomyocytes stimulates Akt signaling and protects against oxidative stress, which together protect cells from I/R damage.
Collapse
Affiliation(s)
- Xukun Bi
- From the Department of Cardiology, Biomedical Research (Therapy) Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China (X.B., X.L., G.F.).,Division of Cardiology, Department of Internal Medicine (X.B., G.Z., X.W., C.N., H.I.M., T.G.G., Z.V.W., J.A.H.)
| | - Guangyu Zhang
- Division of Cardiology, Department of Internal Medicine (X.B., G.Z., X.W., C.N., H.I.M., T.G.G., Z.V.W., J.A.H.).,University of Texas Southwestern Medical Center, Dallas; Department of Cardiology, Zhongnan Hospital of Wuhan University, Hubei, China (G.Z.)
| | - Xiaoding Wang
- Division of Cardiology, Department of Internal Medicine (X.B., G.Z., X.W., C.N., H.I.M., T.G.G., Z.V.W., J.A.H.).,Department of Cardiology, Renmin Hospital of Wuhan University, Hubei, China (X.W.)
| | - Chau Nguyen
- Division of Cardiology, Department of Internal Medicine (X.B., G.Z., X.W., C.N., H.I.M., T.G.G., Z.V.W., J.A.H.)
| | - Herman I May
- Division of Cardiology, Department of Internal Medicine (X.B., G.Z., X.W., C.N., H.I.M., T.G.G., Z.V.W., J.A.H.)
| | - Xiaoting Li
- From the Department of Cardiology, Biomedical Research (Therapy) Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China (X.B., X.L., G.F.)
| | - Ali A Al-Hashimi
- Department of Medicine, Hamilton Center for Kidney Research, McMaster University and the Research Institute of St. Joseph's Healthcare Hamilton, ON, Canada (A.A.A.-H., R.C.A.)
| | - Richard C Austin
- Department of Medicine, Hamilton Center for Kidney Research, McMaster University and the Research Institute of St. Joseph's Healthcare Hamilton, ON, Canada (A.A.A.-H., R.C.A.)
| | - Thomas G Gillette
- Division of Cardiology, Department of Internal Medicine (X.B., G.Z., X.W., C.N., H.I.M., T.G.G., Z.V.W., J.A.H.)
| | - Guosheng Fu
- From the Department of Cardiology, Biomedical Research (Therapy) Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China (X.B., X.L., G.F.)
| | - Zhao V Wang
- Division of Cardiology, Department of Internal Medicine (X.B., G.Z., X.W., C.N., H.I.M., T.G.G., Z.V.W., J.A.H.)
| | - Joseph A Hill
- Division of Cardiology, Department of Internal Medicine (X.B., G.Z., X.W., C.N., H.I.M., T.G.G., Z.V.W., J.A.H.).,Department of Molecular Biology (J.A.H.)
| |
Collapse
|
28
|
Liang B, Xiao T, Long J, Liu M, Li Z, Liu S, Yang J. Hydrogen sulfide alleviates myocardial fibrosis in mice with alcoholic cardiomyopathy by downregulating autophagy. Int J Mol Med 2017; 40:1781-1791. [PMID: 29039471 PMCID: PMC5716447 DOI: 10.3892/ijmm.2017.3191] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 09/26/2017] [Indexed: 12/30/2022] Open
Abstract
Myocardial fibrosis is one of the most important pathological features of alcoholic cardiomyopathy (ACM). Hydrogen sulfide (H2S) exerts protective effects in various types of cardiovascular disease, which has been demonstrated by many previous studies. However, there is a lack of adequate research on the effect of H2S on myocardial fibrosis in ACM. The present study aimed to investigate the etiopathogenic role of H2S in myocardial fibrosis induced by chronic alcohol intake. An ACM mouse model was induced by consumption of 4% ethanol solution in drinking water for 12 weeks. Sodium hydrosulfide (NaHS) was used as a donor to provide exogenous H2S. Twelve weeks later, mice were sacrificed to calculate the heart to body weight ratio. The degree of myocardial collagen deposition was evaluated by Masson's and Van Gieson's staining, the expression level of collagen Ⅰ was measured by immunohistochemistry and autophagosomes were observed by transmission electron microscopy. In addition, the expression levels of autophagy‑associated proteins and fibrosis-associated proteins were detected by western blotting, and the expression levels of miR-21 and miR-211 were detected by reverse transcription-quantitative polymerase chain reaction. The outcomes of the study revealed that chronic alcohol intake results in myocardial fibrosis, enhanced myocardial collagen deposition and increased expression levels of collagen I, autophagy, autophagy-associated proteins (Beclin 1, Atg3 and Atg7) and fibrosis-associated proteins (MMP8, MMP13, MMP14, MMP17 and TGF-β1), as well as miR-21 and miR-221. These results were markedly reversed following treatment with H2S. The present study confirmed that H2S relieves myocardial fibrosis in mice with ACM, and the underlying mechanism may involve the downregulation of autophagy and miR-21 and miR-211 expression levels.
Collapse
Affiliation(s)
- Biao Liang
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Ting Xiao
- Department of Cardiology, Shenzhen Longhua New District Central Hospital, Shenzhen, Guangdong 518110, P.R. China
| | - Junrong Long
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Maojun Liu
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Zining Li
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Shengquan Liu
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Jun Yang
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
29
|
Álvarez L, Bianco CL, Toscano JP, Lin J, Akaike T, Fukuto JM. Chemical Biology of Hydropersulfides and Related Species: Possible Roles in Cellular Protection and Redox Signaling. Antioxid Redox Signal 2017; 27:622-633. [PMID: 28398141 DOI: 10.1089/ars.2017.7081] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
SIGNIFICANCE For >20 years, physiological signaling associated with the endogenous generation of hydrogen sulfide (H2S) has been of significant interest. Despite its presumed importance, the biochemical mechanisms associated with its actions have not been elucidated. Recent Advances: Recently it has been found that H2S-related or derived species are highly prevalent in mammalian systems and that these species may be responsible for some, if not the majority, of the biological actions attributed to H2S. One of the most prevalent and intriguing species are hydropersulfides (RSSH), which can be present at significant levels. Indeed, it appears that H2S and RSSH are intimately linked in biological systems and likely to be mutually inclusive. CRITICAL ISSUES The fact that H2S and polysulfides such as RSSH are present simultaneously means that the biological actions previously assigned to H2S can be instead because of the presence of RSSH (or other polysulfides). Thus, it remains possible that hydropersulfides are the biological effectors, and H2S serves, to a certain extent, as a marker for persulfides and polysulfides. Addressing this possibility will to a large extent be based on the chemistry of these species. FUTURE DIRECTIONS Currently, it is known that persulfides possess unique and novel chemical properties that may explain their biological prevalence. However, significantly more work will be required to establish the possible physiological roles of these species. Moreover, an understanding of the regulation of their biosynthesis and degradation will become important topics in piecing together their biology. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Lucía Álvarez
- 1 Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires , INQUIMAE-CONICET, Ciudad Universitaria, (C1428EGA) Buenos Aires, Argentina
| | | | - John P Toscano
- 2 Department of Chemistry, Johns Hopkins University , Baltimore, Maryland
| | - Joseph Lin
- 3 Department of Biology, Sonoma State University , Rohnert Park, California
| | - Takaaki Akaike
- 4 Department of Environmental Health Sciences and Molecular Toxicology, Tohoku University Graduate School of Medicine , Sendai, Japan
| | - Jon M Fukuto
- 5 Department of Chemistry, Sonoma State University , Rohnert Park, California
| |
Collapse
|
30
|
Kang J, Neill DL, Xian M. Phosphonothioate-Based Hydrogen Sulfide Releasing Reagents: Chemistry and Biological Applications. Front Pharmacol 2017; 8:457. [PMID: 28740467 PMCID: PMC5502280 DOI: 10.3389/fphar.2017.00457] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 06/26/2017] [Indexed: 01/10/2023] Open
Abstract
Hydrogen sulfide (H2S) is a newly recognized gasotransmitter. Studies have demonstrated that the production of endogenous H2S and the exogenous administration of H2S can regulate many physiological and/or pathological processes. Therefore, H2S releasing agents (also known as H2S donors) are important research tools in advancing our understanding of the biology and clinical potential of H2S. Among currently available donors, GYY4137 is probably the most well-known and has been used in many studies in the past 10 years. Recently, a number of GYY4137 derivatives (e.g., phosphonothioate-based compounds) have been developed as H2S donors. In this review, we summarize the development and application of these donors, which include Lawesson's reagent, substituted phosphorodithioates, cyclic phosphorane analogs, and pH-controlled phosphonamidothioates (JK donors). These donors have advantages such as good water-solubility, slow and controllable H2S release capability, and a variety of reported biological activities. However, it should be noted that the detailed H2S release profiles and byproducts under real biological systems are still unclear for many of these donors. Only after we figure out these unknowns we will see better applications of these donors in H2S research and therapy.
Collapse
Affiliation(s)
| | | | - Ming Xian
- Department of Chemistry, Washington State University, PullmanWA, United States
| |
Collapse
|
31
|
Tkacheva NI, Morozov SV, Lomivorotov BB, Grigor’ev IA. Organic Hydrogen Sulfide Donor Compounds with Cardioprotective Properties (Review). Pharm Chem J 2017. [DOI: 10.1007/s11094-017-1576-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
32
|
Arndt S, Baeza-Garza CD, Logan A, Rosa T, Wedmann R, Prime TA, Martin JL, Saeb-Parsy K, Krieg T, Filipovic MR, Hartley RC, Murphy MP. Assessment of H 2S in vivo using the newly developed mitochondria-targeted mass spectrometry probe MitoA. J Biol Chem 2017; 292:7761-7773. [PMID: 28320864 PMCID: PMC5427258 DOI: 10.1074/jbc.m117.784678] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 03/17/2017] [Indexed: 01/07/2023] Open
Abstract
Hydrogen sulfide (H2S) is produced endogenously in vivo and has multiple effects on signaling pathways and cell function. Mitochondria can be both an H2S source and sink, and many of the biological effects of H2S relate to its interactions with mitochondria. However, the significance of mitochondrial H2S is uncertain, in part due to the difficulty of assessing changes in its concentration in vivo Although a number of fluorescent H2S probes have been developed these are best suited to cells in culture and cannot be used in vivo To address this unmet need we have developed a mitochondria-targeted H2S probe, MitoA, which can be used to assess relative changes in mitochondrial H2S levels in vivo MitoA comprises a lipophilic triphenylphosphonium (TPP) cation coupled to an aryl azide. The TPP cation leads to the accumulation of MitoA inside mitochondria within tissues in vivo There, the aryl azido group reacts with H2S to form an aryl amine (MitoN). The extent of conversion of MitoA to MitoN thus gives an indication of the levels of mitochondrial H2S in vivo Both compounds can be detected sensitively by liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis of the tissues, and quantified relative to deuterated internal standards. Here we describe the synthesis and characterization of MitoA and show that it can be used to assess changes in mitochondrial H2S levels in vivo As a proof of principle we used MitoA to show that H2S levels increase in vivo during myocardial ischemia.
Collapse
Affiliation(s)
- Sabine Arndt
- From the MRC Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Carlos D Baeza-Garza
- the WestCHEM School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Angela Logan
- From the MRC Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Tiziana Rosa
- the Department of Medicine, University of Cambridge, Biomedical Campus, Cambridge, CB2 2QQ, United Kingdom
| | - Rudolf Wedmann
- the Department of Chemistry and Pharmacy, Friedrich-Alexander University of Erlangen-Nuremberg, Egerlandstrasse,1, 91058 Erlangen, Germany
| | - Tracy A Prime
- From the MRC Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Jack L Martin
- the Department of Surgery and Cambridge NIHR Biomedical Research Centre, Biomedical Campus, University of Cambridge, Cambridge CB2 2QQ, United Kingdom
| | - Kourosh Saeb-Parsy
- the Department of Surgery and Cambridge NIHR Biomedical Research Centre, Biomedical Campus, University of Cambridge, Cambridge CB2 2QQ, United Kingdom
| | - Thomas Krieg
- the Department of Medicine, University of Cambridge, Biomedical Campus, Cambridge, CB2 2QQ, United Kingdom
| | - Milos R Filipovic
- the Department of Chemistry and Pharmacy, Friedrich-Alexander University of Erlangen-Nuremberg, Egerlandstrasse,1, 91058 Erlangen, Germany
- the University of Bordeaux, IBGC, UMR 5095, F-33077 Bordeaux, France, and
| | - Richard C Hartley
- the WestCHEM School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom,
| | - Michael P Murphy
- From the MRC Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, United Kingdom,
| |
Collapse
|
33
|
Abstract
Epidemiological evidence links an individual's susceptibility to chronic disease in adult life to events during their intrauterine phase of development. Biologically this should not be unexpected, for organ systems are at their most plastic when progenitor cells are proliferating and differentiating. Influences operating at this time can permanently affect their structure and functional capacity, and the activity of enzyme systems and endocrine axes. It is now appreciated that such effects lay the foundations for a diverse array of diseases that become manifest many years later, often in response to secondary environmental stressors. Fetal development is underpinned by the placenta, the organ that forms the interface between the fetus and its mother. All nutrients and oxygen reaching the fetus must pass through this organ. The placenta also has major endocrine functions, orchestrating maternal adaptations to pregnancy and mobilizing resources for fetal use. In addition, it acts as a selective barrier, creating a protective milieu by minimizing exposure of the fetus to maternal hormones, such as glucocorticoids, xenobiotics, pathogens, and parasites. The placenta shows a remarkable capacity to adapt to adverse environmental cues and lessen their impact on the fetus. However, if placental function is impaired, or its capacity to adapt is exceeded, then fetal development may be compromised. Here, we explore the complex relationships between the placental phenotype and developmental programming of chronic disease in the offspring. Ensuring optimal placentation offers a new approach to the prevention of disorders such as cardiovascular disease, diabetes, and obesity, which are reaching epidemic proportions.
Collapse
Affiliation(s)
- Graham J Burton
- Centre for Trophoblast Research and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom; and Department of Medicine, Knight Cardiovascular Institute, and Moore Institute for Nutrition and Wellness, Oregon Health and Science University, Portland, Oregon
| | - Abigail L Fowden
- Centre for Trophoblast Research and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom; and Department of Medicine, Knight Cardiovascular Institute, and Moore Institute for Nutrition and Wellness, Oregon Health and Science University, Portland, Oregon
| | - Kent L Thornburg
- Centre for Trophoblast Research and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom; and Department of Medicine, Knight Cardiovascular Institute, and Moore Institute for Nutrition and Wellness, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
34
|
Ding T, Chen W, Li J, Ding J, Mei X, Hu H. High Glucose Induces Mouse Mesangial Cell Overproliferation via Inhibition of Hydrogen Sulfide Synthesis in a TLR-4-Dependent Manner. Cell Physiol Biochem 2017; 41:1035-1043. [DOI: 10.1159/000461483] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 12/19/2016] [Indexed: 11/19/2022] Open
Abstract
Background/Aims: Overproliferation of mesangial cells was believed to play an important role in the progress of diabetic nephropathy, one of the primary complications of diabetes. Hydrogen sulfide (H2S), a well-known and pungent gas with the distinctive smell of rotten eggs, was discovered to play a protective role in diabetic nephropathy. Methods: MTT assay was used to examine the viability of mesangial cells. Small interfering RNA was used to knock down the expression of TLR4 while specific inhibitor LY294002 to suppress the function of PI3K. H2S generation rate was determined by a H2S micro-respiration sensor. Results: Glucose of 25mM induced significant mesangial cells proliferation, which was accomplished by significantly inhibited endogenous H2S synthesis. And exogenous H2S treatment by NaHS markedly mitigated the overproliferation of mouse mesangial cells. Furthermore, it was found that H2S deficiency could result in TLR4 activation. And H2S supplementation remarkably inhibited TLR4 expression and curbed the mesangial cell overproliferation. Besides, PI3K/Akt pathway inhibition also significantly ameliorated the cell overproliferation. Conclusion: High glucose (HG) induces mouse mesangial cell overproliferation via inhibition of hydrogen sulfide synthesis in a TLR-4-dependent manner. And PI3K/Akt pathway might also play a vital part in the HG-induced mesangial cell overproliferation.
Collapse
|
35
|
Bianco CL, Chavez TA, Sosa V, Saund SS, Nguyen QNN, Tantillo DJ, Ichimura AS, Toscano JP, Fukuto JM. The chemical biology of the persulfide (RSSH)/perthiyl (RSS·) redox couple and possible role in biological redox signaling. Free Radic Biol Med 2016; 101:20-31. [PMID: 27677567 PMCID: PMC5154930 DOI: 10.1016/j.freeradbiomed.2016.09.020] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/20/2016] [Accepted: 09/23/2016] [Indexed: 12/19/2022]
Abstract
The recent finding that hydropersulfides (RSSH) are biologically prevalent in mammalian systems has prompted further investigation of their chemical properties in order to provide a basis for understanding their potential functions, if any. Hydropersulfides have been touted as hyper-reactive thiol-like species that possess increased nucleophilicity and reducing capabilities compared to their thiol counterparts. Herein, using persulfide generating model systems, the ability of RSSH species to act as one-electron reductants has been examined. Not unexpectedly, RSSH is relatively easily oxidized, compared to thiols, by weak oxidants to generate the perthiyl radical (RSS·). Somewhat surprisingly, however, RSS· was found to be stable in the presence of both O2 and NO and only appears to dimerize. Thus, the RSSH/RSS· redox couple is readily accessible under biological conditions and since dimerization of RSS· may be a rare event due to low concentrations and/or sequestration within a protein, it is speculated that the general lack of reactivity of individual RSS· species may allow this couple to be utilized as a redox component in biological systems.
Collapse
Affiliation(s)
- Christopher L Bianco
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Tyler A Chavez
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Victor Sosa
- Department of Chemistry, Sonoma State University, Rohnert Park, CA 94928, United States
| | - Simran S Saund
- Department of Chemistry, Sonoma State University, Rohnert Park, CA 94928, United States
| | - Q Nhu N Nguyen
- Department of Chemistry, University of California, Davis, One Shield Ave., Davis, CA 95616, United States
| | - Dean J Tantillo
- Department of Chemistry, University of California, Davis, One Shield Ave., Davis, CA 95616, United States
| | - Andrew S Ichimura
- Department of Chemistry and Biochemistry, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132-4163, United States
| | - John P Toscano
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, United States.
| | - Jon M Fukuto
- Department of Chemistry, Sonoma State University, Rohnert Park, CA 94928, United States.
| |
Collapse
|
36
|
Azizi F, Seifi B, Kadkhodaee M, Ahghari P. Administration of hydrogen sulfide protects ischemia reperfusion-induced acute kidney injury by reducing the oxidative stress. Ir J Med Sci 2016; 185:649-654. [PMID: 26141462 DOI: 10.1007/s11845-015-1328-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 06/20/2015] [Indexed: 01/03/2023]
Abstract
BACKGROUND Renal ischemia-reperfusion injury (IRI) is a major cause of acute kidney injury. Hydrogen sulfide (H2S) has been known as a novel gaseous signaling molecule. AIMS The aim of this study was to investigate whether the efficacy of H2S in protecting against renal IRI is through its antioxidative effect. METHOD In this study, rats were randomized into Sham, IR, or sodium hydrosulfide (NaHS, an H2S donor) groups. To establish a model of renal IRI, both renal arteries were occluded for 55 min and then declamped to allow reperfusion for 24 h. Rats in the NaHS group received intraperitoneal injections of 75 μmol/kg NaHS 10 min before the onset of ischemia and immediately after the onset of reperfusion. Sham group underwent laparotomy without cross-clamping of renal pedicles. After reperfusion, plasma and renal tissue samples were collected for functional, histological, and oxidative stress evaluation. RESULTS The IR group exhibited significant rise in plasma creatinine, blood urea nitrogen (BUN), renal malondialdehyde (MDA) concentration, and significant reduction of renal superoxide dismutase (SOD) activity. Treatment with NaHS reduced the levels of plasma creatinine, BUN, renal MDA concentration, and increased SOD activity in the kidneys. NaHS improved renal histological changes in comparison to IR group. CONCLUSION Our data demonstrated that H2S can protect against renal IRI and that its therapeutic effects may be mediated by reducing oxidative stress.
Collapse
Affiliation(s)
- F Azizi
- Department of Neurosciences and Addiction, School of Advanced in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - B Seifi
- Department of Physiology, Faculty of Medicine, School of Medicine, Tehran University of Medical Sciences, Poorsina Ave., Tehran, Iran.
| | - M Kadkhodaee
- Department of Physiology, Faculty of Medicine, School of Medicine, Tehran University of Medical Sciences, Poorsina Ave., Tehran, Iran
| | - P Ahghari
- Department of Physiology, School of Medicine, Hamedan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
37
|
Sun N, Wang H, Wang L. Protective effects of ghrelin against oxidative stress, inducible nitric oxide synthase and inflammation in a mouse model of myocardial ischemia/reperfusion injury via the HMGB1 and TLR4/NF-κB pathway. Mol Med Rep 2016; 14:2764-70. [DOI: 10.3892/mmr.2016.5535] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 06/20/2016] [Indexed: 11/06/2022] Open
|
38
|
Kang J, Li Z, Organ CL, Park CM, Yang CT, Pacheco A, Wang D, Lefer DJ, Xian M. pH-Controlled Hydrogen Sulfide Release for Myocardial Ischemia-Reperfusion Injury. J Am Chem Soc 2016; 138:6336-9. [DOI: 10.1021/jacs.6b01373] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jianming Kang
- Department
of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Zhen Li
- Cardiovascular Center of Excellence, Louisiana State University Health Science Center, New Orleans, Louisiana 70112, United States
| | - Chelsea L. Organ
- Cardiovascular Center of Excellence, Louisiana State University Health Science Center, New Orleans, Louisiana 70112, United States
| | - Chung-Min Park
- Department
of Chemistry, Washington State University, Pullman, Washington 99164, United States
- Department
of Chemistry, Gangneung-Wonju National University, Gangneung, Gangwon 25457, South Korea
| | - Chun-tao Yang
- Department of Physiology, Guangzhou Medical University, Guangzhou 511436, China
| | - Armando Pacheco
- Department
of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Difei Wang
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, D.C. 20057, United States
| | - David J. Lefer
- Cardiovascular Center of Excellence, Louisiana State University Health Science Center, New Orleans, Louisiana 70112, United States
| | - Ming Xian
- Department
of Chemistry, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
39
|
Xiao T, Luo J, Wu Z, Li F, Zeng O, Yang J. Effects of hydrogen sulfide on myocardial fibrosis and PI3K/AKT1-regulated autophagy in diabetic rats. Mol Med Rep 2015; 13:1765-73. [PMID: 26676365 DOI: 10.3892/mmr.2015.4689] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 11/06/2015] [Indexed: 11/05/2022] Open
Abstract
Myocardial fibrosis is the predominant pathological characteristic of diabetic myocardial damage. Previous studies have indicated that hydrogen sulfide (H2S) has beneficial effects in the treatment of various cardiovascular diseases. However, there is little research investigating the effect of H2S on myocardial fibrosis in diabetes. The present study aimed to investigate the effects of H2S on the progression of myocardial fibrosis induced by diabetes. Diabetes was induced in rats by intraperitoneal injection of streptozotocin. Sodium hydrosulfide (NaHS) was used as an exogenous donor of H2S. After 8 weeks, expression levels of cystathionine-γ-lyase were determined by western blot analysis and morphological changes in the myocardium were assessed by hematoxylin and eosin staining and Masson staining. The hydroxyproline content and fibrosis markers were determined by a basic hydrolysis method and western blot analysis, respectively. Autophagosomes were observed under transmission electron microscopy. Expression levels of autophagy-associated proteins and their upstream signaling molecules were also evaluated by western blotting. The results of the current study indicated that diabetes induced marked myocardial fibrosis, enhanced myocardial autophagy and suppressed the phosphatidylinositol-4,5-bisphosphate 3-kinase/RAC-α serine/threonine-protein kinase (PI3K/AKT1) signaling pathway. By contrast, following treatment with NaHS, myocardial fibrosis was ameliorated, myocardial autophagy was decreased and the PI3K/AKT1 pathway suppression was reversed. The results of the present study demonstrated that the protective effect of H2S against diabetes-induced myocardial fibrosis may be associated with the attenuation of autophagy via the upregulation of the PI3K/AKT1 signaling pathway.
Collapse
Affiliation(s)
- Ting Xiao
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Jian Luo
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Zhixiong Wu
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Fang Li
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Ou Zeng
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Jun Yang
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
40
|
Karakuş E, Üçüncü M, Emrullahoğlu M. Electrophilic Cyanate As a Recognition Motif for Reactive Sulfur Species: Selective Fluorescence Detection of H2S. Anal Chem 2015; 88:1039-43. [PMID: 26626400 DOI: 10.1021/acs.analchem.5b04163] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An ESIPT-based fluorescent dye, 3-hydroxyflavone, is chemically masked with an electrophilic cyanate motif in order to construct a fluorescent probe for cellular sulfur species. This novel probe structure, displays an extremely fast, highly sensitive and selective "turn-on" type fluorescent response toward H2S. We have also documented its utility for imaging of H2S in the living cells.
Collapse
Affiliation(s)
- Erman Karakuş
- Department of Chemistry, Faculty of Science, İzmir Institute of Technology, Urla , 35430, İzmir, Turkey
| | - Muhammed Üçüncü
- Department of Chemistry, Faculty of Science, İzmir Institute of Technology, Urla , 35430, İzmir, Turkey
| | - Mustafa Emrullahoğlu
- Department of Chemistry, Faculty of Science, İzmir Institute of Technology, Urla , 35430, İzmir, Turkey
| |
Collapse
|
41
|
Feng S, Zhao Y, Xian M, Wang Q. Biological thiols-triggered hydrogen sulfide releasing microfibers for tissue engineering applications. Acta Biomater 2015; 27:205-213. [PMID: 26363376 PMCID: PMC4609630 DOI: 10.1016/j.actbio.2015.09.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 09/04/2015] [Accepted: 09/08/2015] [Indexed: 01/15/2023]
Abstract
By electrospinning of polycaprolactone (PCL) solutions containing N-(benzoylthio)benzamide (NSHD1), a H2S donor, fibrous scaffolds with hydrogen sulfide (H2S) releasing capability (H2S-fibers) are fabricated. The resultant microfibers are capable of releasing H2S upon immersion in aqueous solution containing biological thiols under physiological conditions. The H2S release peaks of H2S-fibers appeared at 2-4h, while the peak of donor alone showed at 45 min. H2S release half-lives of H2S-fibers were 10-20 times longer than that of donor alone. Furthermore, H2S-fibers can protect cells from H2O2 induced oxidative damage by significantly decreasing the production of intracellular reactive oxygen species (ROS). Finally, we investigated the H2S-fibers application as a wound dressing in vitro. Given that H2S has a broad range of physiological functions, H2S-fibers hold great potential for various biomedical applications. STATEMENT OF SIGNIFICANCE Hydrogen sulfide, as a gaseous messenger, plays a crucial role in many physiological and pathological conditions. Recent studies about functions of H2S suggests H2S-based therapy could be promising therapeutic strategy for many diseases, such as cardiovascular disease, arthritis, and inflammatory bowel disease. Although many H2S donors have been developed and applied for biomedical studies, most of H2S donors have the shortage that the H2S release is either too fast or uncontrollable, which poorly mimic the biological generation of H2S. By simply combining electrospinning technique with our designed biological thiols activated H2S donor, NSHD1, we fabricated H2S releasing microfibers (H2S-fibers). This H2S-fibers significantly prolonged the releasing time compared to H2S donor alone. By adjusting the electrospinning parameters, tunable releasing profiles can be achieved. Moreover, the H2S fibers can protect cardiac myoblasts H9c2 and fibroblast NIH 3T3 from oxidative damage and support their proliferation as cellular scaffolds. To our knowledge, this is the first report of electrospun fibers with H2S releasing capacity. We anticipate this H2S-releasing scaffold will have great potential for biomedical applications.
Collapse
Affiliation(s)
- Sheng Feng
- Department of Chemistry and Biochemistry and Nanocenter, University of South Carolina, Columbia, SC 29208, USA
| | - Yu Zhao
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Ming Xian
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA.
| | - Qian Wang
- Department of Chemistry and Biochemistry and Nanocenter, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
42
|
Yanchuk PI, Slobodianyk LA. [THE ROLE OF HYDROGEN SULFIDE IN REGULATION OF CIRCULATION BLOOD LIVER]. ACTA ACUST UNITED AC 2015; 61:28-34. [PMID: 26495733 DOI: 10.15407/fz61.03.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
It was shown in acute experiments on laboratory rats that intraportalinjectionof hydrogen sulfide's precursor L-cysteine (15 mg/kg)caused dilatation of the intrahepatic vessels. As a result, systemic blood pressure (SBP) and blood pressure in the portal vein (PVP) significantly decreased on 17,6 and 24,5%, respectively, and the rate of local blood flow in the liver (LF) and its blood filling (BF) increased on 28,2 and 24,4% respectively. Application of hydrogen sulfide donor NaHS (7 mg/kg) resulted in similarly directed changes: SBP and PVP decreased on 20,8% i 26,2% respectively,LF and BF increased on 16,4% and 30,9% respectively. Application of L-cysteine in the conditions of tsystationin-gamma-lyase blockade by LD-proparhilhlitsyn led to an increase in SBP on 20,4 % and PVP on 26,6% and a decrease of BF on 21,5% and LF in the liver on 11,7% comparing with baseline values of these parameters. So, blockade of tsystationin-gamma-lyase not only completely removed the effects of L-cysteine, but also inhibited synthesis of H2S from its endogenous predecessors,which led to vasoconstriction of liver's blood vessels and, consequently, to an increase of blood pressure and a decrease of liver blood flow rat's and volume of blood deposited in liver.
Collapse
|
43
|
Zhao Y, Yang C, Organ C, Li Z, Bhushan S, Otsuka H, Pacheco A, Kang J, Aguilar HC, Lefer DJ, Xian M. Design, Synthesis, and Cardioprotective Effects of N-Mercapto-Based Hydrogen Sulfide Donors. J Med Chem 2015; 58:7501-11. [PMID: 26317692 PMCID: PMC4766970 DOI: 10.1021/acs.jmedchem.5b01033] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Hydrogen sulfide (H2S) is a signaling molecule which plays regulatory roles in many physiological and/or pathological processes. Therefore, regulation of H2S levels could have great potential therapeutic value. In this work, we report the design, synthesis, and evaluation of a class of N-mercapto (N-SH)-based H2S donors. Thirty-three donors were synthesized and tested. Our results indicated that controllable H2S release from these donors could be achieved upon structural modifications. Selected donors (NSHD-1, NSHD-2, and NSHD-6) were tested in cellular models of oxidative damage and showed significant cytoprotective effects. Moreover, NSHD-1 and NSHD-2 were also found to exhibit potent protective effects in a murine model of myocardial ischemia reperfusion (MI/R) injury.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Chemistry, Washington State University , Pullman, Washington 99164, United States
| | - Chuntao Yang
- Department of Physiology, Guangzhou Medical University , Guangzhou 511436, China
| | - Chelsea Organ
- Cardiovascular Center of Excellence, Louisiana State University Health Science Center , New Orleans, Louisiana 70112, United States
| | - Zhen Li
- Cardiovascular Center of Excellence, Louisiana State University Health Science Center , New Orleans, Louisiana 70112, United States
| | - Shashi Bhushan
- Cardiovascular Center of Excellence, Louisiana State University Health Science Center , New Orleans, Louisiana 70112, United States
| | - Hiro Otsuka
- Cardiovascular Center of Excellence, Louisiana State University Health Science Center , New Orleans, Louisiana 70112, United States
| | - Armando Pacheco
- Department of Chemistry, Washington State University , Pullman, Washington 99164, United States
| | - Jianming Kang
- Department of Chemistry, Washington State University , Pullman, Washington 99164, United States
| | - Hector C Aguilar
- Paul G. Allen School for Global Animal Health, Washington State University , Pullman, Washington 99164, United States
| | - David J Lefer
- Cardiovascular Center of Excellence, Louisiana State University Health Science Center , New Orleans, Louisiana 70112, United States
| | - Ming Xian
- Department of Chemistry, Washington State University , Pullman, Washington 99164, United States
| |
Collapse
|
44
|
Urotensin II Protects Cardiomyocytes from Apoptosis Induced by Oxidative Stress through the CSE/H2S Pathway. Int J Mol Sci 2015; 16:12482-98. [PMID: 26047336 PMCID: PMC4490456 DOI: 10.3390/ijms160612482] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 05/22/2015] [Accepted: 05/22/2015] [Indexed: 02/07/2023] Open
Abstract
Plasma urotensin II (UII) has been observed to be raised in patients with acute myocardial infarction; suggesting a possible cardiac protective role for this peptide. However, the molecular mechanism is unclear. Here, we treated cultured cardiomyocytes with H2O2 to induce oxidative stress; observed the effect of UII on H2O2-induced apoptosis and explored potential mechanisms. UII pretreatment significantly reduced the number of apoptotic cardiomyocytes induced by H2O2; and it partly abolished the increase of pro-apoptotic protein Bax and the decrease of anti-apoptotic protein Bcl-2 in cardiomyocytes induced by H2O2. SiRNA targeted to the urotensin II receptor (UT) greatly inhibited these effects. Further analysis revealed that UII increased the production of hydrogen sulfide (H2S) and the level of cystathionine-γ-lyase (CSE) by activating the ERK signaling in H2O2-treated-cardiomyocytes. Si-CSE or ERK inhibitor not only greatly inhibited the increase in CSE level or the phosphorylation of ERK induced by UII but also reversed anti-apoptosis of UII in H2O2-treated-cadiomyocytes. In conclusion, UII rapidly promoted the phosphorylation of ERK and upregulated CSE level and H2S production, which in turn activated ERK signaling to protect cardiomyocytes from apoptosis under oxidative stress. These results suggest that increased plasma UII level may protect cardiomyocytes at the early-phase of acute myocardial infarction in patients.
Collapse
|
45
|
Huang S, Li H, Ge J. A cardioprotective insight of the cystathionine γ-lyase/hydrogen sulfide pathway. IJC HEART & VASCULATURE 2015; 7:51-57. [PMID: 28785645 PMCID: PMC5497180 DOI: 10.1016/j.ijcha.2015.01.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 11/29/2014] [Accepted: 01/20/2015] [Indexed: 11/29/2022]
Abstract
Traditionally, hydrogen sulfide (H2S) was simply considered as a toxic and foul smelling gas, but recently H2S been brought into the spot light of cardiovascular research and development. Since the 1990s, H2S has been mounting evidence of physiological properties such as immune modification, vascular relaxation, attenuation of oxidative stress, inflammatory mitigation, and angiogenesis. H2S has since been recognized as the third physiological gaseous signaling molecule, along with CO and NO [65,66]. H2S is produced endogenously through several key enzymes, including cystathionine β-lyase (CBE), cystathionine γ-lyase (CSE), and 3-mercaptopyruvate sulfurtransferase (MST)/cysteine aminotransferase (CAT). These specific enzymes are expressed accordingly in various organ systems and CSE is the predominant H2S-producing enzyme in the cardiovascular system. The cystathionine γ-lyase (CSE)/H2S pathway has demonstrated various cardioprotective effects, including anti-atherosclerosis, anti-hypertension, pro-angiogenesis, and attenuation of myocardial ischemia-reperfusion injury. CSE exhibits its anti-atherosclerotic effect through 3 mechanisms, namely reduction of chemotactic factor inter cellular adhesion molecule-1 (ICAM-1) and CX3CR1, inhibition of macrophage lipid uptake, and induction of smooth muscle cell apoptosis via MAPK pathway. The CSE/H2S pathway's anti-hypertensive properties are demonstrated via aortic vasodilation through several mechanisms, including the direct stimulation of KATP channels of vascular smooth muscle cells (VSMCs), induction of MAPK pathway, and reduction of homocysteine buildup. Also, CSE/H2S pathway plays an important role in angiogenesis, particularly in increased endothelial cell growth and migration, and in increased vascular network length. In myocardial ischemia-reperfusion injuries, CSE/H2S pathway has shown a clear cardioprotective effect by preserving mitochondria function, increasing antioxidant production, and decreasing infarction injury size. However, CSE/H2S pathway's role in inflammation mitigation is still clouded, due to both pro and anti-inflammatory results presented in the literature, depending on the concentration and form of H2S used in specific experiment models.
Collapse
Key Words
- Akt, protein kinase B
- Angiogenesis
- Atherosclerosis
- BCA, brachiocephalic artery
- CAM, chorioallantoic membrane
- CAT, cysteine aminotransferase
- CBS, cystathionine β-lyase
- CLP, cecal ligation and puncture
- CSE KO, CSE knock out
- CSE, cystathionine γ-lyase
- CTO, chronic total occlusion
- CX3CL1, chemokine (C-X3-C Motif) ligand 1
- CX3CR1, CX3C chemokine receptor 1
- Cystathionine γ-lyase
- EC, endothelial cell
- ERK, extracellular signal-regulated kinase
- GAPDH, glyceraldehyde 3-phosphate dehydrogenase
- GSH-Px, glutathione peroxidase
- GYY4137, morpholin-4-Ium-4-methoxyphenyl(morpholino) phosphinodithioate
- H2S, hydrogen sulfide
- HUVECs, human umbilical vein endothelial cells
- Hydrogen sulfide
- ICAM-1, inter cellular adhesion molecule-1
- IMT, intima–media complex thickness
- Ischemia–reperfusion injury
- LPS, lipopolysaccharide
- MAPK, mitogen-activated protein kinase
- MPO, myeloperoxidase
- MST, 3-mercaptopyruvate sulfurtransferase
- NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells
- Nrf2, nuclear factor erythroid 2-related factor 2
- PAG, DL-propagylglycine
- PPAR-γ, peroxisome proliferator-activated receptor
- PTPN1, protein tyrosine phosphatase, non-receptor type 1
- ROS, reactive oxygen species
- S-diclofenac, 2-[(2,6-dichlorophenyl)amino]benzeneacetic acid 4-(3H-1,2-dithiole-3-thione-5-Yl)-phenyl ester
- SAH, S-adenosylhomocysteine
- SAM, S-adenosylmethionine
- SMCs, smooth muscle cells
- SOD, superoxide dismutase
- VEGF, vascular endothelial growth factor
- VSMCs, vascular smooth muscle cells
- Vasorelaxation
- l-NAME, NG-nitro-l-arginine methyl ester
- oxLDL, oxidized low density lipoprotein
Collapse
Affiliation(s)
- Steve Huang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hua Li
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Departments of Physiology and Medicine/CVRL, UCLA School of Medicine, Los Angeles, CA 90095, USA
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
46
|
Zhao Y, Biggs TD, Xian M. Hydrogen sulfide (H2S) releasing agents: chemistry and biological applications. Chem Commun (Camb) 2015; 50:11788-805. [PMID: 25019301 DOI: 10.1039/c4cc00968a] [Citation(s) in RCA: 263] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hydrogen sulfide (H2S) is a newly recognized signaling molecule with very potent cytoprotective actions. The fields of H2S physiology and pharmacology have been rapidly growing in recent years, but a number of fundamental issues must be addressed to advance our understanding of the biology and clinical potential of H2S in the future. Hydrogen sulfide releasing agents (also known as H2S donors) have been widely used in these fields. These compounds are not only useful research tools, but also potential therapeutic agents. It is therefore important to study the chemistry and pharmacology of exogenous H2S and to be aware of the limitations associated with the choice of donors used to generate H2S in vitro and in vivo. In this review we summarized the developments and limitations of currently available donors including H2S gas, sulfide salts, garlic-derived sulfur compounds, Lawesson's reagent/analogs, 1,2-dithiole-3-thiones, thiol-activated donors, photo-caged donors, and thioamino acids. Some biological applications of these donors were also discussed.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA.
| | | | | |
Collapse
|
47
|
Defining the minimally effective dose and schedule for parenteral hydrogen sulfide: long-term benefits in a rat model of hindlimb ischemia. Med Gas Res 2015; 5:5. [PMID: 25918638 PMCID: PMC4410454 DOI: 10.1186/s13618-015-0027-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 04/06/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Peripheral arterial disease (PAD) affects millions of Americans and leads to critical limb ischemia (CLI) in the most severe cases. Investigators have demonstrated the utility of hydrogen sulfide for restoring perfusion in rodent models of chronic ischemia. We sought to determine the minimum effective dose (MED) of sulfide necessary to restore perfusion in the rat hindlimb, to assess the persistence of limb perfusion after cessation of treatment, and to compare perfusion measurements between laser doppler and ultrasound methods. METHODS In 3 separate experiments, sodium sulfide (1.0, 0.5, or 0.25 mg/kg twice daily for 14 days, 0.25 mg/kg twice daily for 7 days, 0.5 mg/kg once daily for 7 days, or 0.25 mg/kg twice daily for 3 days) or vehicle was administered after left femoral artery ligation and transection. Hindlimb perfusion was assessed by laser doppler flowmetry and contrast enhanced ultrasound over the duration of each study, and cellular proliferation and vascular density were assessed by immunohistochemical means in the initial experiment. RESULTS Intravenous sodium sulfide at 0.25, 0.5, or 1.0 mg/kg twice daily for 2 weeks significantly enhanced the recovery of blood flow to the ischemic hindlimb by 7 days. The enhancement of blood flow with 1.0 mg/kg dosing was coincident with an increase in cellular proliferation and vascular density in the ischemic tissue. In a final experiment, i.v. administration of sodium sulfide at 0.5 mg/kg once daily for 7 days or 0.25 mg/kg twice daily for 7 days significantly elevated blood flow and skeletal muscle perfusion in the ischemic hindlimb, whereas 0.25 mg/kg twice daily for 3 days had no effect. This enhancement of blood flow appeared long lived, as blood flow remained elevated 3 weeks after cessation of treatment. CONCLUSIONS These data, together with other published observations, demonstrate the efficacy of hydrogen sulfide in restoring perfusion to chronically ischemic tissue and establish a minimum efficacious dose in the rat hindlimb model.
Collapse
|
48
|
Fawcett EM, Hoyt JM, Johnson JK, Miller DL. Hypoxia disrupts proteostasis in Caenorhabditis elegans. Aging Cell 2015; 14:92-101. [PMID: 25510338 PMCID: PMC4326909 DOI: 10.1111/acel.12301] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2014] [Indexed: 01/08/2023] Open
Abstract
Oxygen is fundamentally important for cell metabolism, and as a consequence, O2 deprivation (hypoxia) can impair many essential physiological processes. Here, we show that an active response to hypoxia disrupts cellular proteostasis – the coordination of protein synthesis, quality control, and degradation that maintains the functionality of the proteome. We have discovered that specific hypoxic conditions enhance the aggregation and toxicity of aggregation-prone proteins that are associated with neurodegenerative diseases. Our data indicate this is an active response to hypoxia, rather than a passive consequence of energy limitation. This response to hypoxia is partially antagonized by the conserved hypoxia-inducible transcription factor, hif-1. We further demonstrate that exposure to hydrogen sulfide (H2S) protects animals from hypoxia-induced disruption of proteostasis. H2S has been shown to protect against hypoxic damage in mammals and extends lifespan in nematodes. Remarkably, our data also show that H2S can reverse detrimental effects of hypoxia on proteostasis. Our data indicate that the protective effects of H2S in hypoxia are mechanistically distinct from the effect of H2S to increase lifespan and thermotolerance, suggesting that control of proteostasis and aging can be dissociated. Together, our studies reveal a novel effect of the hypoxia response in animals and provide a foundation to understand how the integrated proteostasis network is integrated with this stress response pathway.
Collapse
Affiliation(s)
- Emily M. Fawcett
- Graduate Program in Molecular and Cellular Biology University of Washington School of Medicine Seattle WA 98195‐7350USA
| | - Jill M. Hoyt
- Department of Biochemistry University of Washington School of Medicine Seattle WA 98195‐7350USA
| | | | - Dana L. Miller
- Graduate Program in Molecular and Cellular Biology University of Washington School of Medicine Seattle WA 98195‐7350USA
- Department of Biochemistry University of Washington School of Medicine Seattle WA 98195‐7350USA
| |
Collapse
|
49
|
Zhao Y, Pacheco A, Xian M. Medicinal Chemistry: Insights into the Development of Novel H2S Donors. Handb Exp Pharmacol 2015; 230:365-388. [PMID: 26162844 DOI: 10.1007/978-3-319-18144-8_18] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Hydrogen sulfide (H2S) was traditionally considered as a toxic gas. However, recent studies have demonstrated H2S is an endogenously generated gaseous signaling molecule (gasotransmitter) with importance on par with that of two other well-known endogenous gasotransmitters, nitric oxide (NO) and carbon monoxide (CO). Although H2S's exact mechanisms of action are still under investigation, the production of endogenous H2S and the exogenous administration of H2S have been demonstrated to elicit a wide range of physiological responses including modulation of blood pressure and protection of ischemia reperfusion injury, exertion of anti-inflammatory effects, and reduction of metabolic rate. These results strongly suggest that modulation of H2S levels could have potential therapeutic values. In this regard, synthetic H2S-releasing agents (i.e., H2S donors) are not only important research tools, but also potential therapeutic agents. This chapter summarizes the knowledge of currently available H2S donors. Their preparation, H2S releasing mechanisms, and biological applications are discussed.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| | | | | |
Collapse
|
50
|
Shimada S, Fukai M, Wakayama K, Ishikawa T, Kobayashi N, Kimura T, Yamashita K, Kamiyama T, Shimamura T, Taketomi A, Todo S. Hydrogen sulfide augments survival signals in warm ischemia and reperfusion of the mouse liver. Surg Today 2014; 45:892-903. [PMID: 25362520 DOI: 10.1007/s00595-014-1064-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 06/19/2014] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND PURPOSE Hydrogen sulfide (H2S) ameliorates hepatic ischemia and reperfusion injury (IRI), but the precise mechanism remains elusive. We investigated whether sodium hydrogen sulfide (NaHS), a soluble derivative of H2S, would ameliorate hepatic IRI, and if so, via what mechanism. METHODS Mice were subjected to partial warm ischemia for 75 min followed by reperfusion. Either NaHS or saline was administered intravenously 10 min before reperfusion. The liver and serum were collected 3, 6, and 24 h after reperfusion. RESULTS In the NaHS(-) group, severe IRI was apparent by the ALT leakage, tissue injury score, apoptosis, lipid peroxidation, and inflammation (higher plasma TNF-α, IL-6, IL-1β, IFN-γ, IL-23, IL-17, and CD40L), whereas IRI was significantly ameliorated in the NaHS(+) group. These effects could be explained by the augmented nuclear translocation of Nrf2, and the resulting up-regulation of HO-1 and thioredoxin-1. Phosphorylation of the PDK-1/Akt/mTOR/p70S6k axis, which is known to mediate pro-survival and anti-apoptotic signals, was significantly augmented in the NaHS(+) group, with a higher rate of PCNA-positive cells thereafter. CONCLUSION NaHS ameliorated hepatic IRI by direct and indirect anti-oxidant activities by augmenting pro-survival, anti-apoptotic, and anti-inflammatory signals via mechanisms involving Nrf-2, and by accelerating hepatic regeneration via mechanisms involving Akt-p70S6k.
Collapse
Affiliation(s)
- Shingo Shimada
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, N-15, W-7, Kita-ku, Sapporo, 060-8638, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|