1
|
Sánchez-García S, Jaén RI, Fernández-Velasco M, Delgado C, Boscá L, Prieto P. Lipoxin-mediated signaling: ALX/FPR2 interaction and beyond. Pharmacol Res 2023; 197:106982. [PMID: 37925045 DOI: 10.1016/j.phrs.2023.106982] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/06/2023]
Abstract
In the aftermath of tissue injury or infection, an efficient resolution mechanism is crucial to allow tissue healing and preserve appropriate organ functioning. Pro-resolving bioactive lipids prevent uncontrolled inflammation and its consequences. Among these mediators, lipoxins were the first described and their pro-resolving actions have been mainly described in immune cells. They exert their actions mostly through formyl-peptide receptor 2 (ALX/FPR2 receptor), a G-protein-coupled receptor whose biological function is tremendously complex, primarily due to its capacity to mediate variable cellular responses. Moreover, lipoxins can also interact with alternative receptors like the cytoplasmic aryl hydrocarbon receptor, the cysteinyl-leukotrienes receptors or GPR32, triggering different intracellular signaling pathways. The available information about this complex response mediated by lipoxins is addressed in this review, going over the different mechanisms used by these molecules to stop the inflammatory reaction and avoid the development of dysregulated and chronic pathologies.
Collapse
Affiliation(s)
- Sergio Sánchez-García
- Instituto de Investigaciones Biomédicas "Alberto Sols", CSIC-UAM Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
| | - Rafael I Jaén
- Instituto de Investigaciones Biomédicas "Alberto Sols", CSIC-UAM Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
| | - María Fernández-Velasco
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigación del Hospital La Paz, IdiPaz, Madrid, Spain
| | - Carmen Delgado
- Instituto de Investigaciones Biomédicas "Alberto Sols", CSIC-UAM Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas "Alberto Sols", CSIC-UAM Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain.
| | - Patricia Prieto
- Instituto de Investigaciones Biomédicas "Alberto Sols", CSIC-UAM Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain; Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
2
|
Flowers E, Allen IE, Kanaya AM, Aouizerat BE. Circulating MicroRNAs predict glycemic improvement and response to a behavioral intervention. Biomark Res 2021; 9:65. [PMID: 34425916 PMCID: PMC8383422 DOI: 10.1186/s40364-021-00317-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/27/2021] [Indexed: 01/16/2023] Open
Abstract
Background MicroRNAs may be important regulators of risk for type 2 diabetes. The purpose of this longitudinal observational study was to assess whether circulating microRNAs predicted improvements in fasting blood glucose, a major risk factor for type 2 diabetes, over 12 months. Methods The study included participants (n = 82) from a previously completed trial that tested the effect of restorative yoga on individuals with prediabetes. Circulating microRNAs were measured using a flow cytometry miRNA assay. Linear models were used to determine the optimal sets of microRNA predictors overall and by intervention group. Results Subsets of microRNAs were significant predictors of final fasting blood glucose after 12-months (R2 = 0.754, p < 0.001) and changes in fasting blood glucose over 12-months (R2 = 0.731, p < 0.001). Three microRNAs (let-7c, miR-363, miR-374b) were significant for the control group only, however there was no significant interaction by intervention group. Conclusions Circulating microRNAs are significant predictors of fasting blood glucose in individuals with prediabetes. Among the identified microRNAs, several have previously been associated with risk for type 2 diabetes. This is one of the first studies to use a longitudinal design to assess whether microRNAs predict changes in fasting blood glucose over time. Further exploration of the function of the microRNAs included in these models may provide new insights about the complex etiology of type 2 diabetes and responses to behavioral risk reduction interventions. Trial registration This study was a secondary analysis of a previously completed clinical trial that is registered at clinicaltrials.gov (NCT01024816) on December 3, 2009. Supplementary Information The online version contains supplementary material available at 10.1186/s40364-021-00317-5.
Collapse
Affiliation(s)
- Elena Flowers
- Department of Physiological Nursing, University of California, San Francisco, 2 Koret Way, #605L, CA, 94143-0610, San Francisco, USA. .,Institute for Human Genetics, University of California, San Francisco, 2 Koret Way, #605L, CA , 94143-0610, San Francisco, USA.
| | - Isabel Elaine Allen
- Department of Epidemiology and Biostatistics, University of California, San Francisco, USA
| | - Alka M Kanaya
- Department of Epidemiology and Biostatistics, University of California, San Francisco, USA.,Department of Medicine, University of California, San Francisco, USA
| | - Bradley E Aouizerat
- Bluestone Center for Clinical Research, New York University, New York, USA.,Department of Oral and Maxillofacial Surgery, New York University, New York, USA
| |
Collapse
|
3
|
Chang J, Yan J, Li X, Liu N, Zheng R, Zhong Y. Update on the Mechanisms of Tubular Cell Injury in Diabetic Kidney Disease. Front Med (Lausanne) 2021; 8:661076. [PMID: 33859992 PMCID: PMC8042139 DOI: 10.3389/fmed.2021.661076] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/08/2021] [Indexed: 02/06/2023] Open
Abstract
Increasing evidence supports a role of proximal tubular (PT) injury in the progression of diabetic kidney disease (DKD), in patients with or without proteinuria. Research on the mechanisms of the PT injury in DKD could help us to identify potential new biomarkers and drug targets for DKD. A high glucose transport state and mismatched local hypoxia in the PT of diabetes patients may be the initiating factors causing PT injury. Other mechanism such as mitochondrial dysfunction, reactive oxygen species (ROS) overproduction, ER stress, and deficiency of autophagy interact with each other leading to more PT injury by forming a vicious circle. PT injury eventually leads to the development of tubulointerstitial inflammation and fibrosis in DKD. Many downstream signaling pathways have been demonstrated to mediate these diseased processes. This review focuses mostly on the novel mechanisms of proximal renal tubular injury in DKD and we believe such review could help us to better understand the pathogenesis of DKD and identify potential new therapies for this disease.
Collapse
Affiliation(s)
- Jingsheng Chang
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiayi Yan
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xueling Li
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ni Liu
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rong Zheng
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yifei Zhong
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
4
|
Bao Y, Liang W, Ye Y, Yi B. PERK-Dependent Activation of the JAK2/STAT3 Pathway Contributes to High Glucose-Induced Extracellular Matrix Deposition in Renal Tubular Epithelial Cells. Int J Endocrinol 2021; 2021:8475868. [PMID: 34335747 PMCID: PMC8315854 DOI: 10.1155/2021/8475868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/05/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Although the deposition of extracellular matrix (ECM) is critical leading to tubular damage in diabetic kidney disease (DKD), the mechanism still remains unclear. The purpose of this study was to demonstrate a role for protein kinase R-like endoplasmic reticulum kinase (PERK) (a protein located in the endoplasmic reticulum membrane) in this pathologic process. METHODS NRK-52E cells were grown in the media containing different concentrations of glucose or thapsigargin for different durations. Cells were subsequently incubated with or without AG490, a selective inhibitor of Janus kinase 2 (JAK2) or GSK2606414 (a selective PERK inhibitor). We evaluated the production of TGF-β1, fibronectin, and collagen I proteins by ELISA. The levels of 78 kD-glucose-regulated protein (GRP78) and PERK, as well as the phosphorylation statues of PERK and JAK2/signal transducer and activator of transcription (STAT3), were determined by western blotting analysis. RESULTS We showed that the increased phosphorylation of JAK2 and STAT3 was accompanied by overexpression of TGF-β1 and ECM deposition in high glucose medium. Disruption of the JAK2/STAT3 pathway with AG490 significantly prevents the high glucose-induced increase in TGF-β1, fibronectin, and collagen I. High glucose induced the overproduction of GRP78 and phosphorylation of PERK, which indicated that endoplasmic reticulum stress (ERS) was triggered in NRK-52E cells cultured under high glucose condition. Inhibition of PERK phosphorylation with GSK2606414, however, blocked the effect of JAK2/STAT3 on the production of TGF-β1 and ECM components in NRK-52E cells. CONCLUSION Our data indicated that the ECM accumulation induced by high glucose arouse via the PERK-dependent JAK2/STAT3-signaling pathway in renal tubular epithelial cells.
Collapse
Affiliation(s)
- Yan Bao
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Wei Liang
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Yingchun Ye
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Bo Yi
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| |
Collapse
|
5
|
Nair M, Martin WP, Zhernovkov V, Elliott JA, Fearon N, Eckhardt H, McCormack J, Godson C, Brennan EP, Fandriks L, Docherty NG, le Roux CW. Characterization of the renal cortical transcriptome following Roux-en-Y gastric bypass surgery in experimental diabetic kidney disease. BMJ Open Diabetes Res Care 2020; 8:8/1/e001113. [PMID: 32747384 PMCID: PMC7398104 DOI: 10.1136/bmjdrc-2019-001113] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 05/20/2020] [Accepted: 06/22/2020] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION Roux-en-Y gastric bypass surgery (RYGB) reduces albuminuria and the long-term incidence of end-stage renal disease in patients with obesity and diabetes. Preclinical modeling in experimental diabetic kidney disease demonstrates that improvements in glomerular structure likely underpin these findings. RESEARCH DESIGN AND METHODS In adult male Zucker diabetic fatty (ZDF) rats, we profiled the effect of RYGB on weight and metabolic control as well biochemical, structural and ultrastructural indices of diabetic renal injury. Furthermore, we sequenced the renal cortical transcriptome in these rats and used bioinformatic pathway analyses to characterize the transcriptional alterations governing the renal reparative response to RYGB. RESULTS In parallel with improvements in weight and metabolic control, RYGB reduced albuminuria, glomerulomegaly, podocyte stress and podocyte foot process effacement. Pathway analysis of RYGB-induced transcriptomic changes in the renal cortex highlighted correction of disease-associated alterations in fibrosis, inflammation and biological oxidation pathways. RYGB reversed disease-associated changes in the expression of transforming growth factor (TGF)-β superfamily genes that strongly correlated with improvements in structural measures of glomerulopathy. CONCLUSIONS Improved glomerular structure in ZDF rats following RYGB is underpinned by pathway level changes, including interruption of the TGF-β-driven early profibrotic programme. Our data provide an important layer of experimental support for clinical evidence demonstrating that RYGB arrests renal damage in patients with obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Meera Nair
- Diabetes Complications Research Centre, School of Medicine, University College Dublin, Dublin, Ireland
| | - William P Martin
- Diabetes Complications Research Centre, School of Medicine, University College Dublin, Dublin, Ireland
| | | | - Jessie A Elliott
- Diabetes Complications Research Centre, School of Medicine, University College Dublin, Dublin, Ireland
| | - Naomi Fearon
- Diabetes Complications Research Centre, School of Medicine, University College Dublin, Dublin, Ireland
| | - Hans Eckhardt
- Diabetes Complications Research Centre, School of Medicine, University College Dublin, Dublin, Ireland
| | - Janet McCormack
- Research Pathology, UCD Conway Institute of Biomolecular and Biomedical Research, Dublin, Ireland
| | - Catherine Godson
- Diabetes Complications Research Centre, School of Medicine, University College Dublin, Dublin, Ireland
| | - Eoin Patrick Brennan
- Diabetes Complications Research Centre, School of Medicine, University College Dublin, Dublin, Ireland
| | - Lars Fandriks
- Institute of Clinical Sciences, Salgrenska Academy, University of Gothenburg, Goteborg, Sweden
| | - Neil G Docherty
- Diabetes Complications Research Centre, School of Medicine, University College Dublin, Dublin, Ireland
- Institute of Clinical Sciences, Salgrenska Academy, University of Gothenburg, Goteborg, Sweden
| | - Carel W le Roux
- Diabetes Complications Research Centre, School of Medicine, University College Dublin, Dublin, Ireland
- Institute of Clinical Sciences, Salgrenska Academy, University of Gothenburg, Goteborg, Sweden
| |
Collapse
|
6
|
Xiong C, Lu J, Wang X, Masucci MV. WITHDRAWN: Salvianolate attenuates renal fibrosis in rat models of diabetic nephropathy by inhibiting inflammation and oxidative stress mechanisms. Biochem Biophys Res Commun 2017:S0006-291X(17)30776-3. [PMID: 28435064 DOI: 10.1016/j.bbrc.2017.04.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 04/18/2017] [Indexed: 06/07/2023]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Chongxiang Xiong
- Department of Nephrology, Shanghai Seventh People's Hospital, Shanghai 200137, China; Department of Medicine, Rhode Island Hospital, Brown University School of Medicine, Providence, RI 02903, United States
| | - Jianrao Lu
- Department of Nephrology, Shanghai Seventh People's Hospital, Shanghai 200137, China
| | - Xinhua Wang
- Department of Nephrology, Shanghai Seventh People's Hospital, Shanghai 200137, China
| | - Monica V Masucci
- Department of Medicine, Rhode Island Hospital, Brown University School of Medicine, Providence, RI 02903, United States
| |
Collapse
|
7
|
Abstract
Notch3 and TGF-β1 signaling play a key role in the pathogenesis and progression of chronic cardiovascular disease. However, whether Notch3 protects against myocardial infarction (MI) and the underlying mechanisms remains unknown. C57BL/6 mice were randomized to be treated with Notch3 siRNA (siNotch3) or lentivirus carrying Notch3 cDNA (Notch3) before coronary artery ligation. Four weeks after constructing MI model, cardiac function and fibrosis were compared between groups. The cardiac fibroblast cells (CFs) were isolated from newborn C57BL/6 mice (1-3 days old) and transfected with lentivirus carrying Notch3 cDNA. TGF-β1 (5 ng/ml), a well-known pro-fibrotic factor, was administered 72 h after Notch3 cDNA administration in CFs. The related proteins of fibrosis such as a-smooth muscle actin (a-SMA), Type I collagen, metalloprotease (MMP)-9 and the tissue inhibitor of metalloproteinases (TIMP)-2 were examined by western blot analysis. Notch3 cDNA treatment attenuated cardiac damage and inhibited fibrosis in mice with MI. Meanwhile, Notch3 siRNA administration aggravated cardiac function damage and markedly enhanced cardiac fibrosis in mice with MI. Overexpression of Notch3 inhibited TGF-β1-induced fibroblast-myofibroblast transition of mouse cardiac fibroblast cells, as evidenced by down-regulating a-SMA and Type I collagen expression. Notch3 cDNA treatment also increased MMP-9 expression and decreased TIMP-2 expression in the TGF-β1-stimulated cells. This study indicates that Notch3 is an important protective factor for cardiac fibrosis in a MI model, and the protective effect of Notch3 is attributable to its action on TGF-β1/Smad3 signaling.
Collapse
|
8
|
Docherty NG, le Roux CW. Physiological and pathophysiological signalling between the gut and the kidney: role in diabetic kidney disease. Exp Physiol 2014; 99:1138-9. [PMID: 25210114 DOI: 10.1113/expphysiol.2014.078162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|