1
|
Hladky SB, Barrand MA. Alterations in brain fluid physiology during the early stages of development of ischaemic oedema. Fluids Barriers CNS 2024; 21:51. [PMID: 38858667 PMCID: PMC11163777 DOI: 10.1186/s12987-024-00534-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/22/2024] [Indexed: 06/12/2024] Open
Abstract
Oedema occurs when higher than normal amounts of solutes and water accumulate in tissues. In brain parenchymal tissue, vasogenic oedema arises from changes in blood-brain barrier permeability, e.g. in peritumoral oedema. Cytotoxic oedema arises from excess accumulation of solutes within cells, e.g. ischaemic oedema following stroke. This type of oedema is initiated when blood flow in the affected core region falls sufficiently to deprive brain cells of the ATP needed to maintain ion gradients. As a consequence, there is: depolarization of neurons; neural uptake of Na+ and Cl- and loss of K+; neuronal swelling; astrocytic uptake of Na+, K+ and anions; swelling of astrocytes; and reduction in ISF volume by fluid uptake into neurons and astrocytes. There is increased parenchymal solute content due to metabolic osmolyte production and solute influx from CSF and blood. The greatly increased [K+]isf triggers spreading depolarizations into the surrounding penumbra increasing metabolic load leading to increased size of the ischaemic core. Water enters the parenchyma primarily from blood, some passing into astrocyte endfeet via AQP4. In the medium term, e.g. after three hours, NaCl permeability and swelling rate increase with partial opening of tight junctions between blood-brain barrier endothelial cells and opening of SUR1-TPRM4 channels. Swelling is then driven by a Donnan-like effect. Longer term, there is gross failure of the blood-brain barrier. Oedema resolution is slower than its formation. Fluids without colloid, e.g. infused mock CSF, can be reabsorbed across the blood-brain barrier by a Starling-like mechanism whereas infused serum with its colloids must be removed by even slower extravascular means. Large scale oedema can increase intracranial pressure (ICP) sufficiently to cause fatal brain herniation. The potentially lethal increase in ICP can be avoided by craniectomy or by aspiration of the osmotically active infarcted region. However, the only satisfactory treatment resulting in retention of function is restoration of blood flow, providing this can be achieved relatively quickly. One important objective of current research is to find treatments that increase the time during which reperfusion is successful. Questions still to be resolved are discussed.
Collapse
Affiliation(s)
- Stephen B Hladky
- Department of Pharmacology, Tennis Court Rd., Cambridge, CB2 1PD, UK.
| | - Margery A Barrand
- Department of Pharmacology, Tennis Court Rd., Cambridge, CB2 1PD, UK
| |
Collapse
|
2
|
Rose CR, Verkhratsky A. Sodium homeostasis and signalling: The core and the hub of astrocyte function. Cell Calcium 2024; 117:102817. [PMID: 37979342 DOI: 10.1016/j.ceca.2023.102817] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/20/2023] [Indexed: 11/20/2023]
Abstract
Neuronal activity and neurochemical stimulation trigger spatio-temporal changes in the cytoplasmic concentration of Na+ ions in astrocytes. These changes constitute the substrate for Na+ signalling and are fundamental for astrocytic excitability. Astrocytic Na+ signals are generated by Na+ influx through neurotransmitter transporters, with primary contribution of glutamate transporters, and through cationic channels; whereas recovery from Na+ transients is mediated mainly by the plasmalemmal Na+/K+ ATPase. Astrocytic Na+ signals regulate the activity of plasmalemmal transporters critical for homeostatic function of astrocytes, thus providing real-time coordination between neuronal activity and astrocytic support.
Collapse
Affiliation(s)
- Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Alexej Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, United Kingdom; Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain; Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China; International Collaborative Center on Big Science Plan for Purinergic Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania.
| |
Collapse
|
3
|
Everaerts K, Thapaliya P, Pape N, Durry S, Eitelmann S, Roussa E, Ullah G, Rose CR. Inward Operation of Sodium-Bicarbonate Cotransporter 1 Promotes Astrocytic Na + Loading and Loss of ATP in Mouse Neocortex during Brief Chemical Ischemia. Cells 2023; 12:2675. [PMID: 38067105 PMCID: PMC10705779 DOI: 10.3390/cells12232675] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
Ischemic conditions cause an increase in the sodium concentration of astrocytes, driving the breakdown of ionic homeostasis and exacerbating cellular damage. Astrocytes express high levels of the electrogenic sodium-bicarbonate cotransporter1 (NBCe1), which couples intracellular Na+ homeostasis to regulation of pH and operates close to its reversal potential under physiological conditions. Here, we analyzed its mode of operation during transient energy deprivation via imaging astrocytic pH, Na+, and ATP in organotypic slice cultures of the mouse neocortex, complemented with patch-clamp and ion-selective microelectrode recordings and computational modeling. We found that a 2 min period of metabolic failure resulted in a transient acidosis accompanied by a Na+ increase in astrocytes. Inhibition of NBCe1 increased the acidosis while decreasing the Na+ load. Similar results were obtained when comparing ion changes in wild-type and Nbce1-deficient mice. Mathematical modeling replicated these findings and further predicted that NBCe1 activation contributes to the loss of cellular ATP under ischemic conditions, a result confirmed experimentally using FRET-based imaging of ATP. Altogether, our data demonstrate that transient energy failure stimulates the inward operation of NBCe1 in astrocytes. This causes a significant amelioration of ischemia-induced astrocytic acidification, albeit at the expense of increased Na+ influx and a decline in cellular ATP.
Collapse
Affiliation(s)
- Katharina Everaerts
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany; (K.E.); (N.P.); (S.D.); (S.E.)
| | - Pawan Thapaliya
- Department of Physics, University of South Florida, Tampa, FL 33620, USA; (P.T.); (G.U.)
| | - Nils Pape
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany; (K.E.); (N.P.); (S.D.); (S.E.)
| | - Simone Durry
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany; (K.E.); (N.P.); (S.D.); (S.E.)
| | - Sara Eitelmann
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany; (K.E.); (N.P.); (S.D.); (S.E.)
| | - Eleni Roussa
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Albertstrasse 17, D-79104 Freiburg, Germany;
| | - Ghanim Ullah
- Department of Physics, University of South Florida, Tampa, FL 33620, USA; (P.T.); (G.U.)
| | - Christine R. Rose
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany; (K.E.); (N.P.); (S.D.); (S.E.)
| |
Collapse
|
4
|
Saint-Criq V, Guequén A, Philp AR, Villanueva S, Apablaza T, Fernández-Moncada I, Mansilla A, Delpiano L, Ruminot I, Carrasco C, Gray MA, Flores CA. Inhibition of the sodium-dependent HCO 3- transporter SLC4A4, produces a cystic fibrosis-like airway disease phenotype. eLife 2022; 11:e75871. [PMID: 35635440 PMCID: PMC9173743 DOI: 10.7554/elife.75871] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 05/27/2022] [Indexed: 11/30/2022] Open
Abstract
Bicarbonate secretion is a fundamental process involved in maintaining acid-base homeostasis. Disruption of bicarbonate entry into airway lumen, as has been observed in cystic fibrosis, produces several defects in lung function due to thick mucus accumulation. Bicarbonate is critical for correct mucin deployment and there is increasing interest in understanding its role in airway physiology, particularly in the initiation of lung disease in children affected by cystic fibrosis, in the absence of detectable bacterial infection. The current model of anion secretion in mammalian airways consists of CFTR and TMEM16A as apical anion exit channels, with limited capacity for bicarbonate transport compared to chloride. However, both channels can couple to SLC26A4 anion exchanger to maximise bicarbonate secretion. Nevertheless, current models lack any details about the identity of the basolateral protein(s) responsible for bicarbonate uptake into airway epithelial cells. We report herein that the electrogenic, sodium-dependent, bicarbonate cotransporter, SLC4A4, is expressed in the basolateral membrane of human and mouse airways, and that it's pharmacological inhibition or genetic silencing reduces bicarbonate secretion. In fully differentiated primary human airway cells cultures, SLC4A4 inhibition induced an acidification of the airways surface liquid and markedly reduced the capacity of cells to recover from an acid load. Studies in the Slc4a4-null mice revealed a previously unreported lung phenotype, characterized by mucus accumulation and reduced mucociliary clearance. Collectively, our results demonstrate that the reduction of SLC4A4 function induced a CF-like phenotype, even when chloride secretion remained intact, highlighting the important role SLC4A4 plays in bicarbonate secretion and mammalian airway function.
Collapse
Affiliation(s)
- Vinciane Saint-Criq
- Biosciences Institute, The Medical School, Newcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Anita Guequén
- Centro de Estudios CientíficosValdiviaChile
- Universidad Austral de ChileValdiviaChile
| | - Amber R Philp
- Centro de Estudios CientíficosValdiviaChile
- Universidad Austral de ChileValdiviaChile
| | | | - Tábata Apablaza
- Centro de Estudios CientíficosValdiviaChile
- Universidad Austral de ChileValdiviaChile
| | | | - Agustín Mansilla
- Centro de Estudios CientíficosValdiviaChile
- Universidad Austral de ChileValdiviaChile
| | - Livia Delpiano
- Biosciences Institute, The Medical School, Newcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Iván Ruminot
- Centro de Estudios CientíficosValdiviaChile
- Universidad San SebastiánValdiviaChile
| | - Cristian Carrasco
- Subdepartamento de Anatomía Patológica, Hospital Base de ValdiviaValdiviaChile
| | - Michael A Gray
- Biosciences Institute, The Medical School, Newcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Carlos A Flores
- Centro de Estudios CientíficosValdiviaChile
- Universidad San SebastiánValdiviaChile
| |
Collapse
|
5
|
Ponomareva D, Petukhova E, Bregestovski P. Simultaneous Monitoring of pH and Chloride (Cl -) in Brain Slices of Transgenic Mice. Int J Mol Sci 2021; 22:13601. [PMID: 34948398 PMCID: PMC8708776 DOI: 10.3390/ijms222413601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
Optosensorics is the direction of research possessing the possibility of non-invasive monitoring of the concentration of intracellular ions or activity of intracellular components using specific biosensors. In recent years, genetically encoded proteins have been used as effective optosensory means. These probes possess fluorophore groups capable of changing fluorescence when interacting with certain ions or molecules. For monitoring of intracellular concentrations of chloride ([Cl-]i) and hydrogen ([H+] i) the construct, called ClopHensor, which consists of a H+- and Cl--sensitive variant of the enhanced green fluorescent protein (E2GFP) fused with a monomeric red fluorescent protein (mDsRed) has been proposed. We recently developed a line of transgenic mice expressing ClopHensor in neurons and obtained the map of its expression in different areas of the brain. The purpose of this study was to examine the effectiveness of transgenic mice expressing ClopHensor for estimation of [H+]i and [Cl-]i concentrations in neurons of brain slices. We performed simultaneous monitoring of [H+]i and [Cl-]i under different experimental conditions including changing of external concentrations of ions (Ca2+, Cl-, K+, Na+) and synaptic stimulation of Shaffer's collaterals of hippocampal slices. The results obtained illuminate different pathways of regulation of Cl- and pH equilibrium in neurons and demonstrate that transgenic mice expressing ClopHensor represent a reliable tool for non-invasive simultaneous monitoring of intracellular Cl- and pH.
Collapse
Affiliation(s)
- Daria Ponomareva
- Institut de Neurosciences des Systèmes, Aix-Marseille University, INSERM, INS, 13005 Marseille, France;
- Institute of Neurosciences, Kazan State Medical University, 420111 Kazan, Russia;
- Department of Normal Physiology, Kazan State Medical University, 420111 Kazan, Russia
| | - Elena Petukhova
- Institute of Neurosciences, Kazan State Medical University, 420111 Kazan, Russia;
- Department of Normal Physiology, Kazan State Medical University, 420111 Kazan, Russia
| | - Piotr Bregestovski
- Institut de Neurosciences des Systèmes, Aix-Marseille University, INSERM, INS, 13005 Marseille, France;
- Institute of Neurosciences, Kazan State Medical University, 420111 Kazan, Russia;
- Department of Normal Physiology, Kazan State Medical University, 420111 Kazan, Russia
| |
Collapse
|
6
|
Verkhratsky A, Parpura V, Li B, Scuderi C. Astrocytes: The Housekeepers and Guardians of the CNS. ADVANCES IN NEUROBIOLOGY 2021; 26:21-53. [PMID: 34888829 DOI: 10.1007/978-3-030-77375-5_2] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Astroglia are a diverse group of cells in the central nervous system. They are of the ectodermal, neuroepithelial origin and vary in morphology and function, yet, they can be collectively defined as cells having principle function to maintain homeostasis of the central nervous system at all levels of organisation, including homeostasis of ions, pH and neurotransmitters; supplying neurones with metabolic substrates; supporting oligodendrocytes and axons; regulating synaptogenesis, neurogenesis, and formation and maintenance of the blood-brain barrier; contributing to operation of the glymphatic system; and regulation of systemic homeostasis being central chemosensors for oxygen, CO2 and Na+. Their basic physiological features show a lack of electrical excitability (inapt to produce action potentials), but display instead a rather active excitability based on variations in cytosolic concentrations of Ca2+ and Na+. It is expression of neurotransmitter receptors, pumps and transporters at their plasmalemma, along with transports on the endoplasmic reticulum and mitochondria that exquisitely regulate the cytosolic levels of these ions, the fluctuation of which underlies most, if not all, astroglial homeostatic functions.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Caterina Scuderi
- Department of Physiology and Pharmacology "Vittorio Erspamer", SAPIENZA University of Rome, Rome, Italy
| |
Collapse
|
7
|
Revisiting the Role of Ser982 Phosphorylation in Stoichiometry Shift of the Electrogenic Na +/ qHCO 3- Cotransporter NBCe1. Int J Mol Sci 2021; 22:ijms222312817. [PMID: 34884619 PMCID: PMC8657473 DOI: 10.3390/ijms222312817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/17/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
In most cell types and heterologous expression systems, the electrogenic sodium-bicarbonate cotransporter NBCe1 operates with a 1Na+-2HCO3- stoichiometry that, given typical transmembrane electrochemical gradients, promotes Na+ and HCO3- influx. However, NBCe1 in the kidney mediates HCO3- efflux (HCO3- reabsorption), a direction that has been predicted to be favored only if NBCe1 operates with a 1:3 stoichiometry. The phosphorylation state of Ser982 in the cytosolic carboxy-terminal domain of NBCe1 has been reported to be a key determinant of the transporter stoichiometry, with non-phosphorylated Ser982 favoring a 1:3 stoichiometry. Conversely, phosphoproteomic data from renal cortical preparations have revealed the presence of NBCe1 peptides including phosphoserine982 (pSer982) and/or pSer985 although it was not known what proportion of NBCe1 molecules were phosphorylated. In the present study, we report the generation, characterization, and application of a novel phosphospecific antibody raised against NBCe1/pSer982 and show that, contrary to expectations, Ser982 is more prevalently phosphorylated in murine kidneys (in which NBCe1 mediates HCO3- efflux) than in murine colons (in which NBCe1 mediates HCO3- influx). Using phosphomimetic mutants of murine NBCe1 expressed in Xenopus oocytes, we found no evidence that the phosphorylation state of Ser982 or Ser985 alone influences the transport stoichiometry or conductance. Furthermore, we found that the phosphorylation of NBCe1/Ser982 is enhanced in murine kidneys following a 24 h induction of metabolic acidosis. We conclude that the phosphorylation status of Ser982 is not a key determinant of NBCe1 stoichiometry but correlates with presumed NBCe1 activity.
Collapse
|
8
|
Giannaki M, Ludwig C, Heermann S, Roussa E. Regulation of electrogenic Na + /HCO 3 - cotransporter 1 (NBCe1) function and its dependence on m-TOR mediated phosphorylation of Ser 245. J Cell Physiol 2021; 237:1372-1388. [PMID: 34642952 DOI: 10.1002/jcp.30601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/09/2021] [Accepted: 10/01/2021] [Indexed: 11/09/2022]
Abstract
Astrocytes are pivotal responders to alterations of extracellular pH, primarily by regulation of their principal acid-base transporter, the membrane-bound electrogenic Na+ /bicarbonate cotransporter 1 (NBCe1). Here, we describe amammalian target of rapamycin (mTOR)-dependent and NBCe1-mediated astroglial response to extracellular acidosis. Using primary mouse cortical astrocytes, we investigated the effect of long-term extracellular metabolic acidosis on regulation of NBCe1 and elucidated the underlying molecular mechanisms by immunoblotting, biotinylation of surface proteins, intracellular H+ recording using the H+ -sensitive dye 2',7'-bis-(carboxyethyl)-5-(and-6)-carboxyfluorescein, and phosphoproteomic analysis. The results showed significant increase of NBCe1-mediated recovery of intracellular pH from acidification in WT astrocytes, but not in cortical astrocytes from NBCe1-deficient mice. Acidosis-induced upregulation of NBCe1 activity was prevented following inhibition of mTOR signaling by rapamycin. Yet, during acidosis or following exposure of astrocytes to rapamycin, surface protein abundance of NBCe1 remained -unchanged. Mutational analysis in HeLa cells suggested that NBCe1 activity was dependent on phosphorylation state of Ser245 , a residue conserved in all NBCe1 variants. Moreover, phosphorylation state of Ser245 is regulated by mTOR and is inversely correlated with NBCe1 transport activity. Our results identify pSer245 as a novel regulator of NBCe1 functional expression. We propose that context-dependent and mTOR-mediated multisite phosphorylation of serine residues of NBCe1 is likely to be a potent mechanism contributing to the response of astrocytes to acid/base challenges during pathophysiological conditions.
Collapse
Affiliation(s)
- Marina Giannaki
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Medical Faculty, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich (TUM), Freising, Germany
| | - Stephan Heermann
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Medical Faculty, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Eleni Roussa
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Medical Faculty, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| |
Collapse
|
9
|
Abstract
Our brains consist of 80% water, which is continuously shifted between different compartments and cell types during physiological and pathophysiological processes. Disturbances in brain water homeostasis occur with pathologies such as brain oedema and hydrocephalus, in which fluid accumulation leads to elevated intracranial pressure. Targeted pharmacological treatments do not exist for these conditions owing to our incomplete understanding of the molecular mechanisms governing brain water transport. Historically, the transmembrane movement of brain water was assumed to occur as passive movement of water along the osmotic gradient, greatly accelerated by water channels termed aquaporins. Although aquaporins govern the majority of fluid handling in the kidney, they do not suffice to explain the overall brain water movement: either they are not present in the membranes across which water flows or they appear not to be required for the observed flow of water. Notably, brain fluid can be secreted against an osmotic gradient, suggesting that conventional osmotic water flow may not describe all transmembrane fluid transport in the brain. The cotransport of water is an unconventional molecular mechanism that is introduced in this Review as a missing link to bridge the gap in our understanding of cellular and barrier brain water transport.
Collapse
Affiliation(s)
- Nanna MacAulay
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
10
|
Colbourn R, Hrabe J, Nicholson C, Perkins M, Goodman JH, Hrabetova S. Rapid volume pulsation of the extracellular space coincides with epileptiform activity in mice and depends on the NBCe1 transporter. J Physiol 2021; 599:3195-3220. [PMID: 33942325 DOI: 10.1113/jp281544] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/19/2021] [Indexed: 01/06/2023] Open
Abstract
KEY POINTS Extracellular space (ECS) rapid volume pulsation (RVP) accompanying epileptiform activity is described for the first time. Such RVP occurs robustly in several in vitro and in vivo mouse models of epileptiform activity. In the in vitro 4-aminopyridine model of epileptiform activity, RVP depends on the activity of the electrogenic Na+ /HCO3 - cotransporter (NBCe1). NBCe1 pharmacological inhibition suppresses RVP and epileptiform activity. Inhibition of changes in ECS volume may be a useful target in epilepsy patients who are resistant to current treatments. ABSTRACT: The extracellular space (ECS) of the brain shrinks persistently by approximately 35% during epileptic seizures. Here we report the discovery of rapid volume pulsation (RVP), further transient drops in ECS volume which accompany events of epileptiform activity. These transient ECS contractions were observed in multiple mouse models of epileptiform activity both in vivo (bicuculline methiodide model) and in vitro (hyaluronan synthase 3 knock-out, picrotoxin, bicuculline and 4-aminopyridine models). By using the probe transients quantification (PTQ) method we show that individual pulses of RVP shrank the ECS by almost 15% in vivo. In the 4-aminopyridine in vitro model, the individual pulses of RVP shrank the ECS by more than 4%, and these transient changes were superimposed on a persistent ECS shrinkage of 36% measured with the real-time iontophoretic method. In this in vitro model, we investigated several channels and transporters that may be required for the generation of RVP and epileptiform activity. Pharmacological blockages of Na+ /K+ /2Cl- cotransporter type 1 (NKCC1), K+ /Cl- cotransporter (KCC2), the water channel aquaporin-4 (AQP4) and inwardly rectifying potassium channel 4.1 (Kir4.1) were ineffective in halting the RVP and the epileptiform activity. In contrast, pharmacological blockade of the electrogenic Na+ /HCO3 - cotransporter (NBCe1) by 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS) eliminated both the RVP and the persistent ECS shrinkage. Importantly, this blocker also stopped the epileptiform activity. These results demonstrate that RVP is closely associated with epileptiform activity across several models of epileptiform activity and therefore the underlying mechanism could potentially represent a novel target for epilepsy management and treatment.
Collapse
Affiliation(s)
- Robert Colbourn
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA.,Neural and Behavioral Science Graduate Program, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
| | - Jan Hrabe
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA.,Medical Physics Laboratory, Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute, Orangeburg, New York, USA
| | - Charles Nicholson
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA.,Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, New York, USA
| | - Matthew Perkins
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
| | - Jeffrey H Goodman
- Department of Developmental Neurobiology, The New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA.,Department of Physiology and Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA.,Department of Neurology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA.,The Robert F. Furchgott Center for Neural and Behavioral Science, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
| | - Sabina Hrabetova
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA.,The Robert F. Furchgott Center for Neural and Behavioral Science, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
| |
Collapse
|
11
|
van Putten MJ, Fahlke C, Kafitz KW, Hofmeijer J, Rose CR. Dysregulation of Astrocyte Ion Homeostasis and Its Relevance for Stroke-Induced Brain Damage. Int J Mol Sci 2021; 22:5679. [PMID: 34073593 PMCID: PMC8198632 DOI: 10.3390/ijms22115679] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 12/14/2022] Open
Abstract
Ischemic stroke is a leading cause of mortality and chronic disability. Either recovery or progression towards irreversible failure of neurons and astrocytes occurs within minutes to days, depending on remaining perfusion levels. Initial damage arises from energy depletion resulting in a failure to maintain homeostasis and ion gradients between extra- and intracellular spaces. Astrocytes play a key role in these processes and are thus central players in the dynamics towards recovery or progression of stroke-induced brain damage. Here, we present a synopsis of the pivotal functions of astrocytes at the tripartite synapse, which form the basis of physiological brain functioning. We summarize the evidence of astrocytic failure and its consequences under ischemic conditions. Special emphasis is put on the homeostasis and stroke-induced dysregulation of the major monovalent ions, namely Na+, K+, H+, and Cl-, and their involvement in maintenance of cellular volume and generation of cerebral edema.
Collapse
Affiliation(s)
- Michel J.A.M. van Putten
- Department of Clinical Neurophysiology, University of Twente, 7522 NB Enschede, The Netherlands; (M.J.A.M.v.P.); (J.H.)
| | - Christoph Fahlke
- Institut für Biologische Informationsprozesse, Molekular-und Zellphysiologie (IBI-1), Forschungszentrum Jülich, 52425 Jülich, Germany;
| | - Karl W. Kafitz
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Jeannette Hofmeijer
- Department of Clinical Neurophysiology, University of Twente, 7522 NB Enschede, The Netherlands; (M.J.A.M.v.P.); (J.H.)
| | - Christine R. Rose
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| |
Collapse
|
12
|
Giannaki M, Schrödl-Häußel M, Khakipoor S, Kirsch M, Roussa E. STAT3-dependent regulation of the electrogenic Na +/ HCO 3- cotransporter 1 (NBCe1) functional expression in cortical astrocytes. J Cell Physiol 2021; 236:2036-2050. [PMID: 32761631 DOI: 10.1002/jcp.29990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/03/2020] [Accepted: 07/21/2020] [Indexed: 01/10/2023]
Abstract
The electrogenic Na+ /HCO3- cotransporter (NBCe1) in astrocytes is crucial in regulation of acid-base homeostasis in the brain. Since many pathophysiological conditions in the brain have been associated with pH shifts we exposed primary mouse cortical and hippocampal astrocytes to prolonged low or high extracellular pH (pHo ) at constant extracellular bicarbonate concentration and investigated activation of astrocytes and regulation of NBCe1 by immunoblotting, biotinylation of surface proteins, and intracellular H+ recordings. High pHo at constant extracellular bicarbonate caused upregulation of NBCe1 protein, surface expression and activity via upregulation of the astrocytic activation markers signal transducer and activator of transcription 3 (STAT3) signaling and glial fibrillary acidic protein expression. High pHo -induced increased NBCe1 protein expression was prevented in astrocytes from Stat3flox/flox ::GfapCre/+ mice. In vitro, basal and high pHo -induced increased NBCe1 functional expression was impaired following inhibition of STAT3 phosphorylation. These results provide a novel regulation mode of NBCe1 protein and activity, highlight the importance of astrocyte reactivity on regulation of NBCe1 and implicate roles for NBCe1 in altering/modulating extracellular pH during development as well as of the microenvironment at sites of brain injuries and other pathophysiological conditions.
Collapse
Affiliation(s)
- Marina Giannaki
- Department of Molecular Embryology, Medical Faculty, Institute of Anatomy and Cell Biology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Magdalena Schrödl-Häußel
- Department of Molecular Embryology, Medical Faculty, Institute of Anatomy and Cell Biology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Shokoufeh Khakipoor
- Department of Molecular Embryology, Medical Faculty, Institute of Anatomy and Cell Biology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Matthias Kirsch
- Department of Neuroanatomy, Medical Faculty, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Eleni Roussa
- Department of Molecular Embryology, Medical Faculty, Institute of Anatomy and Cell Biology, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| |
Collapse
|
13
|
Exacerbation of Epilepsy by Astrocyte Alkalization and Gap Junction Uncoupling. J Neurosci 2021; 41:2106-2118. [PMID: 33478985 DOI: 10.1523/jneurosci.2365-20.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/02/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022] Open
Abstract
Seizures invite seizures. At the initial stage of epilepsy, seizures intensify with each episode; however, the mechanisms underlying this exacerbation remain to be solved. Astrocytes have a strong control over neuronal excitability and the mode of information processing. This control is accomplished by adjusting the levels of various ions in the extracellular space. The network of astrocytes connected via gap junctions allows a wider or more confined distribution of these ions depending on the open probability of the gap junctions. K+ clearance relies on the K+ uptake by astrocytes and the subsequent diffusion of K+ through the astrocyte network. When astrocytes become uncoupled, K+ clearance becomes hindered. Accumulation of extracellular K+ leads to hyperexcitability of neurons. Here, using acute hippocampal slices from mice, we uncovered that brief periods of epileptiform activity result in gap junction uncoupling. In slices that experienced short-term epileptiform activity, extracellular K+ transients in response to glutamate became prolonged. Na+ imaging with a fluorescent indicator indicated that intercellular diffusion of small cations in the astrocytic syncytium via gap junctions became rapidly restricted after epileptiform activity. Using a transgenic mouse with astrocyte-specific expression of a pH sensor (Lck-E2GFP), we confirmed that astrocytes react to epileptiform activity with intracellular alkalization. Application of Na+/HCO3 - cotransporter blocker led to the suppression of intracellular alkalization of astrocytes and to the prevention of astrocyte uncoupling and hyperactivity intensification both in vitro and in vivo Therefore, the inhibition of astrocyte alkalization could become a promising therapeutic strategy for countering epilepsy development.SIGNIFICANCE STATEMENT We aimed to understand the mechanisms underlying the plastic change of forebrain circuits associated with the intensification of epilepsy. Here, we demonstrate that first-time exposure to only brief periods of epileptiform activity results in acute disturbance of the intercellular astrocyte network formed by gap junctions in hippocampal tissue slices from mice. Moreover, rapid clearance of K+ from the extracellular space was impaired. Epileptiform activity activated inward Na+/HCO3 - cotransport in astrocytes by cell depolarization, resulting in their alkalization. Our data suggest that alkaline pH shifts in astrocytes lead to gap junction uncoupling, hampering K+ clearance, and thereby to exacerbation of epilepsy. Pharmacological intervention could become a promising new strategy to dampen neuronal hyperexcitability and epileptogenesis.
Collapse
|
14
|
Theparambil SM, Hosford PS, Ruminot I, Kopach O, Reynolds JR, Sandoval PY, Rusakov DA, Barros LF, Gourine AV. Astrocytes regulate brain extracellular pH via a neuronal activity-dependent bicarbonate shuttle. Nat Commun 2020; 11:5073. [PMID: 33033238 PMCID: PMC7545092 DOI: 10.1038/s41467-020-18756-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 09/09/2020] [Indexed: 12/19/2022] Open
Abstract
Brain cells continuously produce and release protons into the extracellular space, with the rate of acid production corresponding to the levels of neuronal activity and metabolism. Efficient buffering and removal of excess H+ is essential for brain function, not least because all the electrogenic and biochemical machinery of synaptic transmission is highly sensitive to changes in pH. Here, we describe an astroglial mechanism that contributes to the protection of the brain milieu from acidification. In vivo and in vitro experiments conducted in rodent models show that at least one third of all astrocytes release bicarbonate to buffer extracellular H+ loads associated with increases in neuronal activity. The underlying signalling mechanism involves activity-dependent release of ATP triggering bicarbonate secretion by astrocytes via activation of metabotropic P2Y1 receptors, recruitment of phospholipase C, release of Ca2+ from the internal stores, and facilitated outward HCO3- transport by the electrogenic sodium bicarbonate cotransporter 1, NBCe1. These results show that astrocytes maintain local brain extracellular pH homeostasis via a neuronal activity-dependent release of bicarbonate. The data provide evidence of another important metabolic housekeeping function of these glial cells.
Collapse
Affiliation(s)
- Shefeeq M Theparambil
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Patrick S Hosford
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Iván Ruminot
- Centro de Estudios Científicos (CECs), Valdivia, Chile
| | - Olga Kopach
- Institute of Neurology, University College London, London, UK
| | | | | | | | | | - Alexander V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| |
Collapse
|
15
|
Lee SP, Chao SC, Chou MF, Huang SF, Dai NT, Wu GJ, Tsai CS, Loh SH, Tsai YT. Characterization of intracellular buffering power in human induced pluripotent stem cells and the loss of pluripotency is delayed by acidic stimulation and increase of NHE1 activity. J Cell Physiol 2020; 236:1515-1528. [PMID: 32841374 DOI: 10.1002/jcp.29959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/18/2020] [Accepted: 07/07/2020] [Indexed: 11/07/2022]
Abstract
The homeostasis of intracellular pH (pHi ) affects many cellular functions. Our previous study has established a functional and molecular model of the active pHi regulators in human induced pluripotent stem cells (hiPSCs). The aims of the present study were to further quantify passive pHi buffering power (β) and to investigate the effects of extracellular pH and Na+ -H+ exchanger 1 (NHE1) activity on pluripotency in hiPSCs. pHi was detected by microspectrofluorimetry with pH-sensitive dye-BCECF. Western blot, immunofluorescence staining, and flow cytometry were used to detect protein expression and pluripotency. Our study in hiPSCs showed that (a) the value of total (βtot ), intrinsic (βi ), and CO2 -dependent ( β C O 2 ) buffering power all increased while pHi increased; (b) during the spontaneous differentiation for 4 days, the β values of βtot and β C O 2 changed in a tendency of decrease, despite the absence of statistical significance; (c) an acidic cultured environment retained pluripotency and further upregulated expression and activity of NHE1 during spontaneous differentiation; (d) inhibition on NHE1 activity promoted the loss of pluripotency. In conclusion, we, for the first time, established a quantitative model of passive β during differentiation and demonstrated that maintenance of NHE1 at a higher level was of critical importance for pluripotency retention in hiPSCs.
Collapse
Affiliation(s)
- Shiao-Pieng Lee
- Department of Dentistry, School of Dentistry, Division of Oral and Maxillofacial Surgery, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Shih-Chi Chao
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Mei-Fang Chou
- Department of Pharmacy Practice, Tri-Service General Hospital, Taipei, Taiwan
| | - Shu-Fu Huang
- Department of Pharmacy Practice, Tri-Service General Hospital, Taipei, Taiwan
| | - Niann-Tzyy Dai
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Tri-Service General Hospital, Taipei, Taiwan
| | - Gwo-Jang Wu
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, Taipei, Taiwan
| | - Chien-Sung Tsai
- Department of Surgery, Division of Cardiovascular Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan
- Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Shih-Hurng Loh
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Department of Pharmacy Practice, Tri-Service General Hospital, Taipei, Taiwan
- Department of Surgery, Division of Cardiovascular Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Ting Tsai
- Department of Surgery, Division of Cardiovascular Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
16
|
Felix L, Delekate A, Petzold GC, Rose CR. Sodium Fluctuations in Astroglia and Their Potential Impact on Astrocyte Function. Front Physiol 2020; 11:871. [PMID: 32903427 PMCID: PMC7435049 DOI: 10.3389/fphys.2020.00871] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022] Open
Abstract
Astrocytes are the main cell type responsible for the regulation of brain homeostasis, including the maintenance of ion gradients and neurotransmitter clearance. These processes are tightly coupled to changes in the intracellular sodium (Na+) concentration. While activation of the sodium-potassium-ATPase (NKA) in response to an elevation of extracellular K+ may decrease intracellular Na+, the cotransport of transmitters, such as glutamate, together with Na+ results in an increase in astrocytic Na+. This increase in intracellular Na+ can modulate, for instance, metabolic downstream pathways. Thereby, astrocytes are capable to react on a fast time scale to surrounding neuronal activity via intracellular Na+ fluctuations and adjust energy production to the demand of their environment. Beside the well-documented conventional roles of Na+ signaling mainly mediated through changes in its electrochemical gradient, several recent studies have identified more atypical roles for Na+, including protein interactions leading to changes in their biochemical activity or Na+-dependent regulation of gene expression. In this review, we will address both the conventional as well as the atypical functions of astrocytic Na+ signaling, presenting the role of transporters and channels involved and their implications for physiological processes in the central nervous system (CNS). We will also discuss how these important functions are affected under pathological conditions, including stroke and migraine. We postulate that Na+ is an essential player not only in the maintenance of homeostatic processes but also as a messenger for the fast communication between neurons and astrocytes, adjusting the functional properties of various cellular interaction partners to the needs of the surrounding network.
Collapse
Affiliation(s)
- Lisa Felix
- Institute of Neurobiology, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Andrea Delekate
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Gabor C Petzold
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Division of Vascular Neurology, Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Christine R Rose
- Institute of Neurobiology, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
17
|
Toft-Bertelsen TL, Larsen BR, Christensen SK, Khandelia H, Waagepetersen HS, MacAulay N. Clearance of activity-evoked K + transients and associated glia cell swelling occur independently of AQP4: A study with an isoform-selective AQP4 inhibitor. Glia 2020; 69:28-41. [PMID: 32506554 DOI: 10.1002/glia.23851] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/29/2022]
Abstract
The mammalian brain consists of 80% water, which is continuously shifted between different compartments and cellular structures by mechanisms that are, to a large extent, unresolved. Aquaporin 4 (AQP4) is abundantly expressed in glia and ependymal cells of the mammalian brain and has been proposed to act as a gatekeeper for brain water dynamics, predominantly based on studies utilizing AQP4-deficient mice. However, these mice have a range of secondary effects due to the gene deletion. An efficient and selective AQP4 inhibitor has thus been sorely needed to validate the results obtained in the AQP4-/- mice to quantify the contribution of AQP4 to brain fluid dynamics. In AQP4-expressing Xenopus laevis oocytes monitored by a high-resolution volume recording system, we here demonstrate that the compound TGN-020 is such a selective AQP4 inhibitor. TGN-020 targets the tested species of AQP4 with an IC50 of ~3.5 μM, but displays no inhibitory effect on the other AQPs (AQP1-AQP9). With this tool, we employed rat hippocampal slices and ion-sensitive microelectrodes to determine the role of AQP4 in glia cell swelling following neuronal activity. TGN-020-mediated inhibition of AQP4 did not prevent stimulus-induced extracellular space shrinkage, nor did it slow clearance of the activity-evoked K+ transient. These data, obtained with a verified isoform-selective AQP4 inhibitor, indicate that AQP4 is not required for the astrocytic contribution to the K+ clearance or the associated extracellular space shrinkage.
Collapse
Affiliation(s)
- Trine Lisberg Toft-Bertelsen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Brian Roland Larsen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sofie Kjellerup Christensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Himanshu Khandelia
- Department of Physics, Chemistry and Pharmacy, Faculty of Science, University of Southern Denmark, Odense, Denmark
| | - Helle S Waagepetersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nanna MacAulay
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
MacAulay N. Molecular mechanisms of K + clearance and extracellular space shrinkage-Glia cells as the stars. Glia 2020; 68:2192-2211. [PMID: 32181522 DOI: 10.1002/glia.23824] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 12/17/2022]
Abstract
Neuronal signaling in the central nervous system (CNS) associates with release of K+ into the extracellular space resulting in transient increases in [K+ ]o . This elevated K+ is swiftly removed, in part, via uptake by neighboring glia cells. This process occurs in parallel to the [K+ ]o elevation and glia cells thus act as K+ sinks during the neuronal activity, while releasing it at the termination of the pulse. The molecular transport mechanisms governing this glial K+ absorption remain a point of debate. Passive distribution of K+ via Kir4.1-mediated spatial buffering of K+ has become a favorite within the glial field, although evidence for a quantitatively significant contribution from this ion channel to K+ clearance from the extracellular space is sparse. The Na+ /K+ -ATPase, but not the Na+ /K+ /Cl- cotransporter, NKCC1, shapes the activity-evoked K+ transient. The different isoform combinations of the Na+ /K+ -ATPase expressed in glia cells and neurons display different kinetic characteristics and are thereby distinctly geared toward their temporal and quantitative contribution to K+ clearance. The glia cell swelling occurring with the K+ transient was long assumed to be directly associated with K+ uptake and/or AQP4, although accumulating evidence suggests that they are not. Rather, activation of bicarbonate- and lactate transporters appear to lead to glial cell swelling via the activity-evoked alkaline transient, K+ -mediated glial depolarization, and metabolic demand. This review covers evidence, or lack thereof, accumulated over the last half century on the molecular mechanisms supporting activity-evoked K+ and extracellular space dynamics.
Collapse
Affiliation(s)
- Nanna MacAulay
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
19
|
Lee D, Hong JH. The Fundamental Role of Bicarbonate Transporters and Associated Carbonic Anhydrase Enzymes in Maintaining Ion and pH Homeostasis in Non-Secretory Organs. Int J Mol Sci 2020; 21:ijms21010339. [PMID: 31947992 PMCID: PMC6981687 DOI: 10.3390/ijms21010339] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 12/18/2022] Open
Abstract
The bicarbonate ion has a fundamental role in vital systems. Impaired bicarbonate transport leads to various diseases, including immune disorders, cystic fibrosis, tumorigenesis, kidney diseases, brain dysfunction, tooth fracture, ischemic reperfusion injury, hypertension, impaired reproductive system, and systemic acidosis. Carbonic anhydrases are involved in the mechanism of bicarbonate movement and consist of complex of bicarbonate transport systems including bicarbonate transporters. This review focused on the convergent regulation of ion homeostasis through various ion transporters including bicarbonate transporters, their regulatory enzymes, such as carbonic anhydrases, pH regulatory role, and the expression pattern of ion transporters in non-secretory systems throughout the body. Understanding the correlation between these systems will be helpful in order to obtain new insights and design potential therapeutic strategies for the treatment of pH-related disorders. In this review, we have discussed the broad prospects and challenges that remain in elucidation of bicarbonate-transport-related biological and developmental systems.
Collapse
Affiliation(s)
| | - Jeong Hee Hong
- Correspondence: ; Tel.: +82-32-899-6682; Fax: +82-32-899-6039
| |
Collapse
|
20
|
Spontaneous Ultraslow Na + Fluctuations in the Neonatal Mouse Brain. Cells 2019; 9:cells9010102. [PMID: 31906100 PMCID: PMC7016939 DOI: 10.3390/cells9010102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/18/2019] [Accepted: 12/24/2019] [Indexed: 12/12/2022] Open
Abstract
In the neonate forebrain, network formation is driven by the spontaneous synchronized activity of pyramidal cells and interneurons, consisting of bursts of electrical activity and intracellular Ca2+ oscillations. By employing ratiometric Na+ imaging in tissue slices obtained from animals at postnatal day 2-4 (P2-4), we found that 20% of pyramidal neurons and 44% of astrocytes in neonatal mouse hippocampus also exhibit transient fluctuations in intracellular Na+. These occurred at very low frequencies (~2/h), were exceptionally long (~8 min), and strongly declined after the first postnatal week. Similar Na+ fluctuations were also observed in the neonate neocortex. In the hippocampus, Na+ elevations in both cell types were diminished when blocking action potential generation with tetrodotoxin. Neuronal Na+ fluctuations were significantly reduced by bicuculline, suggesting the involvement of GABAA-receptors in their generation. Astrocytic signals, by contrast, were neither blocked by inhibition of receptors and/or transporters for different transmitters including GABA and glutamate, nor of various Na+-dependent transporters or Na+-permeable channels. In summary, our results demonstrate for the first time that neonatal astrocytes and neurons display spontaneous ultraslow Na+ fluctuations. While neuronal Na+ signals apparently largely rely on suprathreshold GABAergic excitation, astrocytic Na+ signals, albeit being dependent on neuronal action potentials, appear to have a separate trigger and mechanism, the source of which remains unclear at present.
Collapse
|
21
|
Deitmer JW, Theparambil SM, Ruminot I, Noor SI, Becker HM. Energy Dynamics in the Brain: Contributions of Astrocytes to Metabolism and pH Homeostasis. Front Neurosci 2019; 13:1301. [PMID: 31866811 PMCID: PMC6909239 DOI: 10.3389/fnins.2019.01301] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/20/2019] [Indexed: 12/17/2022] Open
Abstract
Regulation of metabolism is complex and involves enzymes and membrane transporters, which form networks to support energy dynamics. Lactate, as a metabolic intermediate from glucose or glycogen breakdown, appears to play a major role as additional energetic substrate, which is shuttled between glycolytic and oxidative cells, both under hypoxic and normoxic conditions. Transport of lactate across the cell membrane is mediated by monocarboxylate transporters (MCTs) in cotransport with H+, which is a substrate, a signal and a modulator of metabolic processes. MCTs form a “transport metabolon” with carbonic anhydrases (CAs), which not only provide a rapid equilibrium between CO2, HCO3– and H+, but, in addition, enhances lactate transport, as found in Xenopus oocytes, employed as heterologous expression system, as well as in astrocytes and cancer cells. Functional interactions between different CA isoforms and MCTs have been found to be isoform-specific, independent of the enzyme’s catalytic activity, and they require physical interaction between the proteins. CAs mediate between different states of metabolic acidosis, induced by glycolysis and oxidative phosphorylation, and play a relay function in coupling pH regulation and metabolism. In the brain, metabolic processes in astrocytes appear to be linked to bicarbonate transport and to neuronal activity. Here, we focus on physiological processes of energy dynamics in astrocytes as well as on the transfer of energetic substrates to neurons.
Collapse
Affiliation(s)
- Joachim W Deitmer
- Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Shefeeq M Theparambil
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | | | - Sina I Noor
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Holger M Becker
- Institute of Physiological Chemistry, University of Veterinary Medicine Hanover, Hanover, Germany
| |
Collapse
|
22
|
Verkhratsky A, Rose CR. Na +-dependent transporters: The backbone of astroglial homeostatic function. Cell Calcium 2019; 85:102136. [PMID: 31835178 DOI: 10.1016/j.ceca.2019.102136] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/30/2019] [Accepted: 11/30/2019] [Indexed: 01/30/2023]
Abstract
Astrocytes are the principal homeostatic cells of the central nerves system (CNS) that support the CNS function at all levels of organisation, from molecular to organ. Several fundamental homeostatic functions of astrocytes are mediated through plasmalemmal pumps and transporters; most of which are also regulated by the transplasmalemmal gradient of Na+ ions. Neuronal activity as well as mechanical or chemical stimulation of astrocytes trigger plasmalemmal Na+ fluxes, which in turn generate spatio-temporally organised transient changes in the cytosolic Na+ concentration, which represent the substrate of astroglial Na+ signalling. Astroglial Na+ signals link and coordinate neuronal activity and CNS homeostatic demands with the astroglial homeostatic response.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK; Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain.
| | - Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, D-40225, Düsseldorf, Germany
| |
Collapse
|
23
|
Verkhratsky A, Parpura V, Vardjan N, Zorec R. Physiology of Astroglia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1175:45-91. [PMID: 31583584 DOI: 10.1007/978-981-13-9913-8_3] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Astrocytes are principal cells responsible for maintaining the brain homeostasis. Additionally, these glial cells are also involved in homocellular (astrocyte-astrocyte) and heterocellular (astrocyte-other cell types) signalling and metabolism. These astroglial functions require an expression of the assortment of molecules, be that transporters or pumps, to maintain ion concentration gradients across the plasmalemma and the membrane of the endoplasmic reticulum. Astrocytes sense and balance their neurochemical environment via variety of transmitter receptors and transporters. As they are electrically non-excitable, astrocytes display intracellular calcium and sodium fluctuations, which are not only used for operative signalling but can also affect metabolism. In this chapter we discuss the molecules that achieve ionic gradients and underlie astrocyte signalling.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK. .,Faculty of Health and Medical Sciences, Center for Basic and Translational Neuroscience, University of Copenhagen, 2200, Copenhagen, Denmark. .,Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain.
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nina Vardjan
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia.,Celica Biomedical, Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia.,Celica Biomedical, Ljubljana, Slovenia
| |
Collapse
|
24
|
Khakipoor S, Giannaki M, Theparambil SM, Zecha J, Küster B, Heermann S, Deitmer JW, Roussa E. Functional expression of electrogenic sodium bicarbonate cotransporter 1 (NBCe1) in mouse cortical astrocytes is dependent on S255‐257 and regulated by mTOR. Glia 2019; 67:2264-2278. [DOI: 10.1002/glia.23682] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/23/2019] [Accepted: 07/03/2019] [Indexed: 01/14/2023]
Affiliation(s)
- Shokoufeh Khakipoor
- Department of Molecular Embryology, Faculty of Medicine Institute of Anatomy and Cell Biology, Albert‐Ludwigs‐Universität Freiburg Freiburg Germany
| | - Marina Giannaki
- Department of Molecular Embryology, Faculty of Medicine Institute of Anatomy and Cell Biology, Albert‐Ludwigs‐Universität Freiburg Freiburg Germany
| | - Shefeeq M. Theparambil
- Department of General Zoology, FB Biology University of Kaiserslautern Kaiserslautern Germany
| | - Jana Zecha
- Chair of Proteomics and Bioanalytics Technical University of Munich Freising Germany
| | - Bernhard Küster
- Chair of Proteomics and Bioanalytics Technical University of Munich Freising Germany
- Bavarian Biomolecular Mass Spectrometry Center (BayBioMS) Technical University of Munich Freising Germany
| | - Stephan Heermann
- Department of Molecular Embryology, Faculty of Medicine Institute of Anatomy and Cell Biology, Albert‐Ludwigs‐Universität Freiburg Freiburg Germany
| | - Joachim W. Deitmer
- Department of General Zoology, FB Biology University of Kaiserslautern Kaiserslautern Germany
| | - Eleni Roussa
- Department of Molecular Embryology, Faculty of Medicine Institute of Anatomy and Cell Biology, Albert‐Ludwigs‐Universität Freiburg Freiburg Germany
| |
Collapse
|
25
|
ECS Dynamism and Its Influence on Neuronal Excitability and Seizures. Neurochem Res 2019; 44:1020-1036. [DOI: 10.1007/s11064-019-02773-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/07/2019] [Accepted: 03/07/2019] [Indexed: 02/08/2023]
|
26
|
Larsen BR, Stoica A, MacAulay N. Developmental maturation of activity-induced K + and pH transients and the associated extracellular space dynamics in the rat hippocampus. J Physiol 2019; 597:583-597. [PMID: 30357826 PMCID: PMC6332761 DOI: 10.1113/jp276768] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/22/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Neuronal activity induces fluctuation in extracellular space volume, [K+ ]o and pHo , the management of which influences neuronal function The neighbour astrocytes buffer the K+ and pH and swell during the process, causing shrinkage of the extracellular space In the present study, we report the developmental rise of the homeostatic control of the extracellular space dynamics, for which regulation becomes tighter with maturation and thus is proposed to ensure efficient synaptic transmission in the mature animals The extracellular space dynamics of volume, [K+ ]o and pHo evolve independently with developmental maturation and, although all of them are inextricably tied to neuronal activity, they do not couple directly. ABSTRACT Neuronal activity in the mammalian central nervous system associates with transient extracellular space (ECS) dynamics involving elevated K+ and pH and shrinkage of the ECS. These ECS properties affect membrane potentials, neurotransmitter concentrations and protein function and are thus anticipated to be under tight regulatory control. It remains unresolved to what extent these ECS dynamics are developmentally regulated as synaptic precision arises and whether they are directly or indirectly coupled. To resolve the development of homeostatic control of [K+ ]o , pH, and ECS and their interaction, we utilized ion-sensitive microelectrodes in electrically stimulated rat hippocampal slices from rats of different developmental stages (postnatal days 3-28). With the employed stimulation paradigm, the stimulus-evoked peak [K+ ]o and pHo transients were stable across age groups, until normalized to neuronal activity (field potential amplitude), in which case the K+ and pH shifted significantly more in the younger animals. By contrast, ECS dynamics increased with age until normalized to the field potential, and thus correlated with neuronal activity. With age, the animals not only managed the peak [K+ ]o better, but also displayed swifter post-stimulus removal of [K+ ]o , in correlation with the increased expression of the α1-3 isoforms of the Na+ /K+ -ATPase, and a swifter return of ECS volume. The different ECS dynamics approached a near-identical temporal pattern in the more mature animals. In conclusion, although these phenomena are inextricably tied to neuronal activity, our data suggest that they do not couple directly.
Collapse
Affiliation(s)
- Brian Roland Larsen
- Department of NeuroscienceFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Anca Stoica
- Department of NeuroscienceFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Nanna MacAulay
- Department of NeuroscienceFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
27
|
Chao SC, Wu GJ, Huang SF, Dai NT, Huang HK, Chou MF, Tsai YT, Lee SP, Loh SH. Functional and molecular mechanism of intracellular pH regulation in human inducible pluripotent stem cells. World J Stem Cells 2018; 10:196-211. [PMID: 30613313 PMCID: PMC6306555 DOI: 10.4252/wjsc.v10.i12.196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/14/2018] [Accepted: 12/05/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To establish a functional and molecular model of the intracellular pH (pHi) regulatory mechanism in human induced pluripotent stem cells (hiPSCs).
METHODS hiPSCs (HPS0077) were kindly provided by Dr. Dai from the Tri-Service General Hospital (IRB No. B-106-09). Changes in the pHi were detected either by microspectrofluorimetry or by a multimode reader with a pH-sensitive fluorescent probe, BCECF, and the fluorescent ratio was calibrated by the high K+/nigericin method. NH4Cl and Na-acetate prepulse techniques were used to induce rapid intracellular acidosis and alkalization, respectively. The buffering power (β) was calculated from the ΔpHi induced by perfusing different concentrations of (NH4)2SO4. Western blot techniques and immunocytochemistry staining were used to detect the protein expression of pHi regulators and pluripotency markers.
RESULTS In this study, our results indicated that (1) the steady-state pHi value was found to be 7.5 ± 0.01 (n = 20) and 7.68 ± 0.01 (n =20) in HEPES and 5% CO2/HCO3--buffered systems, respectively, which were much greater than that in normal adult cells (7.2); (2) in a CO2/HCO3--buffered system, the values of total intracellular buffering power (β) can be described by the following equation: βtot = 107.79 (pHi)2 - 1522.2 (pHi) + 5396.9 (correlation coefficient R2 = 0.85), in the estimated pHi range of 7.1-8.0; (3) the Na+/H+ exchanger (NHE) and the Na+/HCO3- cotransporter (NBC) were found to be functionally activated for acid extrusion for pHi values less than 7.5 and 7.68, respectively; (4) V-ATPase and some other unknown Na+-independent acid extruder(s) could only be functionally detected for pHi values less than 7.1; (5) the Cl-/ OH- exchanger (CHE) and the Cl-/HCO3- anion exchanger (AE) were found to be responsible for the weakening of intracellular proton loading; (6) besides the CHE and the AE, a Cl--independent acid loading mechanism was functionally identified; and (7) in hiPSCs, a strong positive correlation was observed between the loss of pluripotency and the weakening of the intracellular acid extrusion mechanism, which included a decrease in the steady-state pHi value and diminished the functional activity and protein expression of the NHE and the NBC.
CONCLUSION For the first time, we established a functional and molecular model of a pHi regulatory mechanism and demonstrated its strong positive correlation with hiPSC pluripotency.
Collapse
Affiliation(s)
- Shih-Chi Chao
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan
| | - Gwo-Jang Wu
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| | - Shu-Fu Huang
- Department of Pharmacy Practice, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| | - Niann-Tzyy Dai
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| | - Hsu-Kai Huang
- Division of Chest Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| | - Mei-Fang Chou
- Department of Pharmacy Practice, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| | - Yi-Ting Tsai
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan
- Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| | - Shiao-Pieng Lee
- Division of Oral and Maxillofacial Surgery, Department of Dentistry, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei 11490, Taiwan
| | - Shih-Hurng Loh
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan
- Department of Pharmacy Practice, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
- Department of Pharmacology, National Defense Medical Center, Taipei 11490, Taiwan
| |
Collapse
|
28
|
Noor ZN, Deitmer JW, Theparambil SM. Cytosolic sodium regulation in mouse cortical astrocytes and its dependence on potassium and bicarbonate. J Cell Physiol 2018; 234:89-99. [PMID: 30132845 DOI: 10.1002/jcp.26824] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 04/30/2018] [Indexed: 11/10/2022]
Abstract
Sodium plays a major role in different astrocytic functions, including maintenance of ion homeostasis and uptake of neurotransmitters and metabolites, which are mediated by different Na+ -coupled transporters. In the current study, the role of an electrogenic sodium-bicarbonate cotransporter (NBCe1), a sodium-potassium-chloride transporter 1 (NKCC1) and sodium-potassium ATPase (Na+ -K+ -ATPase) for the maintenance of [Na+ ]i was investigated in cultured astrocytes of wild-type (WT) and of NBCe1-deficient (NBCe1-KO) mice using the Na+ -sensitive dye, asante sodium green-2. Our results suggest that cytosolic Na+ was higher in the presence of CO2 /HCO3 - (15 mM) than CO2 /HCO3 - -free, HEPES-buffered solution in WT, but not in NBCe1-KO astrocytes (12 mM). Surprisingly, there was a strong dependence of cytosolic [Na+ ] on the extracellular [HCO3 - ] attributable to NBCe1 activity. Pharmacological blockage of NKCC1 with bumetanide led to a robust drop in cytosolic Na+ in both WT and NBCe1-KO astrocytes by up to 6 mM. There was a strong dependence of the cytosolic [Na+ ] on the extracellular [K+ ]. Inhibition of the Na+ -K+ -ATPase led to larger increase in cytosolic Na+ , both in the absence of K+ as compared with the presence of ouabain and in NBCe1-KO astrocytes as compared with WT astrocytes. Our results show that cytosolic Na+ in mouse cortical astrocytes can vary considerably and depends greatly on the concentrations of HCO3 - and K+ , attributable to the activity of the Na+ -K+ -ATPase, of NBCe1 and NKCC1.
Collapse
Affiliation(s)
- Zinnia N Noor
- Abteilung für Allgemeine Zoologie, FB Biologie, University of Kaiserslautern, Kaiserslautern, Germany
| | - Joachim W Deitmer
- Abteilung für Allgemeine Zoologie, FB Biologie, University of Kaiserslautern, Kaiserslautern, Germany
| | - Shefeeq M Theparambil
- Abteilung für Allgemeine Zoologie, FB Biologie, University of Kaiserslautern, Kaiserslautern, Germany
| |
Collapse
|
29
|
Zhou JX, Ding F, Tang LN, Li T, Li YH, Zhang YJ, Gong HY, Li YT, Zhang GJ. Monitoring of pH changes in a live rat brain with MoS2/PAN functionalized microneedles. Analyst 2018; 143:4469-4475. [DOI: 10.1039/c8an01149d] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Monitoring the dynamic pH changes in vivo remains very essential to comprehend the function of pH in various physiological processes.
Collapse
Affiliation(s)
- Jin-Xiu Zhou
- School of Laboratory Medicine
- Hubei University of Chinese Medicine
- Wuhan 430065
- PR China
| | - Fan Ding
- School of Laboratory Medicine
- Hubei University of Chinese Medicine
- Wuhan 430065
- PR China
| | - Li-Na Tang
- School of Laboratory Medicine
- Hubei University of Chinese Medicine
- Wuhan 430065
- PR China
| | - Teng Li
- School of Laboratory Medicine
- Hubei University of Chinese Medicine
- Wuhan 430065
- PR China
| | - Yun-Hui Li
- School of Laboratory Medicine
- Hubei University of Chinese Medicine
- Wuhan 430065
- PR China
| | - Yu-Jie Zhang
- School of Laboratory Medicine
- Hubei University of Chinese Medicine
- Wuhan 430065
- PR China
| | - Hao-Yue Gong
- School of Laboratory Medicine
- Hubei University of Chinese Medicine
- Wuhan 430065
- PR China
| | - Yu-Tao Li
- School of Laboratory Medicine
- Hubei University of Chinese Medicine
- Wuhan 430065
- PR China
| | - Guo-Jun Zhang
- School of Laboratory Medicine
- Hubei University of Chinese Medicine
- Wuhan 430065
- PR China
| |
Collapse
|
30
|
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
31
|
Verkhratsky A, Nedergaard M. Physiology of Astroglia. Physiol Rev 2018; 98:239-389. [PMID: 29351512 PMCID: PMC6050349 DOI: 10.1152/physrev.00042.2016] [Citation(s) in RCA: 1068] [Impact Index Per Article: 152.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/22/2017] [Accepted: 04/27/2017] [Indexed: 02/07/2023] Open
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
32
|
Khakipoor S, Ophoven C, Schrödl‐Häußel M, Feuerstein M, Heimrich B, Deitmer JW, Roussa E. TGF-β signaling directly regulates transcription and functional expression of the electrogenic sodium bicarbonate cotransporter 1, NBCe1 (SLC4A4), via Smad4 in mouse astrocytes. Glia 2017; 65:1361-1375. [PMID: 28568893 PMCID: PMC5518200 DOI: 10.1002/glia.23168] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 04/27/2017] [Accepted: 05/04/2017] [Indexed: 02/06/2023]
Abstract
The electrogenic sodium bicarbonate cotransporter NBCe1 (SLC4A4) expressed in astrocytes regulates intracellular and extracellular pH. Here, we introduce transforming growth factor beta (TGF-β) as a novel regulator of NBCe1 transcription and functional expression. Using hippocampal slices and primary hippocampal and cortical astrocyte cultures, we investigated regulation of NBCe1 and elucidated the underlying signaling pathways by RT-PCR, immunoblotting, immunofluorescence, intracellular H(+ ) recording using the H(+ ) -sensitive dye 2',7'-bis-(carboxyethyl)-5-(and-6)-carboxyfluorescein, mink lung epithelial cell (MLEC) assay, and chromatin immunoprecipitation. Activation of TGF-β signaling significantly upregulated transcript, protein, and surface expression of NBCe1. These effects were TGF-β receptor-mediated and suppressed following inhibition of JNK and Smad signaling. Moreover, 4-aminopyridine (4AP)-dependent NBCe1 regulation requires TGF-β. TGF-β increased the rate and amplitude of intracellular H+ changes upon challenging NBCe1 in wild-type astrocytes but not in cortical astrocytes from Slc4a4-deficient mice. A Smad4 binding sequence was identified in the NBCe1 promoter and Smad4 binding increased after activation of TGF-β signaling. The data show for the first time that NBCe1 is a direct target of TGF-β/Smad4 signaling. Through activation of the canonical pathway TGF-β acts directly on NBCe1 by binding of Smad4 to the NBCe1 promoter and regulating its transcription, followed by increased protein expression and transport activity.
Collapse
Affiliation(s)
- Shokoufeh Khakipoor
- Department of Molecular EmbryologyInstitute for Anatomy and Cell Biology, Faculty of Medicine, University of FreiburgAlbertstrasse 17D‐79104FreiburgGermany
| | - Christian Ophoven
- Department of Molecular EmbryologyInstitute for Anatomy and Cell Biology, Faculty of Medicine, University of FreiburgAlbertstrasse 17D‐79104FreiburgGermany
| | - Magdalena Schrödl‐Häußel
- Department of Molecular EmbryologyInstitute for Anatomy and Cell Biology, Faculty of Medicine, University of FreiburgAlbertstrasse 17D‐79104FreiburgGermany
| | - Melanie Feuerstein
- Department of Molecular EmbryologyInstitute for Anatomy and Cell Biology, Faculty of Medicine, University of FreiburgAlbertstrasse 17D‐79104FreiburgGermany
| | - Bernd Heimrich
- Department of NeuroanatomyInstitute for Anatomy and Cell Biology, Faculty of Medicine, University of FreiburgAlbertstrasse 17D‐79104FreiburgGermany
| | - Joachim W. Deitmer
- Department of General ZoologyFB Biology, University of KaiserslauternP.B. 3049D‐67653KaiserslauternGermany
| | - Eleni Roussa
- Department of Molecular EmbryologyInstitute for Anatomy and Cell Biology, Faculty of Medicine, University of FreiburgAlbertstrasse 17D‐79104FreiburgGermany
- Department of NeuroanatomyInstitute for Anatomy and Cell Biology, Faculty of Medicine, University of FreiburgAlbertstrasse 17D‐79104FreiburgGermany
| |
Collapse
|
33
|
Larsen BR, MacAulay N. Activity-dependent astrocyte swelling is mediated by pH-regulating mechanisms. Glia 2017; 65:1668-1681. [PMID: 28744903 DOI: 10.1002/glia.23187] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/09/2017] [Accepted: 06/23/2017] [Indexed: 11/09/2022]
Abstract
During neuronal activity in the mammalian brain, the K+ released into the synaptic space is initially buffered by the astrocytic compartment. In parallel, the extracellular space (ECS) shrinks, presumably due to astrocytic cell swelling. With the Na+ /K+ /2Cl- cotransporter and the Kir4.1/AQP4 complex not required for the astrocytic cell swelling in the hippocampus, the molecular mechanisms underlying the activity-dependent ECS shrinkage have remained unresolved. To identify these molecular mechanisms, we employed ion-sensitive microelectrodes to measure changes in ECS, [K+ ]o and [H+ ]o /pHo during electrical stimulation of rat hippocampal slices. Transporters and receptors responding directly to the K+ and glutamate released into the extracellular space (the K+ /Cl- cotransporter, KCC, glutamate transporters and G protein-coupled receptors) did not modulate the extracellular space dynamics. The HCO3--transporting mechanism, which in astrocytes mainly constitutes the electrogenic Na+ / HCO3- cotransporter 1 (NBCe1), is activated by the K+ -mediated depolarization of the astrocytic membrane. Inhibition of this transporter reduced the ECS shrinkage by ∼25% without affecting the K+ transients, pointing to NBCe1 as a key contributor to the stimulus-induced astrocytic cell swelling. Inhibition of the monocarboxylate cotransporters (MCT), like-wise, reduced the ECS shrinkage by ∼25% without compromising the K+ transients. Isosmotic reduction of extracellular Cl- revealed a requirement for this ion in parts of the ECS shrinkage. Taken together, the stimulus-evoked astrocytic cell swelling does not appear to occur as a direct effect of the K+ clearance, as earlier proposed, but partly via the pH-regulating transport mechanisms activated by the K+ -induced astrocytic depolarization and the activity-dependent metabolism.
Collapse
Affiliation(s)
- Brian Roland Larsen
- Faculty of Health and Medical Sciences, Center for Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Nanna MacAulay
- Faculty of Health and Medical Sciences, Center for Neuroscience, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
34
|
Todd AC, Marx MC, Hulme SR, Bröer S, Billups B. SNAT3-mediated glutamine transport in perisynaptic astrocytesin situis regulated by intracellular sodium. Glia 2017; 65:900-916. [DOI: 10.1002/glia.23133] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 01/12/2017] [Accepted: 02/08/2017] [Indexed: 01/16/2023]
Affiliation(s)
- Alison C. Todd
- Eccles Institute of Neuroscience, The John Curtin School of Medical Research; The Australian National University; 131 Garran Road Canberra ACT 2601 Australia
- Centre for Integrative Physiology, School of Biomedical Sciences; University of Edinburgh; Edinburgh EH8 9XD United Kingdom
| | - Mari-Carmen Marx
- Department of Pharmacology; University of Cambridge; Tennis Court Road Cambridge CB2 1BT United Kingdom
| | - Sarah R. Hulme
- Eccles Institute of Neuroscience, The John Curtin School of Medical Research; The Australian National University; 131 Garran Road Canberra ACT 2601 Australia
| | - Stefan Bröer
- Research School of Biology; The Australian National University; Linnaeus Way 134 Canberra ACT 2601 Australia
| | - Brian Billups
- Eccles Institute of Neuroscience, The John Curtin School of Medical Research; The Australian National University; 131 Garran Road Canberra ACT 2601 Australia
| |
Collapse
|
35
|
Theparambil SM, Naoshin Z, Defren S, Schmaelzle J, Weber T, Schneider HP, Deitmer JW. Bicarbonate sensing in mouse cortical astrocytes during extracellular acid/base disturbances. J Physiol 2017; 595:2569-2585. [PMID: 27981578 DOI: 10.1113/jp273394] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/30/2016] [Indexed: 12/18/2022] Open
Abstract
KEY POINTS The present study suggests that the electrogenic sodium-bicarbonate cotransporter, NBCe1, supported by carbonic anhydrase II, CAII, provides an efficient mechanism of bicarbonate sensing in cortical astrocytes. This mechanism is proposed to play a major role in setting the pHi responses to extracellular acid/base challenges in astrocytes. A decrease in extracellular [HCO3- ] during isocapnic acidosis and isohydric hypocapnia, or an increase in intracellular [HCO3- ] during hypercapnic acidosis, was effectively sensed by NBCe1, which carried bicarbonate out of the cells under these conditions, and caused an acidification and sodium fall in WT astrocytes, but not in NBCe1-knockout astrocytes. Isocapnic acidosis, hypercapnic acidosis and isohydric hypocapnia evoked inward currents in NBCe1- and CAII-expressing Xenopus laevis oocytes, but not in native oocytes, suggesting that NBCe1 operates in the outwardly directed mode under these conditions consistent with our findings in astrocytes. We propose that bicarbonate sensing of astrocytes may have functional significance during extracellular acid/base disturbances in the brain, as it not only alters intracellular pH/[HCO3- ]-dependent functions of astrocytes, but also modulates the extracellular pH/[HCO3- ] in brain tissue. ABSTRACT Extracellular acid/base status of the mammalian brain undergoes dynamic changes during many physiological and pathological events. Although intracellular pH (pHi ) of astrocytes responds to extracellular acid/base changes, the mechanisms mediating these changes have remained unresolved. We have previously shown that the electrogenic sodium-bicarbonate cotransporter, NBCe1, is a high-affinity bicarbonate carrier in cortical astrocytes. In the present study, we investigated whether NBCe1 plays a role in bicarbonate sensing in astrocytes, and in determining the pHi responses to extracellular acid/base challenges. We measured changes in intracellular H+ and Na+ in astrocytes from wild-type (WT) and from NBCe1-knockout (KO) mice, using ion-selective dyes, during isocapnic acidosis, hypercapnic acidosis and hypocapnia. We also analysed NBCe1-mediated membrane currents in Xenopus laevis oocytes under similar conditions. Comparing WT and NBCe1-KO astrocytes, we could dissect the contribution of NBCe1, of diffusion of CO2 across the cell membrane and, after blocking carbonic anhydrase (CA) activity with ethoxyzolamide, of the role of CA, for the amplitude and rate of acid/base fluxes. Our results suggest that NBCe1 transport activity in astrocytes, supported by CA activity, renders astrocytes bicarbonate sensors in the mouse cortex. NBCe1 carried bicarbonate into and out of the cell by sensing the variations of transmembrane [HCO3- ], irrespective of the changes in intra- and extracellular pH, and played a major role in setting pHi responses to the extracellular acid/base challenges. We propose that bicarbonate sensing of astrocytes may have potential functional significance during extracellular acid/base alterations in the brain.
Collapse
Affiliation(s)
- Shefeeq M Theparambil
- Abteilung für Allgemeine Zoologie, FB Biologie, University of Kaiserslautern, Pb 3049, D-67653, Kaiserslautern, Germany
| | - Zinnia Naoshin
- Abteilung für Allgemeine Zoologie, FB Biologie, University of Kaiserslautern, Pb 3049, D-67653, Kaiserslautern, Germany
| | - Sabrina Defren
- Abteilung für Allgemeine Zoologie, FB Biologie, University of Kaiserslautern, Pb 3049, D-67653, Kaiserslautern, Germany
| | - Jana Schmaelzle
- Abteilung für Allgemeine Zoologie, FB Biologie, University of Kaiserslautern, Pb 3049, D-67653, Kaiserslautern, Germany
| | - Tobias Weber
- Abteilung für Allgemeine Zoologie, FB Biologie, University of Kaiserslautern, Pb 3049, D-67653, Kaiserslautern, Germany
| | - Hans-Peter Schneider
- Abteilung für Allgemeine Zoologie, FB Biologie, University of Kaiserslautern, Pb 3049, D-67653, Kaiserslautern, Germany
| | - Joachim W Deitmer
- Abteilung für Allgemeine Zoologie, FB Biologie, University of Kaiserslautern, Pb 3049, D-67653, Kaiserslautern, Germany
| |
Collapse
|
36
|
Gerkau NJ, Rakers C, Petzold GC, Rose CR. Differential effects of energy deprivation on intracellular sodium homeostasis in neurons and astrocytes. J Neurosci Res 2017; 95:2275-2285. [PMID: 28150887 DOI: 10.1002/jnr.23995] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/10/2016] [Accepted: 11/10/2016] [Indexed: 12/11/2022]
Abstract
The maintenance of a low intracellular sodium concentration by the Na+ /K+ -ATPase (NKA) is critical for brain function. In both neurons and glial cells, NKA activity is required to counteract changes in the sodium gradient due to opening of voltage- and ligand-gated channels and/or activation of sodium-dependent secondary active transporters. Because NKA consumes about 50% of cellular ATP, sodium homeostasis is strictly dependent on an intact cellular energy metabolism. Despite the high energetic costs of electrical signaling, neurons do not contain significant energy stores themselves, but rely on a close metabolic interaction with surrounding astrocytes. A disruption of energy supply as observed during focal ischemia causes a rapid drop in ATP in both neurons and astrocytes. There is accumulating evidence that dysregulation of intracellular sodium is an inherent consequence of a reduction in cellular ATP, triggering secondary failure of extra- and intracellular homeostasis of other ions -in particular potassium, calcium, and protons- and thereby promoting excitotoxicity. The characteristics, cellular mechanisms and direct consequences of harmful sodium influx, however, differ between neurons and astrocytes. Moreover, recent work has shown that an intact astrocyte metabolism and sodium homeostasis are critical to maintain the sodium homeostasis of surrounding neurons as well as their capacity to recover from imposed sodium influx. Understanding the mechanisms of sodium increases upon metabolic failure and the differential responses of neurons and glial cells as well as their metabolic interactions will be critical to fully unravel the events causing cellular malfunction, failure and cell death following energy depletion. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Niklas J Gerkau
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, D-40225, Düsseldorf, Germany
| | - Cordula Rakers
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Strasse 27, 53127, Bonn, Germany
| | - Gabor C Petzold
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Strasse 27, 53127, Bonn, Germany
| | - Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, D-40225, Düsseldorf, Germany
| |
Collapse
|
37
|
Salameh AI, Hübner CA, Boron WF. Role of Cl - -HCO 3- exchanger AE3 in intracellular pH homeostasis in cultured murine hippocampal neurons, and in crosstalk to adjacent astrocytes. J Physiol 2016; 595:93-124. [PMID: 27353306 DOI: 10.1113/jp272470] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 06/20/2016] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS A polymorphism of human AE3 is associated with idiopathic generalized epilepsy. Knockout of AE3 in mice lowers the threshold for triggering epileptic seizures. The explanations for these effects are elusive. Comparisons of cells from wild-type vs. AE3-/- mice show that AE3 (present in hippocampal neurons, not astrocytes; mediates HCO3- efflux) enhances intracellular pH (pHi ) recovery (decrease) from alkali loads in neurons and, surprisingly, adjacent astrocytes. During metabolic acidosis (MAc), AE3 speeds initial acidification, but limits the extent of pHi decrease in neurons and astrocytes. AE3 speeds re-alkalization after removal of MAc in neurons and astrocytes, and speeds neuronal pHi recovery from an ammonium prepulse-induced acid load. We propose that neuronal AE3 indirectly increases acid extrusion in (a) neurons via Cl- loading, and (b) astrocytes by somehow enhancing NBCe1 (major acid extruder). The latter would enhance depolarization-induced alkalinization of astrocytes, and extracellular acidification, and thereby reduce susceptibility to epileptic seizures. ABSTRACT The anion exchanger AE3, expressed in hippocampal (HC) neurons but not astrocytes, contributes to intracellular pH (pHi ) regulation by facilitating the exchange of extracellular Cl- for intracellular HCO3- . The human AE3 polymorphism A867D is associated with idiopathic generalized epilepsy. Moreover, AE3 knockout (AE3-/- ) mice are more susceptible to epileptic seizure. The mechanism of these effects has been unclear because the starting pHi in AE3-/- and wild-type neurons is indistinguishable. The purpose of the present study was to use AE3-/- mice to investigate the role of AE3 in pHi homeostasis in HC neurons, co-cultured with astrocytes. We find that the presence of AE3 increases the acidification rate constant during pHi recovery from intracellular alkaline loads imposed by reducing [CO2 ]. The presence of AE3 also speeds intracellular acidification during the early phase of metabolic acidosis (MAc), not just in neurons but, surprisingly, in adjacent astrocytes. Additionally, AE3 contributes to braking the decrease in pHi later during MAc in both neurons and astrocytes. Paradoxically, AE3 enhances intracellular re-alkalization after MAc removal in neurons and astrocytes, and pHi recovery from an ammonium prepulse-induced acid load in neurons. The effects of AE3 knockout on astrocytic pHi homeostasis in MAc-related assays require the presence of neurons, and are consistent with the hypothesis that the AE3 knockout reduces functional expression of astrocytic NBCe1. These findings suggest a new type of neuron-astrocyte communication, based on the expression of AE3 in neurons, which could explain how AE3 reduces seizure susceptibility.
Collapse
Affiliation(s)
- Ahlam I Salameh
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | | | - Walter F Boron
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| |
Collapse
|
38
|
Hao J, Xiao T, Wu F, Yu P, Mao L. High Antifouling Property of Ion-Selective Membrane: toward In Vivo Monitoring of pH Change in Live Brain of Rats with Membrane-Coated Carbon Fiber Electrodes. Anal Chem 2016; 88:11238-11243. [DOI: 10.1021/acs.analchem.6b03854] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jie Hao
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Analytical Chemistry for
Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese
Academy of Sciences, Beijing 100049, China
| | - Tongfang Xiao
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Analytical Chemistry for
Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese
Academy of Sciences, Beijing 100049, China
| | - Fei Wu
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Analytical Chemistry for
Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese
Academy of Sciences, Beijing 100049, China
| | - Ping Yu
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Analytical Chemistry for
Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese
Academy of Sciences, Beijing 100049, China
| | - Lanqun Mao
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Analytical Chemistry for
Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese
Academy of Sciences, Beijing 100049, China
| |
Collapse
|
39
|
Yao H, Azad P, Zhao HW, Wang J, Poulsen O, Freitas BC, Muotri AR, Haddad GG. The Na +/HCO 3- co-transporter is protective during ischemia in astrocytes. Neuroscience 2016; 339:329-337. [PMID: 27717805 DOI: 10.1016/j.neuroscience.2016.09.050] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 09/24/2016] [Accepted: 09/29/2016] [Indexed: 02/03/2023]
Abstract
The sodium bicarbonate co-transporter (NBC) is the major bicarbonate-dependent acid-base transporter in mammalian astrocytes and has been implicated in ischemic brain injury. A malfunction of astrocytes could have great impact on the outcome of stroke due to their participation in the formation of blood-brain barrier, synaptic transmission, and electrolyte balance in the human brain. Nevertheless, the role of NBC in the ischemic astrocyte death has not been well understood. In this work, we obtained skin biopsies from healthy human subjects and had their fibroblasts grown in culture and reprogrammed into human-induced pluripotent stem cells (hiPSCs). These hiPSCs were further differentiated into neuroprogenitor cells (NPCs) and then into human astrocytes. These astrocytes express GFAP and S100β and readily propagate calcium waves upon mechanical stimulation. Using pH-sensitive dye BCECF [2',7'-bis-(carboxyethyl)-5-(and-6)-carboxyfluorescein] and qPCR technique, we have confirmed that these astrocytes express functional NBC including electrogenic NBC (NBCe). In addition, astrocytes exposed to an ischemic solution (IS) that mimics the ischemic penumbral environment enhanced both mRNA and protein expression level of NBCe1 in astrocytes. Using IS and a generic NBC blocker S0859, we have studied the involvement of NBC in IS-induced human astrocytes death. Our results show that a 30μM S0859 induced a 97.5±1.6% (n=10) cell death in IS-treated astrocytes, which is significantly higher than 43.6±4.5%, (n=10) in the control group treated with IS alone. In summary, a NBC blocker exaggerates IS-induced cell death, suggesting that NBC activity is essential for astrocyte survival when exposed to ischemic penumbral environment.
Collapse
Affiliation(s)
- Hang Yao
- Departments of Pediatrics, University of California San Diego, La Jolla, CA 92093, United States
| | - Priti Azad
- Departments of Pediatrics, University of California San Diego, La Jolla, CA 92093, United States
| | - Huiwen W Zhao
- Departments of Pediatrics, University of California San Diego, La Jolla, CA 92093, United States
| | - Juan Wang
- Departments of Pediatrics, University of California San Diego, La Jolla, CA 92093, United States
| | - Orit Poulsen
- Departments of Pediatrics, University of California San Diego, La Jolla, CA 92093, United States
| | - Beatriz C Freitas
- Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular & Molecular Medicine, Stem Cell Program, La Jolla, CA 92093, United States
| | - Alysson R Muotri
- Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular & Molecular Medicine, Stem Cell Program, La Jolla, CA 92093, United States
| | - Gabriel G Haddad
- Departments of Pediatrics & Neuroscience, University of California-San Diego, La Jolla, CA 92093, United States; Rady Children's Hospital-San Diego, San Diego, CA 92123, United States.
| |
Collapse
|
40
|
Theparambil SM, Weber T, Schmälzle J, Ruminot I, Deitmer JW. Proton Fall or Bicarbonate Rise: GLYCOLYTIC RATE IN MOUSE ASTROCYTES IS PAVED BY INTRACELLULAR ALKALINIZATION. J Biol Chem 2016; 291:19108-17. [PMID: 27422823 PMCID: PMC5009280 DOI: 10.1074/jbc.m116.730143] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/12/2016] [Indexed: 01/08/2023] Open
Abstract
Glycolysis is the primary step for major energy production in the cell. There is strong evidence suggesting that glucose consumption and rate of glycolysis are highly modulated by cytosolic pH/[H(+)], but those can also be stimulated by an increase in the intracellular [HCO3 (-)]. Because proton and bicarbonate shift concomitantly, it remained unclear whether enhanced glucose consumption and glycolytic rate were mediated by the changes in intracellular [H(+)] or [HCO3 (-)]. We have asked whether glucose metabolism is enhanced by either a fall in intracellular [H(+)] or a rise in intracellular [HCO3 (-)], or by both, in mammalian astrocytes. We have recorded intracellular glucose in mouse astrocytes using a FRET-based nanosensor, while imposing different intracellular [H(+)] and [CO2]/[HCO3 (-)]. Glucose consumption and glycolytic rate were augmented by a fall in intracellular [H(+)], irrespective of a concomitant rise or fall in intracellular [HCO3 (-)]. Transport of HCO3 (-) into and out of astrocytes by the electrogenic sodium bicarbonate cotransporter (NBCe1) played a crucial role in causing changes in intracellular pH and [HCO3 (-)], but was not obligatory for the pH-dependent changes in glucose metabolism. Our results clearly show that it is the cytosolic pH that modulates glucose metabolism in cortical astrocytes, and possibly also in other cell types.
Collapse
Affiliation(s)
- Shefeeq M Theparambil
- From the Abteilung für Allgemeine Zoologie, FB Biologie, University of Kaiserlautern, P. B. 3049, D-67653 Kaiserslautern, Germany and
| | - Tobias Weber
- From the Abteilung für Allgemeine Zoologie, FB Biologie, University of Kaiserlautern, P. B. 3049, D-67653 Kaiserslautern, Germany and
| | - Jana Schmälzle
- From the Abteilung für Allgemeine Zoologie, FB Biologie, University of Kaiserlautern, P. B. 3049, D-67653 Kaiserslautern, Germany and
| | - Ivàn Ruminot
- From the Abteilung für Allgemeine Zoologie, FB Biologie, University of Kaiserlautern, P. B. 3049, D-67653 Kaiserslautern, Germany and the Centro de Estudios Científicos (CECs), Valdivia 5110466, Chile
| | - Joachim W Deitmer
- From the Abteilung für Allgemeine Zoologie, FB Biologie, University of Kaiserlautern, P. B. 3049, D-67653 Kaiserslautern, Germany and
| |
Collapse
|
41
|
Rose CR, Verkhratsky A. Principles of sodium homeostasis and sodium signalling in astroglia. Glia 2016; 64:1611-27. [DOI: 10.1002/glia.22964] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 12/21/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Christine R. Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences; Heinrich Heine University Düsseldorf; Düsseldorf Germany
| | - Alexei Verkhratsky
- Faculty of Life Sciences; the University of Manchester; Manchester United Kingdom
- Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Department of Neurosciences; University of the Basque Country UPV/EHU and CIBERNED; Leioa Spain
- University of Nizhny Novgorod; Nizhny Novgorod Russia
| |
Collapse
|
42
|
Weller J, Steinhäuser C, Seifert G. pH-Sensitive K+ Currents and Properties of K2P Channels in Murine Hippocampal Astrocytes. ION CHANNELS AS THERAPEUTIC TARGETS, PART A 2016; 103:263-94. [DOI: 10.1016/bs.apcsb.2015.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|