1
|
Peixoto-Neves D, Jaggar JH. Physiological functions and pathological involvement of ion channel trafficking in the vasculature. J Physiol 2024; 602:3275-3296. [PMID: 37818949 PMCID: PMC11006830 DOI: 10.1113/jp285007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023] Open
Abstract
A variety of ion channels regulate membrane potential and calcium influx in arterial smooth muscle and endothelial cells to modify vascular functions, including contractility. The current (I) generated by a population of ion channels is equally dependent upon their number (N), open probability (Po) and single channel current (i), such that I = N.PO.i. A conventional view had been that ion channels traffic to the plasma membrane in a passive manner, resulting in a static surface population. It was also considered that channels assemble with auxiliary subunits prior to anterograde trafficking of the multimeric complex to the plasma membrane. Recent studies have demonstrated that physiological stimuli can regulate the surface abundance (N) of several different ion channels in arterial smooth muscle and endothelial cells to control arterial contractility. Physiological stimuli can also regulate the number of auxiliary subunits present in the plasma membrane to modify the biophysical properties, regulatory mechanisms and physiological functions of some ion channels. Furthermore, ion channel trafficking becomes dysfunctional in the vasculature during hypertension, which negatively impacts the regulation of contractility. The temporal kinetics of ion channel and auxiliary subunit trafficking can also vary depending on the signalling mechanisms and proteins involved. This review will summarize recent work that has uncovered the mechanisms, functions and pathological modifications of ion channel trafficking in arterial smooth muscle and endothelial cells.
Collapse
Affiliation(s)
| | - Jonathan H. Jaggar
- Department of Physiology, University of Tennessee Health Science Center, Memphis TN 38139
| |
Collapse
|
2
|
Chakraborty A, Paynter A, Szendrey M, Cornwell JD, Li W, Guo J, Yang T, Du Y, Wang T, Zhang S. Ubiquitination is involved in PKC-mediated degradation of cell surface Kv1.5 channels. J Biol Chem 2024; 300:107483. [PMID: 38897569 PMCID: PMC11301065 DOI: 10.1016/j.jbc.2024.107483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/30/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024] Open
Abstract
The voltage-gated Kv1.5 potassium channel, conducting the ultra-rapid delayed rectifier K+ current (IKur) in human cells, plays important roles in the repolarization of atrial action potentials and regulation of the vascular tone. We previously reported that activation of protein kinase C (PKC) by phorbol 12-myristate 13-acetate (PMA) induces endocytic degradation of cell-surface Kv1.5 channels, and a point mutation removing the phosphorylation site, T15A, in the N terminus of Kv1.5 abolished the PMA-effect. In the present study, using mutagenesis, patch clamp recording, Western blot analysis, and immunocytochemical staining, we demonstrate that ubiquitination is involved in the PMA-mediated degradation of mature Kv1.5 channels. Since the expression of the Kv1.4 channel is unaffected by PMA treatment, we swapped the N- and/or C-termini between Kv1.5 and Kv1.4. We found that the N-terminus alone did not but both N- and C-termini of Kv1.5 did confer PMA sensitivity to mature Kv1.4 channels, suggesting the involvement of Kv1.5 C-terminus in the channel ubiquitination. Removal of each of the potential ubiquitination residue Lysine at position 536, 565, and 591 by Arginine substitution (K536R, K565R, and K591R) had little effect, but removal of all three Lysine residues with Arginine substitution (3K-R) partially reduced PMA-mediated Kv1.5 degradation. Furthermore, removing the cysteine residue at position 604 by Serine substitution (C604S) drastically reduced PMA-induced channel degradation. Removal of the three Lysines and Cys604 with a quadruple mutation (3K-R/C604S) or a truncation mutation (Δ536) completely abolished the PKC activation-mediated degradation of Kv1.5 channels. These results provide mechanistic insight into PKC activation-mediated Kv1.5 degradation.
Collapse
Affiliation(s)
- Ananya Chakraborty
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Amanda Paynter
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Mark Szendrey
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - James D Cornwell
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Wentao Li
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Jun Guo
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Tonghua Yang
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Yuan Du
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Tingzhong Wang
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Shetuan Zhang
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
3
|
Hwang S, Yoon B, Jo SH. Inhibitory effects of N-methyl-D-aspartate (NMDA) and α 1-adrenergic receptor antagonist ifenprodil on human Kv1.5 channel. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3149-3161. [PMID: 37166464 DOI: 10.1007/s00210-023-02521-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/04/2023] [Indexed: 05/12/2023]
Abstract
Ifenprodil has been known to reduce cardiac contractility and cerebral vasodilation by antagonizing α1-adrenergic and N-methyl D-aspartate receptor-mediated intracellular signals. This study aimed to investigate the direct effect of ifenprodil on the human voltage-gated Kv1.5 channel (hKv1.5) by using a Xenopus oocyte expression system and a two-microelectrode voltage clamp technique. The amplitudes of hKv1.5 currents, including peak and steady state, were suppressed in a concentration-dependent manner (IC50; 43.1 and 35.5 μM, respectively) after 6 min of ifenprodil treatment. However, these effects were ~ 80% reversed by washout, suggesting that ifenprodil directly inhibited the hKv1.5 independent of membrane receptors or intracellular signals. The inhibition rate of steady state showed voltage dependence, wherein the rates increased according to test voltage depolarization. Ifenprodil reduced the time constants of hKv1.5 inactivation but has higher effects on activation. hKv1.5 inhibition by ifenprodil showed use dependency because the drug more rapidly reduced the current at the higher activation frequencies, and subsequent reduction in frequency after high activation frequency caused a partial channel block relief. Therefore, ifenprodil directly blocked the hKv1.5 in an open state and accelerated the time course of the channel inactivation, which provided a biophysical mechanism for the hKv1.5 blocking effects of ifenprodil.
Collapse
Affiliation(s)
- Soobeen Hwang
- Department of Physiology, Institute of Bioscience and Biotechnology, BK21 plus Graduate Program, Kangwon National University College of Medicine, Hyoja-Dong, Chuncheon, 200-701, Korea
| | - Byeongjun Yoon
- Department of Physiology, Institute of Bioscience and Biotechnology, BK21 plus Graduate Program, Kangwon National University College of Medicine, Hyoja-Dong, Chuncheon, 200-701, Korea
| | - Su-Hyun Jo
- Department of Physiology, Institute of Bioscience and Biotechnology, BK21 plus Graduate Program, Kangwon National University College of Medicine, Hyoja-Dong, Chuncheon, 200-701, Korea.
| |
Collapse
|
4
|
Potassium Channels in the Uterine Vasculature: Role in Healthy and Complicated Pregnancies. Int J Mol Sci 2022; 23:ijms23169446. [PMID: 36012712 PMCID: PMC9409294 DOI: 10.3390/ijms23169446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/28/2022] Open
Abstract
A progressive increase in maternal uterine and placental blood flow must occur during pregnancy to sustain the development of the fetus. Changes in maternal vasculature enable an increased uterine blood flow, placental nutrient and oxygen exchange, and subsequent fetal development. K+ channels are important modulators of vascular function, promoting vasodilation, inducing cell proliferation, and regulating cell signaling. Different types of K+ channels, such as Ca2+-activated, ATP-sensitive, and voltage-gated, have been implicated in the adaptation of maternal vasculature during pregnancy. Conversely, K+ channel dysfunction has been associated with vascular-related complications of pregnancy, including intrauterine growth restriction and pre-eclampsia. In this article, we provide an updated and comprehensive literature review that highlights the relevance of K+ channels as regulators of uterine vascular reactivity and their potential as therapeutic targets.
Collapse
|
5
|
Du Y, Wang T, Guo J, Li W, Yang T, Szendrey M, Zhang S. Kv1.5 channels are regulated by PKC-mediated endocytic degradation. J Biol Chem 2021; 296:100514. [PMID: 33676894 PMCID: PMC8050386 DOI: 10.1016/j.jbc.2021.100514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 11/28/2022] Open
Abstract
The voltage-gated potassium channel Kv1.5 plays important roles in the repolarization of atrial action potentials and regulation of the vascular tone. While the modulation of Kv1.5 function has been well studied, less is known about how the protein levels of Kv1.5 on the cell membrane are regulated. Here, through electrophysiological and biochemical analyses of Kv1.5 channels heterologously expressed in HEK293 cells and neonatal rat ventricular myocytes, as well as native Kv1.5 in human induced pluripotent stem cell (iPSC)-derived atrial cardiomyocytes, we found that activation of protein kinase C (PKC) with phorbol 12-myristate 13-acetate (PMA, 10 nM) diminished Kv1.5 current (IKv1.5) and protein levels of Kv1.5 in the plasma membrane. Mechanistically, PKC activation led to monoubiquitination and degradation of the mature Kv1.5 proteins. Overexpression of Vps24, a protein that sorts transmembrane proteins into lysosomes via the multivesicular body (MVB) pathway, accelerated, whereas the lysosome inhibitor bafilomycin A1 completely prevented PKC-mediated Kv1.5 degradation. Kv1.5, but not Kv1.1, Kv1.2, Kv1.3, or Kv1.4, was uniquely sensitive to PMA treatment. Sequence alignments suggested that residues within the N terminus of Kv1.5 are essential for PKC-mediated Kv1.5 reduction. Using N-terminal truncation as well as site-directed mutagenesis, we identified that Thr15 is the target site for PKC that mediates endocytic degradation of Kv1.5 channels. These findings indicate that alteration of protein levels in the plasma membrane represents an important regulatory mechanism of Kv1.5 channel function under PKC activation conditions.
Collapse
Affiliation(s)
- Yuan Du
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Tingzhong Wang
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Jun Guo
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Wentao Li
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Tonghua Yang
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Mark Szendrey
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Shetuan Zhang
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
6
|
Leo MD, Peixoto-Nieves D, Yin W, Raghavan S, Muralidharan P, Mata-Daboin A, Jaggar JH. TMEM16A channel upregulation in arterial smooth muscle cells produces vasoconstriction during diabetes. Am J Physiol Heart Circ Physiol 2021; 320:H1089-H1101. [PMID: 33449847 PMCID: PMC7988758 DOI: 10.1152/ajpheart.00690.2020] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/11/2022]
Abstract
The pathological involvement of anion channels in vascular dysfunction that occurs during type 2 diabetes (T2D) is unclear. Here, we tested the hypothesis that TMEM16A, a calcium-activated chloride (Cl-) channel, contributes to modifications in arterial contractility during T2D. Our data indicate that T2D increased TMEM16A mRNA in arterial smooth muscle cells and total and surface TMEM16A protein in resistance-size cerebral and hindlimb arteries of mice. To examine vascular cell types in which TMEM16A protein increased and the functional consequences of TMEM16A upregulation during T2D, we generated tamoxifen-inducible, smooth muscle cell-specific TMEM16A knockout (TMEM16A smKO) mice. T2D increased both TMEM16A protein and Cl- current density in arterial smooth muscle cells of control (TMEM16Afl/fl) mice. In contrast, T2D did not alter arterial TMEM16A protein or Cl- current density in smooth muscle cells of TMEM16A smKO mice. Intravascular pressure stimulated greater vasoconstriction (myogenic tone) in the arteries of T2D TMEM16Afl/fl mice than in the arteries of nondiabetic TMEM16Afl/fl mice. This elevation in myogenic tone in response to T2D was abolished in the arteries of T2D TMEM16A smKO mice. T2D also reduced Akt2 protein and activity in the arteries of T2D mice. siRNA-mediated knockdown of Akt2, but not Akt1, increased arterial TMEM16A protein in nondiabetic mice. In summary, data indicate that T2D is associated with an increase in TMEM16A expression and currents in arterial smooth muscle cells that produces vasoconstriction. Data also suggest that a reduction in Akt2 function drives these pathological alterations during T2D.NEW & NOTEWORTHY We investigated the involvement of TMEM16A channels in vascular dysfunction during type 2 diabetes (T2D). TMEM16A message, protein, and currents were higher in smooth muscle cells of resistance-size arteries during T2D. Pressure stimulated greater vasoconstriction in the arteries of T2D mice that was abolished in the arteries of TMEM16A smKO mice. Akt2 protein and activity were both lower in T2D arteries, and Akt2 knockdown elevated TMEM16A protein. We propose that a decrease in Akt2 function stimulates TMEM16A expression in arterial smooth muscle cells, leading to vasoconstriction during T2D.
Collapse
MESH Headings
- Animals
- Anoctamin-1/deficiency
- Anoctamin-1/genetics
- Anoctamin-1/metabolism
- Arteries/metabolism
- Arteries/physiopathology
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/physiopathology
- Diabetes Mellitus, Type 2/chemically induced
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/physiopathology
- Diabetic Angiopathies/etiology
- Diabetic Angiopathies/genetics
- Diabetic Angiopathies/metabolism
- Diabetic Angiopathies/physiopathology
- HEK293 Cells
- Hindlimb/blood supply
- Humans
- Insulin Resistance
- Male
- Membrane Potentials
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/metabolism
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- Signal Transduction
- Streptozocin
- Up-Regulation
- Vasoconstriction
- Mice
Collapse
Affiliation(s)
- M Dennis Leo
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee
| | | | - Wen Yin
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Somasundaram Raghavan
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee
| | | | - Alejandro Mata-Daboin
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Jonathan H Jaggar
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
7
|
Sarkar J, Chakraborti T, Pramanik PK, Ghosh P, Mandal A, Chakraborti S. PKCζ-NADPH Oxidase-PKCα Dependent Kv1.5 Phosphorylation by Endothelin-1 Modulates Nav1.5-NCX1-Cav1.2 Axis in Stimulating Ca 2+ Level in Caveolae of Pulmonary Artery Smooth Muscle Cells. Cell Biochem Biophys 2020; 79:57-71. [PMID: 33095400 DOI: 10.1007/s12013-020-00954-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2020] [Indexed: 11/29/2022]
Abstract
Endothelin-1 (ET-1) is a potent endogenously derived vasoconstrictor, which increases pulmonary hypertension via stimulation of [Ca2+]i level in pulmonary artery smooth muscle cells (PASMCs). In this communication, we sought to investigate the mechanism by which ET-1 causes stimulation of Ca2+ concentration in caveolae vesicles of bovine PASMCs (BPASMCs). ET-1 activates PKC-α in the caveolae vesicles by O2.- derived from PKCζ-NADPH oxidase dependent pathway. PKC-α phosphorylates Kv1.5 channels leading to a marked stimulation of Na+ and Ca2+ concentration in the caveolae vesicles. The stimulation of Ca2+ concentration in the caveolae vesicles by ET-1 occurs predominantly via Cav1.2 channels. Additionally, an increase in Na+ concentration by ET-1 due to stimulation of Nav1.5 channels marginally increases Ca2+ level in the caveolae vesicles via reverse-mode Na+/Ca2+ exchanger (NCX-1) and also through "slip-mode conductance" Nav1.5 channels. 4-AP, a well-known inhibitor of Kv channels, also increases Ca2+ concentration in the caveolae vesicles via Cav1.2 channels, reverse-mode NCX-1 and Nav1.5 channels by phosphorylation independent modulation of Kv1.5 channels without the involvement of PKCζ-NADPH oxidase-PKCα signaling axis. Overall, PKCζ-NADPH oxidase-PKCα dependent phosphorylation of Kv1.5 by ET-1 modulates Nav1.5-NCX1-Cav1.2 axis for stimulation of Ca2+ concentration in caveolae vesicles of BPASMCs, which provides a crucial mechanism for better understanding of ET-1-mediated modulation of pulmonary vascular tone.
Collapse
Affiliation(s)
- Jaganmay Sarkar
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal, 741235, India
| | - Tapati Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal, 741235, India
| | - Pijush Kanti Pramanik
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal, 741235, India
| | - Priyanka Ghosh
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal, 741235, India
| | - Amritlal Mandal
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal, 741235, India
| | - Sajal Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal, 741235, India.
| |
Collapse
|
8
|
Ion channels and the regulation of myogenic tone in peripheral arterioles. CURRENT TOPICS IN MEMBRANES 2020; 85:19-58. [DOI: 10.1016/bs.ctm.2020.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Hasan R, Jaggar JH. K V channel trafficking and control of vascular tone. Microcirculation 2018; 25. [PMID: 28963858 DOI: 10.1111/micc.12418] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/25/2017] [Indexed: 12/21/2022]
Abstract
Membrane potential is a principal regulator of arterial contractility. Arterial smooth muscle cells express several different types of ion channel that control membrane potential, including KV channels. KV channel activation leads to membrane hyperpolarization, resulting in inhibition of voltage-dependent Ca2+ channels, a reduction in [Ca2+ ]i , and vasodilation. In contrast, KV channel inhibition leads to membrane depolarization and vasoconstriction. The ability of KV channels to regulate arterial contractility is dependent upon the number of plasma membrane-resident channels and their open probability. Here, we will discuss mechanisms that alter the surface abundance of KV channel proteins in arterial smooth muscle cells and the functional consequences of such regulation. Cellular processes that will be described include those that modulate KV channel transcription, retrograde and anterograde trafficking, and protein degradation.
Collapse
Affiliation(s)
- Raquibul Hasan
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jonathan H Jaggar
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
10
|
Jackson WF. K V channels and the regulation of vascular smooth muscle tone. Microcirculation 2018; 25. [PMID: 28985443 DOI: 10.1111/micc.12421] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/01/2017] [Indexed: 12/31/2022]
Abstract
VSMCs in resistance arteries and arterioles express a diverse array of KV channels with members of the KV 1, KV 2 and KV 7 families being particularly important. Members of the KV channel family: (i) are highly expressed in VSMCs; (ii) are active at the resting membrane potential of VSMCs in vivo (-45 to -30 mV); (iii) contribute to the negative feedback regulation of VSMC membrane potential and myogenic tone; (iv) are activated by cAMP-related vasodilators, hydrogen sulfide and hydrogen peroxide; (v) are inhibited by increases in intracellular Ca2+ and vasoconstrictors that signal through Gq -coupled receptors; (vi) are involved in the proliferative phenotype of VSMCs; and (vii) are modulated by diseases such as hypertension, obesity, the metabolic syndrome and diabetes. Thus, KV channels participate in every aspect of the regulation of VSMC function in both health and disease.
Collapse
Affiliation(s)
- William F Jackson
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
11
|
Zhai X, Leo MD, Jaggar JH. Endothelin-1 Stimulates Vasoconstriction Through Rab11A Serine 177 Phosphorylation. Circ Res 2017; 121:650-661. [PMID: 28696251 DOI: 10.1161/circresaha.117.311102] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/06/2017] [Accepted: 07/07/2017] [Indexed: 01/18/2023]
Abstract
RATIONALE Large-conductance calcium-activated potassium channels (BK) are composed of pore-forming BKα and auxiliary β1 subunits in arterial smooth muscle cells (myocytes). Vasoconstrictors, including endothelin-1 (ET-1), inhibit myocyte BK channels, leading to contraction, but mechanisms involved are unclear. Recent evidence indicates that BKα is primarily plasma membrane localized, whereas the cellular location of β1 can be rapidly altered by Rab11A-positive recycling endosomes. Whether vasoconstrictors regulate the multisubunit composition of surface BK channels to stimulate contraction is unclear. OBJECTIVE Test the hypothesis that ET-1 inhibits BK channels by altering BKα and β1 surface trafficking in myocytes, identify mechanisms involved, and determine functional significance in myocytes of small cerebral arteries. METHODS AND RESULTS ET-1, through activation of PKC (protein kinase C), reduced surface β1 abundance and the proximity of β1 to surface BKα in myocytes. In contrast, ET-1 did not alter surface BKα, total β1, or total BKα proteins. ET-1 stimulated Rab11A phosphorylation, which reduced Rab11A activity. Rab11A serine 177 was identified as a high-probability PKC phosphorylation site. Expression of a phosphorylation-incapable Rab11A construct (Rab11A S177A) blocked the ET-1-induced Rab11A phosphorylation, reduction in Rab11A activity, and decrease in surface β1 protein. ET-1 inhibited single BK channels and transient BK currents in myocytes and stimulated vasoconstriction via a PKC-dependent mechanism that required Rab11A S177. In contrast, NO-induced Rab11A activation, surface trafficking of β1 subunits, BK channel and transient BK current activation, and vasodilation did not involve Rab11A S177. CONCLUSIONS ET-1 stimulates PKC-mediated phosphorylation of Rab11A at serine 177, which inhibits Rab11A and Rab11A-dependent surface trafficking of β1 subunits. The decrease in surface β1 subunits leads to a reduction in BK channel calcium-sensitivity, inhibition of transient BK currents, and vasoconstriction. We describe a unique mechanism by which a vasoconstrictor inhibits BK channels and identify Rab11A serine 177 as a modulator of arterial contractility.
Collapse
Affiliation(s)
- Xue Zhai
- From the Department of Physiology, University of Tennessee Health Science Center, Memphis
| | - M Dennis Leo
- From the Department of Physiology, University of Tennessee Health Science Center, Memphis
| | - Jonathan H Jaggar
- From the Department of Physiology, University of Tennessee Health Science Center, Memphis.
| |
Collapse
|