1
|
Tong W, Allison BJ, Brain KL, Patey OV, Niu Y, Botting KJ, Ford SG, Garrud TA, Wooding PFB, Lyu Q, Zhang L, Ma J, Sowton AP, O'Brien KA, Cindrova-Davies T, Yung HW, Burton GJ, Murray AJ, Giussani DA. Placental mitochondrial metabolic adaptation maintains cellular energy balance in pregnancy complicated by gestational hypoxia. J Physiol 2025. [PMID: 39868991 DOI: 10.1113/jp287897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/18/2024] [Indexed: 01/28/2025] Open
Abstract
The mechanisms that drive placental dysfunction in pregnancies complicated by hypoxia and fetal growth restriction remain poorly understood. Changes to mitochondrial respiration contribute to cellular dysfunction in conditions of hypoxia and have been implicated in the pathoaetiology of pregnancy complications, such as pre-eclampsia. We used bespoke isobaric hypoxic chambers and a combination of functional, molecular and imaging techniques to study cellular metabolism and mitochondrial dynamics in sheep undergoing hypoxic pregnancy. We show that hypoxic pregnancy in sheep triggers a shift in capacity away from β-oxidation and complex I-mediated respiration, while maintaining total oxidative phosphorylation capacity. There are also complex-specific changes to electron transport chain composition and a switch in mitochondrial dynamics towards fission. Hypoxic placentas show increased activation of the non-canonical mitochondrial unfolded protein response pathway and enhanced insulin like growth factor 2 signalling. Combined, therefore, the data show that the hypoxic placenta undergoes significant metabolic and morphological adaptations to maintain cellular energy balance. Chronic hypoxia during pregnancy in sheep activated placental mitochondrial stress pathways, leading to alterations in mitochondrial respiration, mitochondrial energy metabolism and mitochondrial dynamics, as seen in the placenta of women with pre-eclampsia. KEY POINTS: Hypoxia shifts mitochondrial respiration away from β-oxidation and complex I. Complex-specific changes occur in the electron transport chain composition. Activation of the non-canonical mitochondrial unfolded protein response pathway is heightened in hypoxic placentas. Enhanced insulin like growth factor 2 signalling is observed in hypoxic placentas. Hypoxic placentas undergo significant functional adaptations for energy balance.
Collapse
Affiliation(s)
- Wen Tong
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Strategic Research Initiative in Reproduction, University of Cambridge, Cambridge, UK
| | - Beth J Allison
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Kirsty L Brain
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Olga V Patey
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Youguo Niu
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Strategic Research Initiative in Reproduction, University of Cambridge, Cambridge, UK
- Cardiovascular Strategic Research Initiative, University of Cambridge, Cambridge, UK
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| | - Kimberley J Botting
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Strategic Research Initiative in Reproduction, University of Cambridge, Cambridge, UK
- Cardiovascular Strategic Research Initiative, University of Cambridge, Cambridge, UK
| | - Sage G Ford
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Tess A Garrud
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Peter F B Wooding
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Qiang Lyu
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| | - Lin Zhang
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| | - Jin Ma
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| | - Alice P Sowton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Katie A O'Brien
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Tereza Cindrova-Davies
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Strategic Research Initiative in Reproduction, University of Cambridge, Cambridge, UK
| | - Hong Wa Yung
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Strategic Research Initiative in Reproduction, University of Cambridge, Cambridge, UK
| | - Graham J Burton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Strategic Research Initiative in Reproduction, University of Cambridge, Cambridge, UK
| | - Andrew J Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Cardiovascular Strategic Research Initiative, University of Cambridge, Cambridge, UK
| | - Dino A Giussani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Strategic Research Initiative in Reproduction, University of Cambridge, Cambridge, UK
- Cardiovascular Strategic Research Initiative, University of Cambridge, Cambridge, UK
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
2
|
Zwanenburg F, Bos TA, Ten Harkel ADJ, Haak MC, Hahurij ND, Poelmann RE, van Munsteren CJ, Wisse LJ, Blom NA, DeRuiter MC, Jongbloed MRM. Development of autonomic innervation at the venous pole of the heart: bridging the gap from mice to human. J Transl Med 2025; 23:73. [PMID: 39815264 PMCID: PMC11734484 DOI: 10.1186/s12967-024-06049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/25/2024] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Prenatal development of autonomic innervation of sinus venosus-related structures might be related to atrial arrhythmias later in life. Most of the pioneering studies providing embryological background are conducted in animal models. To date, a detailed comparison with the human cardiac autonomic nervous system (cANS) is lacking. The aim of this study was to compare the morphological and functional development of the cANS between mouse and human, specifically aimed at the venous pole. METHODS Wildtype mouse embryos (E9.5-E18.5) and healthy human fetuses (6-38 weeks gestational age (WGA)) were studied at sequential stages to obtain a comparative developmental series. Cardiac autonomic function was assessed through heart rate variability (HRV) analysis using ultrasound. Morphological assessment of the venous pole was performed using immunohistochemical stainings for neural crest cells and autonomic nerve markers. RESULTS Murine cANS function did not definitively establish in utero as HRV parameters depicted no trend prior to birth. In contrast, human HRV parameters greatly increased from 20 to 30 WGA, indicating that human cANS function is established prenatally around 20 WGA and matures thereafter. Morphologically, cANS development followed a similar sequence with neural crest-derived nerves entering the venous pole in proximity to the developing pulmonary vein in both species. However, the timing of differentiation into sympathetic or parasympathetic phenotype was markedly distinct, as human autonomic markers emerged relatively later when related to major cardiogenesis. Structures related to arrhythmogenicity in humans, such as the ligament/vein of Marshall and the myocardium surrounding the pulmonary veins, become highly innervated during embryonic development in both mice and humans. CONCLUSION Although early morphological cANS development at sinus venosus-related structures follows a similar sequence in mice and humans, there are substantial differences in the timing of functional establishment and differentiation in sympathetic and parasympathetic phenotypes, which should be taken into account when extrapolating mouse studies of the cANS to humans. The abundant innervation of sinus venosus-related structures may play a modulatory role in arrhythmogenesis under pathological conditions.
Collapse
Affiliation(s)
- Fleur Zwanenburg
- Department of Obstetrics and Fetal Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Center of Congenital Heart Disease Amsterdam-Leiden (CAHAL), Leiden, The Netherlands
| | - Thomas A Bos
- Department of Anatomy & Embryology, Leiden University Medical Center, P.O. Box 9600, Postal Zone: S-1-P, 2300 RC, Leiden, The Netherlands
| | - Arend D J Ten Harkel
- Department of Pediatric Cardiology, Leiden University Medical Center, Leiden, The Netherlands
- Center of Congenital Heart Disease Amsterdam-Leiden (CAHAL), Leiden, The Netherlands
| | - Monique C Haak
- Department of Obstetrics and Fetal Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Center of Congenital Heart Disease Amsterdam-Leiden (CAHAL), Leiden, The Netherlands
| | - Nathan D Hahurij
- Department of Pediatric Cardiology, Leiden University Medical Center, Leiden, The Netherlands
- Center of Congenital Heart Disease Amsterdam-Leiden (CAHAL), Leiden, The Netherlands
| | - Robert E Poelmann
- Department of Anatomy & Embryology, Leiden University Medical Center, P.O. Box 9600, Postal Zone: S-1-P, 2300 RC, Leiden, The Netherlands
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Conny J van Munsteren
- Department of Anatomy & Embryology, Leiden University Medical Center, P.O. Box 9600, Postal Zone: S-1-P, 2300 RC, Leiden, The Netherlands
| | - Lambertus J Wisse
- Department of Anatomy & Embryology, Leiden University Medical Center, P.O. Box 9600, Postal Zone: S-1-P, 2300 RC, Leiden, The Netherlands
| | - Nico A Blom
- Department of Pediatric Cardiology, Leiden University Medical Center, Leiden, The Netherlands
- Center of Congenital Heart Disease Amsterdam-Leiden (CAHAL), Leiden, The Netherlands
| | - Marco C DeRuiter
- Department of Anatomy & Embryology, Leiden University Medical Center, P.O. Box 9600, Postal Zone: S-1-P, 2300 RC, Leiden, The Netherlands
- Center of Congenital Heart Disease Amsterdam-Leiden (CAHAL), Leiden, The Netherlands
| | - Monique R M Jongbloed
- Department of Anatomy & Embryology, Leiden University Medical Center, P.O. Box 9600, Postal Zone: S-1-P, 2300 RC, Leiden, The Netherlands.
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands.
- Center of Congenital Heart Disease Amsterdam-Leiden (CAHAL), Leiden, The Netherlands.
| |
Collapse
|
3
|
Ahmadzadeh E, Polglase GR, Stojanovska V, Herlenius E, Walker DW, Miller SL, Allison BJ. Does fetal growth restriction induce neuropathology within the developing brainstem? J Physiol 2023; 601:4667-4689. [PMID: 37589339 PMCID: PMC10953350 DOI: 10.1113/jp284191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 08/04/2023] [Indexed: 08/18/2023] Open
Abstract
Fetal growth restriction (FGR) is a complex obstetric issue describing a fetus that does not reach its genetic growth potential. The primary cause of FGR is placental dysfunction resulting in chronic fetal hypoxaemia, which in turn causes altered neurological, cardiovascular and respiratory development, some of which may be pathophysiological, particularly for neonatal life. The brainstem is the critical site of cardiovascular, respiratory and autonomic control, but there is little information describing how chronic hypoxaemia and the resulting FGR may affect brainstem neurodevelopment. This review provides an overview of the brainstem-specific consequences of acute and chronic hypoxia, and what is known in FGR. In addition, we discuss how brainstem structural alterations may impair functional control of the cardiovascular and respiratory systems. Finally, we highlight the clinical and translational findings of the potential roles of the brainstem in maintaining cardiorespiratory adaptation in the transition from fetal to neonatal life under normal conditions and in response to the pathological environment that arises during development in growth-restricted infants. This review emphasises the crucial role that the brainstem plays in mediating cardiovascular and respiratory responses during fetal and neonatal life. We assess whether chronic fetal hypoxaemia might alter structure and function of the brainstem, but this also serves to highlight knowledge gaps regarding FGR and brainstem development.
Collapse
Affiliation(s)
- Elham Ahmadzadeh
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Obstetrics and GynaecologyMonash UniversityClaytonVictoriaAustralia
| | - Graeme R. Polglase
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Obstetrics and GynaecologyMonash UniversityClaytonVictoriaAustralia
| | - Vanesa Stojanovska
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Obstetrics and GynaecologyMonash UniversityClaytonVictoriaAustralia
| | - Eric Herlenius
- Department of Women's and Children's HealthKarolinska InstitutetSolnaSweden
- Astrid Lindgren Children´s HospitalKarolinska University Hospital StockholmSolnaSweden
| | - David W. Walker
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Neurodevelopment in Health and Disease Research Program, School of Health and Biomedical SciencesRoyal Melbourne Institute of Technology (RMIT)MelbourneVictoriaAustralia
| | - Suzanne L. Miller
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Obstetrics and GynaecologyMonash UniversityClaytonVictoriaAustralia
| | - Beth J. Allison
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Obstetrics and GynaecologyMonash UniversityClaytonVictoriaAustralia
| |
Collapse
|
4
|
DiPietro JA, Bai J, Sgambati FP, Henderson JL, Watson H, Raghunathan RS, Pien GW. Fetal heart rate responses to maternal sleep-disordered breathing. Am J Obstet Gynecol 2023; 228:459.e1-459.e8. [PMID: 36183777 PMCID: PMC10050230 DOI: 10.1016/j.ajog.2022.09.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Maternal sleep-disordered breathing is associated with adverse pregnancy outcomes and is considered to be deleterious to the developing fetus. Maternal obesity potentiates sleep-disordered breathing, which, in turn, may contribute to the effect of maternal obesity on adverse fetal outcomes. However, only a few empirical studies have evaluated the contemporaneous effects of maternal sleep-disordered breathing events on fetal well-being. These events include apnea and hypopnea with accompanying desaturations in oxyhemoglobin. OBJECTIVE This study aimed to reconcile contradictory findings on the associations between maternal apnea or hypopnea events and clinical indicators of fetal compromise. It also sought to broaden the knowledge base by examining the fetal heart rate and heart rate variability before, during, and after episodes of maternal apnea or hypopnea. To accomplish this, we employed overnight polysomnography, the gold standard for ascertaining maternal sleep-disordered breathing, and synchronized it with continuous fetal electrocardiography. STUDY DESIGN A total of 84 pregnant women with obesity (body mass index >30 kg/m2) participated in laboratory-based polysomnography with digitized fetal electrocardiography recordings during or near 36 weeks of gestation. Sleep was recorded, on average, for 7 hours. Decelerations in fetal heart rate were identified. Fetal heart rate and heart rate variability were quantified before, during, and after each apnea or hypopnea event. Event-level intensity (desaturation magnitude, duration, and nadir O2 saturation level) and person-level characteristics based on the full overnight recording (apnea-hypopnea index, mean O2 saturation, and O2 saturation variability) were analyzed as potential moderators using linear mixed effects models. RESULTS A total of 2936 sleep-disordered breathing events were identified, distributed among all but 2 participants. On average, participants exhibited 8.7 episodes of apnea or hypopnea per hour (mean desaturation duration, 19.1 seconds; mean O2 saturation nadir, 86.6% per episode); nearly half (n=39) of the participants met the criteria for obstructive sleep apnea. Only 45 of 2936 apnea or hypopnea events were followed by decelerations (1.5%). Conversely, most (n=333, 88%) of the 378 observed decelerations, including the prolonged ones, did not follow an apnea or a hypopnea event. Maternal sleep-disordered breathing burden, body mass index, and fetal sex were unrelated to the number of decelerations. Fetal heart rate variability increased during events of maternal apnea or hypopnea but returned to initial levels soon thereafter. There was a dose-response association between the size of the increase in fetal heart rate variability and the maternal apnea-hypopnea index, event duration, and desaturation depth. Longer desaturations were associated with a decreased likelihood of the variability returning to baseline levels after the event. The mean fetal heart rate did not change during episodes of maternal apnea or hypopnea. CONCLUSION Episodes of maternal sleep apnea and hypopnea did not evoke decelerations in the fetal heart rate despite the predisposing risk factors that accompany maternal obesity. The significance of the modest transitory increase in fetal heart rate variability in response to apnea and hypopnea episodes is not clear but may reflect compensatory, delimited autonomic responses to momentarily adverse conditions. This study found no evidence that episodes of maternal sleep-disordered breathing pose an immediate threat, as reflected in fetal heart rate responses, to the near-term fetus.
Collapse
Affiliation(s)
- Janet A DiPietro
- Department of Population, Family & Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD.
| | - Jiawei Bai
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - Francis P Sgambati
- Center for Interdisciplinary Sleep Research and Education, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Janice L Henderson
- Division of Maternal-Fetal Medicine, Department of Gynecology & Obstetrics, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Heather Watson
- Department of Population, Family & Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - Radhika S Raghunathan
- Department of Population, Family & Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - Grace W Pien
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
5
|
Patural H, Pichot V, Roche F, Giraud A. Why, when and how to assess autonomic nervous system maturation in neonatal care units: A practical overview. Neurophysiol Clin 2023; 53:102855. [PMID: 36965238 DOI: 10.1016/j.neucli.2023.102855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/27/2023] Open
Abstract
The evaluation of the autonomic reactivity of newborns by heart rate variability (HRV) analysis is a simple and essential aid to identifying pathological situations of dysautonomia. Thanks to this relatively simple and reproducible analytic tool, the pediatrician can identify and target children at high risk of life-threatening events, i.e., those with insufficient intrinsic capacity for cardiorespiratory self-regulation, who should benefit from close cardiorespiratory monitoring. Different mathematical algorithms integrate delayed or real-time variations in the length of the RR interval to better understand the state of autonomic maturation of the newborn. HRV analysis, as a non-invasive tool for assessing autonomic balance, is essential to assess the functioning of the autonomic nervous system and, more specifically, parasympathetic/sympathetic balance. Despite many recognized diagnostic and therapeutic implications, its application to neonatal medicine is not yet well understood.
Collapse
Affiliation(s)
- Hugues Patural
- Neonatal and Pediatric Intensive Care Unit, Centre Hospitalier Universitaire de Saint-Étienne, F-42023, Saint-Étienne, France; Université Jean Monnet Saint-Étienne, INSERM, SAINBIOSE U1059, F-42023, Saint-Étienne, France.
| | - Vincent Pichot
- Université Jean Monnet Saint-Étienne, INSERM, SAINBIOSE U1059, F-42023, Saint-Étienne, France
| | - Frédéric Roche
- Université Jean Monnet Saint-Étienne, INSERM, SAINBIOSE U1059, F-42023, Saint-Étienne, France
| | - Antoine Giraud
- Neonatal and Pediatric Intensive Care Unit, Centre Hospitalier Universitaire de Saint-Étienne, F-42023, Saint-Étienne, France; Université Jean Monnet Saint-Étienne, INSERM, SAINBIOSE U1059, F-42023, Saint-Étienne, France
| |
Collapse
|
6
|
Stampalija T, Wolf H, Mylrea-Foley B, Marlow N, Stephens KJ, Shaw CJ, Lees CC. Reduced fetal growth velocity and weight loss are associated with adverse perinatal outcome in fetuses at risk of growth restriction. Am J Obstet Gynecol 2023; 228:71.e1-71.e10. [PMID: 35752304 DOI: 10.1016/j.ajog.2022.06.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Although fetal size is associated with adverse perinatal outcome, the relationship between fetal growth velocity and adverse perinatal outcome is unclear. OBJECTIVE This study aimed to evaluate the relationship between fetal growth velocity and signs of cerebral blood flow redistribution, and their association with birthweight and adverse perinatal outcome. STUDY DESIGN This study was a secondary analysis of the TRUFFLE-2 multicenter observational prospective feasibility study of fetuses at risk of fetal growth restriction between 32+0 and 36+6 weeks of gestation (n=856), evaluated by ultrasound biometry and umbilical and middle cerebral artery Doppler. Individual fetal growth velocity was calculated from the difference of birthweight and estimated fetal weight at 3, 2, and 1 week before delivery, and by linear regression of all available estimated fetal weight measurements. Fetal estimated weight and birthweight were expressed as absolute value and as multiple of the median for statistical calculation. The coefficients of the individual linear regression of estimated fetal weight measurements (growth velocity; g/wk) were plotted against the last umbilical-cerebral ratio with subclassification for perinatal outcome. The association of these measurements with adverse perinatal outcome was assessed. The adverse perinatal outcome was a composite of abnormal condition at birth or major neonatal morbidity. RESULTS Adverse perinatal outcome was more frequent among fetuses whose antenatal growth was <100 g/wk, irrespective of signs of cerebral blood flow redistribution. Infants with birthweight <0.65 multiple of the median were enrolled earlier, had the lowest fetal growth velocity, higher umbilical-cerebral ratio, and were more likely to have adverse perinatal outcome. A decreasing fetal growth velocity was observed in 163 (19%) women in whom the estimated fetal weight multiple of the median regression coefficient was <-0.025, and who had higher umbilical-cerebral ratio values and more frequent adverse perinatal outcome; 67 (41%; 8% of total group) of these women had negative growth velocity. Estimated fetal weight and umbilical-cerebral ratio at admission and fetal growth velocity combined by logistic regression had a higher association with adverse perinatal outcome than any of those parameters separately (relative risk, 3.3; 95% confidence interval, 2.3-4.8). CONCLUSION In fetuses at risk of late preterm fetal growth restriction, reduced growth velocity is associated with an increased risk of adverse perinatal outcome, irrespective of signs of cerebral blood flow redistribution. Some fetuses showed negative growth velocity, suggesting catabolic metabolism.
Collapse
Affiliation(s)
- Tamara Stampalija
- Unit of Fetal Medicine and Prenatal Diagnosis, Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico Burlo Garofolo, Trieste, Italy; Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Hans Wolf
- Department of Obstetrics and Gynecology, Amsterdam University Medical Center (Location AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Bronacha Mylrea-Foley
- Institute of Developmental and Reproductive Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom; Department of Fetal Medicine, Queen Charlotte's and Chelsea Hospital, Imperial College National Health Service Trust, London, United Kingdom
| | - Neil Marlow
- Institute for Womens Health, University College London, London, United Kingdom
| | - Katie J Stephens
- Department of Fetal Medicine, Queen Charlotte's and Chelsea Hospital, Imperial College National Health Service Trust, London, United Kingdom
| | - Caroline J Shaw
- Institute of Developmental and Reproductive Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom; Department of Fetal Medicine, Queen Charlotte's and Chelsea Hospital, Imperial College National Health Service Trust, London, United Kingdom
| | - Christoph C Lees
- Institute of Developmental and Reproductive Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom; Department of Fetal Medicine, Queen Charlotte's and Chelsea Hospital, Imperial College National Health Service Trust, London, United Kingdom.
| | | |
Collapse
|
7
|
Zizzo AR, Hansen J, Peteren OB, Mølgaard H, Uldbjerg N, Kirkegaard I. Growth-restricted human fetuses have preserved respiratory sinus arrhythmia but reduced heart rate variability estimates of vagal activity during quiescence. Physiol Rep 2022; 10:e15458. [PMID: 36411966 PMCID: PMC9812234 DOI: 10.14814/phy2.15458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 11/23/2022] Open
Abstract
The aim was to assess the association between fetal growth restriction (FGR) and fetal heart rate variability (FHRV) in relation to fetal movements. A prospective observational cohort study was performed. Non-invasive fetal electrocardiography (NI-FECG) allowed beat-to-beat assessments with <5% corrections of RR intervals. FHRV analyses included: Root mean square of successive RR interval differences (RMSSD), high frequency power (HF power), and low frequency power (LF power). Fetal movements were categorized by continuous ultrasound scanning. We enrolled 36 singleton pregnant women expecting a small fetus (< the 2.3 percentile of mean weight for gestational age) diagnosed by ultrasound, of whom 25 presented with a birthweight < the 2.3 percentile. Among these, 11 were excluded due to low quality NI-FECG recordings, leaving 14 women with 28 recordings eligible for inclusion in the analyses. The control group consisted of 22 healthy fetuses with birthweights between the 10th and the 90th percentile (average for gestational age [AGA]). In FGR fetuses the HRV response to respiratory activity was comparable to that of AGA fetuses. RMSSD (Ratio 1.54 [95% CI: 1.33; 1.79]) and HF power (Ratio 2.88 [95% CI: 2.12; 3.91]) increased, whereas LF/HF power (Ratio: 0.44 [95% CI: 0.31;0.63]) decreased. However, during fetal quiescence, FGR fetuses differed significantly from AGA fetuses. Compared to AGA fetuses, FGR fetuses displayed lower RMSSD (Ratio 0.77 (95% CI: 0.58; 1.02)) and HF power (Ratio 0.56 (95% CI:0.32; 0.98)). This reduction was associated with the severity of the FGR. In conclusion, FGR fetuses displayed a respiratory sinus arrhythmia (RSA) comparable to AGA fetuses; however, more important, parameters representing cardiac vagal activity were impaired in FGR fetuses during quiescence. RSA may constitute an intrinsic function of the cardiovascular system, which is unaffected by fetal compromise. However, the basic cardiac outflow assessed during fetal quiescence indicates a suppressed cardiac vagal activity in the FGR fetuses.
Collapse
Affiliation(s)
- Anne Rahbek Zizzo
- Department of Obstetrics and GynaecologyAarhus University HospitalAarhus NDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - John Hansen
- Department of Health Science and TechnologyAalborg UniversityAalborgDenmark
| | - Olav Bjørn Peteren
- Department of ObstetricsCopenhagen University HospitalCopenhagenDenmark
- Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Henning Mølgaard
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
- Department of CardiologyAarhus University HospitalAarhus NDenmark
| | - Niels Uldbjerg
- Department of Obstetrics and GynaecologyAarhus University HospitalAarhus NDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Ida Kirkegaard
- Department of Obstetrics and GynaecologyAarhus University HospitalAarhus NDenmark
| |
Collapse
|
8
|
King VJ, Bennet L, Stone PR, Clark A, Gunn AJ, Dhillon SK. Fetal growth restriction and stillbirth: Biomarkers for identifying at risk fetuses. Front Physiol 2022; 13:959750. [PMID: 36060697 PMCID: PMC9437293 DOI: 10.3389/fphys.2022.959750] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Fetal growth restriction (FGR) is a major cause of stillbirth, prematurity and impaired neurodevelopment. Its etiology is multifactorial, but many cases are related to impaired placental development and dysfunction, with reduced nutrient and oxygen supply. The fetus has a remarkable ability to respond to hypoxic challenges and mounts protective adaptations to match growth to reduced nutrient availability. However, with progressive placental dysfunction, chronic hypoxia may progress to a level where fetus can no longer adapt, or there may be superimposed acute hypoxic events. Improving detection and effective monitoring of progression is critical for the management of complicated pregnancies to balance the risk of worsening fetal oxygen deprivation in utero, against the consequences of iatrogenic preterm birth. Current surveillance modalities include frequent fetal Doppler ultrasound, and fetal heart rate monitoring. However, nearly half of FGR cases are not detected in utero, and conventional surveillance does not prevent a high proportion of stillbirths. We review diagnostic challenges and limitations in current screening and monitoring practices and discuss potential ways to better identify FGR, and, critically, to identify the “tipping point” when a chronically hypoxic fetus is at risk of progressive acidosis and stillbirth.
Collapse
Affiliation(s)
- Victoria J. King
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Peter R. Stone
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
| | - Alys Clark
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
- Auckland Biomedical Engineering Institute, The University of Auckland, Auckland, New Zealand
| | - Alistair J. Gunn
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Simerdeep K. Dhillon
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
- *Correspondence: Simerdeep K. Dhillon,
| |
Collapse
|
9
|
Tong W, Allison BJ, Brain KL, Patey OV, Niu Y, Botting KJ, Ford SG, Garrud TA, Wooding PF, Shaw CJ, Lyu Q, Zhang L, Ma J, Cindrova-Davies T, Yung HW, Burton GJ, Giussani DA. Chronic Hypoxia in Ovine Pregnancy Recapitulates Physiological and Molecular Markers of Preeclampsia in the Mother, Placenta, and Offspring. Hypertension 2022; 79:1525-1535. [PMID: 35534925 PMCID: PMC9172902 DOI: 10.1161/hypertensionaha.122.19175] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/20/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Preeclampsia continues to be a prevalent pregnancy complication and underlying mechanisms remain controversial. A common feature of preeclampsia is utero-placenta hypoxia. In contrast to the impact of hypoxia on the placenta and fetus, comparatively little is known about the maternal physiology. METHODS We adopted an integrative approach to investigate the inter-relationship between chronic hypoxia during pregnancy with maternal, placental, and fetal outcomes, common in preeclampsia. We exploited a novel technique using isobaric hypoxic chambers and in vivo continuous cardiovascular recording technology for measurement of blood pressure in sheep and studied the placental stress in response to hypoxia at cellular and subcellular levels. RESULTS Chronic hypoxia in ovine pregnancy promoted fetal growth restriction (FGR) with evidence of fetal brain-sparing, increased placental hypoxia-mediated oxidative damage, and activated placental stress response pathways. These changes were linked with dilation of the placental endoplasmic reticulum (ER) cisternae and increased placental expression of the antiangiogenic factors sFlt-1 (soluble fms-like tyrosine kinase 1) and sEng (soluble endoglin), combined with a shift towards an angiogenic imbalance in the maternal circulation. Chronic hypoxia further led to an increase in uteroplacental vascular resistance and the fall in maternal blood pressure with advancing gestation measured in normoxic pregnancy did not occur in hypoxic pregnancy. CONCLUSIONS Therefore, we show in an ovine model of sea-level adverse pregnancy that chronic hypoxia recapitulates physiological and molecular features of preeclampsia in the mother, placenta, and offspring.
Collapse
Affiliation(s)
- Wen Tong
- Department of Physiology Development & Neuroscience, University of Cambridge, United Kingdom (W.T., B.J.A., K.L.B., O.V.P., Y.N., K.J.B., S.G.F., T.A.G., P.F.B.W., T.C.-D., H.W.Y., G.J.B., D.A.G.)
- Centre for Trophoblast Research, University of Cambridge, United Kingdom (W.T., Y.N., K.J.B., T.A.G., P.G.B.W., T.C.-D., H.W.Y., G.J.B., D.A.G.)
| | - Beth J. Allison
- Department of Physiology Development & Neuroscience, University of Cambridge, United Kingdom (W.T., B.J.A., K.L.B., O.V.P., Y.N., K.J.B., S.G.F., T.A.G., P.F.B.W., T.C.-D., H.W.Y., G.J.B., D.A.G.)
| | - Kirsty L. Brain
- Department of Physiology Development & Neuroscience, University of Cambridge, United Kingdom (W.T., B.J.A., K.L.B., O.V.P., Y.N., K.J.B., S.G.F., T.A.G., P.F.B.W., T.C.-D., H.W.Y., G.J.B., D.A.G.)
| | - Olga V. Patey
- Department of Physiology Development & Neuroscience, University of Cambridge, United Kingdom (W.T., B.J.A., K.L.B., O.V.P., Y.N., K.J.B., S.G.F., T.A.G., P.F.B.W., T.C.-D., H.W.Y., G.J.B., D.A.G.)
| | - Youguo Niu
- Department of Physiology Development & Neuroscience, University of Cambridge, United Kingdom (W.T., B.J.A., K.L.B., O.V.P., Y.N., K.J.B., S.G.F., T.A.G., P.F.B.W., T.C.-D., H.W.Y., G.J.B., D.A.G.)
- Centre for Trophoblast Research, University of Cambridge, United Kingdom (W.T., Y.N., K.J.B., T.A.G., P.G.B.W., T.C.-D., H.W.Y., G.J.B., D.A.G.)
- BHF Cardiovascular Centre for Research Excellence, University of Cambridge, United Kingdom (Y.N., K.J.B., D.A.S.)
- Department of Aerospace Physiology, Fourth Military Medical University, Xi’an, China (Y.N., Q.L., L.Z., J.M., D.A.G.)
| | - Kimberley J. Botting
- Department of Physiology Development & Neuroscience, University of Cambridge, United Kingdom (W.T., B.J.A., K.L.B., O.V.P., Y.N., K.J.B., S.G.F., T.A.G., P.F.B.W., T.C.-D., H.W.Y., G.J.B., D.A.G.)
- Centre for Trophoblast Research, University of Cambridge, United Kingdom (W.T., Y.N., K.J.B., T.A.G., P.G.B.W., T.C.-D., H.W.Y., G.J.B., D.A.G.)
- BHF Cardiovascular Centre for Research Excellence, University of Cambridge, United Kingdom (Y.N., K.J.B., D.A.S.)
| | - Sage G. Ford
- Department of Physiology Development & Neuroscience, University of Cambridge, United Kingdom (W.T., B.J.A., K.L.B., O.V.P., Y.N., K.J.B., S.G.F., T.A.G., P.F.B.W., T.C.-D., H.W.Y., G.J.B., D.A.G.)
| | - Tessa A. Garrud
- Department of Physiology Development & Neuroscience, University of Cambridge, United Kingdom (W.T., B.J.A., K.L.B., O.V.P., Y.N., K.J.B., S.G.F., T.A.G., P.F.B.W., T.C.-D., H.W.Y., G.J.B., D.A.G.)
- Centre for Trophoblast Research, University of Cambridge, United Kingdom (W.T., Y.N., K.J.B., T.A.G., P.G.B.W., T.C.-D., H.W.Y., G.J.B., D.A.G.)
| | - Peter F.B. Wooding
- Department of Physiology Development & Neuroscience, University of Cambridge, United Kingdom (W.T., B.J.A., K.L.B., O.V.P., Y.N., K.J.B., S.G.F., T.A.G., P.F.B.W., T.C.-D., H.W.Y., G.J.B., D.A.G.)
- Centre for Trophoblast Research, University of Cambridge, United Kingdom (W.T., Y.N., K.J.B., T.A.G., P.G.B.W., T.C.-D., H.W.Y., G.J.B., D.A.G.)
| | - Caroline J. Shaw
- Department of Metabolism, Digestion and Reproduction, Imperial College London, United Kingdom (C.J.S.)
| | - Qiang Lyu
- Department of Aerospace Physiology, Fourth Military Medical University, Xi’an, China (Y.N., Q.L., L.Z., J.M., D.A.G.)
| | - Lin Zhang
- Department of Aerospace Physiology, Fourth Military Medical University, Xi’an, China (Y.N., Q.L., L.Z., J.M., D.A.G.)
| | - Jin Ma
- Department of Aerospace Physiology, Fourth Military Medical University, Xi’an, China (Y.N., Q.L., L.Z., J.M., D.A.G.)
| | - Tereza Cindrova-Davies
- Department of Physiology Development & Neuroscience, University of Cambridge, United Kingdom (W.T., B.J.A., K.L.B., O.V.P., Y.N., K.J.B., S.G.F., T.A.G., P.F.B.W., T.C.-D., H.W.Y., G.J.B., D.A.G.)
- Centre for Trophoblast Research, University of Cambridge, United Kingdom (W.T., Y.N., K.J.B., T.A.G., P.G.B.W., T.C.-D., H.W.Y., G.J.B., D.A.G.)
| | - Hong Wa Yung
- Department of Physiology Development & Neuroscience, University of Cambridge, United Kingdom (W.T., B.J.A., K.L.B., O.V.P., Y.N., K.J.B., S.G.F., T.A.G., P.F.B.W., T.C.-D., H.W.Y., G.J.B., D.A.G.)
- Centre for Trophoblast Research, University of Cambridge, United Kingdom (W.T., Y.N., K.J.B., T.A.G., P.G.B.W., T.C.-D., H.W.Y., G.J.B., D.A.G.)
| | - Graham J. Burton
- Department of Physiology Development & Neuroscience, University of Cambridge, United Kingdom (W.T., B.J.A., K.L.B., O.V.P., Y.N., K.J.B., S.G.F., T.A.G., P.F.B.W., T.C.-D., H.W.Y., G.J.B., D.A.G.)
- Centre for Trophoblast Research, University of Cambridge, United Kingdom (W.T., Y.N., K.J.B., T.A.G., P.G.B.W., T.C.-D., H.W.Y., G.J.B., D.A.G.)
| | - Dino A. Giussani
- Department of Physiology Development & Neuroscience, University of Cambridge, United Kingdom (W.T., B.J.A., K.L.B., O.V.P., Y.N., K.J.B., S.G.F., T.A.G., P.F.B.W., T.C.-D., H.W.Y., G.J.B., D.A.G.)
- Centre for Trophoblast Research, University of Cambridge, United Kingdom (W.T., Y.N., K.J.B., T.A.G., P.G.B.W., T.C.-D., H.W.Y., G.J.B., D.A.G.)
- BHF Cardiovascular Centre for Research Excellence, University of Cambridge, United Kingdom (Y.N., K.J.B., D.A.S.)
| |
Collapse
|
10
|
Fetal heart rate variability is a biomarker of rapid but not progressive exacerbation of inflammation in preterm fetal sheep. Sci Rep 2022; 12:1771. [PMID: 35110628 PMCID: PMC8810879 DOI: 10.1038/s41598-022-05799-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 01/11/2022] [Indexed: 12/14/2022] Open
Abstract
Perinatal infection/inflammation can trigger preterm birth and contribute to neurodevelopmental disability. There are currently no sensitive, specific methods to identify perinatal infection. We investigated the utility of time, frequency and non-linear measures of fetal heart rate (FHR) variability (FHRV) to identify either progressive or more rapid inflammation. Chronically instrumented preterm fetal sheep were randomly assigned to one of three different 5d continuous i.v. infusions: 1) control (saline infusions; n = 10), 2) progressive lipopolysaccharide (LPS; 200 ng/kg over 24 h, doubled every 24 h for 5d, n = 8), or 3) acute-on-chronic LPS (100 ng/kg over 24 h then 250 ng/kg/24 h for 4d plus 1 μg boluses at 48, 72, and 96 h, n = 9). Both LPS protocols triggered transient increases in multiple measures of FHRV at the onset of infusions. No FHRV or physiological changes occurred from 12 h after starting progressive LPS infusions. LPS boluses during the acute-on-chronic protocol triggered transient hypotension, tachycardia and an initial increase in multiple time and frequency domain measures of FHRV, with an asymmetric FHR pattern of predominant decelerations. Following resolution of hypotension after the second and third LPS boluses, all frequencies of FHRV became suppressed. These data suggest that FHRV may be a useful biomarker of rapid but not progressive preterm infection/inflammation.
Collapse
|
11
|
Tournier A, Beacom M, Westgate JA, Bennet L, Garabedian C, Ugwumadu A, Gunn AJ, Lear CA. Physiological control of fetal heart rate variability during labour: Implications and controversies. J Physiol 2021; 600:431-450. [PMID: 34951476 DOI: 10.1113/jp282276] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/25/2021] [Indexed: 11/08/2022] Open
Abstract
The interpretation of fetal heart rate (FHR) patterns is the only available method to continuously monitor fetal wellbeing during labour. One of the most important yet contentious aspects of the FHR pattern is changes in FHR variability (FHRV). Some clinical studies suggest that loss of FHRV during labour is a sign of fetal compromise so this is reflected in practice guidelines. Surprisingly, there is little systematic evidence to support this observation. In this review we methodically dissect the potential pathways controlling FHRV during labour-like hypoxaemia. Before labour, FHRV is controlled by the combined activity of the parasympathetic and sympathetic nervous systems, in part regulated by a complex interplay between fetal sleep state and behaviour. By contrast, preclinical studies using multiple autonomic blockades have now shown that sympathetic neural control of FHRV was potently suppressed between periods of labour-like hypoxaemia, and thus, that the parasympathetic system is the sole neural regulator of FHRV once FHR decelerations are present during labour. We further discuss the pattern of changes in FHRV during progressive fetal compromise and highlight potential biochemical, behavioural and clinical factors that may regulate parasympathetic-mediated FHRV during labour. Further studies are needed to investigate the regulators of parasympathetic activity to better understand the dynamic changes in FHRV and their true utility during labour. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Alexane Tournier
- Department of Obstetrics, Universite de Lille, CHU Lille, ULR 2694 - METRICS, Lille, F 59000, France
| | - Michael Beacom
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Jenny A Westgate
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Charles Garabedian
- Department of Obstetrics, Universite de Lille, CHU Lille, ULR 2694 - METRICS, Lille, F 59000, France
| | - Austin Ugwumadu
- Department of Obstetrics and Gynaecology, St George's Hospital, St George's University of London, London, SW17 0RE, UK
| | - Alistair J Gunn
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Christopher A Lear
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
12
|
Abstract
Heart disease remains one of the greatest killers. In addition to genetics and traditional lifestyle risk factors, we now understand that adverse conditions during pregnancy can also increase susceptibility to cardiovascular disease in the offspring. Therefore, the mechanisms by which this occurs and possible preventative therapies are of significant contemporary interest to the cardiovascular community. A common suboptimal pregnancy condition is a sustained reduction in fetal oxygenation. Chronic fetal hypoxia results from any pregnancy with increased placental vascular resistance, such as in preeclampsia, placental infection, or maternal obesity. Chronic fetal hypoxia may also arise during pregnancy at high altitude or because of maternal respiratory disease. This article reviews the short- and long-term effects of hypoxia on the fetal cardiovascular system, and the importance of chronic fetal hypoxia in triggering a developmental origin of future heart disease in the adult progeny. The work summarizes evidence derived from human studies as well as from rodent, avian, and ovine models. There is a focus on the discovery of the molecular link between prenatal hypoxia, oxidative stress, and increased cardiovascular risk in adult offspring. Discussion of mitochondria-targeted antioxidant therapy offers potential targets for clinical intervention in human pregnancy complicated by chronic fetal hypoxia.
Collapse
Affiliation(s)
- Dino A Giussani
- Department of Physiology, Development, and Neuroscience; The Barcroft Centre; Cambridge Cardiovascular British Heart Foundation Centre for Research Excellence; and Cambridge Strategic Research Initiative in Reproduction, University of Cambridge, UK
| |
Collapse
|
13
|
The newborn sheep translational model for pulmonary arterial hypertension of the neonate at high altitude. J Dev Orig Health Dis 2021; 11:452-463. [PMID: 32705972 DOI: 10.1017/s2040174420000616] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chronic hypoxia during gestation induces greater occurrence of perinatal complications such as intrauterine growth restriction, fetal hypoxia, newborn asphyxia, and respiratory distress, among others. This condition may also cause a failure in the transition of the fetal to neonatal circulation, inducing pulmonary arterial hypertension of the neonate (PAHN), a syndrome that involves pulmonary vascular dysfunction, increased vasoconstrictor tone and pathological remodeling. As this syndrome has a relatively low prevalence in lowlands (~7 per 1000 live births) and very little is known about its prevalence and clinical evolution in highlands (above 2500 meters), our understanding is very limited. Therefore, studies on appropriate animal models have been crucial to comprehend the mechanisms underlying this pathology. Considering the strengths and weaknesses of any animal model of human disease is fundamental to achieve an effective and meaningful translation to clinical practice. The sheep model has been used to study the normal and abnormal cardiovascular development of the fetus and the neonate for almost a century. The aim of this review is to highlight the advances in our knowledge on the programming of cardiopulmonary function with the use of high-altitude newborn sheep as a translational model of PAHN.
Collapse
|
14
|
Recher M, Prevost ALD, Sharma D, De Jonckheere J, Garabedian C, Storme L. Roles of parasympathetic outflow and sympathetic outflow in the cardiovascular response to brief umbilical cord occlusion in fetal sheep. PLoS One 2021; 16:e0254155. [PMID: 34228770 PMCID: PMC8259953 DOI: 10.1371/journal.pone.0254155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/21/2021] [Indexed: 01/08/2023] Open
Abstract
Fetal heart rate (FHR) deceleration is the most common change seen during labor. The role of the autonomic nervous system in regulating the fetal cardiovascular response during multiple uterine contractions has been well-established. However, the mechanism underlying the hemodynamic response remains unclear and the specific reflex that mediates the cardiovascular modifications is still controversial. This study aimed to determine the role of the sympathetic and parasympathetic systems on fetal hemodynamics in complete cord occlusion. Chronically instrumented fetal sheep were randomized to receive an intravenous injection of atropine 2.5 mg (n = 8), propranolol 5 mg (n = 7), atropine and propranolol (n = 7), or a control protocol (n = 9), followed by three episodes of 1-minute umbilical cord occlusion repeated every 5 minutes. Cord compression induces a rapid decrease in the FHR and a rapid increase in MAP. The decrease in FHR is caused by an increase in parasympathetic activity, (atropine and atropine-propranolol abolish the FHR response to the occlusion). The change in FHR during occlusion was not modified by propranolol injection, showing no effect of sympathetic tone. The increase in MAP during occlusion was similar in the four protocols. After releasing occlusion, the FHR was still lower than that at baseline due to a sustained parasympathetic tone. Suppression of the parasympathetic output to the cardiovascular system unmasks an increase in the FHR above baseline values. The lower FHR with the propranolol protocol further supports an increase in myocardial β-adrenoceptor stimulation after cord release. The increase in MAP after cord release was similar in the four protocols, except after the early stage of interocclusion period in atropine protocol. Four minutes after cord release, the FHR returned to baseline irrespective of the drugs that were infused, thereby showing recovery of ANS control. Blood gases (pH, PaCO2, PaO2) and plasma lactate concentrations was similar between the four protocols at the end of three applications of UCO. Complete cord compression-induced deceleration is likely due to acute activation of parasympathetic output. β-adrenoceptor activity is involved in the increase in FHR after cord release. Understanding the reflexes involved in FHR deceleration may help us understand the mechanisms underlying fetal autonomic adaptation during cord occlusion.
Collapse
Affiliation(s)
- Morgan Recher
- Univ. Lille, ULR 2694 – METRICS: Evaluation des technologies de santé et des pratiques médicales, Lille, France
- Department of Pediatric Intensive Care Unit, CHU Lille, Jeanne de Flandre Hospital, Lille, France
| | - Arthur Lauriot Dit Prevost
- Univ. Lille, ULR 2694 – METRICS: Evaluation des technologies de santé et des pratiques médicales, Lille, France
- Department of Pediatric Surgery, CHU Lille, Jeanne de Flandre Hospital, Lille, France
| | - Dyuti Sharma
- Univ. Lille, ULR 2694 – METRICS: Evaluation des technologies de santé et des pratiques médicales, Lille, France
- Department of Pediatric Surgery, CHU Lille, Jeanne de Flandre Hospital, Lille, France
| | - Julien De Jonckheere
- Univ. Lille, ULR 2694 – METRICS: Evaluation des technologies de santé et des pratiques médicales, Lille, France
- CHU Lille, Centre d’Innovation Technologique, Lille, France
| | - Charles Garabedian
- Univ. Lille, ULR 2694 – METRICS: Evaluation des technologies de santé et des pratiques médicales, Lille, France
- Department of Obstetrics, CHU Lille, Jeanne de Flandre Hospital, Lille, France
| | - Laurent Storme
- Univ. Lille, ULR 2694 – METRICS: Evaluation des technologies de santé et des pratiques médicales, Lille, France
- Department of Neonatology, CHU Lille, Jeanne de Flandre Hospital, Lille, France
| |
Collapse
|
15
|
Zwanenburg F, Jongbloed MRM, van Geloven N, Ten Harkel ADJ, van Lith JMM, Haak MC. Assessment of human fetal cardiac autonomic nervous system development using color tissue Doppler imaging. Echocardiography 2021; 38:974-981. [PMID: 34018638 PMCID: PMC8252470 DOI: 10.1111/echo.15094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 12/14/2022] Open
Abstract
Objectives Functional development of the fetal cardiac autonomic nervous system (cANS) plays a key role in fetal maturation and can be assessed through fetal heart rate variability (fHRV)‐analysis, with each HRV parameter representing different aspects of cANS activity. Current available techniques, however, are unable to assess the fHRV parameters accurately throughout the whole pregnancy. This study aims to test the feasibility of color tissue Doppler imaging (cTDI) as a new ultrasound technique for HRV analysis. Secondly, we explored time trends of fHRV parameters using this technique. Methods 18 healthy singleton fetuses were examined sequentially every 8 weeks from 10 weeks GA onwards. From each examination, 3 cTDI recordings of the four‐chamber view of 10 seconds were retrieved to determine accurate beat‐to‐beat intervals. The fHRV parameters SDNN, RMSSD, SDNN/RMSSD, and pNN10, each representing different functional aspects of the cANS, were measured, and time trends during pregnancy were explored using spline functions within a linear mixed‐effects model. Results In total, 77% (95% Cl 66–87%) of examinations were feasible for fHRV analysis from the first trimester onwards, which is a great improvement compared to other techniques. The technique is able to determine different maturation rates of the fHRV parameters, showing that cANS function, presumably parasympathetic activity, establishes around 20 weeks GA and matures rapidly until 30 weeks GA. Conclusions This is the first study able to assess cANS function through fHRV analysis from the first trimester onwards. The use of cTDI to determine beat‐to‐beat intervals seems feasible in just 3 clips of 10 seconds, which holds promise for future clinical use in assessing fetal well‐being.
Collapse
Affiliation(s)
- Fleur Zwanenburg
- Department of Obstetrics and Prenatal Diagnosis, Leiden University Medical Center, Leiden, The Netherlands
| | - Monique R M Jongbloed
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands.,Department of Anatomy & Embryology, Leiden University Medical Center, Leiden, the Netherlands
| | - Nan van Geloven
- Department of Biomedical Data Sciences, Section Medical Statistics, Leiden University Medical Center, Leiden, The Netherlands
| | - Arend D J Ten Harkel
- Department of Pediatric Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan M M van Lith
- Department of Obstetrics and Prenatal Diagnosis, Leiden University Medical Center, Leiden, The Netherlands
| | - Monique C Haak
- Department of Obstetrics and Prenatal Diagnosis, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
16
|
Dall'asta A, Cagninelli G, Galli L, Frusca T, Ghi T. Monitoring fetal well-being in labor in late fetal growth restriction. Minerva Obstet Gynecol 2021; 73:453-461. [PMID: 33949824 DOI: 10.23736/s2724-606x.21.04819-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Late-onset fetal growth restriction (FGR) accounts for approximately 70-80% of all cases of FGR secondary to uteroplacental insufficiency. It is associated with an increased incidence of adverse antepartum and perinatal events, which in most instances result from hypoxic insults either present at the onset of labor or supervening during labor as a result of uterine contractions. Labor represents a stressful event for the fetoplacental unit being uterine contractions associated with an up-to 60% reduction of the uteroplacental perfusion. Intrapartum fetal heart rate monitoring by means of cardiotocography (CTG) currently represents the mainstay for the identification of fetal hypoxia during labor and is recommended for the fetal surveillance during labor in the case of FGR or other conditions associated with an increased risk of intrapartum hypoxia. In this review we discuss the potential implications of an impaired placental function on the intrapartum adaptation to the hypoxic stress and the role of the CTG and alternative techniques for the intrapartum monitoring of the fetal wellbeing in the context of FGR secondary to uteroplacental insufficiency.
Collapse
Affiliation(s)
- Andrea Dall'asta
- Unit of Obstetrics and Gynecology, Department of Medicine and Surgery, University of Parma, Parma, Italy - .,Department of Metabolism, Digestion and Reproduction, Institute of Reproductive and Developmental Biology, Imperial College London, London, UK -
| | - Greta Cagninelli
- Unit of Obstetrics and Gynecology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Letizia Galli
- Unit of Obstetrics and Gynecology, AUSL-IRCCS Reggio Emilia, Reggio Emilia, Italy
| | - Tiziana Frusca
- Unit of Obstetrics and Gynecology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Tullio Ghi
- Unit of Obstetrics and Gynecology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
17
|
Camm EJ, Cross CM, Kane AD, Tarry-Adkins JL, Ozanne SE, Giussani DA. Maternal antioxidant treatment protects adult offspring against memory loss and hippocampal atrophy in a rodent model of developmental hypoxia. FASEB J 2021; 35:e21477. [PMID: 33891326 DOI: 10.1096/fj.202002557rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/11/2021] [Accepted: 02/11/2021] [Indexed: 02/02/2023]
Abstract
Chronic fetal hypoxia is one of the most common outcomes in complicated pregnancy in humans. Despite this, its effects on the long-term health of the brain in offspring are largely unknown. Here, we investigated in rats whether hypoxic pregnancy affects brain structure and function in the adult offspring and explored underlying mechanisms with maternal antioxidant intervention. Pregnant rats were randomly chosen for normoxic or hypoxic (13% oxygen) pregnancy with or without maternal supplementation with vitamin C in their drinking water. In one cohort, the placenta and fetal tissues were collected at the end of gestation. In another, dams were allowed to deliver naturally, and offspring were reared under normoxic conditions until 4 months of age (young adult). Between 3.5 and 4 months, the behavior, cognition and brains of the adult offspring were studied. We demonstrated that prenatal hypoxia reduced neuronal number, as well as vascular and synaptic density, in the hippocampus, significantly impairing memory function in the adult offspring. These adverse effects of prenatal hypoxia were independent of the hypoxic pregnancy inducing fetal growth restriction or elevations in maternal or fetal plasma glucocorticoid levels. Maternal vitamin C supplementation during hypoxic pregnancy protected against oxidative stress in the placenta and prevented the adverse effects of prenatal hypoxia on hippocampal atrophy and memory loss in the adult offspring. Therefore, these data provide a link between prenatal hypoxia, placental oxidative stress, and offspring brain health in later life, providing insight into mechanism and identifying a therapeutic strategy.
Collapse
Affiliation(s)
- Emily J Camm
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - Christine M Cross
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - Andrew D Kane
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - Jane L Tarry-Adkins
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Susan E Ozanne
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK.,Cambridge Strategic Initiative in Reproduction, Cambridge, UK
| | - Dino A Giussani
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK.,Cambridge Strategic Initiative in Reproduction, Cambridge, UK
| |
Collapse
|
18
|
Recher M, Garabedian C, Aubry E, Sharma D, Butruille L, Storme L, De Jonckheere J. Opioid effect on the autonomic nervous system in a fetal sheep model. Arch Gynecol Obstet 2021; 304:73-80. [PMID: 33389095 DOI: 10.1007/s00404-020-05917-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 11/21/2020] [Indexed: 10/22/2022]
Abstract
PURPOSE Opioid use during labour can interfere with cardiotocography patterns. Heart rate variability indirectly reflects a fluctuation in the autonomic nervous system and can be monitored through time and spectral analyses. This experimental study aimed to evaluate the impact of nalbuphine administration on the gasometric, cardiovascular, and autonomic nervous system responses in fetal sheep. METHODS This was an experimental study on chronically instrumented sheep fetuses (surgery at 128 ± 2 days of gestational age, term = 145 days). The model was based on a maternal intravenous bolus injection of nalbuphine, a semisynthetic opioid used as an analgesic during delivery. Fetal gasometric parameters (pH, pO2, pCO2, and lactates), hemodynamic parameters (fetal heart rate and mean arterial pressure), and autonomic nervous system tone (short-term and long-term variation, low-frequency domain, high-frequency domain, and fetal stress index) were recorded. Data obtained at 30-60 min after nalbuphine injection were compared to those recorded at baseline. RESULTS Eleven experiments were performed. Fetal heart rate, mean arterial pressure, and activities at low and high frequencies were stable after injection. Short-term variation decreased at T30 min (P = 0.02), and long-term variation decreased at T60 min (P = 0.02). Fetal stress index gradually increased and reached significance at T60 min (P = 0.02). Fetal gasometric parameters and lactate levels remained stable. CONCLUSION Maternal nalbuphine use during labour may lead to fetal heart changes that are caused by the effect of opioid on the autonomic nervous system; these fluctuations do not reflect acidosis.
Collapse
Affiliation(s)
- Morgan Recher
- ULR 2694, METRICS, Evaluation des Technologies de Santé et des Pratiques Médicales, University of Lille, 59000, Lille, France. .,Department of Paediatric Intensive Care Unit, CHU Lille, Jeanne de Flandre Hospital, 59000, Lille, France. .,Jeanne de Flandre Hospital, University of Lille Nord de France, 1 rue Eugène Avinée, 59037, Lille Cedex, France.
| | - Charles Garabedian
- ULR 2694, METRICS, Evaluation des Technologies de Santé et des Pratiques Médicales, University of Lille, 59000, Lille, France.,Department of Obstetrics, CHU Lille, Jeanne de Flandre Hospital, 59000, Lille, France
| | - Estelle Aubry
- ULR 2694, METRICS, Evaluation des Technologies de Santé et des Pratiques Médicales, University of Lille, 59000, Lille, France.,Department of Pediatric Surgery, CHU Lille, Jeanne de Flandre Hospital, 59000, Lille, France
| | - Dyuti Sharma
- ULR 2694, METRICS, Evaluation des Technologies de Santé et des Pratiques Médicales, University of Lille, 59000, Lille, France.,Department of Pediatric Surgery, CHU Lille, Jeanne de Flandre Hospital, 59000, Lille, France
| | - Laura Butruille
- ULR 2694, METRICS, Evaluation des Technologies de Santé et des Pratiques Médicales, University of Lille, 59000, Lille, France
| | - Laurent Storme
- ULR 2694, METRICS, Evaluation des Technologies de Santé et des Pratiques Médicales, University of Lille, 59000, Lille, France.,Department of Neonatology, CHU Lille, Jeanne de Flandre Hospital, 59000, Lille, France
| | - Julien De Jonckheere
- ULR 2694, METRICS, Evaluation des Technologies de Santé et des Pratiques Médicales, University of Lille, 59000, Lille, France.,CIC-IT 1403-biosensor and e-health, CHU Lille, 59000, Lille, France
| |
Collapse
|
19
|
Allison BJ, Brain KL, Niu Y, Kane AD, Herrera EA, Thakor AS, Botting KJ, Cross CM, Itani N, Shaw CJ, Skeffington KL, Beck C, Giussani DA. Altered Cardiovascular Defense to Hypotensive Stress in the Chronically Hypoxic Fetus. Hypertension 2020; 76:1195-1207. [PMID: 32862711 PMCID: PMC7480941 DOI: 10.1161/hypertensionaha.120.15384] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Supplemental Digital Content is available in the text. The hypoxic fetus is at greater risk of cardiovascular demise during a challenge, but the reasons behind this are unknown. Clinically, progress has been hampered by the inability to study the human fetus non-invasively for long period of gestation. Using experimental animals, there has also been an inability to induce gestational hypoxia while recording fetal cardiovascular function as the hypoxic pregnancy is occurring. We use novel technology in sheep pregnancy that combines induction of controlled chronic hypoxia with simultaneous, wireless recording of blood pressure and blood flow signals from the fetus. Here, we investigated the cardiovascular defense of the hypoxic fetus to superimposed acute hypotension. Pregnant ewes carrying singleton fetuses surgically prepared with catheters and flow probes were randomly exposed to normoxia or chronic hypoxia from 121±1 days of gestation (term ≈145 days). After 10 days of exposure, fetuses were subjected to acute hypotension via fetal nitroprusside intravenous infusion. Underlying in vivo mechanisms were explored by (1) analyzing fetal cardiac and peripheral vasomotor baroreflex function; (2) measuring the fetal plasma catecholamines; and (3) establishing fetal femoral vasoconstrictor responses to the α1-adrenergic agonist phenylephrine. Relative to controls, chronically hypoxic fetal sheep had reversed cardiac and impaired vasomotor baroreflex function, despite similar noradrenaline and greater adrenaline increments in plasma during hypotension. Chronic hypoxia markedly diminished the fetal vasopressor responses to phenylephrine. Therefore, we show that the chronically hypoxic fetus displays markedly different cardiovascular responses to acute hypotension, providing in vivo evidence of mechanisms linking its greater susceptibility to superimposed stress.
Collapse
Affiliation(s)
- Beth J Allison
- From the Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (B.J.A., K.L.B., Y.N., A.D.K., E.A.H., A.S.T., K.J.B., C.M.C., N.I., C.J.S., K.L.S., C.B., D.A.G.)
| | - Kirsty L Brain
- From the Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (B.J.A., K.L.B., Y.N., A.D.K., E.A.H., A.S.T., K.J.B., C.M.C., N.I., C.J.S., K.L.S., C.B., D.A.G.)
| | - Youguo Niu
- From the Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (B.J.A., K.L.B., Y.N., A.D.K., E.A.H., A.S.T., K.J.B., C.M.C., N.I., C.J.S., K.L.S., C.B., D.A.G.)
| | - Andrew D Kane
- From the Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (B.J.A., K.L.B., Y.N., A.D.K., E.A.H., A.S.T., K.J.B., C.M.C., N.I., C.J.S., K.L.S., C.B., D.A.G.)
| | | | - Avnesh S Thakor
- From the Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (B.J.A., K.L.B., Y.N., A.D.K., E.A.H., A.S.T., K.J.B., C.M.C., N.I., C.J.S., K.L.S., C.B., D.A.G.)
| | - Kimberley J Botting
- From the Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (B.J.A., K.L.B., Y.N., A.D.K., E.A.H., A.S.T., K.J.B., C.M.C., N.I., C.J.S., K.L.S., C.B., D.A.G.)
| | - Christine M Cross
- From the Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (B.J.A., K.L.B., Y.N., A.D.K., E.A.H., A.S.T., K.J.B., C.M.C., N.I., C.J.S., K.L.S., C.B., D.A.G.)
| | - Nozomi Itani
- From the Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (B.J.A., K.L.B., Y.N., A.D.K., E.A.H., A.S.T., K.J.B., C.M.C., N.I., C.J.S., K.L.S., C.B., D.A.G.)
| | - Caroline J Shaw
- From the Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (B.J.A., K.L.B., Y.N., A.D.K., E.A.H., A.S.T., K.J.B., C.M.C., N.I., C.J.S., K.L.S., C.B., D.A.G.).,Institute of Reproductive and Developmental Biology, Imperial College, London United Kingdom (C.J.S.)
| | - Katie L Skeffington
- From the Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (B.J.A., K.L.B., Y.N., A.D.K., E.A.H., A.S.T., K.J.B., C.M.C., N.I., C.J.S., K.L.S., C.B., D.A.G.)
| | - Chritian Beck
- From the Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (B.J.A., K.L.B., Y.N., A.D.K., E.A.H., A.S.T., K.J.B., C.M.C., N.I., C.J.S., K.L.S., C.B., D.A.G.)
| | - Dino A Giussani
- From the Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (B.J.A., K.L.B., Y.N., A.D.K., E.A.H., A.S.T., K.J.B., C.M.C., N.I., C.J.S., K.L.S., C.B., D.A.G.).,Cambridge Cardiovascular Strategic Research Initiative (D.A.G.).,Cambridge Strategic Research Initiative in Reproduction (D.A.G.)
| |
Collapse
|
20
|
Thompson LP, Turan S, Aberdeen GW. Sex differences and the effects of intrauterine hypoxia on growth and in vivo heart function of fetal guinea pigs. Am J Physiol Regul Integr Comp Physiol 2020; 319:R243-R254. [PMID: 32639864 DOI: 10.1152/ajpregu.00249.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We hypothesized that the physiological adaptations of the fetus in response to chronic intrauterine hypoxia depend on its sex and the gestational age of exposure. Pregnant guinea pigs were exposed to room air (normoxia, NMX) or 10.5% O2 (hypoxia, HPX) at either 25 days (early onset) or 50 days (late onset) of gestation until term (~65 days). We evaluated the effects of HPX on hemodynamic and cardiac function indices using Doppler ultrasound and determined sex-related differences in near-term fetuses. Indices of uterine/umbilical artery pulsatility (PI index) and fetal heart systolic and diastolic function [Tei index and passive filling (E-wave) to filling due to atrial contraction (A-wave) (E/A ratios), respectively] were measured in utero and fetal body (FBW) and organ weights measured from extracted fetuses. Both early- and late-onset HPX decreased FBW in both males and females, had no effect on placenta weights, and increased placenta weight-to-FBW ratios. Early- but not late-onset HPX increased uterine artery PI, but neither HPX condition affected umbilical artery PI. Early-onset HPX increased left ventricle E/A ratios in both males and females, whereas late-onset HPX increased the right ventricle E/A ratio in females only. Hypoxia had no effect on the Tei index in either sex. Early- and late-onset HPX induce placental insufficiency and fetal growth restriction and increase diastolic filling depending on the sex, with female fetuses having a greater capacity than males to compensate for intrauterine hypoxia.
Collapse
Affiliation(s)
- Loren P Thompson
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Shifa Turan
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Graham W Aberdeen
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
21
|
Shaw CJ, Botting KJ, Niu Y, Lees CC, Giussani DA. Maternal and fetal cardiovascular and metabolic effects of intra-operative uterine handling under general anesthesia during pregnancy in sheep. Sci Rep 2020; 10:10867. [PMID: 32616745 PMCID: PMC7331497 DOI: 10.1038/s41598-020-67714-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/05/2020] [Indexed: 11/25/2022] Open
Abstract
A cohort study of 6,500,000 human pregnancies showed an increased risk of adverse fetal outcomes following abdominal but not non-abdominal surgery under general anesthesia. This may be the consequence of uterine handling during abdominal surgery. However, there are no data on any effects on the cardiometabolic physiology of the fetus or mother in response to uterine manipulation in otherwise healthy pregnancy. Consequently, 9 sheep in late gestation were anesthetized with isofluorane and maternal and fetal catheters and flow probes were implanted to determine cardiovascular and metabolic changes during uterine handling. Uterine handling led to an acute increase in uterine artery vascular resistance, fetal peripheral vasoconstriction, a reduction in oxygen delivery to the femoral circulation, worsening fetal acidosis. There was no evidence of systemic fetal hypoxia, or changes in fetal heart rate, carotid blood flow or carotid oxygen delivery. Therefore, the data support that uterine handling during abdominal surgery under general anesthesia can impact adversely on fetal cardiometabolic health. This may provide a potential explanation linking adverse fetal outcomes in abdominal compared with non-abdominal surgery during pregnancy. The data have important implications for human fetal surgery where the uterus is handled, as operative procedures during late gestation under general maternal anesthesia become more prevalent.
Collapse
Affiliation(s)
- Caroline J Shaw
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK.,Institute of Reproductive and Developmental Biology, Imperial College London, London, UK
| | - Kimberley J Botting
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK.,Cambridge Cardiovascular Research Initiative, Cambridge, UK
| | - Youguo Niu
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK.,Cambridge Cardiovascular Research Initiative, Cambridge, UK
| | - Christoph C Lees
- Institute of Reproductive and Developmental Biology, Imperial College London, London, UK.,Department of Obstetrics and Gynecology, University Hospitals Leuven, Leuven, Belgium
| | - Dino A Giussani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK. .,Cambridge Cardiovascular Research Initiative, Cambridge, UK.
| |
Collapse
|
22
|
Shaw CJ, Rivens I, Civale J, Botting KJ, Allison BJ, Brain KL, Niu Y, Ter Haar G, Giussani DA, Lees CC. Maternal and fetal cardiometabolic recovery following ultrasound-guided high-intensity focused ultrasound placental vascular occlusion. J R Soc Interface 2020; 16:20190013. [PMID: 31039691 PMCID: PMC6544891 DOI: 10.1098/rsif.2019.0013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
High-intensity focused ultrasound (HIFU) is a non-invasive method of selective placental vascular occlusion, providing a potential therapy for conditions such as twin–twin transfusion syndrome. In order to translate this technique into human studies, evidence of prolonged fetal recovery and maintenance of a healthy fetal physiology following exposure to HIFU is essential. At 116 ± 2 days gestation, 12 pregnant ewes were assigned to control (n = 6) or HIFU vascular occlusion (n = 6) groups and anaesthetized. Placental blood vessels were identified using colour Doppler ultrasound; HIFU-mediated vascular occlusion was performed through intact maternal skin (1.66 MHz, 5 s duration, in situ ISPTA 1.8–3.9 kW cm−2). Unidentifiable colour Doppler signals in targeted vessels following HIFU exposure denoted successful occlusion. Ewes and fetuses were then surgically instrumented with vascular catheters and transonic flow probes and recovered from anaesthesia. A custom-made wireless data acquisition system, which records continuous maternal and fetal cardiovascular data, and daily blood sampling were used to assess wellbeing for 20 days, followed by post-mortem examination. Based on a comparison of pre- and post-treatment colour Doppler imaging, 100% (36/36) of placental vessels were occluded following HIFU, and occlusion persisted for 20 days. All fetuses survived. No differences in maternal or fetal blood pressure, heart rate, heart rate variability, metabolic status or oxygenation were observed between treatment groups. There was evidence of normal fetal maturation and no evidence of chronic fetal stress. There were no maternal injuries and no placental vascular haemorrhage. There was both a uterine and fetal burn, which did not result in any obstetric or fetal complications. This study demonstrates normal long-term recovery of fetal sheep from exposure to HIFU-mediated placental vascular occlusion and underlines the potential of HIFU as a potential non-invasive therapy in human pregnancy.
Collapse
Affiliation(s)
- Caroline J Shaw
- 1 Department of Physiology, Development and Neuroscience, University of Cambridge , Cambridge CB2 3EG , UK.,2 Institute of Reproductive and Developmental Biology, Imperial College London , London W12 0HS , UK
| | - Ian Rivens
- 3 Joint Department of Physics, Institute of Cancer Research , Sutton SM2 5NG , UK
| | - John Civale
- 3 Joint Department of Physics, Institute of Cancer Research , Sutton SM2 5NG , UK
| | - Kimberley J Botting
- 1 Department of Physiology, Development and Neuroscience, University of Cambridge , Cambridge CB2 3EG , UK.,4 Cardiovascular Strategic Research Initiative, University of Cambridge , Cambridge , UK
| | - Beth J Allison
- 1 Department of Physiology, Development and Neuroscience, University of Cambridge , Cambridge CB2 3EG , UK
| | - Kirsty L Brain
- 1 Department of Physiology, Development and Neuroscience, University of Cambridge , Cambridge CB2 3EG , UK
| | - Y Niu
- 1 Department of Physiology, Development and Neuroscience, University of Cambridge , Cambridge CB2 3EG , UK.,4 Cardiovascular Strategic Research Initiative, University of Cambridge , Cambridge , UK
| | - Gail Ter Haar
- 3 Joint Department of Physics, Institute of Cancer Research , Sutton SM2 5NG , UK
| | - Dino A Giussani
- 1 Department of Physiology, Development and Neuroscience, University of Cambridge , Cambridge CB2 3EG , UK.,4 Cardiovascular Strategic Research Initiative, University of Cambridge , Cambridge , UK
| | - Christoph C Lees
- 2 Institute of Reproductive and Developmental Biology, Imperial College London , London W12 0HS , UK.,5 Department of Obstetrics and Gynaecology, University Hospitals Leuven , 3000 Leuven , Belgium
| |
Collapse
|
23
|
Darby JRT, Varcoe TJ, Orgeig S, Morrison JL. Cardiorespiratory consequences of intrauterine growth restriction: Influence of timing, severity and duration of hypoxaemia. Theriogenology 2020; 150:84-95. [PMID: 32088029 DOI: 10.1016/j.theriogenology.2020.01.080] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/28/2022]
Abstract
At birth, weight of the neonate is used as a marker of the 9-month journey as a fetus. Those neonates born less than the 10th centile for their gestational age are at risk of being intrauterine growth restricted. However, this depends on their genetic potential for growth and the intrauterine environment in which they grew. Alterations in the supply of oxygen and nutrients to the fetus will decrease fetal growth, but these alterations occur due to a range of causes that are maternal, placental or fetal in nature. Consequently, IUGR neonates are a heterogeneous population. For this reason, it is likely that these neonates will respond differently to interventions compared not only to normally grown fetuses, but also to other neonates that are IUGR but have travelled a different path to get there. Thus, a range of models of IUGR should be studied to determine the effects of IUGR on the development and function of the heart and lung and subsequently the impact of interventions to improve development of these organs. Here we focus on a range of models of IUGR caused by manipulation of the maternal, placental or fetal environment on cardiorespiratory outcomes.
Collapse
Affiliation(s)
- Jack R T Darby
- Early Origins of Adult Health Research Group, Australia; School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Tamara J Varcoe
- Early Origins of Adult Health Research Group, Australia; School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Sandra Orgeig
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, Australia; School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia.
| |
Collapse
|
24
|
POLNASZEK B, LÓPEZ JD, CLARK R, RAGHURAMAN N, MACONES GA, CAHILL AG. Marked variability in intrapartum electronic fetal heart rate patterns: association with neonatal morbidity and abnormal arterial cord gas. J Perinatol 2020; 40:56-62. [PMID: 31578422 PMCID: PMC7202403 DOI: 10.1038/s41372-019-0520-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/12/2019] [Accepted: 09/23/2019] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Investigate marked variability in fetal heart rate (FHR) patterns before delivery and its association with neonatal morbidity and abnormal arterial cord gases. STUDY DESIGN Prospective cohort of laboring patients at term. Composite neonatal morbidity (respiratory distress, mechanical ventilation, suspected sepsis, meconium aspiration syndrome, therapeutic hypothermia, hypoxic-ischemic encephalopathy, seizure, and death) and abnormal arterial cord gases (pH < 7.10, lactate ≥ 4 mmol/L, base deficit < -12 mEq/L) were assessed with multivariable logistic regression. RESULT Three hundred and ninety (4.5%) neonates had marked variability in FHR patterns before delivery. There was no difference in composite neonatal morbidity (aRR 1.22; 95% CI 0.91-1.63), though neonates with marked variability in FHR patterns were more likely to have a respiratory distress (aRR 1.85; 95% CI 1.25-2.70). There was an increased risk of composite abnormal arterial cord gases (aRR 1.66; 95% CI 1.47-1.88). CONCLUSION Marked variability in FHR patterns was not associated with composite neonatal morbidity but was associated with abnormal arterial cord gases.
Collapse
Affiliation(s)
- Brock POLNASZEK
- Washington University in Saint Louis School of Medicine, Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine. Saint Louis, MO, United States of America
| | - Julia D. LÓPEZ
- Washington University in Saint Louis School of Medicine, Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine. Saint Louis, MO, United States of America
| | - Reece CLARK
- Washington University in Saint Louis School of Medicine, Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine. Saint Louis, MO, United States of America
| | - Nandini RAGHURAMAN
- Washington University in Saint Louis School of Medicine, Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine. Saint Louis, MO, United States of America
| | | | | |
Collapse
|
25
|
Frasch MG, Herry CL, Niu Y, Giussani DA. First evidence that intrinsic fetal heart rate variability exists and is affected by hypoxic pregnancy. J Physiol 2020; 598:249-263. [PMID: 31802494 DOI: 10.1113/jp278773] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/11/2019] [Indexed: 02/02/2023] Open
Abstract
KEY POINTS We introduce a technique to test whether intrinsic fetal heart rate variability (iFHRV) exists and we show the utility of the technique by testing the hypothesis that iFHRV is affected by chronic fetal hypoxia, one of the most common adverse outcomes of human pregnancy complicated by fetal growth restriction. Using an established late gestation ovine model of fetal development under chronic hypoxic conditions, we identify iFHRV in isolated fetal hearts and show that it is markedly affected by hypoxic pregnancy. Therefore, the isolated fetal heart has intrinsic variability and carries a memory of adverse intrauterine conditions experienced during the last third of pregnancy. ABSTRACT Fetal heart rate variability (FHRV) emerges from influences of the autonomic nervous system, fetal body and breathing movements, and from baroreflex and circadian processes. We tested whether intrinsic heart rate variability (iHRV), devoid of any external influences, exists in the fetal period and whether it is affected by chronic fetal hypoxia. Chronically catheterized ewes carrying male singleton fetuses were exposed to normoxia (n = 6) or hypoxia (10% inspired O2 , n = 9) for the last third of gestation (105-138 days of gestation (dG); term ∼145 dG) in isobaric chambers. At 138 dG, isolated hearts were studied using a Langendorff preparation. We calculated basal intrinsic FHRV (iFHRV) indices reflecting iFHRV's variability, predictability, temporal symmetry, fractality and chaotic behaviour, from the systolic peaks within 15 min segments in each heart. Significance was assumed at P < 0.05. Hearts of fetuses isolated from hypoxic pregnancy showed approximately 4-fold increases in the Grid transformation as well as the AND similarity index (sgridAND) and a 4-fold reduction in the scale-dependent Lyapunov exponent slope. We also detected a 2-fold reduction in the Recurrence quantification analysis, percentage of laminarity (pL) and recurrences, maximum and average diagonal line (dlmax, dlmean) and the Multiscale time irreversibility asymmetry index. The iHRV measures dlmax, dlmean, pL and sgridAND correlated with left ventricular end-diastolic pressure across both groups (average R2 = 0.38 ± 0.03). This is the first evidence that iHRV originates in fetal life and that chronic fetal hypoxia significantly alters it. Isolated fetal hearts from hypoxic pregnancy exhibit a time scale-dependent higher complexity in iFHRV.
Collapse
Affiliation(s)
- Martin G Frasch
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Christophe L Herry
- Dynamical Analysis Laboratory, Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Youguo Niu
- Department of Physiology Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - Dino A Giussani
- Department of Physiology Development & Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
26
|
Bennet L, Ikeda T, Llanos AJ, Nijhuis J, Gunn AJ. Challenges and controversies in perinatal physiology. J Physiol 2019; 596:5485-5489. [PMID: 30499159 DOI: 10.1113/jp276299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- L Bennet
- Fetal Physiology and Neuroscience Group, Department of Physiology, University of Auckland, Auckland, New Zealand
| | - T Ikeda
- Department of Obstetrics and Gynaecology, Mie University, Mie Prefecture, Japan
| | - A J Llanos
- Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - J Nijhuis
- Department of Obstetrics and Gynaecology, Maastricht University, Maastricht, The Netherlands
| | - A J Gunn
- Fetal Physiology and Neuroscience Group, Department of Physiology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
27
|
Kasai M, Lear CA, Davidson JO, Beacom MJ, Drury PP, Maeda Y, Miyagi E, Ikeda T, Bennet L, Gunn AJ. Early sinusoidal heart rate patterns and heart rate variability to assess hypoxia-ischaemia in near-term fetal sheep. J Physiol 2019; 597:5535-5548. [PMID: 31529698 DOI: 10.1113/jp278523] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/26/2019] [Indexed: 12/22/2022] Open
Abstract
KEY POINTS •Therapeutic hypothermia needs to be started as early as possible in the first 6 h after acute injury caused by hypoxia-ischaemia (HI), but the severity and timing of HI are often unclear. In this study we evaluated whether measures of heart rate variability (HRV) might provide early biomarkers of HI. •The duration but not magnitude of suppression of HRV power and conversely increased sample entropy of the heart rate were associated with severity of HI, such that changes in the first 3 h did not discriminate between groups. •Relative changes in HRV power bands showed different patterns between groups and therefore may have the potential to evaluate the severity of HI. •Aberrant fetal heart rate patterns and increased arginine vasopressin levels in the first hour after moderate and severe HI were correlated with loss of EEG power after 3 days' recovery, suggesting potential utility as early biomarkers of outcome. ABSTRACT Therapeutic hypothermia is partially neuroprotective after acute injury caused by hypoxia-ischaemia (HI), likely because the timing and severity of HI are often unclear, making timely recruitment for treatment challenging. We evaluated the utility of changes in heart rate variability (HRV) after HI as biomarkers of the timing and severity of acute HI. Chronically instrumented fetal sheep at 0.85 gestational age were exposed to different durations of umbilical cord occlusion to produce mild (n = 6), moderate (n = 8) or severe HI (n = 8) or to sham occlusion (n = 5). Heart rate (HR) and HRV indices were assessed until 72 h after HI. All HI groups showed suppressed very low frequency HRV power and elevated sample entropy for the first 3 h; more prolonged changes were associated with greater severity of HI. Analysis of relative changes in spectral power showed that the moderate and severe groups showed a shift towards higher HRV frequencies, which was most marked after severe HI. This shift was associated with abnormal rhythmic HR patterns including sinusoidal patterns in the first hour after HI, and with elevated plasma levels of arginine vasopressin, which were correlated with subsequent loss of EEG power by day 3. In conclusion, absolute changes in HRV power in the first 3 h after acute HI were not significantly related to the severity of HI. The intriguing relative shift in spectral power towards higher frequencies likely reflects greater autonomic dysfunction after severe HI. However, sinusoidal HR patterns and elevated vasopressin levels may have utility as biomarkers of severe HI.
Collapse
Affiliation(s)
- Michi Kasai
- Fetal Physiology and Neuroscience Group, Department of Physiology, University of Auckland, New Zealand.,Department of Obstetrics and Gynecology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Christopher A Lear
- Fetal Physiology and Neuroscience Group, Department of Physiology, University of Auckland, New Zealand
| | - Joanne O Davidson
- Fetal Physiology and Neuroscience Group, Department of Physiology, University of Auckland, New Zealand
| | - Michael J Beacom
- Fetal Physiology and Neuroscience Group, Department of Physiology, University of Auckland, New Zealand
| | - Paul P Drury
- Fetal Physiology and Neuroscience Group, Department of Physiology, University of Auckland, New Zealand
| | - Yoshiki Maeda
- Fetal Physiology and Neuroscience Group, Department of Physiology, University of Auckland, New Zealand.,Department of Obstetrics and Gynecology, Mie University, Mie, Japan
| | - Etsuko Miyagi
- Department of Obstetrics and Gynecology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Tomoaki Ikeda
- Department of Obstetrics and Gynecology, Mie University, Mie, Japan
| | - Laura Bennet
- Fetal Physiology and Neuroscience Group, Department of Physiology, University of Auckland, New Zealand
| | - Alistair J Gunn
- Fetal Physiology and Neuroscience Group, Department of Physiology, University of Auckland, New Zealand
| |
Collapse
|
28
|
Hoang JD, Vaseghi M. No sympathy for the hypoxic: the role of fetal oxygenation in autonomic dysfunction. J Physiol 2018; 596:5507-5508. [PMID: 29774552 DOI: 10.1113/jp276227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Jonathan D Hoang
- UCLA Cardiac Arrhythmia Center, University of California, Los Angeles, CA, USA
| | - Marmar Vaseghi
- UCLA Cardiac Arrhythmia Center, University of California, Los Angeles, CA, USA
| |
Collapse
|