1
|
Connelly AA, Bassi JK, Voger JJ, Butler AG, McDougall SJ, Allen AM, Melo MR. Characterizing the phenotype of pre-bötzinger complex neurons in rats. Neuroscience 2025:S0306-4522(25)00311-2. [PMID: 40252719 DOI: 10.1016/j.neuroscience.2025.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/02/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
The pre-Bötzinger Complex (preBötC) is a key medullary region responsible for generating breathing. In rodents, preBötC neurons are divided almost evenly between excitatory neurons, which express vesicular glutamate transporter 2 (VGluT2), and inhibitory neurons expressing either glutamic acid decarboxylase (GAD) or glycine transporter 2 (GlyT2). The interaction between excitatory and inhibitory neurons plays a significant role in rhythmic breathing and its coordination with other physiological functions. However, comprehensive knowledge about the classification and the physiological roles of preBötC neuronal subpopulations in adults is limited. This arises due to the complex interconnections of preBötC with adjacent regions, undefined anatomical boundaries of the region, diverse neurochemical signatures without clear functional distinctions, and the predominant reliance on prenatal mouse data. In this study, we aimed to enhance the understanding of the neurochemical signatures of preBötC neurons and their proportions by rigorously defining the boundaries of the preBötC adult male rats (n = 3). For this, we employed RNAscope in situ hybridization to identify, and anatomically and systematically characterize, the subgroups of preBötC neurons expressing VGluT2, somatostatin (SST), GAD1, vesicular GABA transporter (VGAT) and/or reelin. We observed that most SST-expressing neurons are glutamatergic and comprise over 50 % of the excitatory population of preBötC. In addition, a considerable proportion of SST-expressing neurons express GAD1. Our results also show that approximately half of SST-expressing neurons co-express reelin, and that most reelin-expressing neurons are glutamatergic. A key finding is that the combination of immunohistochemistry for reelin with parvalbumin, is a reliable marker to define the anatomical location of preBötC.
Collapse
Affiliation(s)
- Angela A Connelly
- Department of Anatomy & Physiology, University of Melbourne, Victoria, Australia
| | - Jaspreet K Bassi
- Department of Anatomy & Physiology, University of Melbourne, Victoria, Australia
| | - Joshua J Voger
- Department of Anatomy & Physiology, University of Melbourne, Victoria, Australia
| | - Andrew G Butler
- Department of Anatomy & Physiology, University of Melbourne, Victoria, Australia; Florey Institute of Neuroscience and Mental Health, Victoria, Australia
| | | | - Andrew M Allen
- Department of Anatomy & Physiology, University of Melbourne, Victoria, Australia; Florey Institute of Neuroscience and Mental Health, Victoria, Australia
| | - Mariana R Melo
- Department of Anatomy & Physiology, University of Melbourne, Victoria, Australia.
| |
Collapse
|
2
|
Farmer DGS, Patros M, Ottaviani MM, Dawood T, Kumric M, Bozic J, Badour MI, Bain AR, Barak OF, Dujic Z, Macefield VG. Firing properties of single axons with cardiac rhythmicity in the human cervical vagus nerve. J Physiol 2025; 603:1941-1958. [PMID: 39320231 PMCID: PMC11955867 DOI: 10.1113/jp286423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/22/2024] [Indexed: 09/26/2024] Open
Abstract
Microneurographic recordings of the human cervical vagus nerve have revealed the presence of multi-unit neural activity with measurable cardiac rhythmicity. This suggests that the physiology of vagal neurones with cardiovascular regulatory function can be studied using this method. Here, the activity of cardiac rhythmic single units was discriminated from human cervical vagus nerve recordings using template-based waveform matching. The activity of 44 cardiac rhythmic neurones (22 with myelinated axons and 22 with unmyelinated axons) was isolated. By consideration of each unit's firing pattern with respect to the cardiac and respiratory cycles, the functional identification of each unit was attempted. Of note is the observation of seven cardiac rhythmic neurones with myelinated axons whose activity was recruited or enhanced by slow, deep breathing, was maximal during the nadir of respiratory sinus arrhythmia, and showed an expiratory peak. This is characteristic of cardioinhibitory efferent neurones, which are responsible for respiratory sinus arrhythmia. The remaining 15 cardiac rhythmic neurones with myelinated axons were categorised as cardiopulmonary receptors or arterial baroreceptors based on the position of their peak in firing with respect to the R-wave of the cardiac cycle. This latter method is not viable for neurones with unmyelinated axons due to their slow and unknown conduction velocities. With the exception of three neurones whose expiratory modulation implicates them as cardiac-projecting efferent neurones, this population is likely dominated by arterial baroreceptors. In conclusion, the activity of single units with cardiovascular function has been discriminated within the human cervical vagus, enabling their systematic study. KEY POINTS: Recordings of the electrical activity of the vagus nerve have recently been made at the level of the neck in humans. Examination of the gross activity of this nerve reveals subpopulations of neurones whose activity fluctuates in time with the heart's beat, suggesting that the neurones that monitor or modify cardiac function can be studied using this method. Here, the activity of individual cardiac rhythmic neurones was isolated from human vagus nerve recordings using template-based spike sorting. The relationship between this activity and the cardiac and respiratory cycles was used as a means of classifying each neurone. Neuronal firing patterns that are consistent with that of neurones that modify cardiac function, including heart-slowing 'cardioinhibitory' neurones, as well as neurones that inform the brain of cardiovascular status were observed. This approach enables, for the first time, the systematic study of the function of these neurones in humans in both health and disease.
Collapse
Affiliation(s)
| | - Mikaela Patros
- Department of NeuroscienceMonash UniversityMelbourneVictoriaAustralia
| | | | - Tye Dawood
- Baker Heart and Diabetes InstituteMelbourneVictoriaAustralia
| | - Marko Kumric
- Department of PathophysiologyUniversity of Split School of MedicineSplitCroatia
| | - Josko Bozic
- Department of PathophysiologyUniversity of Split School of MedicineSplitCroatia
| | - Matt I. Badour
- Department of Kinesiology, Faculty of Human KineticsUniversity of WindsorWindsorOntarioCanada
| | - Anthony R. Bain
- Department of Kinesiology, Faculty of Human KineticsUniversity of WindsorWindsorOntarioCanada
| | - Otto F. Barak
- Department of Physiology, Faculty of MedicineUniversity of Novi SadNovi SadSerbia
| | - Zeljko Dujic
- Department of PathophysiologyUniversity of Split School of MedicineSplitCroatia
- Department of Integrative PhysiologyUniversity of Split School of MedicineSplitCroatia
| | - Vaughan G. Macefield
- Department of NeuroscienceMonash UniversityMelbourneVictoriaAustralia
- Baker Heart and Diabetes InstituteMelbourneVictoriaAustralia
| |
Collapse
|
3
|
Herring N, Ajijola OA, Foreman RD, Gourine AV, Green AL, Osborn J, Paterson DJ, Paton JFR, Ripplinger CM, Smith C, Vrabec TL, Wang HJ, Zucker IH, Ardell JL. Neurocardiology: translational advancements and potential. J Physiol 2025; 603:1729-1779. [PMID: 39340173 PMCID: PMC11955874 DOI: 10.1113/jp284740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
In our original white paper published in the The Journal of Physiology in 2016, we set out our knowledge of the structural and functional organization of cardiac autonomic control, how it remodels during disease, and approaches to exploit such knowledge for autonomic regulation therapy. The aim of this update is to build on this original blueprint, highlighting the significant progress which has been made in the field since and major challenges and opportunities that exist with regard to translation. Imbalances in autonomic responses, while beneficial in the short term, ultimately contribute to the evolution of cardiac pathology. As our understanding emerges of where and how to target in terms of actuators (including the heart and intracardiac nervous system (ICNS), stellate ganglia, dorsal root ganglia (DRG), vagus nerve, brainstem, and even higher centres), there is also a need to develop sensor technology to respond to appropriate biomarkers (electrophysiological, mechanical, and molecular) such that closed-loop autonomic regulation therapies can evolve. The goal is to work with endogenous control systems, rather than in opposition to them, to improve outcomes.
Collapse
Affiliation(s)
- N. Herring
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - O. A. Ajijola
- UCLA Neurocardiology Research Center of ExcellenceDavid Geffen School of MedicineLos AngelesCAUSA
| | - R. D. Foreman
- Department of Biochemistry and PhysiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| | - A. V. Gourine
- Centre for Cardiovascular and Metabolic NeuroscienceUniversity College LondonLondonUK
| | - A. L. Green
- Nuffield Department of Surgical SciencesUniversity of OxfordOxfordUK
| | - J. Osborn
- Department of SurgeryUniversity of MinnesotaMinneapolisMNUSA
| | - D. J. Paterson
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - J. F. R. Paton
- Manaaki Manawa – The Centre for Heart Research, Department of Physiology, Faculty of Medical and Health SciencesUniversity of AucklandAucklandNew Zealand
| | - C. M. Ripplinger
- Department of PharmacologyUniversity of California DavisDavisCAUSA
| | - C. Smith
- Department of Physiology and BiophysicsCase Western Reserve UniversityClevelandOHUSA
| | - T. L. Vrabec
- Department of Physical Medicine and Rehabilitation, School of MedicineCase Western Reserve UniversityClevelandOHUSA
| | - H. J. Wang
- Department of AnesthesiologyUniversity of Nebraska Medical CenterOmahaNEUSA
| | - I. H. Zucker
- Department of Cellular and Integrative PhysiologyUniversity of Nebraska Medical CenterOmahaNEUSA
| | - J. L. Ardell
- UCLA Neurocardiology Research Center of ExcellenceDavid Geffen School of MedicineLos AngelesCAUSA
| |
Collapse
|
4
|
Kushwah C, Riesenhuber M, Asmul S, Gyöngyösi M, Nogaret A. In-vivo blood pressure sensing with bi-filler nanocomposite. BIOMATERIALS ADVANCES 2024; 162:213905. [PMID: 38815550 DOI: 10.1016/j.bioadv.2024.213905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/25/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
Conductive elastomers present desirable qualities for sensing pressure in-vivo, such as high piezoresistance in tiny volumes, conformability and, biocompatibility. Many electrically conductive nanocomposites however, are susceptible to electrical drift following repeated stress cycles and chemical aging. Here we propose an innovative approach to stabilize nanocomposite percolation network against incomplete recovery to improve reproducibility and facilitate sensor calibration. We decouple the tunnelling-percolation network of highly-oriented pyrolytic graphite (HOPG) nanoparticles from the incomplete viscoelastic recovery of the polydimethylsiloxane (PDMS) matrix by inserting minute amounts of insulating SiO2 nanospheres. SiO2 nanospheres effectively reduce the number of nearest neighbours at each percolation node switching off the parallel electrical pathways that might become activated under incomplete viscoelastic relaxation. We varied the size of SiO2 nanospheres and their filling fraction to demonstrate nearly complete piezoresistance recovery when SiO2 and HOPG nanoparticles have equal diameters (≈400 nm) and SiO2 and HOPG volume fractions are 1 % and 29.5 % respectively. We demonstrate an in-vivo blood pressure sensor based on this bi-filler composite.
Collapse
Affiliation(s)
| | - Martin Riesenhuber
- Department of Medicine, University of Vienna, Spitalgasse 23, 1090 Vienna, Austria
| | - Søren Asmul
- Medtronic Bakken Research Centre, Endepolsdomein 5, the Netherlands
| | - Mariann Gyöngyösi
- Department of Medicine, University of Vienna, Spitalgasse 23, 1090 Vienna, Austria
| | - Alain Nogaret
- Department of Physics, University of Bath, Bath BA2 7AY, United Kingdom.
| |
Collapse
|
5
|
Grossman P. Respiratory sinus arrhythmia (RSA), vagal tone and biobehavioral integration: Beyond parasympathetic function. Biol Psychol 2024; 186:108739. [PMID: 38151156 DOI: 10.1016/j.biopsycho.2023.108739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023]
Abstract
Linchpin to the entire area of psychophysiological research and discussion of the vagus is the respiratory and cardiovascular phenomenon known as respiratory sinus arrhythmia (RSA; often synonymous with high-frequency heart-rate variability when it is specifically linked to respiratory frequency), i.e. rhythmic fluctuations in heart rate synchronized to inspiration and expiration. This article aims 1) to clarify concepts, terms and measures commonly employed during the last half century in the scientific literature, which relate vagal function to psychological processes and general aspects of health; and 2) to expand upon an earlier theoretical model, emphasizing the importance of RSA well beyond the current focus upon parasympathetic mechanisms. A close examination of RSA and its relations to the vagus may 1) dispel certain commonly held beliefs about associations between psychological functioning, RSA and the parasympathetic nervous system (for which the vagus nerve plays a major role), and 2) offer fresh perspectives about the likely functions and adaptive significance of RSA, as well as RSA's relationship to vagal control. RSA is neither an invariably reliable index of cardiac vagal tone nor of central vagal outflow to the heart. The model here presented posits that RSA represents an evolutionarily entrenched, cardiovascular and respiratory phenomenon that significantly contributes to meeting continuously changing metabolic, energy and behavioral demands.
Collapse
Affiliation(s)
- Paul Grossman
- Department of Psychosomatic Medicine, University Hospital Basel, Switzerland.
| |
Collapse
|
6
|
Melo MR, Wykes AD, Connelly AA, Bassi JK, Cheung SD, McDougall SJ, Menuet C, Bathgate RAD, Allen AM. Selective transduction and photoinhibition of pre-Bötzinger complex neurons that project to the facial nucleus in rats affects nasofacial activity. eLife 2023; 12:e85398. [PMID: 37772793 PMCID: PMC10653671 DOI: 10.7554/elife.85398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 09/28/2023] [Indexed: 09/30/2023] Open
Abstract
The pre-Bötzinger complex (preBötC), a key primary generator of the inspiratory breathing rhythm, contains neurons that project directly to facial nucleus (7n) motoneurons to coordinate orofacial and nasofacial activity. To further understand the identity of 7n-projecting preBötC neurons, we used a combination of optogenetic viral transgenic approaches to demonstrate that selective photoinhibition of these neurons affects mystacial pad activity, with minimal effects on breathing. These effects are altered by the type of anesthetic employed and also between anesthetized and conscious states. The population of 7n-projecting preBötC neurons we transduced consisted of both excitatory and inhibitory neurons that also send collaterals to multiple brainstem nuclei involved with the regulation of autonomic activity. We show that modulation of subgroups of preBötC neurons, based on their axonal projections, is a useful strategy to improve our understanding of the mechanisms that coordinate and integrate breathing with different motor and physiological behaviors. This is of fundamental importance, given that abnormal respiratory modulation of autonomic activity and orofacial behaviors have been associated with the development and progression of diseases.
Collapse
Affiliation(s)
- Mariana R Melo
- Department of Anatomy & Physiology, University of MelbourneMelbourneAustralia
| | - Alexander D Wykes
- Florey Institute of Neuroscience and Mental HealthMelbourneAustralia
- Florey Department of Neuroscience and Mental Health, University of MelbourneMelbourneAustralia
| | - Angela A Connelly
- Department of Anatomy & Physiology, University of MelbourneMelbourneAustralia
| | - Jaspreet K Bassi
- Department of Anatomy & Physiology, University of MelbourneMelbourneAustralia
| | - Shane D Cheung
- Biological Optical Microscopy Platform (BOMP) - University of MelbourneMelbourneAustralia
| | | | - Clément Menuet
- Institut de Neurobiologie de la Méditerrané, INMED UMR1249, INSERM, Aix-Marseille UniversitéMarseilleFrance
| | - Ross AD Bathgate
- Florey Institute of Neuroscience and Mental HealthMelbourneAustralia
- Department of Biochemistry and Molecular Biology, University of MelbourneMelbourneAustralia
| | - Andrew M Allen
- Department of Anatomy & Physiology, University of MelbourneMelbourneAustralia
- Florey Institute of Neuroscience and Mental HealthMelbourneAustralia
| |
Collapse
|
7
|
Gee MM, Lenhoff AM, Schwaber JS, Ogunnaike BA, Vadigepalli R. Closed-loop modeling of central and intrinsic cardiac nervous system circuits underlying cardiovascular control. AIChE J 2023; 69:e18033. [PMID: 37250861 PMCID: PMC10211393 DOI: 10.1002/aic.18033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/02/2023] [Indexed: 01/16/2023]
Abstract
The baroreflex is a multi-input, multi-output control physiological system that regulates blood pressure by modulating nerve activity between the brainstem and the heart. Existing computational models of the baroreflex do not explictly incorporate the intrinsic cardiac nervous system (ICN), which mediates central control of the heart function. We developed a computational model of closed-loop cardiovascular control by integrating a network representation of the ICN within central control reflex circuits. We examined central and local contributions to the control of heart rate, ventricular functions, and respiratory sinus arrhythmia (RSA). Our simulations match the experimentally observed relationship between RSA and lung tidal volume. Our simulations predicted the relative contributions of the sensory and the motor neuron pathways to the experimentally observed changes in the heart rate. Our closed-loop cardiovascular control model is primed for evaluating bioelectronic interventions to treat heart failure and renormalize cardiovascular physiology.
Collapse
Affiliation(s)
- Michelle M Gee
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
- Daniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Abraham M Lenhoff
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
| | - James S Schwaber
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
- Daniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Babatunde A Ogunnaike
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
| | - Rajanikanth Vadigepalli
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
- Daniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| |
Collapse
|
8
|
Lataro RM, Moraes DJA, Gava FN, Omoto ACM, Silva CAA, Brognara F, Alflen L, Brazão V, Colato RP, do Prado JC, Ford AP, Salgado HC, Paton JFR. P2X3 receptor antagonism attenuates the progression of heart failure. Nat Commun 2023; 14:1725. [PMID: 36977675 PMCID: PMC10050083 DOI: 10.1038/s41467-023-37077-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/02/2023] [Indexed: 03/30/2023] Open
Abstract
Despite advances in the treatment of heart failure, prognosis is poor, mortality high and there remains no cure. Heart failure is associated with reduced cardiac pump function, autonomic dysregulation, systemic inflammation and sleep-disordered breathing; these morbidities are exacerbated by peripheral chemoreceptor dysfunction. We reveal that in heart failure the carotid body generates spontaneous, episodic burst discharges coincident with the onset of disordered breathing in male rats. Purinergic (P2X3) receptors were upregulated two-fold in peripheral chemosensory afferents in heart failure, and when antagonized abolished these episodic discharges, normalized both peripheral chemoreceptor sensitivity and the breathing pattern, reinstated autonomic balance, improved cardiac function, and reduced both inflammation and biomarkers of cardiac failure. Aberrant ATP transmission in the carotid body triggers episodic discharges that via P2X3 receptors play a crucial role in the progression of heart failure and as such offer a distinct therapeutic angle to reverse multiple components of its pathogenesis.
Collapse
Affiliation(s)
- Renata M Lataro
- Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Davi J A Moraes
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Fabio N Gava
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Department of Clinical Veterinary, Agrarian Sciences Center, Londrina State University, Londrina, Brazil
| | - Ana C M Omoto
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Carlos A A Silva
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Fernanda Brognara
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Lais Alflen
- Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Vânia Brazão
- College of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Rafaela Pravato Colato
- College of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - José Clóvis do Prado
- College of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Helio C Salgado
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Julian F R Paton
- Manaaki Manawa-The Centre for Heart Research, Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
9
|
Shanks J, Abukar Y, Lever NA, Pachen M, LeGrice IJ, Crossman DJ, Nogaret A, Paton JFR, Ramchandra R. Reverse re-modelling chronic heart failure by reinstating heart rate variability. Basic Res Cardiol 2022; 117:4. [PMID: 35103864 PMCID: PMC8807455 DOI: 10.1007/s00395-022-00911-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 01/31/2023]
Abstract
Heart rate variability (HRV) is a crucial indicator of cardiovascular health. Low HRV is correlated with disease severity and mortality in heart failure. Heart rate increases and decreases with each breath in normal physiology termed respiratory sinus arrhythmia (RSA). RSA is highly evolutionarily conserved, most prominent in the young and athletic and is lost in cardiovascular disease. Despite this, current pacemakers either pace the heart in a metronomic fashion or sense activity in the sinus node. If RSA has been lost in cardiovascular disease current pacemakers cannot restore it. We hypothesized that restoration of RSA in heart failure would improve cardiac function. Restoration of RSA in heart failure was assessed in an ovine model of heart failure with reduced ejection fraction. Conscious 24 h recordings were made from three groups, RSA paced (n = 6), monotonically paced (n = 6) and heart failure time control (n = 5). Real-time blood pressure, cardiac output, heart rate and diaphragmatic EMG were recorded in all animals. Respiratory modulated pacing was generated by a proprietary device (Ceryx Medical) to pace the heart with real-time respiratory modulation. RSA pacing substantially increased cardiac output by 1.4 L/min (20%) compared to contemporary (monotonic) pacing. This increase in cardiac output led to a significant decrease in apnoeas associated with heart failure, reversed cardiomyocyte hypertrophy, and restored the T-tubule structure that is essential for force generation. Re-instating RSA in heart failure improves cardiac function through mechanisms of reverse re-modelling; the improvement observed is far greater than that seen with current contemporary therapies. These findings support the concept of re-instating RSA as a regime for patients who require a pacemaker.
Collapse
Affiliation(s)
- J. Shanks
- grid.9654.e0000 0004 0372 3343Manaaki Manawa—The Centre for Heart Research, Department of Physiology, University of Auckland, Park Road, Grafton, Auckland, New Zealand
| | - Y. Abukar
- grid.9654.e0000 0004 0372 3343Manaaki Manawa—The Centre for Heart Research, Department of Physiology, University of Auckland, Park Road, Grafton, Auckland, New Zealand
| | - N. A. Lever
- grid.414055.10000 0000 9027 2851Department of Cardiology, Auckland City Hospital, Auckland District Health Board, Park Road, Grafton, Auckland, New Zealand
| | - M. Pachen
- grid.9654.e0000 0004 0372 3343Manaaki Manawa—The Centre for Heart Research, Department of Physiology, University of Auckland, Park Road, Grafton, Auckland, New Zealand
| | - I. J. LeGrice
- grid.9654.e0000 0004 0372 3343Manaaki Manawa—The Centre for Heart Research, Department of Physiology, University of Auckland, Park Road, Grafton, Auckland, New Zealand
| | - D. J. Crossman
- grid.9654.e0000 0004 0372 3343Manaaki Manawa—The Centre for Heart Research, Department of Physiology, University of Auckland, Park Road, Grafton, Auckland, New Zealand
| | - A. Nogaret
- grid.7340.00000 0001 2162 1699Department of Physics, University of Bath, Claverton Down, Bath, UK
| | - J. F. R. Paton
- grid.9654.e0000 0004 0372 3343Manaaki Manawa—The Centre for Heart Research, Department of Physiology, University of Auckland, Park Road, Grafton, Auckland, New Zealand
| | - R. Ramchandra
- grid.9654.e0000 0004 0372 3343Manaaki Manawa—The Centre for Heart Research, Department of Physiology, University of Auckland, Park Road, Grafton, Auckland, New Zealand
| |
Collapse
|
10
|
Abstract
Much of biology is rhythmical and comprises oscillators that can couple. These have optimized energy efficiency and have been preserved during evolution. The respiratory and cardiovascular systems contain numerous oscillators, and importantly, they couple. This coupling is dynamic but essential for an efficient transmission of neural information critical for the precise linking of breathing and oxygen delivery while permitting adaptive responses to changes in state. The respiratory pattern generator and the neural network responsible for sympathetic and cardiovagal (parasympathetic) tone generation interact at many levels ensuring that cardiac output and regional blood flow match oxygen delivery to the lungs and tissues efficiently. The most classic manifestations of these interactions are respiratory sinus arrhythmia and the respiratory modulation of sympathetic nerve activity. These interactions derive from shared somatic and cardiopulmonary afferent inputs, reciprocal interactions between brainstem networks and inputs from supra-pontine regions. Disrupted respiratory-cardiovascular coupling can result in disease, where it may further the pathophysiological sequelae and be a harbinger of poor outcomes. This has been well documented by diminished respiratory sinus arrhythmia and altered respiratory sympathetic coupling in animal models and/or patients with myocardial infarction, heart failure, diabetes mellitus, and neurological disorders as stroke, brain trauma, Parkinson disease, or epilepsy. Future research needs to assess the therapeutic potential for ameliorating respiratory-cardiovascular coupling in disease.
Collapse
Affiliation(s)
- James P Fisher
- Manaaki Manawa-The Centre for Heart Research, Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland, Auckland, New Zealand
| | - Tymoteusz Zera
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Julian F R Paton
- Manaaki Manawa-The Centre for Heart Research, Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
11
|
Krause R, van Bavel JJA, Wu C, Vos MA, Nogaret A, Indiveri G. Robust neuromorphic coupled oscillators for adaptive pacemakers. Sci Rep 2021; 11:18073. [PMID: 34508121 PMCID: PMC8433448 DOI: 10.1038/s41598-021-97314-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 08/20/2021] [Indexed: 11/09/2022] Open
Abstract
Neural coupled oscillators are a useful building block in numerous models and applications. They were analyzed extensively in theoretical studies and more recently in biologically realistic simulations of spiking neural networks. The advent of mixed-signal analog/digital neuromorphic electronic circuits provides new means for implementing neural coupled oscillators on compact, low-power, spiking neural network hardware platforms. However, their implementation on this noisy, low-precision and inhomogeneous computing substrate raises new challenges with regards to stability and controllability. In this work, we present a robust, spiking neural network model of neural coupled oscillators and validate it with an implementation on a mixed-signal neuromorphic processor. We demonstrate its robustness showing how to reliably control and modulate the oscillator's frequency and phase shift, despite the variability of the silicon synapse and neuron properties. We show how this ultra-low power neural processing system can be used to build an adaptive cardiac pacemaker modulating the heart rate with respect to the respiration phases and compare it with surface ECG and respiratory signal recordings from dogs at rest. The implementation of our model in neuromorphic electronic hardware shows its robustness on a highly variable substrate and extends the toolbox for applications requiring rhythmic outputs such as pacemakers.
Collapse
Affiliation(s)
- Renate Krause
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland.
| | - Joanne J A van Bavel
- Division Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Chenxi Wu
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Marc A Vos
- Division Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Giacomo Indiveri
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Moraes DJA, da Silva MP, de Souza DP, Felintro V, Paton JFR. Heightened respiratory-parasympathetic coupling to airways in the spontaneously hypertensive rat. J Physiol 2021; 599:3237-3252. [PMID: 33873234 DOI: 10.1113/jp280981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 03/22/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Carotid body (CB) chemoreceptors are hyperactive in hypertension, and their acute activation produces bronchoconstriction. We show that the respiratory-modulated bronchiolar tone, pulmonary parasympathetic efferent activity, and the firing frequency and synaptic excitation of bronchoconstrictor motoneurones in the nucleus ambiguus were all enhanced in spontaneous hypertensive (SH) rats. In SH rats, CB denervation reduced the respiratory-related parasympathetic-mediated bronchoconstrictor tone to levels seen in normotensive rats. Chemoreflex evoked bronchoconstrictor tone was heightened in SH versus normotensive rats. The intrinsic electrophysiological properties and morphology of bronchoconstrictor motoneurones were similar across rat strains. The heightened respiratory modulation of parasympathetic-mediated bronchoconstrictor tone to the airways in SH rats is caused by afferent drive from the CBs. ABSTRACT Much research has described heightened sympathetic activity in hypertension and diminished parasympathetic tone, especially to the heart. The carotid body (CB) chemoreceptors exhibit hyperreflexia and are hyperactive, providing excitatory drive to sympathetic networks in hypertension. Given that acute CB activation produces reflex evoked bronchoconstriction via activation of parasympathetic vagal efferents, we hypothesised that the parasympathetic bronchoconstrictor activity is enhanced in spontaneously hypertensive (SH) rats and that this is dependent on CB inputs. In situ preparations of Wistar and SH rats were used in which bronchiolar tone, the pulmonary branch of the vagus (pVN) and phrenic nerves were recorded simultaneously; whole cell patch clamp recordings of bronchoconstrictor vagal motoneurones were also made from the nucleus ambiguus. Bronchiolar tone, pVN and bronchoconstrictor motoneurones were respiratory modulated and this modulation was enhanced in SH rats. These differences were all eliminated after CB denervation. Stimulation of the CBs increased the phrenic frequency that caused a summation of the respiratory-related increases in pVN, resulting in the development of bronchoconstrictor tone. This tone was exaggerated in SH rats. The enhanced respiratory-parasympathetic coupling to airways in SH rats was not due to differences in the intrinsic electrophysiological properties of bronchoconstrictor motoneurones but reflected heightened pre-inspiratory- and inspiratory-related synaptic drive. In summary, in SH rats the phasic respiratory modulation of parasympathetic tone to the airways is elevated and the greater development of this bronchoconstrictor tone is caused by the heightened afferent drive originating from the CBs. Thus, targeting the CBs may prove effective for increasing lower airway patency.
Collapse
Affiliation(s)
- Davi J A Moraes
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Melina P da Silva
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Daniel P de Souza
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Viviane Felintro
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Julian F R Paton
- Department of Physiology, Cardiovascular Autonomic Research Cluster, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
13
|
Sztechman D, Żera T, Czarzasta K, Wojciechowska M, Szczepańska-Sadowska E, Cudnoch-Jędrzejewska A. Transthoracic echocardiography: from guidelines for humans to cardiac ultrasound of the heart in rats. Physiol Meas 2020; 41:10TR02. [PMID: 33164918 DOI: 10.1088/1361-6579/abb3a3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ultrasound examination of the heart is a cornerstone of clinical evaluation of patients with established or suspected cardiovascular conditions. Advancements in ultrasound imaging technology have brought transthoracic echocardiography to preclinical murine models of cardiovascular diseases. The translational potential of cardiac ultrasound is critically important in rat models of myocardial infarction and ischemia-reperfusion injury, congestive heart failure, arterial hypertension, cardiac hypertrophy, pulmonary hypertension, right heart failure, Takotsubo cardiomyopathy, hypertrophic and dilated cardiomyopathies, developmental disorders, and metabolic syndrome. Modern echocardiographic machines capable of high-frame-rate image acquisition and fitted with high-frequency transducers allow for cardiac ultrasound in rats that yields most of the echocardiographic measurements and indices recommended by international guidelines for cardiac ultrasound in human patients. Among them are dimensions of cardiac chambers and walls, indices of systolic and diastolic cardiac function, and valvular function. In addition, measurements of cardiac dimensions and ejection fraction can be significantly improved by intravenous administration of ultrasound enhancing agents (UEAs). In this article we discuss echocardiography in rats, describe a technique for minimally invasive intravenous administration of UEAs via the saphenous vein and present a step-by-step approach to cardiac ultrasound in rats.
Collapse
Affiliation(s)
- Dorota Sztechman
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
14
|
Gangrade A, Gawali B, Jadi PK, Naidu VGM, Mandal BB. Photo-Electro Active Nanocomposite Silk Hydrogel for Spatiotemporal Controlled Release of Chemotherapeutics: An In Vivo Approach toward Suppressing Solid Tumor Growth. ACS APPLIED MATERIALS & INTERFACES 2020; 12:27905-27916. [PMID: 32469499 DOI: 10.1021/acsami.0c02470] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Conventional systemic chemotherapeutic regimens suffer from challenges such as nonspecificity, shorter half-life, clearance of drugs, and dose-limiting toxicity. Localized delivery of chemotherapeutic drugs through noninvasive spatiotemporally controllable stimuli-responsive drug delivery systems could overcome these drawbacks while utilizing drugs approved for cancer treatment. In this regard, we developed photoelectro active nanocomposite silk-based drug delivery systems (DDS) exhibiting on-demand drug release in vivo. A functionally modified single-walled carbon nanotube loaded with doxorubicin (DOX) was embedded within a cross-linker free silk hydrogel. The resultant nanocomposite silk hydrogel showed electrical field responsiveness and near-infrared (NIR) laser-induced hyperthermal effect. The remote application of these stimuli in tandem or independent manner led to the increased thermal and electrical conductivity of nanocomposite hydrogel, which effectively triggered the intermittent on-demand drug release. In a proof-of-concept in vivo tumor regression study, the nanocomposite hydrogel was administered in a minimally invasive way at the periphery of the tumor by covering most of it. During the 21-day study, drastic tumor regression was recorded upon regular stimulation of nanocomposite hydrogel with simultaneous or individual external application of an electric field and NIR laser. Tumor cell death marker expression analysis uncovered the induction of apoptosis in tumor cells leading to its shrinkage. Heart ultrasound and histology revealed no cardiotoxicity associated with localized DOX treatment. To our knowledge, this is also the first report to show the simultaneous application of electric field and NIR laser in vivo for localized tumor therapy, and our results suggested that such strategy might have high clinical translational potential.
Collapse
Affiliation(s)
- Ankit Gangrade
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Basveshwar Gawali
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Guwahati, Assam 781125, India
| | - Praveen Kumar Jadi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Vegi G M Naidu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Guwahati, Assam 781125, India
| | - Biman B Mandal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
15
|
Chan SHH. Reinstatement of respiratory sinus arrhythmia as a therapeutic target of cardiac pacing for the management of heart failure. J Physiol 2019; 598:433-434. [PMID: 31805609 DOI: 10.1113/jp279261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Samuel H H Chan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan, Republic of China
| |
Collapse
|