1
|
Foster AD, Straight CR, Woods PC, Lee C, Kent JA, Chipkin SR, Debold EP, Miller MS. Cellular and molecular contractile function in aged human skeletal muscle is altered by phosphate and acidosis and partially reversed with an ATP analog. Am J Physiol Cell Physiol 2025; 328:C1220-C1233. [PMID: 40047118 DOI: 10.1152/ajpcell.00332.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/20/2024] [Accepted: 02/27/2025] [Indexed: 04/01/2025]
Abstract
Skeletal muscle fatigue occurs, in part, from the accumulation of hydrogen (H+) and phosphate (Pi); however, the molecular basis through which these ions inhibit function is not fully understood. Therefore, we examined the effects of these metabolites on myosin-actin cross-bridge kinetics and mechanical properties in skeletal muscle fibers from older (65-75 yr) adults. Slow-contracting myosin heavy chain (MHC) I and fast-contracting MHC IIA fibers were examined under control (5 mM Pi, pH 7.0) and fatigue (30 mM Pi, pH 6.2) conditions at maximal calcium-activation [5 mM adenosine triphosphate (ATP)] and rigor (0 mM ATP). In MHC I and IIA fibers, fatigue decreased force per fiber size (23%-37%), which was accompanied by reduced strongly bound myosin head characteristics (number and/or stiffness; 21%-47%) and slower cross-bridge kinetics [longer myosin attachment times (22%-46%) and reduced rates of force production (20%-33%)] compared with control. MHC I myofilaments became stiffer with fatigue, a potential mechanism to increase force production. In rigor, which causes the myosin that can bind actin to be strongly bound, fatigue decreased force per fiber size (32%-33%) in MHC I and IIA fibers, indicating less force was generated per cross bridge. By replacing ATP with 2-deoxy-ATP, the fatigue-induced slowing of cross-bridge kinetics in MHC I and IIA fibers was reversed, and reduced force production in MHC I fibers was partially improved, revealing potential mechanisms to help mitigate fatigue in older adults. Overall, our results identify novel fiber type-specific changes in cross-bridge kinetics, force per cross bridge, and myofilament stiffness that help explain fatigue in older adults.NEW & NOTEWORTHY Skeletal muscle fatigue is caused, in part, by increased production of phosphate and hydrogen ions, resulting in decreased force generation. We found that reduced force in fibers from older adults was due to altered function of myosin and actin, including slower protein interactions and reduced force per myosin head. Additionally, an ATP analog, dATP, partially reversed contractile dysfunction induced by increased phosphate and hydrogen, improving force production and altering myosin-actin interactions dependent upon fiber type.
Collapse
Affiliation(s)
- Aurora D Foster
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, United States
| | - Chad R Straight
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, United States
| | - Philip C Woods
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, United States
| | - Christopher Lee
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, United States
| | - Jane A Kent
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, United States
| | - Stuart R Chipkin
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, United States
| | - Edward P Debold
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, United States
| | - Mark S Miller
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, United States
| |
Collapse
|
2
|
Childers MC, Geeves MA, Regnier M. Interacting myosin head dynamics and their modification by 2'-deoxy-ADP. Biophys J 2024; 123:3997-4008. [PMID: 39444161 PMCID: PMC11617627 DOI: 10.1016/j.bpj.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/22/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024] Open
Abstract
The contraction of striated muscle is driven by cycling myosin motor proteins embedded within the thick filaments of sarcomeres. In addition to cross-bridge cycling with actin, these myosin proteins can enter an inactive, sequestered state in which the globular S1 heads rest along the thick filament surface and are inhibited from performing motor activities. Structurally, this state is called the interacting heads motif (IHM) and is a critical conformational state of myosin that regulates muscle contractility and energy expenditure. Structural perturbation of the sequestered state can pathologically disrupt IHM structure and the mechanical performance of muscle tissue. Thus, the IHM state has become a target for therapeutic intervention. An ATP analog called 2'-deoxy-ATP (dATP) is a potent myosin activator that destabilizes the IHM. Here, we use molecular dynamics simulations to study the molecular mechanisms by which dATP modifies the structure and dynamics of myosin in a sequestered state. Simulations of the IHM state containing ADP.Pi in both nucleotide binding pockets revealed dynamic motions of the blocked head-free head interface, light chain binding domain, and S2 in this "inactive" state of myosin. Replacement of ADP.Pi by dADP.Pi triggered a series of structural changes that increased heterogeneity among residue contact pairs at the blocked head-free head interface and a 14% decrease in the interaction energy at the interface. Dynamic changes to this interface were accompanied by dynamics in the light chain binding region. A comparative analysis of these dynamics predicted new structural sites that may affect IHM stability.
Collapse
Affiliation(s)
- Matthew Carter Childers
- Department of Bioengineering, School of Medicine, University of Washington, Seattle, Washington
| | - Michael A Geeves
- Department of Biosciences, University of Kent, Kent, United Kingdom
| | - Michael Regnier
- Department of Bioengineering, School of Medicine, University of Washington, Seattle, Washington.
| |
Collapse
|
3
|
Mohran S, McMillen TS, Mandrycky C, Tu AY, Kooiker KB, Qian W, Neys S, Osegueda B, Moussavi-Harami F, Irving TC, Regnier M, Ma W. Calcium has a direct effect on thick filament activation in porcine myocardium. J Gen Physiol 2024; 156:e202413545. [PMID: 39302315 PMCID: PMC11415303 DOI: 10.1085/jgp.202413545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 08/03/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
Sarcomere activation in striated muscle requires both thin filament-based and thick filament-based activation mechanisms. Recent studies have shown that myosin heads on the thick filaments undergo OFF to ON structural transitions in response to calcium (Ca2+) in permeabilized porcine myocardium in the presence of a small molecule inhibitor that eliminated active force. The changes in X-ray diffraction signatures of OFF to ON transitions were interpreted as Ca2+ acting to activate the thick filaments. Alternatively, Ca2+ binding to troponin could initiate a Ca2+-dependent crosstalk from the thin filament to the thick filament via interfilament connections such as the myosin binding protein-C. Here, we exchanged native troponin in permeabilized porcine myocardium for troponin containing the cTnC D65A mutation, which disallows the activation of troponin through Ca2+ binding to determine if Ca2+-dependent thick filament activation persists in the absence of thin filament activation. After the exchange protocol, over 95% of the Ca2+-activated force was eliminated. Equatorial intensity ratio increased significantly in both WT and D65A exchanged myocardium with increasing Ca2+ concentration. The degree of helical ordering of the myosin heads decreased by the same amount in WT and D65A myocardium when Ca2+ concentration increased. These results are consistent with a direct effect of Ca2+ in activating the thick filament rather than an indirect effect due to Ca2+-mediated crosstalk between the thick and thin filaments.
Collapse
Affiliation(s)
- Saffie Mohran
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Center of Translational Muscle Research, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Timothy S. McMillen
- Center of Translational Muscle Research, University of Washington, Seattle, WA, USA
| | - Christian Mandrycky
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Center of Translational Muscle Research, University of Washington, Seattle, WA, USA
| | - An-Yue Tu
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Center of Translational Muscle Research, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Kristina B. Kooiker
- Center of Translational Muscle Research, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA
| | - Wenjing Qian
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Stephanie Neys
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Brayan Osegueda
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Farid Moussavi-Harami
- Center of Translational Muscle Research, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA
| | - Thomas C. Irving
- BioCAT, Department of Biology, Illinois Institute of Technology, Chicago, IL, USA
- Center for Synchrotron Radiation Research and Instrumentation, Illinois Institute of Technology, Chicago, IL, USA
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Center of Translational Muscle Research, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA
| | - Weikang Ma
- BioCAT, Department of Biology, Illinois Institute of Technology, Chicago, IL, USA
- Center for Synchrotron Radiation Research and Instrumentation, Illinois Institute of Technology, Chicago, IL, USA
| |
Collapse
|
4
|
Turner KL, Vander Top BJ, Kooiker KB, Mohran S, Mandrycky C, McMillen T, Regnier M, Irving TC, Ma W, Tanner BC. The structural and functional effects of myosin regulatory light chain phosphorylation are amplified by increases in sarcomere length and [Ca 2+]. J Physiol 2024; 602:4941-4958. [PMID: 39283968 PMCID: PMC11466700 DOI: 10.1113/jp286802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/21/2024] [Indexed: 10/04/2024] Open
Abstract
Precise regulation of sarcomeric contraction is essential for normal cardiac function. The heart must generate sufficient force to pump blood throughout the body, but either inadequate or excessive force can lead to dysregulation and disease. Myosin regulatory light chain (RLC) is a thick-filament protein that binds to the neck of the myosin heavy chain. Post-translational phosphorylation of RLC (RLC-P) by myosin light chain kinase is known to influence acto-myosin interactions, thereby increasing force production and Ca2+-sensitivity of contraction. Here, we investigated the role of RLC-P on cardiac structure and function as sarcomere length and [Ca2+] were altered. We found that at low, non-activating levels of Ca2+, RLC-P contributed to myosin head disorder, though there were no effects on isometric stress production and viscoelastic stiffness. With increases in sarcomere length and Ca2+-activation, the structural changes due to RLC-P become greater, which translates into greater force production, greater viscoelastic stiffness, slowed myosin detachment rates and altered nucleotide handling. Altogether, these data suggest that RLC-P may alter thick-filament structure by releasing ordered, off-state myosin. These more disordered myosin heads are available to bind actin, which could result in greater force production as Ca2+ levels increase. However, prolonged cross-bridge attachment duration due to slower ADP release could delay relaxation long enough to enable cross-bridge rebinding. Together, this work further elucidates the effects of RLC-P in regulating muscle function, thereby promoting a better understanding of thick-filament regulatory contributions to cardiac function in health and disease. KEY POINTS: Myosin regulatory light chain (RLC) is a thick-filament protein in the cardiac sarcomere that can be phosphorylated (RLC-P), and changes in RLC-P are associated with cardiac dysfunction and disease. This study assesses how RLC-P alters cardiac muscle structure and function at different sarcomere lengths and calcium concentrations. At low, non-activating levels of Ca2+, RLC-P contributed to myofilament disorder, though there were no effects on isometric stress production and viscoelastic stiffness. With increases in sarcomere length and Ca2+-activation, the structural changes due to RLC-P become greater, which translates into greater force production, greater viscoelastic stiffness, slower myosin detachment rate and altered cross-bridge nucleotide handling rates. This work elucidates the role of RLC-P in regulating muscle function and facilitates understanding of thick-filament regulatory protein contributions to cardiac function in health and disease.
Collapse
Affiliation(s)
- Kyrah L. Turner
- School of Molecular Biosciences, Washington State University, Pullman, Washington
| | - Blake J. Vander Top
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Kristina B. Kooiker
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington
- Center for Translational Muscle Research, University of Washington, Seattle, Washington
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
| | - Saffie Mohran
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Christian Mandrycky
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Tim McMillen
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Michael Regnier
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington
- Center for Translational Muscle Research, University of Washington, Seattle, Washington
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - Thomas C. Irving
- Department of Biology, Illinois Institute of Technology, Chicago, Illinois
- Center for Synchrotron Radiation Research and Instrumentation, Illinois Institute of Technology, Chicago, Illinois
| | - Weikang Ma
- Department of Biology, Illinois Institute of Technology, Chicago, Illinois
- Center for Synchrotron Radiation Research and Instrumentation, Illinois Institute of Technology, Chicago, Illinois
| | - Bertrand C.W. Tanner
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| |
Collapse
|
5
|
Teitgen AE, Hock MT, McCabe KJ, Childers MC, Huber GA, Marzban B, Beard DA, McCammon JA, Regnier M, McCulloch AD. Multiscale modeling shows how 2'-deoxy-ATP rescues ventricular function in heart failure. Proc Natl Acad Sci U S A 2024; 121:e2322077121. [PMID: 39172779 PMCID: PMC11363293 DOI: 10.1073/pnas.2322077121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/22/2024] [Indexed: 08/24/2024] Open
Abstract
2'-deoxy-ATP (dATP) improves cardiac function by increasing the rate of crossbridge cycling and Ca[Formula: see text] transient decay. However, the mechanisms of these effects and how therapeutic responses to dATP are achieved when dATP is only a small fraction of the total ATP pool remain poorly understood. Here, we used a multiscale computational modeling approach to analyze the mechanisms by which dATP improves ventricular function. We integrated atomistic simulations of prepowerstroke myosin and actomyosin association, filament-scale Markov state modeling of sarcomere mechanics, cell-scale analysis of myocyte Ca[Formula: see text] dynamics and contraction, organ-scale modeling of biventricular mechanoenergetics, and systems level modeling of circulatory dynamics. Molecular and Brownian dynamics simulations showed that dATP increases the actomyosin association rate by 1.9 fold. Markov state models predicted that dATP increases the pool of myosin heads available for crossbridge cycling, increasing steady-state force development at low dATP fractions by 1.3 fold due to mechanosensing and nearest-neighbor cooperativity. This was found to be the dominant mechanism by which small amounts of dATP can improve contractile function at myofilament to organ scales. Together with faster myocyte Ca[Formula: see text] handling, this led to improved ventricular contractility, especially in a failing heart model in which dATP increased ejection fraction by 16% and the energy efficiency of cardiac contraction by 1%. This work represents a complete multiscale model analysis of a small molecule myosin modulator from single molecule to organ system biophysics and elucidates how the molecular mechanisms of dATP may improve cardiovascular function in heart failure with reduced ejection fraction.
Collapse
Affiliation(s)
- Abigail E. Teitgen
- Department of Bioengineering, University of California San Diego, La Jolla, CA92093
| | - Marcus T. Hock
- Department of Bioengineering, University of California San Diego, La Jolla, CA92093
| | - Kimberly J. McCabe
- Department of Computational Physiology, Simula Research Laboratory, Oslo0164, Norway
| | | | - Gary A. Huber
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA92093
| | - Bahador Marzban
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI48109
| | - Daniel A. Beard
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI48109
| | - J. Andrew McCammon
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA92093
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA98109
| | - Andrew D. McCulloch
- Department of Bioengineering, University of California San Diego, La Jolla, CA92093
- Department of Medicine, University of California San Diego, La Jolla, CA92093
| |
Collapse
|
6
|
Childers MC, Geeves MA, Regnier M. An atomistic model of myosin interacting heads motif dynamics and their modification by 2'-deoxy-ADP. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597809. [PMID: 38895221 PMCID: PMC11185614 DOI: 10.1101/2024.06.06.597809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The contraction of striated muscle is driven by cycling myosin motor proteins embedded within the thick filaments of sarcomeres. In addition to cross-bridge cycling with actin, these myosin proteins can enter an inactive, sequestered state in which the globular S1 heads rest along the thick filament surface and are unable to perform motor activities. Structurally, this state is called the interacting heads motif (IHM) and is a critical conformational state of myosin that regulates muscle contractility and energy expenditure. Structural perturbation of the sequestered state via missense mutations can pathologically disrupt the mechanical performance of muscle tissue. Thus, the IHM state has become a target for therapeutic intervention. An ATP analogue called 2'-deoxy-ATP (dATP) is a potent myosin activator which destabilizes the IHM. Here we use molecular dynamics simulations to study the molecular mechanisms by which dATP modifies the structure and dynamics of myosin in a sequestered state. Simulations with IHM containing ADP.Pi in both nucleotide binding pockets revealed residual dynamics in an otherwise 'inactive' and 'sequestered' state of a motor protein. Replacement of ADP.Pi by dADP.Pi triggered a series of structural changes that modify the protein-protein interface that stabilizes the sequestered state, and changes to this interface were accompanied by allosteric changes in remote regions of the protein complex. A comparative analysis of these dynamics predicted new structural sites that may affect IHM stability.
Collapse
|
7
|
Zhao J, Qi L, Yuan S, Irving TC, Ma W. Differences in thick filament activation in fast rodent skeletal muscle and slow porcine cardiac muscle. J Physiol 2024; 602:2751-2762. [PMID: 38695322 PMCID: PMC11178443 DOI: 10.1113/jp286072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/16/2024] [Indexed: 06/15/2024] Open
Abstract
There is a growing appreciation that regulation of muscle contraction requires both thin filament and thick filament activation in order to fully activate the sarcomere. The prevailing mechano-sensing model for thick filament activation was derived from experiments on fast-twitch muscle. We address the question whether, or to what extent, this mechanism can be extrapolated to the slow muscle in the hearts of large mammals, including humans. We investigated the similarities and differences in structural signatures of thick filament activation in porcine myocardium as compared to fast rat extensor digitorum longus (EDL) skeletal muscle under relaxed conditions and sub-maximal contraction using small angle X-ray diffraction. Thick and thin filaments were found to adopt different structural configurations under relaxing conditions, and myosin heads showed different changes in configuration upon sub-maximal activation, when comparing the two muscle types. Titin was found to have an X-ray diffraction signature distinct from those of the overall thick filament backbone, and its spacing change appeared to be positively correlated to the force exerted on the thick filament. Structural changes in fast EDL muscle were found to be consistent with the mechano-sensing model. In porcine myocardium, however, the structural basis of mechano-sensing is blunted suggesting the need for additional activation mechanism(s) in slow cardiac muscle. These differences in thick filament regulation can be related to their different physiological roles where fast muscle is optimized for rapid, burst-like, contractions, and the slow cardiac muscle in large mammalian hearts adopts a more finely tuned, graded response to allow for their substantial functional reserve. KEY POINTS: Both thin filament and thick filament activation are required to fully activate the sarcomere. Thick and thin filaments adopt different structural configurations under relaxing conditions, and myosin heads show different changes in configuration upon sub-maximal activation in fast extensor digitorum longus muscle and slow porcine cardiac muscle. Titin has an X-ray diffraction signature distinct from those of the overall thick filament backbone and this titin reflection spacing change appeared to be directly proportional to the force exerted on the thick filament. Mechano-sensing is blunted in porcine myocardium suggesting the need for additional activation mechanism(s) in slow cardiac muscle. Fast skeletal muscle is optimized for rapid, burst-like contractions, and the slow cardiac muscle in large mammalian hearts adopts a more finely tuned graded response to allow for their substantial functional reserve.
Collapse
Affiliation(s)
- Jing Zhao
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Lin Qi
- Department of Biology, Illinois Institute of Technology, Chicago, IL, USA
| | - Shengyao Yuan
- BioCAT, Department of Biology, Illinois Institute of Technology, Chicago, IL, USA
| | - Thomas C Irving
- BioCAT, Department of Biology, Illinois Institute of Technology, Chicago, IL, USA
- Center for Synchrotron Radiation Research and Instrumentation, Illinois Institute of Technology, Chicago, IL, USA
| | - Weikang Ma
- BioCAT, Department of Biology, Illinois Institute of Technology, Chicago, IL, USA
- Center for Synchrotron Radiation Research and Instrumentation, Illinois Institute of Technology, Chicago, IL, USA
| |
Collapse
|
8
|
Hessel AL, Kuehn MN, Han SW, Ma W, Irving TC, Momb BA, Song T, Sadayappan S, Linke WA, Palmer BM. Fast myosin binding protein C knockout in skeletal muscle alters length-dependent activation and myofilament structure. Commun Biol 2024; 7:648. [PMID: 38802450 PMCID: PMC11130249 DOI: 10.1038/s42003-024-06265-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
In striated muscle, the sarcomeric protein myosin-binding protein-C (MyBP-C) is bound to the myosin thick filament and is predicted to stabilize myosin heads in a docked position against the thick filament, which limits crossbridge formation. Here, we use the homozygous Mybpc2 knockout (C2-/-) mouse line to remove the fast-isoform MyBP-C from fast skeletal muscle and then conduct mechanical functional studies in parallel with small-angle X-ray diffraction to evaluate the myofilament structure. We report that C2-/- fibers present deficits in force production and calcium sensitivity. Structurally, passive C2-/- fibers present altered sarcomere length-independent and -dependent regulation of myosin head conformations, with a shift of myosin heads towards actin. At shorter sarcomere lengths, the thin filament is axially extended in C2-/-, which we hypothesize is due to increased numbers of low-level crossbridges. These findings provide testable mechanisms to explain the etiology of debilitating diseases associated with MyBP-C.
Collapse
Affiliation(s)
- Anthony L Hessel
- Institute of Physiology II, University of Muenster, Muenster, Germany.
| | - Michel N Kuehn
- Institute of Physiology II, University of Muenster, Muenster, Germany
| | - Seong-Won Han
- Institute of Physiology II, University of Muenster, Muenster, Germany
| | - Weikang Ma
- BioCAT, Department of Biology, Illinois Institute of Technology, Chicago, USA
| | - Thomas C Irving
- BioCAT, Department of Biology, Illinois Institute of Technology, Chicago, USA
| | - Brent A Momb
- Department of Kinesiology, University of Massachusetts-Amherst, Amherst, MA, USA
| | - Taejeong Song
- Center for Cardiovascular Research, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Sakthivel Sadayappan
- Center for Cardiovascular Research, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Wolfgang A Linke
- Institute of Physiology II, University of Muenster, Muenster, Germany
| | - Bradley M Palmer
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, USA.
| |
Collapse
|
9
|
Ma W, del Rio CL, Qi L, Prodanovic M, Mijailovich S, Zambataro C, Gong H, Shimkunas R, Gollapudi S, Nag S, Irving TC. Myosin in autoinhibited off state(s), stabilized by mavacamten, can be recruited in response to inotropic interventions. Proc Natl Acad Sci U S A 2024; 121:e2314914121. [PMID: 38346202 PMCID: PMC10895252 DOI: 10.1073/pnas.2314914121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
Mavacamten is a FDA-approved small-molecule therapeutic designed to regulate cardiac function at the sarcomere level by selectively but reversibly inhibiting the enzymatic activity of myosin. It shifts myosin toward ordered off states close to the thick filament backbone. It remains elusive whether these myosin heads in the off state(s) can be recruited in response to physiological stimuli when required to boost cardiac output. We show that cardiac myosins stabilized in these off state(s) by mavacamten are recruitable by 1) Ca2+, 2) increased chronotropy [heart rate (HR)], 3) stretch, and 4) β-adrenergic (β-AR) stimulation, all known physiological inotropic interventions. At the molecular level, we show that Ca2+ increases myosin ATPase activity by shifting mavacamten-stabilized myosin heads from the inactive super-relaxed state to the active disordered relaxed state. At the myofilament level, both Ca2+ and passive lengthening can shift mavacamten-ordered off myosin heads from positions close to the thick filament backbone to disordered on states closer to the thin filaments. In isolated rat cardiomyocytes, increased stimulation rates enhanced shortening fraction in mavacamten-treated cells. This observation was confirmed in vivo in telemetered rats, where left-ventricular dP/dtmax, an index of inotropy, increased with HR in mavacamten-treated animals. Finally, we show that β-AR stimulation in vivo increases left-ventricular function and stroke volume in the setting of mavacamten. Our data demonstrate that the mavacamten-promoted off states of myosin in the thick filament are at least partially activable, thus preserving cardiac reserve mechanisms.
Collapse
Affiliation(s)
- Weikang Ma
- Biophysics Collaborative Access Team, Department of Biology, Illinois Institute of Technology, Chicago, IL60616
- Center for Synchrotron Radiation Research and Instrumentation, Illinois Institute of Technology, Chicago, IL60616
| | - Carlos L. del Rio
- Cardiovascular Drug Discovery, Bristol Myers Squibb, Brisbane, CA94005
- Cardiac Consulting, San Mateo, CA94010
| | - Lin Qi
- Department of Biology, Illinois Institute of Technology, Chicago, IL60616
| | - Momcilo Prodanovic
- Institute for Information Technologies, University of Kragujevac, Kragujevac34000, Serbia
- FilamenTech, Inc., Newtown, MA02458
| | | | | | - Henry Gong
- Department of Biology, Illinois Institute of Technology, Chicago, IL60616
| | - Rafael Shimkunas
- Cardiovascular Drug Discovery, Bristol Myers Squibb, Brisbane, CA94005
| | - Sampath Gollapudi
- Cardiovascular Drug Discovery, Bristol Myers Squibb, Brisbane, CA94005
| | - Suman Nag
- Cardiovascular Drug Discovery, Bristol Myers Squibb, Brisbane, CA94005
| | - Thomas C. Irving
- Biophysics Collaborative Access Team, Department of Biology, Illinois Institute of Technology, Chicago, IL60616
- Center for Synchrotron Radiation Research and Instrumentation, Illinois Institute of Technology, Chicago, IL60616
- Department of Biology, Illinois Institute of Technology, Chicago, IL60616
| |
Collapse
|
10
|
Ma W, del Rio CL, Qi L, Prodanovic M, Mijailovich S, Zambataro C, Gong H, Shimkunas R, Gollapudi S, Nag S, Irving TC. Myosin in autoinhibited off state(s), stabilized by mavacamten, can be recruited via inotropic effectors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.10.536292. [PMID: 37090664 PMCID: PMC10120679 DOI: 10.1101/2023.04.10.536292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Mavacamten is a novel, FDA-approved, small molecule therapeutic designed to regulate cardiac function by selectively but reversibly inhibiting the enzymatic activity of myosin. It shifts myosin towards ordered off states close to the thick filament backbone. It remains unresolved whether mavacamten permanently sequesters these myosin heads in the off state(s) or whether these heads can be recruited in response to physiological stimuli when required to boost cardiac output. We show that cardiac myosins stabilized in these off state(s) by mavacamten are recruitable by Ca2+, increased heart rate, stretch, and β-adrenergic (β-AR) stimulation, all known physiological inotropic effectors. At the molecular level, we show that, in presence of mavacamten, Ca2+ increases myosin ATPase activity by shifting myosin heads from the reserve super-relaxed (SRX) state to the active disordered relaxed (DRX) state. At the myofilament level, both Ca2+ and passive lengthening can shift ordered off myosin heads from positions close to the thick filament backbone to disordered on states closer to the thin filaments in the presence of mavacamten. In isolated rat cardiomyocytes, increased stimulation rates enhanced shortening fraction in mavacamten-treated cells. This observation was confirmed in vivo in telemetered rats, where left-ventricular dP/dtmax, an index of inotropy, increased with heart rate in mavacamten treated animals. Finally, we show that β-AR stimulation in vivo increases left-ventricular function and stroke volume in the setting of mavacamten. Our data demonstrate that the mavacamten-promoted off states of myosin in the thick filament are activable, at least partially, thus leading to preservation of cardiac reserve mechanisms.
Collapse
Affiliation(s)
- Weikang Ma
- BioCAT, Department of Biology, Illinois Institute of Technology, Chicago, IL, USA
| | - Carlos L. del Rio
- Cardiovascular Drug Discovery, Bristol Myers Squibb, Brisbane, CA 94005
| | - Lin Qi
- Department of Biology, Illinois Institute of Technology, Chicago, IL, USA
| | - Momcilo Prodanovic
- Institute for Information Technologies, University of Kragujevac, Kragujevac, Serbia
- FilamenTech, Inc., Newtown, MA 02458, USA
| | | | | | - Henry Gong
- Department of Biology, Illinois Institute of Technology, Chicago, IL, USA
| | - Rafael Shimkunas
- Cardiovascular Drug Discovery, Bristol Myers Squibb, Brisbane, CA 94005
| | - Sampath Gollapudi
- Cardiovascular Drug Discovery, Bristol Myers Squibb, Brisbane, CA 94005
| | - Suman Nag
- Cardiovascular Drug Discovery, Bristol Myers Squibb, Brisbane, CA 94005
| | - Thomas C. Irving
- BioCAT, Department of Biology, Illinois Institute of Technology, Chicago, IL, USA
| |
Collapse
|
11
|
Marcucci L. Muscle Mechanics and Thick Filament Activation: An Emerging Two-Way Interaction for the Vertebrate Striated Muscle Fine Regulation. Int J Mol Sci 2023; 24:ijms24076265. [PMID: 37047237 PMCID: PMC10094676 DOI: 10.3390/ijms24076265] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/12/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Contraction in striated muscle is classically described as regulated by calcium-mediated structural changes in the actin-containing thin filaments, which release the binding sites for the interaction with myosin motors to produce force. In this view, myosin motors, arranged in the thick filaments, are basically always ready to interact with the thin filaments, which ultimately regulate the contraction. However, a new “dual-filament” activation paradigm is emerging, where both filaments must be activated to generate force. Growing evidence from the literature shows that the thick filament activation has a role on the striated muscle fine regulation, and its impairment is associated with severe pathologies. This review is focused on the proposed mechanical feedback that activates the inactive motors depending on the level of tension generated by the active ones, the so-called mechanosensing mechanism. Since the main muscle function is to generate mechanical work, the implications on muscle mechanics will be highlighted, showing: (i) how non-mechanical modulation of the thick filament activation influences the contraction, (ii) how the contraction influences the activation of the thick filament and (iii) how muscle, through the mechanical modulation of the thick filament activation, can regulate its own mechanics. This description highlights the crucial role of the emerging bi-directional feedback on muscle mechanical performance.
Collapse
Affiliation(s)
- Lorenzo Marcucci
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy;
- Center for Biosystems Dynamics Research, RIKEN, Suita 565-0874, Japan
| |
Collapse
|
12
|
Mhatre KN, Murray JD, Flint G, McMillen TS, Weber G, Shakeri M, Tu AY, Steczina S, Weiss R, Marcinek DJ, Murry CE, Raftery D, Tian R, Moussavi-Harami F, Regnier M. dATP elevation induces myocardial metabolic remodeling to support improved cardiac function. J Mol Cell Cardiol 2023; 175:1-12. [PMID: 36470336 PMCID: PMC9974746 DOI: 10.1016/j.yjmcc.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/16/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Hallmark features of systolic heart failure are reduced contractility and impaired metabolic flexibility of the myocardium. Cardiomyocytes (CMs) with elevated deoxy ATP (dATP) via overexpression of ribonucleotide reductase (RNR) enzyme robustly improve contractility. However, the effect of dATP elevation on cardiac metabolism is unknown. Here, we developed proteolysis-resistant versions of RNR and demonstrate that elevation of dATP/ATP to ∼1% in CMs in a transgenic mouse (TgRRB) resulted in robust improvement of cardiac function. Pharmacological approaches showed that CMs with elevated dATP have greater basal respiratory rates by shifting myosin states to more active forms, independent of its isoform, in relaxed CMs. Targeted metabolomic profiling revealed a significant reprogramming towards oxidative phosphorylation in TgRRB-CMs. Higher cristae density and activity in the mitochondria of TgRRB-CMs improved respiratory capacity. Our results revealed a critical property of dATP to modulate myosin states to enhance contractility and induce metabolic flexibility to support improved function in CMs.
Collapse
Affiliation(s)
- Ketaki N Mhatre
- Department of Bioengineering, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Jason D Murray
- Department of Bioengineering, University of Washington, Seattle, WA 98109, USA; Department of Physiology and Biophysics, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Galina Flint
- Department of Bioengineering, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Timothy S McMillen
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA; Center for Translational Muscle Research, University of Washington, Seattle, WA 98109, USA
| | - Gerhard Weber
- Division of Cardiology, University of Washington, Seattle, WA 98109, USA
| | - Majid Shakeri
- Division of Cardiology, University of Washington, Seattle, WA 98109, USA
| | - An-Yue Tu
- Department of Bioengineering, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Sonette Steczina
- Department of Bioengineering, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Robert Weiss
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | - David J Marcinek
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Charles E Murry
- Division of Cardiology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Daniel Raftery
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA; The Mitochondria and Metabolism Center (MMC), University of Washington, Seattle, WA 98109, USA; Center for Translational Muscle Research, University of Washington, Seattle, WA 98109, USA
| | - Rong Tian
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA; The Mitochondria and Metabolism Center (MMC), University of Washington, Seattle, WA 98109, USA; Center for Translational Muscle Research, University of Washington, Seattle, WA 98109, USA
| | - Farid Moussavi-Harami
- Division of Cardiology, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Center for Translational Muscle Research, University of Washington, Seattle, WA 98109, USA.
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA 98109, USA; Department of Physiology and Biophysics, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA; Center for Translational Muscle Research, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
13
|
Structural OFF/ON transitions of myosin in relaxed porcine myocardium predict calcium-activated force. Proc Natl Acad Sci U S A 2023; 120:e2207615120. [PMID: 36696446 PMCID: PMC9945958 DOI: 10.1073/pnas.2207615120] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Contraction in striated muscle is initiated by calcium binding to troponin complexes, but it is now understood that dynamic transition of myosin between resting, ordered OFF states on thick filaments and active, disordered ON states that can bind to thin filaments is critical in regulating muscle contractility. These structural OFF to ON transitions of myosin are widely assumed to correspond to transitions from the biochemically defined, energy-sparing, super-relaxed (SRX) state to the higher ATPase disordered-relaxed (DRX) state. Here we examined the effect of 2'-deoxy-ATP (dATP), a naturally occurring energy substrate for myosin, on the structural OFF to ON transitions of myosin motors in porcine cardiac muscle thick filaments. Small-angle X-ray diffraction revealed that titrating dATP in relaxation solutions progressively moves the myosin heads from ordered OFF states on the thick filament backbone to disordered ON states closer to thin filaments. Importantly, we found that the structural OFF to ON transitions are not equivalent to the biochemically defined SRX to DRX transitions and that the dATP-induced structural OFF to ON transitions of myosin motors in relaxed muscle are strongly correlated with submaximal force augmentation by dATP. These results indicate that structural OFF to ON transitions of myosin in relaxed muscle can predict the level of force attained in calcium-activated cardiac muscle. Computational modeling and stiffness measurements suggest a final step in the OFF to ON transition may involve a subset of DRX myosins that form weakly bound cross-bridges prior to becoming active force-producing cross-bridges.
Collapse
|
14
|
Ma W, Nag S, Gong H, Qi L, Irving TC. Cardiac myosin filaments are directly regulated by calcium. J Gen Physiol 2022; 154:e202213213. [PMID: 36327149 PMCID: PMC9629851 DOI: 10.1085/jgp.202213213] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/25/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
Classically, striated muscle contraction is initiated by calcium (Ca2+)-dependent structural changes in regulatory proteins on actin-containing thin filaments, which allow the binding of myosin motors to generate force. Additionally, dynamic switching between resting off and active on myosin states has been shown to regulate muscle contractility, a recently validated mechanism by novel myosin-targeted therapeutics. The molecular nature of this switching, however, is not understood. Here, using a combination of small-angle x-ray fiber diffraction and biochemical assays with reconstituted systems, we show that cardiac thick filaments are directly Ca2+-regulated. We find that Ca2+ induces a structural transition of myosin heads from ordered off states close to the thick filament to disordered on states closer to the thin filaments. Biochemical assays show a Ca2+-induced transition from an inactive super-relaxed (SRX) state(s) to an active disordered-relaxed (DRX) state(s) in synthetic thick filaments. We show that these transitions are an intrinsic property of cardiac myosin only when assembled into thick filaments and provide a fresh perspective on nature's two orthogonal mechanisms to regulate muscle contraction through the thin and the thick filaments.
Collapse
Affiliation(s)
- Weikang Ma
- BioCAT, Department of Biology, Illinois Institute of Technology, Chicago, IL
| | - Suman Nag
- Department of Biochemistry, Bristol Myers Squibb, Brisbane, CA
| | - Henry Gong
- BioCAT, Department of Biology, Illinois Institute of Technology, Chicago, IL
| | - Lin Qi
- BioCAT, Department of Biology, Illinois Institute of Technology, Chicago, IL
| | - Thomas C. Irving
- BioCAT, Department of Biology, Illinois Institute of Technology, Chicago, IL
| |
Collapse
|
15
|
Gong HM, Ma W, Regnier M, Irving TC. Thick filament activation is different in fast- and slow-twitch skeletal muscle. J Physiol 2022; 600:5247-5266. [PMID: 36342015 PMCID: PMC9772099 DOI: 10.1113/jp283574] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
The contractile properties of fast-twitch and slow-twitch skeletal muscles are primarily determined by the myosin isoform content and modulated by a variety of sarcomere proteins. X-ray diffraction studies of regulatory mechanisms in muscle contraction have focused predominately on fast- or mixed-fibre muscle with slow muscle being much less studied. Here, we used time-resolved X-ray diffraction to investigate the dynamic behaviour of the myofilament proteins in relatively pure slow-twitch-fibre rat soleus (SOL) and pure fast-twitch-fibre rat extensor digitorum longus (EDL) muscle during twitch and tetanic contractions at optimal length. During twitch contractions the diffraction signatures indicating a transition in the myosin heads from ordered OFF states, where heads are held close to the thick filament backbone, to disordered ON states, where heads are free to bind to thin filaments, were found in EDL and not in SOL muscle. During tetanic contraction, changes in the disposition of myosin heads as active tension develops is a quasi-stepwise process in EDL muscle whereas in SOL muscle this relationship appears to be linear. The observed reduced extensibility of the thick filaments in SOL muscle as compared to EDL muscles indicates a molecular basis for this behaviour. These data indicate that for the EDL, thick filament activation is a cooperative strain-induced mechano-sensing mechanism, whereas for the SOL, thick filament activation has a more graded response. These different approaches to thick filament regulation in fast- and slow-twitch muscles may be adaptations for short-duration, strong contractions versus sustained, finely controlled contractions, respectively. KEY POINTS: Fast-twitch muscle and slow-twitch muscle are optimized for strong, short-duration contractions and for tonic postural activity, respectively. Structural events (OFF to ON transitions) in the myosin-containing thick filaments in fast muscle help determine the timing and strength of contractions, but these have not been studied in slow-twitch muscle. The X-ray diffraction signatures of structural OFF to ON transitions are different in fast extensor digitorum longus (EDL) and slow soleus (SOL) muscle, being completely absent during twitches in soleus muscle and blunted during tetanic contractions SOL as compared to EDL Quasi-stepwise thick filament structural OFF to ON transitions in fast twitch muscle may be an adaptation for rapid, ballistic movements, whereas more graded OFF to ON structural transitions in slow-twitch muscle may be an adaptation for slower, finer motions.
Collapse
Affiliation(s)
- Henry M. Gong
- BioCAT, Department of Biology, Illinois Institute of Technology, Chicago, IL
| | - Weikang Ma
- BioCAT, Department of Biology, Illinois Institute of Technology, Chicago, IL
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA
| | - Thomas C. Irving
- BioCAT, Department of Biology, Illinois Institute of Technology, Chicago, IL
| |
Collapse
|
16
|
Katti P, Hall AS, Parry HA, Ajayi PT, Kim Y, Willingham TB, Bleck CKE, Wen H, Glancy B. Mitochondrial network configuration influences sarcomere and myosin filament structure in striated muscles. Nat Commun 2022; 13:6058. [PMID: 36229433 PMCID: PMC9561657 DOI: 10.1038/s41467-022-33678-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 09/28/2022] [Indexed: 12/24/2022] Open
Abstract
Sustained muscle contraction occurs through interactions between actin and myosin filaments within sarcomeres and requires a constant supply of adenosine triphosphate (ATP) from nearby mitochondria. However, it remains unclear how different physical configurations between sarcomeres and mitochondria alter the energetic support for contractile function. Here, we show that sarcomere cross-sectional area (CSA) varies along its length in a cell type-dependent manner where the reduction in Z-disk CSA relative to the sarcomere center is closely coordinated with mitochondrial network configuration in flies, mice, and humans. Further, we find myosin filaments near the sarcomere periphery are curved relative to interior filaments with greater curvature for filaments near mitochondria compared to sarcoplasmic reticulum. Finally, we demonstrate variable myosin filament lattice spacing between filament ends and filament centers in a cell type-dependent manner. These data suggest both sarcomere structure and myofilament interactions are influenced by the location and orientation of mitochondria within muscle cells.
Collapse
Affiliation(s)
- Prasanna Katti
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Hailey A Parry
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Peter T Ajayi
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yuho Kim
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - T Bradley Willingham
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christopher K E Bleck
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Han Wen
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Brian Glancy
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health Bethesda, Bethesda, MD, USA.
| |
Collapse
|
17
|
Beard DA, Marzban B, Li OY, Campbell KS, Janssen PML, Chesler NC, Baker AJ. Reduced cardiac muscle power with low ATP simulating heart failure. Biophys J 2022; 121:3213-3223. [PMID: 35918899 PMCID: PMC9463691 DOI: 10.1016/j.bpj.2022.07.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/20/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022] Open
Abstract
For patients with heart failure, myocardial ATP level can be reduced to one-half of that observed in healthy controls. This marked reduction (from ≈8 mM in healthy controls to as low as 3-4 mM in heart failure) has been suggested to contribute to impaired myocardial contraction and to the decreased pump function characteristic of heart failure. However, in vitro measures of maximum myofilament force generation, maximum shortening velocity, and the actomyosin ATPase activity show effective KM values for MgATP ranging from ≈10 μM to 150 μM, well below the intracellular ATP level in heart failure. Thus, it is not clear that the fall of myocardial ATP observed in heart failure is sufficient to impair the function of the contractile proteins. Therefore, we tested the effect of low MgATP levels on myocardial contraction using demembranated cardiac muscle preparations that were exposed to MgATP levels typical of the range found in non-failing and failing hearts. Consistent with previous studies, we found that a 50% reduction in MgATP level (from 8 mM to 4 mM) did not reduce maximum force generation or maximum velocity of shortening. However, we found that a 50% reduction in MgATP level caused a 20%-25% reduction in maximal power generation (measured during muscle shortening against a load) and a 20% slowing of cross-bridge cycling kinetics. These results suggest that the decreased cellular ATP level occurring in heart failure contributes to the impaired pump function of the failing heart. Since the ATP-myosin ATPase dissociation constant is estimated to be submillimolar, these findings also suggest that MgATP concentration affects cross-bridge dynamics through a mechanism that is more complex than through the direct dependence of MgATP concentration on myosin ATPase activity. Finally, these studies suggest that therapies targeted to increase adenine nucleotide pool levels in cardiomyocytes might be beneficial for treating heart failure.
Collapse
Affiliation(s)
- Daniel A Beard
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Bahador Marzban
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - On Yeung Li
- Veterans Affairs Medical Center, San Francisco, California; Department of Medicine, University of California, San Francisco, California
| | - Kenneth S Campbell
- Department of Physiology and Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky
| | - Paul M L Janssen
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Naomi C Chesler
- Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center and Department of Biomedical Engineering, University of California, Irvine, Irvine, California
| | - Anthony J Baker
- Veterans Affairs Medical Center, San Francisco, California; Department of Medicine, University of California, San Francisco, California.
| |
Collapse
|
18
|
Hill C, Brunello E, Fusi L, Ovejero JG, Irving M. Activation of the myosin motors in fast-twitch muscle of the mouse is controlled by mechano-sensing in the myosin filaments. J Physiol 2022; 600:3983-4000. [PMID: 35912434 PMCID: PMC9544795 DOI: 10.1113/jp283048] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/27/2022] [Indexed: 11/08/2022] Open
Abstract
Myosin motors in resting muscle are inactivated by folding against the backbone of the myosin filament in an ordered helical array and must be released from that conformation to engage in force generation. Time-resolved X-ray diffraction from single fibres of amphibian muscle showed that myosin filament activation could be inhibited by imposing unloaded shortening at the start of stimulation, suggesting that filaments were activated by mechanical stress. Here we improved the signal-to-noise ratio of that approach using whole extensor digitorum longus muscles of the mouse contracting tetanically at 28°C. Changes in X-ray signals associated with myosin filament activation, including the decrease in the first-order myosin layer line associated with the helical motor array, increase in the spacing of a myosin-based reflection associated with packing of myosin tails in the filament backbone, and increase in the ratio of the 1,1 and 1,0 equatorial reflections associated with movement of motors away from the backbone, were delayed by imposing 10-ms unloaded shortening at the start of stimulation. These results show that myosin filaments are predominantly activated by filament stress, as in amphibian muscle. However, a small component of filament activation at zero load was detected, implying an independent mechanism of partial filament activation. X-ray interference measurements indicated a switch-like change in myosin motor conformation at the start of force development, accompanied by transient disordering of motors in the regions of the myosin filament near its midpoint, suggesting that filament zonal dynamics also play a role in its activation. KEY POINTS: Activation of myosin filaments in extensor digitorum longus muscles of the mouse is delayed by imposing rapid shortening from the start of stimulation. Stress is the major mechanism of myosin filament activation in these muscles, but there is a small component of filament activation during electrical stimulation at zero stress. Myosin motors switch rapidly from the folded inhibited conformation to the actin-attached force-generating conformation early in force development.
Collapse
Affiliation(s)
- Cameron Hill
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, UK
| | - Elisabetta Brunello
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, UK
| | - Luca Fusi
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, UK.,Centre for Human & Applied Physiological Sciences, King's College London, London, UK
| | - Jesús Garcia Ovejero
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, UK
| | - Malcolm Irving
- Randall Centre for Cell & Molecular Biophysics, King's College London, London, UK
| |
Collapse
|
19
|
Ma W, Irving TC. Small Angle X-ray Diffraction as a Tool for Structural Characterization of Muscle Disease. Int J Mol Sci 2022; 23:3052. [PMID: 35328477 PMCID: PMC8949570 DOI: 10.3390/ijms23063052] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/01/2023] Open
Abstract
Small angle X-ray fiber diffraction is the method of choice for obtaining molecular level structural information from striated muscle fibers under hydrated physiological conditions. For many decades this technique had been used primarily for investigating basic biophysical questions regarding muscle contraction and regulation and its use confined to a relatively small group of expert practitioners. Over the last 20 years, however, X-ray diffraction has emerged as an important tool for investigating the structural consequences of cardiac and skeletal myopathies. In this review we show how simple and straightforward measurements, accessible to non-experts, can be used to extract biophysical parameters that can help explain and characterize the physiology and pathology of a given experimental system. We provide a comprehensive guide to the range of the kinds of measurements that can be made and illustrate how they have been used to provide insights into the structural basis of pathology in a comprehensive review of the literature. We also show how these kinds of measurements can inform current controversies and indicate some future directions.
Collapse
Affiliation(s)
- Weikang Ma
- The Biophysics Collaborative Access Team (BioCAT), Center for Synchrotron Radiation Research and Instrumentation (CSSRI), Illinois Institute of Technology, Chicago, IL 60616, USA;
- Department of Biology, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Thomas C. Irving
- The Biophysics Collaborative Access Team (BioCAT), Center for Synchrotron Radiation Research and Instrumentation (CSSRI), Illinois Institute of Technology, Chicago, IL 60616, USA;
- Department of Biology, Illinois Institute of Technology, Chicago, IL 60616, USA
| |
Collapse
|
20
|
Walklate J, Kao K, Regnier M, Geeves MA. Exploring the super-relaxed state of myosin in myofibrils from fast-twitch, slow-twitch, and cardiac muscle. J Biol Chem 2022; 298:101640. [PMID: 35090895 PMCID: PMC8867123 DOI: 10.1016/j.jbc.2022.101640] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 11/28/2022] Open
Abstract
Muscle myosin heads, in the absence of actin, have been shown to exist in two states, the relaxed (turnover ∼0.05 s-1) and super-relaxed states (SRX, 0.005 s-1) using a simple fluorescent ATP chase assay (Hooijman, P. et al (2011) Biophys. J.100, 1969-1976). Studies have normally used purified proteins, myosin filaments, or muscle fibers. Here we use muscle myofibrils, which retain most of the ancillary proteins and 3-D architecture of muscle and can be used with rapid mixing methods. Recording timescales from 0.1 to 1000 s provides a precise measure of the two populations of myosin heads present in relaxed myofibrils. We demonstrate that the population of SRX states is formed from rigor cross bridges within 0.2 s of relaxing with fluorescently labeled ATP, and the population of SRX states is relatively constant over the temperature range of 5 °C-30 °C. The SRX population is enhanced in the presence of mavacamten and reduced in the presence of deoxy-ATP. Compared with myofibrils from fast-twitch muscle, slow-twitch muscle, and cardiac muscles, myofibrils require a tenfold lower concentration of mavacamten to be effective, and mavacamten induced a larger increase in the population of the SRX state. Mavacamten is less effective, however, at stabilizing the SRX state at physiological temperatures than at 5 °C. These assays require small quantities of myofibrils, making them suitable for studies of model organism muscles, human biopsies, or human-derived iPSCs.
Collapse
Affiliation(s)
- Jonathan Walklate
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, UK
| | - Kerry Kao
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Michael A Geeves
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, UK.
| |
Collapse
|
21
|
Molecular basis of force-pCa relation in MYL2 cardiomyopathy mice: Role of the super-relaxed state of myosin. Proc Natl Acad Sci U S A 2022; 119:2110328119. [PMID: 35177471 PMCID: PMC8872785 DOI: 10.1073/pnas.2110328119] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2022] [Indexed: 01/22/2023] Open
Abstract
Many forms of cardiomyopathy manifest with changes in sarcomeric structure, function, and energetics. We used small-angle X-ray diffraction and myosin super-relaxed (SRX) state approaches to investigate the mechanisms underlying the clinical phenotypes associated with HCM-related D166V (aspartate-to-valine) and DCM-linked D94A (aspartate-to-alanine) mutations in the cardiac myosin RLC (MYL2 gene). Modulation of myosin function through dysregulation of the SRX state was closely coupled with structural rearrangements and the Ca2+ dependence of force development in HCM–D166V mice. The DCM–D94A model favored the SRX state without altering structure/force–pCa relationships. Understanding the regulation of SRX ↔ DRX equilibrium in the normal heart and how it is changed in heart disease may advance future therapeutics of patients suffering from the mutated MYL2 gene. In this study, we investigated the role of the super-relaxed (SRX) state of myosin in the structure–function relationship of sarcomeres in the hearts of mouse models of cardiomyopathy-bearing mutations in the human ventricular regulatory light chain (RLC, MYL2 gene). Skinned papillary muscles from hypertrophic (HCM–D166V) and dilated (DCM–D94A) cardiomyopathy models were subjected to small-angle X-ray diffraction simultaneously with isometric force measurements to obtain the interfilament lattice spacing and equatorial intensity ratios (I11/I10) together with the force-pCa relationship over a full range of [Ca2+] and at a sarcomere length of 2.1 μm. In parallel, we studied the effect of mutations on the ATP-dependent myosin energetic states. Compared with wild-type (WT) and DCM–D94A mice, HCM–D166V significantly increased the Ca2+ sensitivity of force and left shifted the I11/I10-pCa relationship, indicating an apparent movement of HCM–D166V cross-bridges closer to actin-containing thin filaments, thereby allowing for their premature Ca2+ activation. The HCM–D166V model also disrupted the SRX state and promoted an SRX-to-DRX (super-relaxed to disordered relaxed) transition that correlated with an HCM-linked phenotype of hypercontractility. While this dysregulation of SRX ↔ DRX equilibrium was consistent with repositioning of myosin motors closer to the thin filaments and with increased force-pCa dependence for HCM–D166V, the DCM–D94A model favored the energy-conserving SRX state, but the structure/function–pCa data were similar to WT. Our results suggest that the mutation-induced redistribution of myosin energetic states is one of the key mechanisms contributing to the development of complex clinical phenotypes associated with human HCM–D166V and DCM–D94A mutations.
Collapse
|
22
|
Ma W, Gong H, Jani V, Lee KH, Landim-Vieira M, Papadaki M, Pinto JR, Aslam MI, Cammarato A, Irving T. Myofibril orientation as a metric for characterizing heart disease. Biophys J 2022; 121:565-574. [PMID: 35032456 PMCID: PMC8874025 DOI: 10.1016/j.bpj.2022.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/28/2021] [Accepted: 01/11/2022] [Indexed: 11/17/2022] Open
Abstract
Myocyte disarray is a hallmark of many cardiac disorders. However, the relationship between alterations in the orientation of individual myofibrils and myofilaments to disease progression has been largely underexplored. This oversight has predominantly been because of a paucity of methods for objective and quantitative analysis. Here, we introduce a novel, less-biased approach to quantify myofibrillar and myofilament orientation in cardiac muscle under near-physiological conditions and demonstrate its superiority as compared with conventional histological assessments. Using small-angle x-ray diffraction, we first investigated changes in myofibrillar orientation at increasing sarcomere lengths in permeabilized, relaxed, wild-type mouse myocardium from the left ventricle by assessing the angular spread of the 1,0 equatorial reflection (angle σ). At a sarcomere length of 1.9 μm, the angle σ was 0.23 ± 0.01 rad, decreased to 0.19 ± 0.01 rad at a sarcomere length of 2.1 μm, and further decreased to 0.15 ± 0.01 rad at a sarcomere length of 2.3 μm (p < 0.0001). Angle σ was significantly larger in R403Q, a MYH7 hypertrophic cardiomyopathy model, porcine myocardium (0.24 ± 0.01 rad) compared with wild-type myocardium (0.14 ± 0.005 rad; p < 0.0001), as well as in human heart failure tissue (0.19 ± 0.006 rad) when compared with nonfailing samples (0.17 ± 0.007 rad; p = 0.01). These data indicate that diseased myocardium suffers from greater myofibrillar disorientation compared with healthy controls. Finally, we showed that conventional, histology-based analysis of disarray can be subject to user bias and/or sampling error and lead to false positives. Our method for directly assessing myofibrillar orientation avoids the artifacts introduced by conventional histological approaches that assess myocyte orientation and only indirectly evaluate myofibrillar orientation, and provides a precise and objective metric for phenotypically characterizing myocardium. The ability to obtain excellent x-ray diffraction patterns from frozen human myocardium provides a new tool for investigating structural anomalies associated with cardiac diseases.
Collapse
Affiliation(s)
- Weikang Ma
- BioCAT, Department of Biology, Illinois Institute of Technology, Chicago, Illinois.
| | - Henry Gong
- BioCAT, Department of Biology, Illinois Institute of Technology, Chicago, Illinois
| | - Vivek Jani
- Department of Biomedical Engineering, The Johns Hopkins School of Medicine, The Johns Hopkins University, Baltimore, Maryland; Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kyoung Hwan Lee
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Maicon Landim-Vieira
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida
| | - Maria Papadaki
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois
| | - Jose R Pinto
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida
| | - M Imran Aslam
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Anthony Cammarato
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Thomas Irving
- BioCAT, Department of Biology, Illinois Institute of Technology, Chicago, Illinois
| |
Collapse
|
23
|
Hill C, Brunello E, Fusi L, Ovejero JG, Irving M. Myosin-based regulation of twitch and tetanic contractions in mammalian skeletal muscle. eLife 2021; 10:e68211. [PMID: 34121660 PMCID: PMC8275128 DOI: 10.7554/elife.68211] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/11/2021] [Indexed: 01/16/2023] Open
Abstract
Time-resolved X-ray diffraction of isolated fast-twitch muscles of mice was used to show how structural changes in the myosin-containing thick filaments contribute to the regulation of muscle contraction, extending the previous focus on regulation by the actin-containing thin filaments. This study shows that muscle activation involves the following sequence of structural changes: thin filament activation, disruption of the helical array of myosin motors characteristic of resting muscle, release of myosin motor domains from the folded conformation on the filament backbone, and actin attachment. Physiological force generation in the 'twitch' response of skeletal muscle to single action potential stimulation is limited by incomplete activation of the thick filament and the rapid inactivation of both filaments. Muscle relaxation after repetitive stimulation is accompanied by a complete recovery of the folded motor conformation on the filament backbone but by incomplete reformation of the helical array, revealing a structural basis for post-tetanic potentiation in isolated muscles.
Collapse
Affiliation(s)
- Cameron Hill
- Randall Centre for Cell & Molecular Biophysics, New Hunt’s House, Guy’s Campus, King’s College LondonLondonUnited Kingdom
| | - Elisabetta Brunello
- Randall Centre for Cell & Molecular Biophysics, New Hunt’s House, Guy’s Campus, King’s College LondonLondonUnited Kingdom
| | - Luca Fusi
- Randall Centre for Cell & Molecular Biophysics, New Hunt’s House, Guy’s Campus, King’s College LondonLondonUnited Kingdom
| | - Jesús G Ovejero
- Randall Centre for Cell & Molecular Biophysics, New Hunt’s House, Guy’s Campus, King’s College LondonLondonUnited Kingdom
| | - Malcolm Irving
- Randall Centre for Cell & Molecular Biophysics, New Hunt’s House, Guy’s Campus, King’s College LondonLondonUnited Kingdom
| |
Collapse
|
24
|
Schmid M, Toepfer CN. Cardiac myosin super relaxation (SRX): a perspective on fundamental biology, human disease and therapeutics. Biol Open 2021; 10:bio057646. [PMID: 33589442 PMCID: PMC7904003 DOI: 10.1242/bio.057646] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The fundamental basis of muscle contraction 'the sliding filament model' (Huxley and Niedergerke, 1954; Huxley and Hanson, 1954) and the 'swinging, tilting crossbridge-sliding filament mechanism' (Huxley, 1969; Huxley and Brown, 1967) nucleated a field of research that has unearthed the complex and fascinating role of myosin structure in the regulation of contraction. A recently discovered energy conserving state of myosin termed the super relaxed state (SRX) has been observed in filamentous myosins and is central to modulating force production and energy use within the sarcomere. Modulation of myosin function through SRX is a rapidly developing theme in therapeutic development for both cardiovascular disease and infectious disease. Some 70 years after the first discoveries concerning muscular function, modulation of myosin SRX may bring the first myosin targeted small molecule to the clinic, for treating hypertrophic cardiomyopathy (Olivotto et al., 2020). An often monogenic disease HCM afflicts 1 in 500 individuals, and can cause heart failure and sudden cardiac death. Even as we near therapeutic translation, there remain many questions about the governance of muscle function in human health and disease. With this review, we provide a broad overview of contemporary understanding of myosin SRX, and explore the complexities of targeting this myosin state in human disease.This article has an associated Future Leaders to Watch interview with the authors of the paper.
Collapse
Affiliation(s)
- Manuel Schmid
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Christopher N Toepfer
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| |
Collapse
|
25
|
Alpha and beta myosin isoforms and human atrial and ventricular contraction. Cell Mol Life Sci 2021; 78:7309-7337. [PMID: 34704115 PMCID: PMC8629898 DOI: 10.1007/s00018-021-03971-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 10/03/2021] [Accepted: 10/08/2021] [Indexed: 01/15/2023]
Abstract
Human atrial and ventricular contractions have distinct mechanical characteristics including speed of contraction, volume of blood delivered and the range of pressure generated. Notably, the ventricle expresses predominantly β-cardiac myosin while the atrium expresses mostly the α-isoform. In recent years exploration of the properties of pure α- & β-myosin isoforms have been possible in solution, in isolated myocytes and myofibrils. This allows us to consider the extent to which the atrial vs ventricular mechanical characteristics are defined by the myosin isoform expressed, and how the isoform properties are matched to their physiological roles. To do this we Outline the essential feature of atrial and ventricular contraction; Explore the molecular structural and functional characteristics of the two myosin isoforms; Describe the contractile behaviour of myocytes and myofibrils expressing a single myosin isoform; Finally we outline the outstanding problems in defining the differences between the atria and ventricles. This allowed us consider what features of contraction can and cannot be ascribed to the myosin isoforms present in the atria and ventricles.
Collapse
|
26
|
Modulation of post-powerstroke dynamics in myosin II by 2'-deoxy-ADP. Arch Biochem Biophys 2020; 699:108733. [PMID: 33388313 DOI: 10.1016/j.abb.2020.108733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/25/2020] [Accepted: 12/18/2020] [Indexed: 01/10/2023]
Abstract
Muscle myosins are molecular motors that hydrolyze ATP and generate force through coordinated interactions with actin filaments, known as cross-bridge cycling. During the cross-bridge cycle, functional sites in myosin 'sense' changes in interactions with actin filaments and the nucleotide binding region, resulting in allosteric transmission of information throughout the structure. We investigated whether the dynamics of the post-powerstroke state of the cross-bridge cycle are modulated in a nucleotide-dependent fashion. We compared molecular dynamics simulations of the myosin II motor domain (M) from Dictyostelium discoideum in the presence of ADP (M.ADP) versus 2'-deoxy-ADP bound myosin (M.dADP). We found that dADP was more flexible than ADP and the two nucleotides interacted with myosin in different ways. Replacement of ADP with dADP in the post-powerstroke state also altered the conformation of the actin binding region in myosin heads. Our results provide atomic level insights into allosteric communication networks in myosin that provide insight into the nucleotide-dependent dynamics of the cross-bridge cycle.
Collapse
|
27
|
Galli RA, Ottenheijm CAC. A bright light on myosin to study skeletal muscle relaxation. J Physiol 2020; 598:5001-5002. [PMID: 32954503 PMCID: PMC7702071 DOI: 10.1113/jp280664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 09/16/2020] [Indexed: 11/08/2022] Open
Affiliation(s)
- Ricardo A Galli
- Department of Physiology, Amsterdam UMC (location VUmc), Amsterdam, The Netherlands
| | - Coen A C Ottenheijm
- Department of Physiology, Amsterdam UMC (location VUmc), Amsterdam, The Netherlands
| |
Collapse
|