1
|
Vitzthum H, Hauswald N, Pham H, Eckermann-Reimer L, Meyer-Schwesinger C, Ehmke H. High chloride induces aldosterone resistance in the distal nephron. Acta Physiol (Oxf) 2025; 241:e14246. [PMID: 39445859 DOI: 10.1111/apha.14246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
AIM Increasing the dietary intake of K+ in the setting of a high salt intake promotes renal Na+ excretion even though K+ concurrently enhances the secretion of aldosterone, the most effective stimulus for renal Na+ reabsorption. Here, we questioned whether in the high salt state a mechanism exists, which attenuates the aldosterone response to prevent renal Na+ reabsorption after high K+ intake. METHODS Mice were fed diets containing varying amounts of Na+ combined with KCl or KCitrate. Murine cortical connecting duct (mCCDcl1) cells were cultured in media containing normal or high [Cl-]. The response to aldosterone was analyzed by high-resolution imaging and by biochemical approaches. RESULTS The canonical cellular response to aldosterone, encompassing translocation of the mineralocorticoid receptor (MR) and activation of the epithelial Na+ channel ENaC was repressed in Na+-replete mice fed a high KCl diet, even though plasma aldosterone concentrations were increased. The response to aldosterone was restored in Na+-replete mice when the extracellular [Cl-] increase was prevented by feeding a high KCitrate diet. In mCCDcl1 cells, an elevated extracellular [Cl-] was sufficient to disrupt the aldosterone-induced MR translocation. CONCLUSION These findings indicate a pivotal role for extracellular [Cl-] in modulating renal aldosterone signaling to adapt MR activation by a high K+ intake to the NaCl balance. An impairment of [Cl-]-mediated aldosterone resistance may contribute to excessive MR activation by aldosterone in the presence of a high salt intake characteristic of the Western diet, resulting in an inappropriate salt reabsorption and its downstream detrimental effects.
Collapse
Affiliation(s)
- Helga Vitzthum
- Department of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nina Hauswald
- Department of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Helena Pham
- Department of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Leya Eckermann-Reimer
- Department of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Catherine Meyer-Schwesinger
- Department of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Center for Cardiovascular Research), Partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Heimo Ehmke
- Department of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Center for Cardiovascular Research), Partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| |
Collapse
|
2
|
Castagna A, Mango G, Martinelli N, Marzano L, Moruzzi S, Friso S, Pizzolo F. Sodium Chloride Cotransporter in Hypertension. Biomedicines 2024; 12:2580. [PMID: 39595146 PMCID: PMC11591633 DOI: 10.3390/biomedicines12112580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/29/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
The sodium chloride cotransporter (NCC) is essential for electrolyte balance, blood pressure regulation, and pathophysiology of hypertension as it mediates the reabsorption of ultrafiltered sodium in the renal distal convoluted tubule. Given its pivotal role in the maintenance of extracellular fluid volume, the NCC is regulated by a complex network of cellular pathways, which eventually results in either its phosphorylation, enhancing sodium and chloride ion absorption from urines, or dephosphorylation and ubiquitination, which conversely decrease NCC activity. Several factors could influence NCC function, including genetic alterations, hormonal stimuli, and pharmacological treatments. The NCC's central role is also highlighted by several abnormalities resulting from genetic mutations in its gene and consequently in its structure, leading to dysregulation of blood pressure control. In the last decade, among other improvements, the acquisition of knowledge on the NCC and other renal ion channels has been favored by studies on extracellular vesicles (EVs). Dietary sodium and potassium intake are also implicated in the tuning of NCC activity. In this narrative review, we present the main cornerstones and recent evidence related to NCC control, focusing on the context of blood pressure pathophysiology, and promising new therapeutical approaches.
Collapse
Affiliation(s)
- Annalisa Castagna
- Department of Medicine, University of Verona, 37134 Verona, Italy; (A.C.); (G.M.); (N.M.); (S.F.)
| | - Gabriele Mango
- Department of Medicine, University of Verona, 37134 Verona, Italy; (A.C.); (G.M.); (N.M.); (S.F.)
| | - Nicola Martinelli
- Department of Medicine, University of Verona, 37134 Verona, Italy; (A.C.); (G.M.); (N.M.); (S.F.)
| | - Luigi Marzano
- Unit of Internal Medicine B, Department of Medicine, University of Verona School of Medicine, Azienda Ospedaliera Universitaria Integrata Verona, Policlinico “G.B. Rossi”, 37134 Verona, Italy; (L.M.); (S.M.)
| | - Sara Moruzzi
- Unit of Internal Medicine B, Department of Medicine, University of Verona School of Medicine, Azienda Ospedaliera Universitaria Integrata Verona, Policlinico “G.B. Rossi”, 37134 Verona, Italy; (L.M.); (S.M.)
| | - Simonetta Friso
- Department of Medicine, University of Verona, 37134 Verona, Italy; (A.C.); (G.M.); (N.M.); (S.F.)
| | - Francesca Pizzolo
- Department of Medicine, University of Verona, 37134 Verona, Italy; (A.C.); (G.M.); (N.M.); (S.F.)
| |
Collapse
|
3
|
Nickerson AJ, Sheng S, Cox NA, Szekely KG, Marciszyn AL, Lam T, Chen J, Gingras S, Kashlan OB, Kirabo A, Hughey RP, Ray EC, Kleyman TR. Loss of the alpha subunit distal furin cleavage site blunts ENaC activation following Na + restriction. J Physiol 2024; 602:4309-4326. [PMID: 39196791 PMCID: PMC11384278 DOI: 10.1113/jp286559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/17/2024] [Indexed: 08/30/2024] Open
Abstract
Epithelial Na+ channels (ENaCs) are activated by proteolysis of the α and γ subunits at specific sites flanking embedded inhibitory tracts. To examine the role of α subunit proteolysis in channel activation in vivo, we generated mice lacking the distal furin cleavage site in the α subunit (αF2M mice). On a normal Na+ control diet, no differences in ENaC protein abundance in kidney or distal colon were noted between wild-type (WT) and αF2M mice. Patch-clamp analyses revealed similar levels of ENaC activity in kidney tubules, while no physiologically relevant differences in blood chemistry or aldosterone levels were detected. Male αF2M mice did exhibit diminished ENaC activity in the distal colon, as measured by amiloride-sensitive short-circuit current (ISC). Following dietary Na+ restriction, WT and αF2M mice had similar natriuretic and colonic ISC responses to amiloride. However, single-channel activity was significantly lower in kidney tubules from Na+-restricted αF2M mice compared with WT littermates. ENaC α and γ subunit expression in kidney and distal colon were also enhanced in Na+-restricted αF2M vs. WT mice, in association with higher aldosterone levels. These data provide evidence that disrupting α subunit proteolysis impairs ENaC activity in vivo, requiring compensation in response to Na+ restriction. KEY POINTS: The epithelial Na+ channel (ENaC) is activated by proteolytic cleavage in vitro, but key questions regarding the role of ENaC proteolysis in terms of whole-animal physiology remain to be addressed. We studied the in vivo importance of this mechanism by generating a mouse model with a genetic disruption to a key cleavage site in the ENaC's α subunit (αF2M mice). We found that αF2M mice did not exhibit a physiologically relevant phenotype under normal dietary conditions, but have impaired ENaC activation (channel open probability) in the kidney during salt restriction. ENaC function at the organ level was preserved in salt-restricted αF2M mice, but this was associated with higher aldosterone levels and increased expression of ENaC subunits, suggesting compensation was required to maintain homeostasis. These results provide the first evidence that ENaC α subunit proteolysis is a key regulator of channel activity in vivo.
Collapse
Affiliation(s)
- Andrew J Nickerson
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Shaohu Sheng
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Natalie A Cox
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kennedy G Szekely
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Allison L Marciszyn
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tracey Lam
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jingxin Chen
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sebastien Gingras
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ossama B Kashlan
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Rebecca P Hughey
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Evan C Ray
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Thomas R Kleyman
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Albritton CF, Demirci M, Neikirk K, Ertuglu LA, Ishimwe JA, Mutchler AL, Sheng Q, Laffer CL, Wanjalla CN, Ahmed T, Haynes AP, Saleem M, Beasley HK, Marshall AG, Vue Z, Ikizler AT, Kleyman TR, Kon V, Hinton A, Kirabo A. Myeloid Cell Glucocorticoid, Not Mineralocorticoid Receptor Signaling, Contributes to Salt-Sensitive Hypertension in Humans via Cortisol. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.598374. [PMID: 38915603 PMCID: PMC11195113 DOI: 10.1101/2024.06.10.598374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
BACKGROUND Salt sensitivity of blood pressure (SSBP) is an independent risk factor for cardiovascular morbidity and mortality, yet the etiology is poorly understood. We previously found that serum/glucocorticoid-regulated kinase 1 (SGK1) and epoxyeicosatrienoic acids (EETs) regulate epithelial sodium channel (ENaC)-dependent sodium entry into monocyte-derived antigen-presenting cells (APCs) and activation of NADPH oxidase, leading to the formation of isolevuglandins (IsoLGs) in SSBP. Whereas aldosterone via the mineralocorticoid receptor (MR) activates SGK1 leading to hypertension, our past findings indicate that levels of plasma aldosterone do not correlate with SSBP, and there is little to no MR expression in APCs. Thus, we hypothesized that cortisol acting via the glucocorticoid receptor (GR), not the MR in APCs mediates SGK1 actions to induce SSBP. METHODS We performed cellular indexing of transcriptomes and epitopes by sequencing (CITE-Seq) analysis on peripheral blood mononuclear cells of humans rigorously phenotyped for SSBP using an inpatient salt loading/depletion protocol to determine expression of MR, GR, and SGK1 in immune cells. In additional experiments, we performed bulk transcriptomic analysis on isolated human monocytes following in vitro treatment with high salt from a separate cohort. We then measured urine and plasma cortisol, cortisone, renin, and aldosterone. Subsequently, we measured the association of these hormones with changes in systolic, diastolic, mean arterial pressure and pulse pressure as well as immune cell activation via IsoLG formation. RESULTS We found that myeloid APCs predominantly express the GR and SGK1 with no expression of the MR. Expression of the GR in APCs increased after salt loading and decreased with salt depletion in salt-sensitive but not salt-resistant people and was associated with increased expression of SGK1. Moreover, we found that plasma and urine cortisol/cortisone but not aldosterone/renin correlated with SSBP and APCs activation via IsoLGs. We also found that cortisol negatively correlates with EETs. CONCLUSION Our findings suggest that renal cortisol signaling via the GR but not the MR in APCs contributes to SSBP via cortisol. Urine and plasma cortisol may provide an important currently unavailable feasible diagnostic tool for SSBP. Moreover, cortisol-GR-SGK1-ENaC signaling pathway may provide treatment options for SSBP.
Collapse
Affiliation(s)
- Claude F. Albritton
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37212-8802, USA
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, TN 37208-3501, USA
| | - Mert Demirci
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Kit Neikirk
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN 37212-8802, USA
| | - Lale A. Ertuglu
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jeanne A Ishimwe
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37212-8802, USA
| | - Ashley L Mutchler
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37212-8802, USA
| | - Quanhu Sheng
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37212-8802, USA
| | - Cheryl L Laffer
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37212-8802, USA
| | - Celestine N. Wanjalla
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37212-8802, USA
| | - Taseer Ahmed
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37212-8802, USA
- Department of Pharmacology, College of Pharmacy, University of Sargodha, University Road, Sargodha, Punjab, 40100, Pakistan
| | - Alexandria Porcia Haynes
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37212-8802, USA
| | - Mohammad Saleem
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37212-8802, USA
| | - Heather K. Beasley
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN 37212-8802, USA
| | - Andrea G. Marshall
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN 37212-8802, USA
| | - Zer Vue
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN 37212-8802, USA
| | - Alp T Ikizler
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Thomas R. Kleyman
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Valentina Kon
- Division of Nephrology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Antentor Hinton
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN 37212-8802, USA
| | - Annet Kirabo
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37212-8802, USA
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN 37212-8802, USA
- Vanderbilt Center for Immunobiology
- Vanderbilt Institute for Infection, Immunology and Inflammation
- Vanderbilt Institute for Global Health
| |
Collapse
|