1
|
Asghari P, Scriven DR, Shahrasebi S, Valdivia HH, Alsina KM, Valdivia CR, Navarro-Garcia JA, Wehrens XH, Moore ED. Phosphorylation of RyR2 simultaneously expands the dyad and rearranges the tetramers. J Gen Physiol 2024; 156:e202213108. [PMID: 38385988 PMCID: PMC10883851 DOI: 10.1085/jgp.202213108] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 01/23/2023] [Accepted: 01/31/2024] [Indexed: 02/23/2024] Open
Abstract
We have previously demonstrated that type II ryanodine receptors (RyR2) tetramers can be rapidly rearranged in response to a phosphorylation cocktail. The cocktail modified downstream targets indiscriminately, making it impossible to determine whether phosphorylation of RyR2 was an essential element of the response. Here, we used the β-agonist isoproterenol and mice homozygous for one of the following clinically relevant mutations: S2030A, S2808A, S2814A, or S2814D. We measured the length of the dyad using transmission electron microscopy (TEM) and directly visualized RyR2 distribution using dual-tilt electron tomography. We found that the S2814D mutation, by itself, significantly expanded the dyad and reorganized the tetramers, suggesting a direct link between the phosphorylation state of the tetramer and its microarchitecture. S2808A and S2814A mutant mice, as well as wild types, had significant expansions of their dyads in response to isoproterenol, while S2030A mutants did not. In agreement with functional data from these mutants, S2030 and S2808 were necessary for a complete β-adrenergic response, unlike S2814 mutants. Additionally, all mutants had unique effects on the organization of their tetramer arrays. Lastly, the correlation of structural with functional changes suggests that tetramer-tetramer contacts play an important functional role. We thus conclude that both the size of the dyad and the arrangement of the tetramers are linked to the state of the channel tetramer and can be dynamically altered by a β-adrenergic receptor agonist.
Collapse
Affiliation(s)
- Parisa Asghari
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - David R.L. Scriven
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Saba Shahrasebi
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Hector H. Valdivia
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | - Carmen R. Valdivia
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - J. Alberto Navarro-Garcia
- Department of Integrative Physiology, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Xander H.T. Wehrens
- Department of Integrative Physiology, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Edwin D.W. Moore
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| |
Collapse
|
2
|
Asghari P, Scriven DRL, Shahrasebi S, Valdivia HH, Wehrens XHT, Moore EDW. PHOSPHORYLATION OF RyR2 SIMULTANEOUSLY EXPANDS THE DYAD AND REARRANGES THE TETRAMERS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.541024. [PMID: 37292875 PMCID: PMC10245935 DOI: 10.1101/2023.05.23.541024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We have previously demonstrated that type II ryanodine receptors (RyR2) tetramers can be rapidly rearranged in response to a phosphorylation cocktail. The cocktail modified downstream targets indiscriminately making it impossible to determine whether phosphorylation of RyR2 was an essential element of the response. We therefore used the β-agonist isoproterenol and mice with one of the homozygous mutations, S2030A +/+ , S2808A +/+ , S2814A +/+ , or S2814D +/+ , to address this question and to elucidate the role of these clinically relevant mutations. We measured the length of the dyad using transmission electron microscopy (TEM) and directly visualized RyR2 distribution using dual-tilt electron tomography. We found that: 1) The S2814D mutation, by itself, significantly expanded the dyad and reorganized the tetramers suggesting a direct link between the phosphorylation state of the tetramer and the microarchitecture. 2) All of the wild-type, as well as the S2808A and S2814A mice, had significant expansions of their dyads in response to ISO, while S2030A did not. 3) In agreement with functional data from the same mutants, S2030 and S2808 were necessary for a complete β-adrenergic response, whereas S2814 was not. 4) All the mutated residues had unique effects on the organization of their tetramer arrays. 5) The correlation of structure with function suggests that tetramer-tetramer contacts play an important functional role. We conclude that both the size of the dyad and the arrangement of the tetramers are linked to the state of the channel tetramer and can be dynamically altered by a β-adrenergic receptor agonist. Summary Analysis of RyR2 mutants suggests a direct link between the phosphorylation state of the channel tetramer and the microarchitecture of the dyad. All phosphorylation site mutations produced significant and unique effects on the structure of the dyad and its response to isoproterenol.
Collapse
|
3
|
Cachorro E, Günscht M, Schubert M, Sadek MS, Siegert J, Dutt F, Bauermeister C, Quickert S, Berning H, Nowakowski F, Lämmle S, Firneburg R, Luo X, Künzel SR, Klapproth E, Mirtschink P, Mayr M, Dewenter M, Vettel C, Heijman J, Lorenz K, Guan K, El-Armouche A, Wagner M, Kämmerer S. CNP Promotes Antiarrhythmic Effects via Phosphodiesterase 2. Circ Res 2023; 132:400-414. [PMID: 36715019 PMCID: PMC9930893 DOI: 10.1161/circresaha.122.322031] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Ventricular arrhythmia and sudden cardiac death are the most common lethal complications after myocardial infarction. Antiarrhythmic pharmacotherapy remains a clinical challenge and novel concepts are highly desired. Here, we focus on the cardioprotective CNP (C-type natriuretic peptide) as a novel antiarrhythmic principle. We hypothesize that antiarrhythmic effects of CNP are mediated by PDE2 (phosphodiesterase 2), which has the unique property to be stimulated by cGMP to primarily hydrolyze cAMP. Thus, CNP might promote beneficial effects of PDE2-mediated negative crosstalk between cAMP and cGMP signaling pathways. METHODS To determine antiarrhythmic effects of cGMP-mediated PDE2 stimulation by CNP, we analyzed arrhythmic events and intracellular trigger mechanisms in mice in vivo, at organ level and in isolated cardiomyocytes as well as in human-induced pluripotent stem cell-derived cardiomyocytes. RESULTS In ex vivo perfused mouse hearts, CNP abrogated arrhythmia after ischemia/reperfusion injury. Upon high-dose catecholamine injections in mice, PDE2 inhibition prevented the antiarrhythmic effect of CNP. In mouse ventricular cardiomyocytes, CNP blunted the catecholamine-mediated increase in arrhythmogenic events as well as in ICaL, INaL, and Ca2+ spark frequency. Mechanistically, this was driven by reduced cellular cAMP levels and decreased phosphorylation of Ca2+ handling proteins. Key experiments were confirmed in human iPSC-derived cardiomyocytes. Accordingly, the protective CNP effects were reversed by either specific pharmacological PDE2 inhibition or cardiomyocyte-specific PDE2 deletion. CONCLUSIONS CNP shows strong PDE2-dependent antiarrhythmic effects. Consequently, the CNP-PDE2 axis represents a novel and attractive target for future antiarrhythmic strategies.
Collapse
Affiliation(s)
- Eleder Cachorro
- Institut für Pharmakologie und Toxikologie, Technische Universität Dresden, Germany (E.C., M.G., M.S., M.S.S., J.S., F.D., C.B., S.Q., H.B., F.N., S.L., R.F., X.L., S.R.K., E.K., K.G., A.E.-A., M.W., S.K.)
| | - Mario Günscht
- Institut für Pharmakologie und Toxikologie, Technische Universität Dresden, Germany (E.C., M.G., M.S., M.S.S., J.S., F.D., C.B., S.Q., H.B., F.N., S.L., R.F., X.L., S.R.K., E.K., K.G., A.E.-A., M.W., S.K.)
| | - Mario Schubert
- Institut für Pharmakologie und Toxikologie, Technische Universität Dresden, Germany (E.C., M.G., M.S., M.S.S., J.S., F.D., C.B., S.Q., H.B., F.N., S.L., R.F., X.L., S.R.K., E.K., K.G., A.E.-A., M.W., S.K.)
| | - Mirna S. Sadek
- Institut für Pharmakologie und Toxikologie, Technische Universität Dresden, Germany (E.C., M.G., M.S., M.S.S., J.S., F.D., C.B., S.Q., H.B., F.N., S.L., R.F., X.L., S.R.K., E.K., K.G., A.E.-A., M.W., S.K.)
| | - Johanna Siegert
- Institut für Pharmakologie und Toxikologie, Technische Universität Dresden, Germany (E.C., M.G., M.S., M.S.S., J.S., F.D., C.B., S.Q., H.B., F.N., S.L., R.F., X.L., S.R.K., E.K., K.G., A.E.-A., M.W., S.K.)
| | - Fabian Dutt
- Institut für Pharmakologie und Toxikologie, Technische Universität Dresden, Germany (E.C., M.G., M.S., M.S.S., J.S., F.D., C.B., S.Q., H.B., F.N., S.L., R.F., X.L., S.R.K., E.K., K.G., A.E.-A., M.W., S.K.)
| | - Carla Bauermeister
- Institut für Pharmakologie und Toxikologie, Technische Universität Dresden, Germany (E.C., M.G., M.S., M.S.S., J.S., F.D., C.B., S.Q., H.B., F.N., S.L., R.F., X.L., S.R.K., E.K., K.G., A.E.-A., M.W., S.K.)
| | - Susann Quickert
- Institut für Pharmakologie und Toxikologie, Technische Universität Dresden, Germany (E.C., M.G., M.S., M.S.S., J.S., F.D., C.B., S.Q., H.B., F.N., S.L., R.F., X.L., S.R.K., E.K., K.G., A.E.-A., M.W., S.K.)
| | - Henrik Berning
- Institut für Pharmakologie und Toxikologie, Technische Universität Dresden, Germany (E.C., M.G., M.S., M.S.S., J.S., F.D., C.B., S.Q., H.B., F.N., S.L., R.F., X.L., S.R.K., E.K., K.G., A.E.-A., M.W., S.K.)
| | - Felix Nowakowski
- Institut für Pharmakologie und Toxikologie, Technische Universität Dresden, Germany (E.C., M.G., M.S., M.S.S., J.S., F.D., C.B., S.Q., H.B., F.N., S.L., R.F., X.L., S.R.K., E.K., K.G., A.E.-A., M.W., S.K.)
| | - Simon Lämmle
- Institut für Pharmakologie und Toxikologie, Technische Universität Dresden, Germany (E.C., M.G., M.S., M.S.S., J.S., F.D., C.B., S.Q., H.B., F.N., S.L., R.F., X.L., S.R.K., E.K., K.G., A.E.-A., M.W., S.K.)
| | - Rebecca Firneburg
- Institut für Pharmakologie und Toxikologie, Technische Universität Dresden, Germany (E.C., M.G., M.S., M.S.S., J.S., F.D., C.B., S.Q., H.B., F.N., S.L., R.F., X.L., S.R.K., E.K., K.G., A.E.-A., M.W., S.K.)
| | - Xiaojing Luo
- Institut für Pharmakologie und Toxikologie, Technische Universität Dresden, Germany (E.C., M.G., M.S., M.S.S., J.S., F.D., C.B., S.Q., H.B., F.N., S.L., R.F., X.L., S.R.K., E.K., K.G., A.E.-A., M.W., S.K.)
| | - Stephan R. Künzel
- Institut für Pharmakologie und Toxikologie, Technische Universität Dresden, Germany (E.C., M.G., M.S., M.S.S., J.S., F.D., C.B., S.Q., H.B., F.N., S.L., R.F., X.L., S.R.K., E.K., K.G., A.E.-A., M.W., S.K.)
| | - Erik Klapproth
- Institut für Pharmakologie und Toxikologie, Technische Universität Dresden, Germany (E.C., M.G., M.S., M.S.S., J.S., F.D., C.B., S.Q., H.B., F.N., S.L., R.F., X.L., S.R.K., E.K., K.G., A.E.-A., M.W., S.K.)
| | - Peter Mirtschink
- Institute of Clinical Chemistry and Laboratory Medicine, Department of Clinical Pathobiochemistry, University Hospital Dresden, Germany (P.M.)
| | - Manuel Mayr
- The James Black Centre, King’s College, University of London, United Kingdom (M.M.)
- Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany (M.M.)
| | - Matthias Dewenter
- Department of Molecular Cardiology and Epigenetics, Heidelberg University, Germany (M.D.)
- DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg-Mannheim, Germany (M.D., C.V.)
| | - Christiane Vettel
- DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg-Mannheim, Germany (M.D., C.V.)
- Institute of Experimental and Clinical Pharmacology and Toxicology, University Medical Center Mannheim, Germany (C.V.)
| | - Jordi Heijman
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine, and Life Sciences, Maastricht University, The Netherlands (J.H.)
| | - Kristina Lorenz
- Institut für Pharmakologie und Toxikologie, Julius-Maximilians-Universität Würzburg, Germany (K.L.)
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany (K.L.)
| | - Kaomei Guan
- Institut für Pharmakologie und Toxikologie, Technische Universität Dresden, Germany (E.C., M.G., M.S., M.S.S., J.S., F.D., C.B., S.Q., H.B., F.N., S.L., R.F., X.L., S.R.K., E.K., K.G., A.E.-A., M.W., S.K.)
| | - Ali El-Armouche
- Institut für Pharmakologie und Toxikologie, Technische Universität Dresden, Germany (E.C., M.G., M.S., M.S.S., J.S., F.D., C.B., S.Q., H.B., F.N., S.L., R.F., X.L., S.R.K., E.K., K.G., A.E.-A., M.W., S.K.)
| | - Michael Wagner
- Institut für Pharmakologie und Toxikologie, Technische Universität Dresden, Germany (E.C., M.G., M.S., M.S.S., J.S., F.D., C.B., S.Q., H.B., F.N., S.L., R.F., X.L., S.R.K., E.K., K.G., A.E.-A., M.W., S.K.)
- Bereich Rhythmologie, Klinik für Innere Medizin und Kardiologie, Herzzentrum Dresden, Dresden University of Technology, Germany (M.W.)
| | - Susanne Kämmerer
- Institut für Pharmakologie und Toxikologie, Technische Universität Dresden, Germany (E.C., M.G., M.S., M.S.S., J.S., F.D., C.B., S.Q., H.B., F.N., S.L., R.F., X.L., S.R.K., E.K., K.G., A.E.-A., M.W., S.K.)
| |
Collapse
|
4
|
Fernández-Morales JC, Xia Y, Rienzo TJ, Zhang XH, Morad M. Mutation in RyR2-FKBP Binding site alters Ca 2+ signaling modestly but increases "arrhythmogenesis" in human stem cells derived cardiomyocytes. Cell Calcium 2022; 101:102500. [PMID: 34813985 PMCID: PMC8752506 DOI: 10.1016/j.ceca.2021.102500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 01/03/2023]
Abstract
AIMS To gain insights into FKBP regulation of cardiac ryanodine receptor (RyR2) and Ca2+ signaling, we introduced the point mutation (N771D-RyR2) corresponding to skeletal muscle mutation (N760D-RyR1) associated with central core disease (CCD) via CRISPR/Cas9 gene-editing in the RyR2 FKBP binding site expressed in human induced pluripotent stem cell-derived cardiomyocytes (hiPSCCMs). Patients inflicted with CCD and other hereditary skeletal muscle diseases often show higher incidence of atrial or ventricular arrhythmias. METHODS AND RESULTS Ca2+ imaging of voltage-clamped N771D-RyR2 mutant compared to WT hiPSCCMs showed: (1) ∼30% suppressed ICa with no significant changes in the gating kinetics of ICa; (2) 29% lower SR Ca2+ content and 33% lower RyR2 Ca2+ leak; (3) higher CICR gain and 30-35% increased efficiency of ICa-triggered Ca2±release; (4) higher incidence of aberrant SR Ca2+ releases, DADs, and Ca2+ sparks; (5) no change in fractional Ca2+-release, action potential morphology, sensitivity to isoproterenol, and sarcomeric FKBP-binding pattern. CONCLUSIONS The more frequent spontaneous Ca2+ releases and longer Ca2+ sparks underlie the increased incidence of DADs and cellular arrhythmogenesis of N771D-RyR2 mutant. The smaller RyR2 Ca2±leak and SR content result from suppressed ICathat is compensated by higher CICR gain.
Collapse
Affiliation(s)
| | - Yanli Xia
- Cardiac Signaling Center of MUSC, USC and Clemson University, Charleston, SC, USA
| | - Taylor J. Rienzo
- Cardiac Signaling Center of MUSC, USC and Clemson University, Charleston, SC, USA
| | - Xiao-Hua Zhang
- Cardiac Signaling Center of MUSC, USC and Clemson University, Charleston, SC, USA
| | - Martin Morad
- Cardiac Signaling Center of MUSC, USC and Clemson University, Charleston, SC, USA.,Department of Pharmacology, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
5
|
Jaquenod De Giusti C, Palomeque J, Mattiazzi A. Ca 2+ mishandling and mitochondrial dysfunction: a converging road to prediabetic and diabetic cardiomyopathy. Pflugers Arch 2022; 474:33-61. [PMID: 34978597 PMCID: PMC8721633 DOI: 10.1007/s00424-021-02650-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 11/17/2021] [Accepted: 12/03/2021] [Indexed: 12/16/2022]
Abstract
Diabetic cardiomyopathy is defined as the myocardial dysfunction that suffers patients with diabetes mellitus (DM) in the absence of hypertension and structural heart diseases such as valvular or coronary artery dysfunctions. Since the impact of DM on cardiac function is rather silent and slow, early stages of diabetic cardiomyopathy, known as prediabetes, are poorly recognized, and, on many occasions, cardiac illness is diagnosed only after a severe degree of dysfunction was reached. Therefore, exploration and recognition of the initial pathophysiological mechanisms that lead to cardiac dysfunction in diabetic cardiomyopathy are of vital importance for an on-time diagnosis and treatment of the malady. Among the complex and intricate mechanisms involved in diabetic cardiomyopathy, Ca2+ mishandling and mitochondrial dysfunction have been described as pivotal early processes. In the present review, we will focus on these two processes and the molecular pathway that relates these two alterations to the earlier stages and the development of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Carolina Jaquenod De Giusti
- Centro de Investigaciones Cardiovasculares, CCT-La Plata-CONICET, Facultad de Cs. Médicas, UNLP, La Plata, Argentina
| | - Julieta Palomeque
- Centro de Investigaciones Cardiovasculares, CCT-La Plata-CONICET, Facultad de Cs. Médicas, UNLP, La Plata, Argentina
| | - Alicia Mattiazzi
- Centro de Investigaciones Cardiovasculares, CCT-La Plata-CONICET, Facultad de Cs. Médicas, UNLP, La Plata, Argentina.
| |
Collapse
|
6
|
Iaparov BI, Zahradnik I, Moskvin AS, Zahradníková A. In silico simulations reveal that RYR distribution affects the dynamics of calcium release in cardiac myocytes. J Gen Physiol 2021; 153:211900. [PMID: 33735373 PMCID: PMC7980188 DOI: 10.1085/jgp.202012685] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 02/08/2021] [Indexed: 11/20/2022] Open
Abstract
The dyads of cardiac myocytes contain ryanodine receptors (RYRs) that generate calcium sparks upon activation. To test how geometric factors of RYR distribution contribute to the formation of calcium sparks, which cannot be addressed experimentally, we performed in silico simulations on a large set of models of calcium release sites (CRSs). Our models covered the observed range of RYR number, density, and spatial arrangement. The calcium release function of CRSs was modeled by RYR openings, with an open probability dependent on concentrations of free Ca2+ and Mg2+ ions, in a rapidly buffered system, with a constant open RYR calcium current. We found that simulations of spontaneous sparks by repeatedly opening one of the RYRs in a CRS produced three different types of calcium release events (CREs) in any of the models. Transformation of simulated CREs into fluorescence signals yielded calcium sparks with characteristics close to the observed ones. CRE occurrence varied broadly with the spatial distribution of RYRs in the CRS but did not consistently correlate with RYR number, surface density, or calcium current. However, it correlated with RYR coupling strength, defined as the weighted product of RYR vicinity and calcium current, so that CRE characteristics of all models followed the same state-response function. This finding revealed the synergy between structure and function of CRSs in shaping dyad function. Lastly, rearrangements of RYRs simulating hypothetical experiments on splitting and compaction of a dyad revealed an increased propensity to generate spontaneous sparks and an overall increase in calcium release in smaller and more compact dyads, thus underlying the importance and physiological role of RYR arrangement in cardiac myocytes.
Collapse
Affiliation(s)
- Bogdan I Iaparov
- Department of Cellular Cardiology, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia.,Research Institute of Physics and Applied Mathematics, and Department of Theoretical and Mathematical Physics, Ural Federal University, Ekaterinburg, Russia
| | - Ivan Zahradnik
- Department of Cellular Cardiology, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Alexander S Moskvin
- Research Institute of Physics and Applied Mathematics, and Department of Theoretical and Mathematical Physics, Ural Federal University, Ekaterinburg, Russia
| | - Alexandra Zahradníková
- Department of Cellular Cardiology, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
7
|
Ke HY, Chin LH, Tsai CS, Lin FZ, Chen YH, Chang YL, Huang SM, Chen YC, Lin CY. Cardiac calcium dysregulation in mice with chronic kidney disease. J Cell Mol Med 2020; 24:3669-3677. [PMID: 32064746 PMCID: PMC7131917 DOI: 10.1111/jcmm.15066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/14/2020] [Accepted: 01/23/2020] [Indexed: 12/30/2022] Open
Abstract
Cardiovascular complications are leading causes of morbidity and mortality in patients with chronic kidney disease (CKD). CKD significantly affects cardiac calcium (Ca2+) regulation, but the underlying mechanisms are not clear. The present study investigated the modulation of Ca2+ homeostasis in CKD mice. Echocardiography revealed impaired fractional shortening (FS) and stroke volume (SV) in CKD mice. Electrocardiography showed that CKD mice exhibited longer QT interval, corrected QT (QTc) prolongation, faster spontaneous activities, shorter action potential duration (APD) and increased ventricle arrhythmogenesis, and ranolazine (10 µmol/L) blocked these effects. Conventional microelectrodes and the Fluo‐3 fluorometric ratio techniques indicated that CKD ventricular cardiomyocytes exhibited higher Ca2+ decay time, Ca2+ sparks, and Ca2+ leakage but lower [Ca2+]i transients and sarcoplasmic reticulum Ca2+ contents. The CaMKII inhibitor KN93 and ranolazine (RAN; late sodium current inhibitor) reversed the deterioration in Ca2+ handling. Western blots revealed that CKD ventricles exhibited higher phosphorylated RyR2 and CaMKII and reduced phosphorylated SERCA2 and SERCA2 and the ratio of PLB‐Thr17 to PLB. In conclusions, the modulation of CaMKII, PLB and late Na+ current in CKD significantly altered cardiac Ca2+ regulation and electrophysiological characteristics. These findings may apply on future clinical therapies.
Collapse
Affiliation(s)
- Hung-Yen Ke
- Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| | - Li-Han Chin
- Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chien-Sung Tsai
- Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| | - Feng-Zhi Lin
- Grade institute of life sciences, National Defense Medical Center, Taipei, Taiwan
| | - Yen-Hui Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yung-Lung Chang
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Ming Huang
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Yao-Chang Chen
- Department of Biomedical Engineering and Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Yuan Lin
- Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
8
|
Hiess F, Detampel P, Nolla-Colomer C, Vallmitjana A, Ganguly A, Amrein M, Ter Keurs HEDJ, Benítez R, Hove-Madsen L, Chen SRW. Dynamic and Irregular Distribution of RyR2 Clusters in the Periphery of Live Ventricular Myocytes. Biophys J 2019; 114:343-354. [PMID: 29401432 DOI: 10.1016/j.bpj.2017.11.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/01/2017] [Accepted: 11/03/2017] [Indexed: 10/18/2022] Open
Abstract
Cardiac ryanodine receptors (RyR2s) are Ca2+ release channels clustering in the sarcoplasmic reticulum membrane. These clusters are believed to be the elementary units of Ca2+ release. The distribution of these Ca2+ release units plays a critical role in determining the spatio-temporal profile and stability of sarcoplasmic reticulum Ca2+ release. RyR2 clusters located in the interior of cardiomyocytes are arranged in highly ordered arrays. However, little is known about the distribution and function of RyR2 clusters in the periphery of cardiomyocytes. Here, we used a knock-in mouse model expressing a green fluorescence protein (GFP)-tagged RyR2 to localize RyR2 clusters in live ventricular myocytes by virtue of their GFP fluorescence. Confocal imaging and total internal reflection fluorescence microscopy was employed to determine and compare the distribution of GFP-RyR2 in the interior and periphery of isolated live ventricular myocytes and in intact hearts. We found tightly ordered arrays of GFP-RyR2 clusters in the interior, as previously described. In contrast, irregular distribution of GFP-RyR2 clusters was observed in the periphery. Time-lapse total internal reflection fluorescence imaging revealed dynamic movements of GFP-RyR2 clusters in the periphery, which were affected by external Ca2+ and RyR2 activator (caffeine) and inhibitor (tetracaine), but little detectable movement of GFP-RyR2 clusters in the interior. Furthermore, simultaneous Ca2+- and GFP-imaging demonstrated that peripheral RyR2 clusters with an irregular distribution pattern are functional with a Ca2+ release profile similar to that in the interior. These results indicate that the distribution of RyR2 clusters in the periphery of live ventricular myocytes is irregular and dynamic, which is different from that of RyR2 clusters in the interior.
Collapse
Affiliation(s)
- Florian Hiess
- Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Pascal Detampel
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Carme Nolla-Colomer
- Automatic Control Department, Universitat Politècnica de Catalunya-Barcelona Tech, Barcelona, Spain
| | - Alex Vallmitjana
- Automatic Control Department, Universitat Politècnica de Catalunya-Barcelona Tech, Barcelona, Spain
| | - Anutosh Ganguly
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Matthias Amrein
- Department of Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
| | - Henk E D J Ter Keurs
- Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Raul Benítez
- Automatic Control Department, Universitat Politècnica de Catalunya-Barcelona Tech, Barcelona, Spain
| | - Leif Hove-Madsen
- Biomedical Research Institute Barcelona CSIC-IIBB, Sant Pau, Hospital de Sant Pau, Barcelona, Spain
| | - S R Wayne Chen
- Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
9
|
Functional Impact of Ryanodine Receptor Oxidation on Intracellular Calcium Regulation in the Heart. Rev Physiol Biochem Pharmacol 2016; 171:39-62. [PMID: 27251471 DOI: 10.1007/112_2016_2] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Type 2 ryanodine receptor (RyR2) serves as the major intracellular Ca2+ release channel that drives heart contraction. RyR2 is activated by cytosolic Ca2+ via the process of Ca2+-induced Ca2+ release (CICR). To ensure stability of Ca2+ dynamics, the self-reinforcing CICR must be tightly controlled. Defects in this control cause sarcoplasmic reticulum (SR) Ca2+ mishandling, which manifests in a variety of cardiac pathologies that include myocardial infarction and heart failure. These pathologies are also associated with oxidative stress. Given that RyR2 contains a large number of cysteine residues, it is no surprise that RyR2 plays a key role in the cellular response to oxidative stress. RyR's many cysteine residues pose an experimental limitation in defining a specific target or mechanism of action for oxidative stress. As a result, the current understanding of redox-mediated RyR2 dysfunction remains incomplete. Several oxidative modifications, including S-glutathionylation and S-nitrosylation, have been suggested playing an important role in the regulation of RyR2 activity. Moreover, oxidative stress can increase RyR2 activity by forming disulfide bonds between two neighboring subunits (intersubunit cross-linking). Since intersubunit interactions within the RyR2 homotetramer complex dictate the channel gating, such posttranslational modification of RyR2 would have a significant impact on RyR2 function and Ca2+ regulation. This review summarizes recent findings on oxidative modifications of RyR2 and discusses contributions of these RyR2 modifications to SR Ca2+ mishandling during cardiac pathologies.
Collapse
|
10
|
Awasthi S, Izu LT, Mao Z, Jian Z, Landas T, Lerner A, Shimkunas R, Woldeyesus R, Bossuyt J, Wood BM, Chen YJ, Matthews DL, Lieu DK, Chiamvimonvat N, Lam KS, Chen-Izu Y, Chan JW. Multimodal SHG-2PF Imaging of Microdomain Ca2+-Contraction Coupling in Live Cardiac Myocytes. Circ Res 2015; 118:e19-28. [PMID: 26643875 DOI: 10.1161/circresaha.115.307919] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 12/07/2015] [Indexed: 01/24/2023]
Abstract
RATIONALE Cardiac myocyte contraction is caused by Ca(2+) binding to troponin C, which triggers the cross-bridge power stroke and myofilament sliding in sarcomeres. Synchronized Ca(2+) release causes whole cell contraction and is readily observable with current microscopy techniques. However, it is unknown whether localized Ca(2+) release, such as Ca(2+) sparks and waves, can cause local sarcomere contraction. Contemporary imaging methods fall short of measuring microdomain Ca(2+)-contraction coupling in live cardiac myocytes. OBJECTIVE To develop a method for imaging sarcomere level Ca(2+)-contraction coupling in healthy and disease model cardiac myocytes. METHODS AND RESULTS Freshly isolated cardiac myocytes were loaded with the Ca(2+)-indicator fluo-4. A confocal microscope equipped with a femtosecond-pulsed near-infrared laser was used to simultaneously excite second harmonic generation from A-bands of myofibrils and 2-photon fluorescence from fluo-4. Ca(2+) signals and sarcomere strain correlated in space and time with short delays. Furthermore, Ca(2+) sparks and waves caused contractions in subcellular microdomains, revealing a previously underappreciated role for these events in generating subcellular strain during diastole. Ca(2+) activity and sarcomere strain were also imaged in paced cardiac myocytes under mechanical load, revealing spontaneous Ca(2+) waves and correlated local contraction in pressure-overload-induced cardiomyopathy. CONCLUSIONS Multimodal second harmonic generation 2-photon fluorescence microscopy enables the simultaneous observation of Ca(2+) release and mechanical strain at the subsarcomere level in living cardiac myocytes. The method benefits from the label-free nature of second harmonic generation, which allows A-bands to be imaged independently of T-tubule morphology and simultaneously with Ca(2+) indicators. Second harmonic generation 2-photon fluorescence imaging is widely applicable to the study of Ca(2+)-contraction coupling and mechanochemotransduction in both health and disease.
Collapse
Affiliation(s)
- Samir Awasthi
- From the Center for Biophotonics (S.A., Z.M., A.L., D.L.M., J.W.C.), Division of Cardiology (D.K.L., N.C., Y.C.-I.), Division of Hematology/Oncology, Department of Internal Medicine (K.S.L.), and Department of Pathology and Laboratory Medicine (J.W.C.), UC Davis School of Medicine, University of California, Davis, Sacramento; and Departments of Pharmacology (L.T.I., Z.J., T.L., J.B., B.W., Y.-J.C., Y.C.-I.), Biomedical Engineering (S.A., R.S., R.W., Y.C.-I.), Biochemistry and Molecular Medicine (K.S.L.), and Microsurgery Core (Y.-J.C.), University of California, Davis
| | - Leighton T Izu
- From the Center for Biophotonics (S.A., Z.M., A.L., D.L.M., J.W.C.), Division of Cardiology (D.K.L., N.C., Y.C.-I.), Division of Hematology/Oncology, Department of Internal Medicine (K.S.L.), and Department of Pathology and Laboratory Medicine (J.W.C.), UC Davis School of Medicine, University of California, Davis, Sacramento; and Departments of Pharmacology (L.T.I., Z.J., T.L., J.B., B.W., Y.-J.C., Y.C.-I.), Biomedical Engineering (S.A., R.S., R.W., Y.C.-I.), Biochemistry and Molecular Medicine (K.S.L.), and Microsurgery Core (Y.-J.C.), University of California, Davis
| | - Ziliang Mao
- From the Center for Biophotonics (S.A., Z.M., A.L., D.L.M., J.W.C.), Division of Cardiology (D.K.L., N.C., Y.C.-I.), Division of Hematology/Oncology, Department of Internal Medicine (K.S.L.), and Department of Pathology and Laboratory Medicine (J.W.C.), UC Davis School of Medicine, University of California, Davis, Sacramento; and Departments of Pharmacology (L.T.I., Z.J., T.L., J.B., B.W., Y.-J.C., Y.C.-I.), Biomedical Engineering (S.A., R.S., R.W., Y.C.-I.), Biochemistry and Molecular Medicine (K.S.L.), and Microsurgery Core (Y.-J.C.), University of California, Davis
| | - Zhong Jian
- From the Center for Biophotonics (S.A., Z.M., A.L., D.L.M., J.W.C.), Division of Cardiology (D.K.L., N.C., Y.C.-I.), Division of Hematology/Oncology, Department of Internal Medicine (K.S.L.), and Department of Pathology and Laboratory Medicine (J.W.C.), UC Davis School of Medicine, University of California, Davis, Sacramento; and Departments of Pharmacology (L.T.I., Z.J., T.L., J.B., B.W., Y.-J.C., Y.C.-I.), Biomedical Engineering (S.A., R.S., R.W., Y.C.-I.), Biochemistry and Molecular Medicine (K.S.L.), and Microsurgery Core (Y.-J.C.), University of California, Davis
| | - Trevor Landas
- From the Center for Biophotonics (S.A., Z.M., A.L., D.L.M., J.W.C.), Division of Cardiology (D.K.L., N.C., Y.C.-I.), Division of Hematology/Oncology, Department of Internal Medicine (K.S.L.), and Department of Pathology and Laboratory Medicine (J.W.C.), UC Davis School of Medicine, University of California, Davis, Sacramento; and Departments of Pharmacology (L.T.I., Z.J., T.L., J.B., B.W., Y.-J.C., Y.C.-I.), Biomedical Engineering (S.A., R.S., R.W., Y.C.-I.), Biochemistry and Molecular Medicine (K.S.L.), and Microsurgery Core (Y.-J.C.), University of California, Davis
| | - Aaron Lerner
- From the Center for Biophotonics (S.A., Z.M., A.L., D.L.M., J.W.C.), Division of Cardiology (D.K.L., N.C., Y.C.-I.), Division of Hematology/Oncology, Department of Internal Medicine (K.S.L.), and Department of Pathology and Laboratory Medicine (J.W.C.), UC Davis School of Medicine, University of California, Davis, Sacramento; and Departments of Pharmacology (L.T.I., Z.J., T.L., J.B., B.W., Y.-J.C., Y.C.-I.), Biomedical Engineering (S.A., R.S., R.W., Y.C.-I.), Biochemistry and Molecular Medicine (K.S.L.), and Microsurgery Core (Y.-J.C.), University of California, Davis
| | - Rafael Shimkunas
- From the Center for Biophotonics (S.A., Z.M., A.L., D.L.M., J.W.C.), Division of Cardiology (D.K.L., N.C., Y.C.-I.), Division of Hematology/Oncology, Department of Internal Medicine (K.S.L.), and Department of Pathology and Laboratory Medicine (J.W.C.), UC Davis School of Medicine, University of California, Davis, Sacramento; and Departments of Pharmacology (L.T.I., Z.J., T.L., J.B., B.W., Y.-J.C., Y.C.-I.), Biomedical Engineering (S.A., R.S., R.W., Y.C.-I.), Biochemistry and Molecular Medicine (K.S.L.), and Microsurgery Core (Y.-J.C.), University of California, Davis
| | - Rahwa Woldeyesus
- From the Center for Biophotonics (S.A., Z.M., A.L., D.L.M., J.W.C.), Division of Cardiology (D.K.L., N.C., Y.C.-I.), Division of Hematology/Oncology, Department of Internal Medicine (K.S.L.), and Department of Pathology and Laboratory Medicine (J.W.C.), UC Davis School of Medicine, University of California, Davis, Sacramento; and Departments of Pharmacology (L.T.I., Z.J., T.L., J.B., B.W., Y.-J.C., Y.C.-I.), Biomedical Engineering (S.A., R.S., R.W., Y.C.-I.), Biochemistry and Molecular Medicine (K.S.L.), and Microsurgery Core (Y.-J.C.), University of California, Davis
| | - Julie Bossuyt
- From the Center for Biophotonics (S.A., Z.M., A.L., D.L.M., J.W.C.), Division of Cardiology (D.K.L., N.C., Y.C.-I.), Division of Hematology/Oncology, Department of Internal Medicine (K.S.L.), and Department of Pathology and Laboratory Medicine (J.W.C.), UC Davis School of Medicine, University of California, Davis, Sacramento; and Departments of Pharmacology (L.T.I., Z.J., T.L., J.B., B.W., Y.-J.C., Y.C.-I.), Biomedical Engineering (S.A., R.S., R.W., Y.C.-I.), Biochemistry and Molecular Medicine (K.S.L.), and Microsurgery Core (Y.-J.C.), University of California, Davis
| | - Brent M Wood
- From the Center for Biophotonics (S.A., Z.M., A.L., D.L.M., J.W.C.), Division of Cardiology (D.K.L., N.C., Y.C.-I.), Division of Hematology/Oncology, Department of Internal Medicine (K.S.L.), and Department of Pathology and Laboratory Medicine (J.W.C.), UC Davis School of Medicine, University of California, Davis, Sacramento; and Departments of Pharmacology (L.T.I., Z.J., T.L., J.B., B.W., Y.-J.C., Y.C.-I.), Biomedical Engineering (S.A., R.S., R.W., Y.C.-I.), Biochemistry and Molecular Medicine (K.S.L.), and Microsurgery Core (Y.-J.C.), University of California, Davis
| | - Yi-Je Chen
- From the Center for Biophotonics (S.A., Z.M., A.L., D.L.M., J.W.C.), Division of Cardiology (D.K.L., N.C., Y.C.-I.), Division of Hematology/Oncology, Department of Internal Medicine (K.S.L.), and Department of Pathology and Laboratory Medicine (J.W.C.), UC Davis School of Medicine, University of California, Davis, Sacramento; and Departments of Pharmacology (L.T.I., Z.J., T.L., J.B., B.W., Y.-J.C., Y.C.-I.), Biomedical Engineering (S.A., R.S., R.W., Y.C.-I.), Biochemistry and Molecular Medicine (K.S.L.), and Microsurgery Core (Y.-J.C.), University of California, Davis
| | - Dennis L Matthews
- From the Center for Biophotonics (S.A., Z.M., A.L., D.L.M., J.W.C.), Division of Cardiology (D.K.L., N.C., Y.C.-I.), Division of Hematology/Oncology, Department of Internal Medicine (K.S.L.), and Department of Pathology and Laboratory Medicine (J.W.C.), UC Davis School of Medicine, University of California, Davis, Sacramento; and Departments of Pharmacology (L.T.I., Z.J., T.L., J.B., B.W., Y.-J.C., Y.C.-I.), Biomedical Engineering (S.A., R.S., R.W., Y.C.-I.), Biochemistry and Molecular Medicine (K.S.L.), and Microsurgery Core (Y.-J.C.), University of California, Davis
| | - Deborah K Lieu
- From the Center for Biophotonics (S.A., Z.M., A.L., D.L.M., J.W.C.), Division of Cardiology (D.K.L., N.C., Y.C.-I.), Division of Hematology/Oncology, Department of Internal Medicine (K.S.L.), and Department of Pathology and Laboratory Medicine (J.W.C.), UC Davis School of Medicine, University of California, Davis, Sacramento; and Departments of Pharmacology (L.T.I., Z.J., T.L., J.B., B.W., Y.-J.C., Y.C.-I.), Biomedical Engineering (S.A., R.S., R.W., Y.C.-I.), Biochemistry and Molecular Medicine (K.S.L.), and Microsurgery Core (Y.-J.C.), University of California, Davis
| | - Nipavan Chiamvimonvat
- From the Center for Biophotonics (S.A., Z.M., A.L., D.L.M., J.W.C.), Division of Cardiology (D.K.L., N.C., Y.C.-I.), Division of Hematology/Oncology, Department of Internal Medicine (K.S.L.), and Department of Pathology and Laboratory Medicine (J.W.C.), UC Davis School of Medicine, University of California, Davis, Sacramento; and Departments of Pharmacology (L.T.I., Z.J., T.L., J.B., B.W., Y.-J.C., Y.C.-I.), Biomedical Engineering (S.A., R.S., R.W., Y.C.-I.), Biochemistry and Molecular Medicine (K.S.L.), and Microsurgery Core (Y.-J.C.), University of California, Davis
| | - Kit S Lam
- From the Center for Biophotonics (S.A., Z.M., A.L., D.L.M., J.W.C.), Division of Cardiology (D.K.L., N.C., Y.C.-I.), Division of Hematology/Oncology, Department of Internal Medicine (K.S.L.), and Department of Pathology and Laboratory Medicine (J.W.C.), UC Davis School of Medicine, University of California, Davis, Sacramento; and Departments of Pharmacology (L.T.I., Z.J., T.L., J.B., B.W., Y.-J.C., Y.C.-I.), Biomedical Engineering (S.A., R.S., R.W., Y.C.-I.), Biochemistry and Molecular Medicine (K.S.L.), and Microsurgery Core (Y.-J.C.), University of California, Davis
| | - Ye Chen-Izu
- From the Center for Biophotonics (S.A., Z.M., A.L., D.L.M., J.W.C.), Division of Cardiology (D.K.L., N.C., Y.C.-I.), Division of Hematology/Oncology, Department of Internal Medicine (K.S.L.), and Department of Pathology and Laboratory Medicine (J.W.C.), UC Davis School of Medicine, University of California, Davis, Sacramento; and Departments of Pharmacology (L.T.I., Z.J., T.L., J.B., B.W., Y.-J.C., Y.C.-I.), Biomedical Engineering (S.A., R.S., R.W., Y.C.-I.), Biochemistry and Molecular Medicine (K.S.L.), and Microsurgery Core (Y.-J.C.), University of California, Davis.
| | - James W Chan
- From the Center for Biophotonics (S.A., Z.M., A.L., D.L.M., J.W.C.), Division of Cardiology (D.K.L., N.C., Y.C.-I.), Division of Hematology/Oncology, Department of Internal Medicine (K.S.L.), and Department of Pathology and Laboratory Medicine (J.W.C.), UC Davis School of Medicine, University of California, Davis, Sacramento; and Departments of Pharmacology (L.T.I., Z.J., T.L., J.B., B.W., Y.-J.C., Y.C.-I.), Biomedical Engineering (S.A., R.S., R.W., Y.C.-I.), Biochemistry and Molecular Medicine (K.S.L.), and Microsurgery Core (Y.-J.C.), University of California, Davis.
| |
Collapse
|
11
|
Hoang-Trong TM, Ullah A, Jafri MS. Calcium Sparks in the Heart: Dynamics and Regulation. ACTA ACUST UNITED AC 2015; 6:203-214. [PMID: 27212876 DOI: 10.2147/rrb.s61495] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Calcium (Ca2+) plays a central role in the contraction of the heart. It is the bi-directional link between electrical excitation of the heart and contraction. Electrical excitation initiates Ca2+influx across the sarcolemma and T-tubular membrane that triggered calcium release from the sarcoplasmic reticulum. Ca2+sparks are the elementary events of calcium release from the sarcoplasmic reticulum. Therefore, understanding the dynamics of Ca2+sparks is essential for understanding the function of the heart. To this end, numerous experimental and computational studies have focused on this topic, exploring the mechanisms of calcium spark initiation, termination, and regulation and what role these play in normal and patho-physiology. The proper understanding of Ca2+ spark regulation and dynamics serves as the foundation for our insights into a multitude of pathological conditions may develop that can be the result of structural and/or functional changes at the cellular or subcellular level. Computational modeling of Ca2+ spark dynamics has proven to be a useful tool to understand Ca2+ spark dynamics. This review addresses our current understanding of Ca2+ sparks and how synchronized SR Ca2+ release, in which Ca2+ sparks is a major pathway, is linked to the different cardiac diseases, especially arrhythmias.
Collapse
Affiliation(s)
- Tuan M Hoang-Trong
- Department of Molecular Neuroscience, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030
| | - Aman Ullah
- Department of Molecular Neuroscience, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030
| | - M Saleet Jafri
- Department of Molecular Neuroscience, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030; Biomedical Engineering and Technology, University of Maryland, Baltimore, MD 20201
| |
Collapse
|
12
|
Hiess F, Vallmitjana A, Wang R, Cheng H, ter Keurs HEDJ, Chen J, Hove-Madsen L, Benitez R, Chen SRW. Distribution and Function of Cardiac Ryanodine Receptor Clusters in Live Ventricular Myocytes. J Biol Chem 2015; 290:20477-87. [PMID: 26109063 DOI: 10.1074/jbc.m115.650531] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Indexed: 11/06/2022] Open
Abstract
The cardiac Ca(2+) release channel (ryanodine receptor, RyR2) plays an essential role in excitation-contraction coupling in cardiac muscle cells. Effective and stable excitation-contraction coupling critically depends not only on the expression of RyR2, but also on its distribution. Despite its importance, little is known about the distribution and organization of RyR2 in living cells. To study the distribution of RyR2 in living cardiomyocytes, we generated a knock-in mouse model expressing a GFP-tagged RyR2 (GFP-RyR2). Confocal imaging of live ventricular myocytes isolated from the GFP-RyR2 mouse heart revealed clusters of GFP-RyR2 organized in rows with a striated pattern. Similar organization of GFP-RyR2 clusters was observed in fixed ventricular myocytes. Immunofluorescence staining with the anti-α-actinin antibody (a z-line marker) showed that nearly all GFP-RyR2 clusters were localized in the z-line zone. There were small regions with dislocated GFP-RyR2 clusters. Interestingly, these same regions also displayed dislocated z-lines. Staining with di-8-ANEPPS revealed that nearly all GFP-RyR2 clusters were co-localized with transverse but not longitudinal tubules, whereas staining with MitoTracker Red showed that GFP-RyR2 clusters were not co-localized with mitochondria in live ventricular myocytes. We also found GFP-RyR2 clusters interspersed between z-lines only at the periphery of live ventricular myocytes. Simultaneous detection of GFP-RyR2 clusters and Ca(2+) sparks showed that Ca(2+) sparks originated exclusively from RyR2 clusters. Ca(2+) sparks from RyR2 clusters induced no detectable changes in mitochondrial Ca(2+) level. These results reveal, for the first time, the distribution of RyR2 clusters and its functional correlation in living ventricular myocytes.
Collapse
Affiliation(s)
- Florian Hiess
- From the Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology and
| | - Alexander Vallmitjana
- the Department of Automatic Control, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain
| | - Ruiwu Wang
- From the Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology and
| | - Hongqiang Cheng
- the Department of Medicine, University of California at San Diego, La Jolla, California 92161, and
| | - Henk E D J ter Keurs
- the Libin Cardiovascular Institute of Alberta, Department of Cardiac Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Ju Chen
- the Department of Medicine, University of California at San Diego, La Jolla, California 92161, and
| | - Leif Hove-Madsen
- the Cardiovascular Research Centre CSIC-ICCC, Hospital de Sant Pau, 08025 Barcelona, Spain
| | - Raul Benitez
- the Department of Automatic Control, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain
| | - S R Wayne Chen
- From the Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology and
| |
Collapse
|
13
|
|
14
|
Gez LS, Hagalili Y, Shainberg A, Atlas D. Voltage-driven Ca(2+) binding at the L-type Ca(2+) channel triggers cardiac excitation-contraction coupling prior to Ca(2+) influx. Biochemistry 2012; 51:9658-66. [PMID: 23145875 DOI: 10.1021/bi301124a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The activation of the ryanodine Ca(2+) release channels (RyR2) by the entry of Ca(2+) through the L-type Ca(2+) channels (Cav1.2) is believed to be the primary mechanism of excitation-contraction (EC) coupling in cardiac cells. This proposed mechanism of Ca(2+)-induced Ca(2+) release (CICR) cannot fully account for the lack of a termination signal for this positive feedback process. Using Cav1.2 channel mutants, we demonstrate that the Ca(2+)-impermeable α(1)1.2/L775P/T1066Y mutant introduced through lentiviral infection into neonate cardiomyocytes triggers Ca(2+) transients in a manner independent of Ca(2+) influx. In contrast, the α(1)1.2/L775P/T1066Y/4A mutant, in which the Ca(2+)-binding site of the channel was destroyed, supports neither the spontaneous nor the electrically evoked contractions. Ca(2+) bound at the channel selectivity filter appears to initiate a signal that is conveyed directly from the channel pore to RyR2, triggering contraction of cardiomyocytes prior to Ca(2+) influx. Thus, RyR2 is activated in response to a conformational change in the L-type channel during membrane depolarization and not through interaction with Ca(2+) ions diffusing in the junctional gap space. Accordingly, termination of the RyR2 activity is achieved when the signal stops upon the return of the L-channel to the resting state. We propose a new model in which the physical link between Cav1.2 and RyR2 allows propagation of a conformational change induced at the open pore of the channel to directly activate RyR2. These results highlight Cav1.2 as a signaling protein and provide a mechanism for terminating the release of Ca(2+) from RyR2 through protein-protein interactions. In this model, the L-type channel is a master regulator of both initiation and termination of EC coupling in neonate cardiomyocytes.
Collapse
Affiliation(s)
- Liron S Gez
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | |
Collapse
|
15
|
Janiek R, Zahradníková A, Poláková E, Pavelková J, Zahradník I, Zahradníková A. Calcium spike variability in cardiac myocytes results from activation of small cohorts of ryanodine receptor 2 channels. J Physiol 2012; 590:5091-106. [PMID: 22890710 DOI: 10.1113/jphysiol.2012.234823] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In mammalian cardiac myocytes, the elementary calcium releases triggered by step voltage stimuli manifest either as solitary or as twin spikes that vary widely in kinetics and amplitude for unknown reasons. Here we examined the variability of calcium spikes measured using line-scanning confocal microscopy in patch-clamped rat ventricular myocytes. Amplitude distributions of the single and of the first of twin spikes were broader than those of the second spikes. All could be best approximated by a sum of a few elementary Gaussian probability distribution functions. The latency distributions of the single and the first spikes were identical, much shorter and less variable than those of the second spikes. The multimodal distribution of spike amplitudes and the probability of occurrence of twin spikes were stochastically congruent with activation of only a few of the many RyR2 channels present in the release site cluster. The occurrence of twin release events was rare due to refractoriness of release, induced with a probability proportional to the number of RyR2s activated in the primary release event. We conclude that the variability of the elementary calcium release events supports a calcium signalling mechanism that arises from stochastics of RyR2 gating and from inactivation of local origin.
Collapse
Affiliation(s)
- Radoslav Janiek
- Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Vl´arska 5, 833 34 Bratislava, Slovak Republic
| | | | | | | | | | | |
Collapse
|
16
|
Asghari P, Scriven DRL, Hoskins J, Fameli N, van Breemen C, Moore EDW. The structure and functioning of the couplon in the mammalian cardiomyocyte. PROTOPLASMA 2012; 249 Suppl 1:S31-S38. [PMID: 22057630 DOI: 10.1007/s00709-011-0347-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 10/18/2011] [Indexed: 05/31/2023]
Abstract
The couplons of the cardiomyocyte form nanospaces within the cell that place the L-type calcium channel (Ca(v)1.2), situated on the plasmalemma, in opposition to the type 2 ryanodine receptor (RyR2), situated on the sarcoplasmic reticulum. These two molecules, which form the basis of excitation-contraction coupling, are separated by a very limited space, which allows a few Ca(2+) ions passing through Ca(v)1.2 to activate the RyR2 at concentration levels that would be deleterious to the whole cell. The limited space also allows Ca(2+) inactivation of Ca(v)1.2. We have found that not all couplons are the same and that their properties are likely determined by their molecular partners which, in turn, determine their excitability. In particular, there are a class of couplons that lie outside the RyR2-Ca(v)1.2 dyad; in this case, the RyR2 is close to caveolin-3 rather than Ca(v)1.2. These extra-dyadic couplons are probably controlled by the multitude of molecules associated with caveolin-3 and may modulate contractile force under situations such as stress. It has long been assumed that like the skeletal muscle, the RyR2 in the couplon are arranged in a structured array with the RyR2 interacting with each other via domain 6 of the RyR2 molecule. This arrangement was thought to provide local control of RyR2 excitability. Using 3D electron tomography of the couplon, we show that the RyR2 in the couplon do not form an ordered pattern, but are scattered throughout it. Relatively few are in a checkerboard pattern--many RyR2 sit edge-to-edge, a configuration which might preclude their controlling each other's excitability. The discovery of this structure makes many models of cardiac couplon function moot and is a current avenue of further research.
Collapse
Affiliation(s)
- Parisa Asghari
- Department of Cellular and Physiological Sciences, University of British Columbia, Life Sciences Institute, 2350 Health Sciences Mall, Vancouver, BC, Canada
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
It has been known for more than 60 years, and suspected for over 100, that alveolar hypoxia causes pulmonary vasoconstriction by means of mechanisms local to the lung. For the last 20 years, it has been clear that the essential sensor, transduction, and effector mechanisms responsible for hypoxic pulmonary vasoconstriction (HPV) reside in the pulmonary arterial smooth muscle cell. The main focus of this review is the cellular and molecular work performed to clarify these intrinsic mechanisms and to determine how they are facilitated and inhibited by the extrinsic influences of other cells. Because the interaction of intrinsic and extrinsic mechanisms is likely to shape expression of HPV in vivo, we relate results obtained in cells to HPV in more intact preparations, such as intact and isolated lungs and isolated pulmonary vessels. Finally, we evaluate evidence regarding the contribution of HPV to the physiological and pathophysiological processes involved in the transition from fetal to neonatal life, pulmonary gas exchange, high-altitude pulmonary edema, and pulmonary hypertension. Although understanding of HPV has advanced significantly, major areas of ignorance and uncertainty await resolution.
Collapse
Affiliation(s)
- J T Sylvester
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, The Johns Hopkins University School ofMedicine, Baltimore, Maryland, USA.
| | | | | | | |
Collapse
|
18
|
Rivard K, Grandy SA, Douillette A, Paradis P, Nemer M, Allen BG, Fiset C. Overexpression of type 1 angiotensin II receptors impairs excitation-contraction coupling in the mouse heart. Am J Physiol Heart Circ Physiol 2011; 301:H2018-27. [DOI: 10.1152/ajpheart.01092.2010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transgenic mice that overexpress human type 1 angiotensin II receptor (AT1R) in the heart develop cardiac hypertrophy. Previously, we have shown that in 6-mo AT1R mice, which exhibit significant cardiac remodeling, fractional shortening is decreased. However, it is not clear whether altered contractility is attributable to AT1R overexpression or is secondary to cardiac hypertrophy/remodeling. Thus the present study characterized the effects of AT1R overexpression on ventricular L-type Ca2+ currents ( ICaL), cell shortening, and Ca2+ handling in 50-day and 6-mo-old male AT1R mice. Echocardiography showed there was no evidence of cardiac hypertrophy in 50-day AT1R mice but that fractional shortening was decreased. Cellular experiments showed that cell shortening, ICaL, and Cav1.2 mRNA expression were significantly reduced in 50-day and 6-mo-old AT1R mice compared with controls. In addition, Ca2+ transients and caffeine-induced Ca2+ transients were reduced whereas the time to 90% Ca2+ transient decay was prolonged in both age groups of AT1R mice. Western blot analysis revealed that sarcoplasmic reticulum Ca2+-ATPase and Na+/Ca2+ exchanger protein expression was significantly decreased in 50-day and 6-mo AT1R mice. Overall, the data show that cardiac contractility and the mechanisms that underlie excitation-contraction coupling are altered in AT1R mice. Furthermore, since the alterations in contractility occur before the development of cardiac hypertrophy, it is likely that these changes are attributable to the increased activity of the renin-angiotensin system brought about by AT1R overexpression. Thus it is possible that AT1R blockade may help maintain cardiac contractility in individuals with heart disease.
Collapse
Affiliation(s)
- Katy Rivard
- Research Centre, Montreal Heart Institute, Montreal,
- Faculty of Pharmacy, Université de Montréal, Montreal,
| | - Scott A. Grandy
- Research Centre, Montreal Heart Institute, Montreal,
- Faculty of Pharmacy, Université de Montréal, Montreal,
| | - Annie Douillette
- Research Centre, Montreal Heart Institute, Montreal,
- Faculty of Pharmacy, Université de Montréal, Montreal,
| | | | | | | | - Céline Fiset
- Research Centre, Montreal Heart Institute, Montreal,
- Faculty of Pharmacy, Université de Montréal, Montreal,
| |
Collapse
|
19
|
Porta M, Zima AV, Nani A, Diaz-Sylvester PL, Copello JA, Ramos-Franco J, Blatter LA, Fill M. Single ryanodine receptor channel basis of caffeine's action on Ca2+ sparks. Biophys J 2011; 100:931-8. [PMID: 21320437 DOI: 10.1016/j.bpj.2011.01.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 01/03/2011] [Accepted: 01/10/2011] [Indexed: 10/18/2022] Open
Abstract
Caffeine (1, 3, 7-trimethylxanthine) is a widely used pharmacological agonist of the cardiac ryanodine receptor (RyR2) Ca(2+) release channel. It is also a well-known stimulant that can produce adverse side effects, including arrhythmias. Here, the action of caffeine on single RyR2 channels in bilayers and Ca(2+) sparks in permeabilized ventricular cardiomyocytes is defined. Single RyR2 caffeine activation depended on the free Ca(2+) level on both sides of the channel. Cytosolic Ca(2+) enhanced RyR2 caffeine affinity, whereas luminal Ca(2+) essentially scaled maximal caffeine activation. Caffeine activated single RyR2 channels in diastolic quasi-cell-like solutions (cytosolic MgATP, pCa 7) with an EC(50) of 9.0 ± 0.4 mM. Low-dose caffeine (0.15 mM) increased Ca(2+) spark frequency ∼75% and single RyR2 opening frequency ∼150%. This implies that not all spontaneous RyR2 openings during diastole are associated with Ca(2+) sparks. Assuming that only the longest openings evoke sparks, our data suggest that a spark may result only when a spontaneous single RyR2 opening lasts >6 ms.
Collapse
Affiliation(s)
- Maura Porta
- Department of Physiology, Midwestern University, Downers Grove, Illinois, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Excitation-contraction coupling in the cardiac myocyte is mediated by a number of highly integrated mechanisms of intracellular Ca²(+) transport. The complexity and integrative nature of heart cell electrophysiology and Ca²(+) cycling has led to an evolution of computational models that have played a crucial role in shaping our understanding of heart function. An important emerging theme in systems biology is that the detailed nature of local signaling events, such as those that occur in the cardiac dyad, have important consequences at higher biological scales. Multiscale modeling techniques have revealed many mechanistic links between microscale events, such as Ca²(+) binding to a channel protein, and macroscale phenomena, such as excitation-contraction coupling gain. Here, we review experimentally based multiscale computational models of excitation-contraction coupling and the insights that have been gained through their application.
Collapse
Affiliation(s)
- Joseph L Greenstein
- Center for Cardiovascular Bioinformatics and Modeling, Whitaker Biomedical Engineering Institute, The Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|
21
|
Heinzel FR, MacQuaide N, Biesmans L, Sipido K. Dyssynchrony of Ca2+ release from the sarcoplasmic reticulum as subcellular mechanism of cardiac contractile dysfunction. J Mol Cell Cardiol 2010; 50:390-400. [PMID: 21075114 DOI: 10.1016/j.yjmcc.2010.11.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 09/30/2010] [Accepted: 11/05/2010] [Indexed: 02/05/2023]
Abstract
Cardiac contractile function depends on coordinated electrical activation throughout the heart. Dyssynchronous electrical activation of the ventricles has been shown to contribute to contractile dysfunction in heart failure, and resynchronization therapy has emerged as a therapeutic concept. At the cellular level, coupling of membrane excitation to myofilament contraction is facilitated by highly organized intracellular structures which coordinate Ca(2+) release. The cytosolic [Ca(2+)] transient triggered by depolarization-induced Ca(2+) influx is the result of a gradable and robust high gain process, Ca(2+)-induced Ca(2+) release (CICR), which integrates subcellular localized Ca(2+) release events. Lack of synchronization of these localized release events can contribute to contractile dysfunction in myocardial hypertrophy and heart failure. Different underlying mechanisms relate to functional and structural changes in sarcolemmal Ca(2+) channels, the sarcoplasmic Ca(2+) release channel or ryanodine receptor, RyR, their intracellular arrangement in close proximity in couplons and the loss of t-tubules. Dyssynchrony at the subcellular level translates in a reduction of the overall gain of CICR at the cellular level and forms an important determinant of myocyte contractility in heart failure.
Collapse
|
22
|
Yu MC, Huang CF, Chang CM, Chen YC, Lin CI, Chen SA. Diverse cell morphology and intracellular calcium dynamics in pulmonary vein cardiomyocytes. Heart Vessels 2010; 26:101-10. [PMID: 20978896 DOI: 10.1007/s00380-010-0035-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 02/19/2010] [Indexed: 12/01/2022]
Abstract
Pulmonary veins (PVs) contain cardiomyocytes with a complex cellular morphology and high arrhythmogenesis. Ca(2+) regulation and Ca(2+) sparks play a pivotal role in the electrical activity of cardiomyocytes. The purpose of this study was to investigate whether the cell morphology can determine the PV electrical activity and Ca(2+) homeostasis. Through confocal microscopy with fluo-3 Ca(2+) fluorescence, Ca(2+) sparks and Ca(2+) transients were evaluated in isolated single rabbit left atria (LA) and PV cardiomyocytes according to the cell morphology (rod, rod-spindle and spindle/bifurcated). Twenty-two (20%) rod, 49 (43%) rod-spindle and 41 (37%) spindle/bifurcated cardiomyocytes were identified in the LA (n = 29) and PV (n = 83) cardiomyocytes. The PV cardiomyocytes with pacemaker activity had a higher incidence of spindle/bifurcated morphology than LA and PV cardiomyocytes without pacemaker activity. As compared to those in the rod or rod-spindle cardiomyocytes, spindle/bifurcated cardiomyocytes had a larger Ca(2+) transient amplitude and higher frequency of the Ca(2+) sparks with larger amplitude and longer duration. In contrast, rod-spindle and rod cardiomyocytes had similar Ca(2+) transients and Ca(2+) sparks. The cell length correlated well with the amplitude of the Ca(2+) transient and Ca(2+) spark duration with a linear regression. In conclusion, cell morphology and cell length play a potential role in the Ca(2+) homeostasis and Ca(2+) spark. The large Ca(2+) transients and high frequency of Ca(2+) sparks in spindle/bifurcated cardiomyocytes may cause a high arrhythmogenesis in the PV cardiomyocytes with pacemaker activity.
Collapse
Affiliation(s)
- Ming-Chih Yu
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
23
|
Fares E, Howlett SE. Effect of age on cardiac excitation-contraction coupling. Clin Exp Pharmacol Physiol 2010; 37:1-7. [DOI: 10.1111/j.1440-1681.2009.05276.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
24
|
Abstract
The calcium ion (Ca(2+)) is the simplest and most versatile intracellular messenger known. The discovery of Ca(2+) sparks and a related family of elementary Ca(2+) signaling events has revealed fundamental principles of the Ca(2+) signaling system. A newly appreciated "digital" subsystem consisting of brief, high Ca(2+) concentration over short distances (nanometers to microns) comingles with an "analog" global Ca(2+) signaling subsystem. Over the past 15 years, much has been learned about the theoretical and practical aspects of spark formation and detection. The quest for the spark mechanisms [the activation, coordination, and termination of Ca(2+) release units (CRUs)] has met unexpected challenges, however, and raised vexing questions about CRU operation in situ. Ample evidence shows that Ca(2+) sparks catalyze many high-threshold Ca(2+) processes involved in cardiac and skeletal muscle excitation-contraction coupling, vascular tone regulation, membrane excitability, and neuronal secretion. Investigation of Ca(2+) sparks in diseases has also begun to provide novel insights into hypertension, cardiac arrhythmias, heart failure, and muscular dystrophy. An emerging view is that spatially and temporally patterned activation of the digital subsystem confers on intracellular Ca(2+) signaling an exquisite architecture in space, time, and intensity, which underpins signaling efficiency, stability, specificity, and diversity. These recent advances in "sparkology" thus promise to unify the simplicity and complexity of Ca(2+) signaling in biology.
Collapse
Affiliation(s)
- Heping Cheng
- Institute of Molecular Medicine, National Laboratory of Biomembrane and Membrane Biotechnology, Peking University, Beijing, China.
| | | |
Collapse
|
25
|
Sheehan KA, Ke Y, Wolska BM, Solaro RJ. Expression of active p21-activated kinase-1 induces Ca2+ flux modification with altered regulatory protein phosphorylation in cardiac myocytes. Am J Physiol Cell Physiol 2008; 296:C47-58. [PMID: 18923061 DOI: 10.1152/ajpcell.00012.2008] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
p21-Activated kinase-1 (Pak1) is a serine-threonine kinase that associates with and activates protein phosphatase 2A in adult ventricular myocytes and, thereby, induces increased Ca2+ sensitivity of skinned-fiber tension development mediated by dephosphorylation of myofilament proteins (Ke Y, Wang L, Pyle WG, de Tombe PP, Solaro RJ. Circ Res 94: 194-200, 2004). We test the hypothesis that activation of Pak1 also moderates cardiac contractility through regulation of intracellular Ca2+ fluxes. We found no difference in field-stimulated intracellular Ca2+ concentration ([Ca2+]i) transient amplitude and extent of cell shortening between myocytes expressing constitutively active Pak1 (CA-Pak1) and controls expressing LacZ; however, time to peak shortening was significantly faster and rate of [Ca2+]i decay and time of relengthening were slower. Neither caffeine-releasable sarcoplasmic reticulum (SR) Ca2+ content nor fractional release was different in CA-Pak1 myocytes compared with controls. Isoproterenol application revealed a significantly blunted increase in [Ca2+]i transient amplitude, as well as a slowed rate of [Ca2+]i decay, increased SR Ca2+ content, and increased cell shortening, in CA-Pak1 myocytes. We found no significant change in phospholamban phosphorylation at Ser16 or Thr17 in CA-Pak1 myocytes. Analysis of cardiac troponin I revealed a significant reduction in phosphorylated species that are primarily attributable to Ser(23/24) in CA-Pak1 myocytes. Nonstimulated, spontaneous SR Ca2+ release sparks were significantly smaller in amplitude in CA-Pak1 than LacZ myocytes. Propagation of spontaneous Ca2+ waves resulting from SR Ca2+ overload was significantly slower in CA-Pak1 myocytes. Our data indicate that CA-Pak1 expression has significant effects on ventricular myocyte contractility through altered myofilament Ca2+ sensitivity and modification of the [Ca2+]i transient.
Collapse
Affiliation(s)
- Katherine A Sheehan
- Department of Physiology and Biophysics, Department of Medicine, Center for Cardiovascular Research, University of Illinois at Chicago, 835 S. Wolcott Ave., Chicago, IL 60612-7342, USA.
| | | | | | | |
Collapse
|
26
|
Kockskämper J, Zima AV, Roderick HL, Pieske B, Blatter LA, Bootman MD. Emerging roles of inositol 1,4,5-trisphosphate signaling in cardiac myocytes. J Mol Cell Cardiol 2008; 45:128-47. [PMID: 18603259 PMCID: PMC2654363 DOI: 10.1016/j.yjmcc.2008.05.014] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 05/20/2008] [Accepted: 05/21/2008] [Indexed: 01/19/2023]
Abstract
Inositol 1,4,5-trisphosphate (IP(3)) is a ubiquitous intracellular messenger regulating diverse functions in almost all mammalian cell types. It is generated by membrane receptors that couple to phospholipase C (PLC), an enzyme which liberates IP(3) from phosphatidylinositol 4,5-bisphosphate (PIP(2)). The major action of IP(3), which is hydrophilic and thus translocates from the membrane into the cytoplasm, is to induce Ca(2+) release from endogenous stores through IP(3) receptors (IP(3)Rs). Cardiac excitation-contraction coupling relies largely on ryanodine receptor (RyR)-induced Ca(2+) release from the sarcoplasmic reticulum. Myocytes express a significantly larger number of RyRs compared to IP(3)Rs (~100:1), and furthermore they experience substantial fluxes of Ca(2+) with each heartbeat. Therefore, the role of IP(3) and IP(3)-mediated Ca(2+) signaling in cardiac myocytes has long been enigmatic. Recent evidence, however, indicates that despite their paucity cardiac IP(3)Rs may play crucial roles in regulating diverse cardiac functions. Strategic localization of IP(3)Rs in cytoplasmic compartments and the nucleus enables them to participate in subsarcolemmal, bulk cytoplasmic and nuclear Ca(2+) signaling in embryonic stem cell-derived and neonatal cardiomyocytes, and in adult cardiac myocytes from the atria and ventricles. Intriguingly, expression of both IP(3)Rs and membrane receptors that couple to PLC/IP(3) signaling is altered in cardiac disease such as atrial fibrillation or heart failure, suggesting the involvement of IP(3) signaling in the pathology of these diseases. Thus, IP(3) exerts important physiological and pathological functions in the heart, ranging from the regulation of pacemaking, excitation-contraction and excitation-transcription coupling to the initiation and/or progression of arrhythmias, hypertrophy and heart failure.
Collapse
Affiliation(s)
- Jens Kockskämper
- Division of Cardiology, Medical University of Graz,, Auenbruggerplatz 15, A-8036 Graz, Austria
| | - Aleksey V. Zima
- Department of Molecular Biophysics & Physiology, Rush University, 1750 W. Harrison St., Chicago, IL 60612, USA
| | - H. Llewelyn Roderick
- Laboratory of Molecular Signalling, Babraham Institute, Cambridge CB2 4AT, UK
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1 PD, UK
| | - Burkert Pieske
- Division of Cardiology, Medical University of Graz,, Auenbruggerplatz 15, A-8036 Graz, Austria
| | - Lothar A. Blatter
- Department of Molecular Biophysics & Physiology, Rush University, 1750 W. Harrison St., Chicago, IL 60612, USA
| | - Martin D. Bootman
- Laboratory of Molecular Signalling, Babraham Institute, Cambridge CB2 4AT, UK
| |
Collapse
|
27
|
Abstract
One enduring challenge of biological imaging is achieving depth of penetration-into cells, tissues, and animals. How deeply can we probe and with what resolution and efficacy? These are critical issues as microscopists seek to push ever deeper, while resolving structural details and observing specific molecular events. In this guide to depth-appropriate modalities, standard optical platforms such as confocal and two-photon microscopes are considered along with complementary imaging modalities that range in depth of penetration. After an introduction to basic techniques, the trade-offs and limitations that distinguish competing technologies are considered, with emphasis on the visualization of subcellular structures and dynamic events. Not surprisingly, there are differences of opinion regarding imaging technologies, as highlighted in a section on point-scanning and Nipkow-disk style confocal microscopes. Confocal microscopy is then contrasted with deconvolution and multi-photon imaging modalities. It is also important to consider the detectors used by current instruments (such as PMTs and CCD cameras). Ultimately specimen properties, in conjunction with instrumentation, determine the depth at which subcellular operations and larger-scale biological processes can be visualized. Relative advantages are mentioned in the context of experiment planning and instrument-purchase decisions. Given the rate at which new optical techniques are being invented, this report should be viewed as a snapshot of current capabilities, with the goal of providing a framework for thinking about new developments.
Collapse
|
28
|
Palani D, Ghildyal P, Manchanda R. Effects of heptanol and carbenoxolone on noradrenaline induced contractions in guinea pig vas deferens. Auton Neurosci 2007; 137:56-62. [PMID: 17716954 DOI: 10.1016/j.autneu.2007.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 07/13/2007] [Accepted: 07/18/2007] [Indexed: 10/22/2022]
Abstract
We examined the effects of two putative gap junction blockers, heptanol and carbenoxolone, on noradrenaline-induced contractions in guinea pig vas deferens. The force generated due to the exogenously added noradrenaline (20 microM) consisted of two components: the tonic and the oscillatory. 2 mM heptanol abolished the oscillatory contractions and drastically suppressed both the maximum force (by 85.4 +/- 18.2%) as well as the tonic component (by 28.8 +/- 5.1%) (P<0.01, n=7). However, the effects of carbenoxolone (50 microM) were strikingly different, with the spikes of the oscillatory component being merged into a steady, "fused" contraction, without affecting the maximum force developed. The L-type Ca(2+) channel blocker nifedipine (2 microM) abolished the oscillatory component of the contractions and significantly reduced the maximum force and tonic component (by 82.4 +/- 6.8% and 19.7 +/- 6.4% respectively; P<0.01, n=4), in a manner similar to that elicited by heptanol. Our results indicate that (i) while carbenoxolone specifically blocks gap junctions, heptanol appears to exert its actions through non-gap junctional mechanisms, possibly by blocking VGCCs in smooth muscle; (ii) gap junctions play a significant modulatory role in the generation of noradrenaline-induced contractions in guinea pig vas deferens, particularly in the emergence of oscillatory contractions, while the maximum force developed may be independent of gap junctional contribution.
Collapse
Affiliation(s)
- D Palani
- Biomedical Engineering Group, School of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai-400076, India
| | | | | |
Collapse
|
29
|
Wier WG, López-López JR, Shacklock PS, Balke CW. Calcium signalling in cardiac muscle cells. CIBA FOUNDATION SYMPOSIUM 2007; 188:146-60; discussion 160-4. [PMID: 7587615 DOI: 10.1002/9780470514696.ch9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In heart cells, several distinct kinds of transient spatial patterns of cytoplasmic calcium ion concentration ([Ca2+]i) can be observed: (1) [Ca2+]i waves, in which regions of spontaneously increased [Ca2+]i propagate at high velocity (100 microns/s) through the cell; (2) Ca2+ 'sparks', which are spontaneous, non-propagating changes in [Ca2+]i that are localized in small (approximately 2 microns) subcellular regions; and (3) evoked [Ca2+]i transients that are elicited by electrical depolarization, in association with normal excitation-contraction (E-C) coupling. In confocal [Ca2+]i images, evoked [Ca2+]i transients appear to be nearly spatially uniform throughout the cell, except during their rising phase or during small depolarizations. In contrast to [Ca2+]i waves and spontaneous Ca2+ sparks, evoked [Ca2+]i transients are triggered by L-type Ca2+ channel current and they are 'controlled', in the sense that stopping the L-type Ca2+ current stops them. Despite their different characteristics, all three types of Ca2+ transient involve Ca(2+)-induced release of Ca2+ from the sarcoplasmic reticulum. Here, we address the question of how the autocatalytic process of Ca(2+)-induced Ca2+ release, which can easily be understood to underlie spontaneous regenerative ('uncontrolled'), propagating [Ca2+]i waves, might be 'harnessed', under other circumstances, to produce controlled changes in [Ca2+]i, as during normal excitation-contraction coupling, or changes in [Ca2+]i that do not propagate. We discuss our observations of Ca2+ waves, Ca2+ sparks and normal Ca2+ transients in heart cells and review our results on the 'gain' of Ca(2+)-induced Ca2+ release. We discuss a model involving Ca2+ microdomains beneath L-type Ca2+ channels, and clusters of Ca(2+)-activated Ca2+ release channels in the sarcoplasmic reticulum which may form the basis of the answer to this question.
Collapse
Affiliation(s)
- W G Wier
- Department of Physiology, University of Maryland School of Medicine, Baltimore 21201, USA
| | | | | | | |
Collapse
|
30
|
Abstract
Ca(2+) sparks arise from the stochastic opening of spatially discrete clusters of ryanodine receptors called a Ca(2+) release unit (CRU). If the RyR clusters were not spatially separated, then Ca(2+) released from one RyR would immediately diffuse to its neighbor and lead to uncontrolled, runaway Ca(2+) release throughout the cell. While physical separation provides some isolation from neighbors, CRUs are not incommunicado. When inter-neighbor interactions become large enough, Ca(2+) waves spontaneously emerge. A more circumscribed interaction shows up in high-speed two-dimensional confocal images as jumping Ca(2+) sparks that seem to be sequentially activated along the Z-line and across Z-lines. However, since Ca(2+) sparks are stochastic events how can we tell whether two sparks occurring close together in space and time are causally related or appeared simply by coincidence? Here we develop a mathematical method to disentangle cause and coincidence in a statistical sense. From our analysis we derive three fundamental properties of Ca(2+) spark generation: 1), the "intrinsic" spark frequency, the spark frequency one would observe if the CRUs were incommunicado; 2), the coupling strength, which measures how strongly one CRU affects another; and 3), the range over which the communication occurs. These parameters allow us to measure the effect RyR regulators have on the intrinsic activity of CRUs and on the coupling between them.
Collapse
Affiliation(s)
- Leighton T Izu
- Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, Kentucky, USA.
| | | | | | | |
Collapse
|
31
|
Knot HJ, Laher I, Sobie EA, Guatimosim S, Gomez-Viquez L, Hartmann H, Song LS, Lederer WJ, Graier WF, Malli R, Frieden M, Petersen OH. Twenty years of calcium imaging: cell physiology to dye for. Mol Interv 2007; 5:112-27. [PMID: 15821159 PMCID: PMC4861218 DOI: 10.1124/mi.5.2.8] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The use of fluorescent dyes over the past two decades has led to a revolution in our understanding of calcium signaling. Given the ubiquitous role of Ca(2+) in signal transduction at the most fundamental levels of molecular, cellular, and organismal biology, it has been challenging to understand how the specificity and versatility of Ca(2+) signaling is accomplished. In excitable cells, the coordination of changing Ca(2+) concentrations at global (cellular) and well-defined subcellular spaces through the course of membrane depolarization can now be conceptualized in the context of disease processes such as cardiac arrhythmogenesis. The spatial and temporal dimensions of Ca(2+) signaling are similarly important in non-excitable cells, such as endothelial and epithelial cells, to regulate multiple signaling pathways that participate in organ homeostasis as well as cellular organization and essential secretory processes.
Collapse
Affiliation(s)
- Harm J Knot
- Department of Pharmacology & Therapeutics and Division of Cardiology College of Medicine, University of Florida, Gainesville, FL, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Triggered activity in cardiac muscle and intracellular Ca2+ have been linked in the past. However, today not only are there a number of cellular proteins that show clear Ca2+ dependence but also there are a number of arrhythmias whose mechanism appears to be linked to Ca2+-dependent processes. Thus we present a systematic review of the mechanisms of Ca2+ transport (forward excitation-contraction coupling) in the ventricular cell as well as what is known for other cardiac cell types. Second, we review the molecular nature of the proteins that are involved in this process as well as the functional consequences of both normal and abnormal Ca2+ cycling (e.g., Ca2+ waves). Finally, we review what we understand to be the role of Ca2+ cycling in various forms of arrhythmias, that is, those associated with inherited mutations and those that are acquired and resulting from reentrant excitation and/or abnormal impulse generation (e.g., triggered activity). Further solving the nature of these intricate and dynamic interactions promises to be an important area of research for a better recognition and understanding of the nature of Ca2+ and arrhythmias. Our solutions will provide a more complete understanding of the molecular basis for the targeted control of cellular calcium in the treatment and prevention of such.
Collapse
Affiliation(s)
- Henk E D J Ter Keurs
- Department of Medicine, Physiology and Biophysics, University of Calgary, Alberta, Canada
| | | |
Collapse
|
33
|
Grandy SA, Howlett SE. Cardiac excitation-contraction coupling is altered in myocytes from aged male mice but not in cells from aged female mice. Am J Physiol Heart Circ Physiol 2006; 291:H2362-70. [PMID: 16731653 DOI: 10.1152/ajpheart.00070.2006] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This study characterized age-related alterations in excitation-contraction (EC)-coupling in ventricular myocytes and investigated whether these alterations are affected by the sex of the animal. Voltage-clamp experiments were conducted in myocytes from young adult (∼7 mo) and aged (∼24 mo) male and female mice. Intracellular Ca2+ concentrations and unloaded cell shortening were measured at 37°C with fura-2 and a video edge detector. Fractional shortening and Ca2+ current density were significantly reduced in aged male myocytes compared with those in young adult male cells. In addition, Ca2+ transients were significantly smaller in aged male myocytes. Sarcoplasmic reticulum (SR) content, assessed by rapid application of 10 mM caffeine, declined with age in male myocytes. However, EC coupling gain and fractional release of SR Ca2+ were similar in young adult and aged male cells. In contrast to results in male animals, fractional shortening and Ca2+ current densities were similar in young adult and aged myocytes isolated from female hearts. Furthermore, Ca2+ transient amplitudes were unaffected by age in female cells. Interestingly, SR Ca2+ content was elevated in aged female myocytes, and fractional SR Ca2+ release declined with age in females. However, the gain of EC coupling was not different in myocytes from young adult and aged female mice. These data demonstrate that age-related alterations in EC coupling are more prominent in myocytes from male hearts than in cells from female hearts and suggest that it is important to consider sex as a variable in studies of the effects of aging on cardiac EC coupling.
Collapse
Affiliation(s)
- Scott A Grandy
- Dept. of Pharmacology, 5850 College St., Sir Charles Tupper Medical Bldg., Dalhousie Univ., Halifax, NS, B3H 1X5, Canada
| | | |
Collapse
|
34
|
SOBIE ERICA, SONG LONGSHENG, LEDERER W. Restitution of Ca(2+) release and vulnerability to arrhythmias. J Cardiovasc Electrophysiol 2006; 17 Suppl 1:S64-S70. [PMID: 16686684 PMCID: PMC1540408 DOI: 10.1111/j.1540-8167.2006.00385.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
New information has recently been obtained along two essentially parallel lines of research: investigations into the fundamental mechanisms of Ca(2+)-induced Ca(2+) release (CICR) in heart cells, and analyses of the factors that control the development of unstable rhythms such as repolarization alternans. These lines of research are starting to converge such that we can begin to understand unstable and potentially arrhythmogenic cardiac dynamics in terms of the underlying mechanisms governing not only membrane depolarization and repolarization but also the complex bidirectional interactions between electrical and Ca(2+) signaling in heart cells. In this brief review, we discuss the progress that has recently been made in understanding the factors that control the beat-to-beat regulation of cardiac Ca(2+) release and attempt to place these results within a larger context. In particular, we discuss factors that may contribute to unstable Ca(2+) release and speculate about how instability in CICR may contribute to the development of arrhythmias under pathological conditions.
Collapse
Affiliation(s)
- ERIC A. SOBIE
- From the Division of Pediatric Cardiology, New York University School of Medicine, New York, New York, and
| | - LONG-SHENG SONG
- Medical Biotechnology Center, University of Maryland Biotechnology Institute, Baltimore, Maryland, USA
| | - W.J. LEDERER
- Medical Biotechnology Center, University of Maryland Biotechnology Institute, Baltimore, Maryland, USA
- Address for correspondence: W.J. Lederer, Ph.D., Medical Biotechnology Center, 725 W. Lombard Street, Baltimore, MD 21201, USA. Fax: (410) 510-1545; E-mail:
| |
Collapse
|
35
|
ter Keurs HEDJ, Wakayama Y, Sugai Y, Price G, Kagaya Y, Boyden PA, Miura M, Stuyvers BDM. Role of Sarcomere Mechanics and Ca2+ Overload in Ca2+ Waves and Arrhythmias in Rat Cardiac Muscle. Ann N Y Acad Sci 2006; 1080:248-67. [PMID: 17132788 DOI: 10.1196/annals.1380.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Ca(2+) release from the sarcoplasmic reticulum (SR) depends on the sarcoplasmic reticulum (SR) Ca(2+) load and the cytosolic Ca(2+) level. Arrhythmogenic Ca(2+) waves underlying triggered propagated contractions arise from Ca(2+) overloaded regions near damaged areas in the cardiac muscle. Ca(2+) waves can also be induced in undamaged muscle, in regions with nonuniform excitation-contraction (EC) coupling by the cycle of stretch and release in the border zone between the damaged and intact regions. We hypothesize that rapid shortening of sarcomeres in the border zone during relaxation causes Ca(2+) release from troponin C (TnC) on thin filaments and initiates Ca(2+) waves. Elimination of this shortening will inhibit the initiation of Ca(2+) waves, while SR Ca(2+) overload will enhance the waves. Force, sarcomere length (SL), and [Ca(2+)](i) were measured and muscle length was controlled. A small jet of Hepes solution with an extracellular [Ca(2+)] 10 mM (HC), or HC containing BDM, was used to weaken a 300 mum long muscle segment. Trains of electrical stimuli were used to induce Ca(2+) waves. The effects of small exponential stretches on triggered propagatory contraction (TPC) amplitude and propagation velocity of Ca(2+) waves (V(prop)) were studied. Sarcomere shortening was uniform prior to activation. HC induced spontaneous diastolic sarcomere contractions in the jet region and attenuated twitch sarcomere shortening; HC+ butanedione monoxime (BDM) caused stretch only in the jet region. Stimulus trains induced Ca(2+) waves, which started inside the HC jet region during twitch relaxation. Ca(2+) waves started in the border zone of the BDM jet. The initial local [Ca(2+)](i) rise of the waves by HC was twice that by BDM. The waves propagated at a V(prop) of 2.0 +/- 0.2 mm/sec. Arrhythmias occurred frequently in trabeculae following exposure to the HC jet. Stretch early during relaxation, which reduced sarcomere shortening in the weakened regions, substantially decreased force of the TPC (F(TPC)) and delayed Ca(2+) waves, and reduced V(prop) commensurate with the reduction F(TPC). These results are consistent with the hypothesis that Ca(2+) release from the myofilaments initiates arrhythmogenic propagating Ca(2+) release. Prevention of sarcomere shortening, by itself, did not inhibit Ca(2+) wave generation. SR Ca(2+) overload potentiated initiation and propagation of Ca(2+) waves.
Collapse
Affiliation(s)
- Henk E D J ter Keurs
- School of Medicine, Department of Physiology, University of Calgary, 3330 Hospital Drive N.W., Calgary, Alberta T2N 4N1, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Sheehan KA, Zima AV, Blatter LA. Regional differences in spontaneous Ca2+ spark activity and regulation in cat atrial myocytes. J Physiol 2006; 572:799-809. [PMID: 16484302 PMCID: PMC1780000 DOI: 10.1113/jphysiol.2005.103267] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Calcium sparks result from the concerted opening of a small number of Ca2+ release channels (ryanodine receptors, RyRs) organized in clusters in the membrane of the sarcoplasmic reticulum (SR). Calcium sparks represent the elementary events of SR Ca2+ release in cardiac myocytes, and their spatial and temporal summation results in whole-cell [Ca2+]i transients observed during excitation-contraction coupling (ECC). Atrial myocytes generally lack transverse tubules; however, during ECC Ca2+ release is initiated from junctional SR (j-SR) in the cell periphery from where activation propagates inwardly through Ca(2+)-induced Ca2+ release (CICR) from non-junctional SR (nj-SR). Despite the structural differences in the microdomains of RyRs of j-SR and nj-SR, spontaneous Ca2+ sparks are observed from both types of SR, albeit at different frequencies. In cells that showed spontaneous Ca2+ sparks from j-SR and nj-SR, subsarcolemmal (SS) Ca2+ sparks from the j-SR were 3-4 times more frequent than central (CTR) Ca2+ sparks occurring from nj-SR. Subsarcolemmal Ca2+ sparks had a slightly higher amplitude, but were essentially identical in their spatial spread and duration when compared to CTR Ca2+ sparks. Sensitization of RyRs with a low concentration (0.1 mM) of caffeine led to a 107% increase in the frequency of CTR Ca2+ sparks, whereas the SS Ca2+ spark frequency increased by only 58%, suggesting that the nj-SR is capable of much higher Ca2+ spark activity than observed normally in unstimulated cells. The L-type Ca2+ channel blocker verapamil reduced SS Ca2+ spark frequency to 38% of control values, whereas Ca2+ spark activity from nj-SR was reduced by only 19%, suggesting that SS Ca2+ sparks are under the control of Ca2+ influx from the extracellular space. Removal of extracellular Ca2+ eliminated SS Ca2+ sparks completely, whereas Ca2+ sparks from the nj-SR continued, albeit at a lower frequency. In membrane-permeabilized (saponin-treated) atrial myocytes, where [Ca2+] can be experimentally controlled throughout the entire myocyte, j-SR and nj-SR Ca2+ spark frequencies were identical, and Ca2+ sparks could be observed spaced at sarcomeric distances throughout the entire cell, suggesting that all release sites of the nj-SR can become active. Measurement of SR Ca2+ load (10 mM caffeine) revealed no difference between j-SR and nj-SR. The data suggest that in atrial myocytes, which lack a t-tubular system, the nj-SR is fully equipped with a three-dimensional array of functional SR Ca2+ release sites; however, in intact cells under resting conditions, peripheral RyR clusters have a higher probability of activation owing to their association with surface membrane Ca2+ channels, leading to higher spontaneous Ca2+ spark activity. In conclusion, Ca2+ sparks originating from both j-SR and nj-SR are rather stereotypical and show little differences in their spatiotemporal properties. In intact cells, however, the higher frequency of spontaneous SS Ca2+ sparks arises from the structural arrangement of sarcolemma and j-SR membrane and thus from the difference in the trigger mechanism.
Collapse
|
37
|
Chen-Izu Y, McCulle SL, Ward CW, Soeller C, Allen BM, Rabang C, Cannell MB, Balke CW, Izu LT. Three-dimensional distribution of ryanodine receptor clusters in cardiac myocytes. Biophys J 2006; 91:1-13. [PMID: 16603500 PMCID: PMC1479079 DOI: 10.1529/biophysj.105.077180] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The clustering of ryanodine receptors (RyR2) into functional Ca2+ release units is central to current models for cardiac excitation-contraction (E-C) coupling. Using immunolabeling and confocal microscopy, we have analyzed the distribution of RyR2 clusters in rat and ventricular atrial myocytes. The resolution of the three-dimensional structure was improved by a novel transverse sectioning method as well as digital deconvolution. In contrast to earlier reports, the mean RyR2 cluster transverse spacing was measured 1.05 microm in ventricular myocytes and estimated 0.97 microm in atrial myocytes. Intercalated RyR2 clusters were found interspersed between the Z-disks on the cell periphery but absent in the interior, forming double rows flanking the local Z-disks on the surface. The longitudinal spacing between the adjacent rows of RyR2 clusters on the Z-disks was measured to have a mean value of 1.87 microm in ventricular and 1.69 microm in atrial myocytes. The measured RyR2 cluster distribution is compatible with models of Ca2+ wave generation. The size of the typical RyR2 cluster was close to 250 nm, and this suggests that approximately 100 RyR2s might be present in a cluster. The importance of cluster size and three-dimensional spacing for current E-C coupling models is discussed.
Collapse
Affiliation(s)
- Ye Chen-Izu
- University of Kentucky, College of Medicine, Lexington, Kentucky 40536-0509, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Vornanen M. Temperature and Ca2+dependence of [3H]ryanodine binding in the burbot (Lota lotaL.) heart. Am J Physiol Regul Integr Comp Physiol 2006; 290:R345-51. [PMID: 16179490 DOI: 10.1152/ajpregu.00443.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Opening and closing of the cardiac ryanodine (Ry) receptor (RyR) are coordinated by the free intracellular Ca2+concentration, thus making the Ca2+binding properties of the RyR important for excitation-contraction coupling. Unlike mammalian cardiac RyRs, which lose their normal function at low temperatures, RyRs of ectothermic vertebrates remain operative at 2–4°C, as indicated by Ry sensitivity of contractile force. To investigate the mechanisms of low temperature adaptation of ectothermic RyRs, we compared Ca2+-dependent kinetics of [3H]ryanodine binding in cardiac preparations of a fish (burbot, Lota lota) and a mammal (rat). The number of ventricular [3H]ryanodine binding sites determined at 20°C was 1.54 times higher in rat than burbot heart (0.401 ± 0.039 and 0.264 ± 0.019 pmol/mg protein, respectively) ( P < 0.02), while the binding affinity ( Kd) for [3H]ryanodine was similar (3.38 ± 0.63 and 4.38 ± 1.14 nM for rat and burbot, respectively) ( P = 0.47). The high-affinity [3H]ryanodine binding to burbot and rat cardiac preparations was tightly coordinated by the free Ca2+concentration at both 20°C and 2°C and did not differ between the two species. Half-maximal [3H]ryanodine binding occurred at 0.191 ± 0.027 μM and 0.164 ± 0.034 μM Ca2+for rat and at 0.212 ± 0.035 μM and 0.188 ± 0.039 μM Ca2+for burbot ( P = 0.65), at 2°C and 20°C, respectively. In two other fish species, rainbow trout ( Oncorhynchus mykiss) and crucian carp ( Carassius carassius), the Ca2+-binding affinity at 20°C was 4.4 and 5.9 times lower, respectively, than in the burbot. At 20°C, the rate of [3H]ryanodine binding to the high-affinity binding site was similar in rat and burbot but was drastically slowed in rat at 2°C. At 2°C, [3H]ryanodine failed to dissociate from rat cardiac RyRs, and at 10°C and 20°C, the rate of dissociation was two to three times slower in rat than burbot preparations. The latter finding is compatible with a channel gating mechanism, where the closing of the Ca2+release channel is impaired or severely retarded by low temperature in rat but less so in burbot preparations. The stronger effect of low temperature on association and dissociation rate of [3H]ryanodine binding in rat compared with burbot suggests that RyRs of the ectothermic fish, unlike those of endothermic rat, are better able to open and close at low temperatures.
Collapse
Affiliation(s)
- Matti Vornanen
- Department of Biology, University of Joensuu, Joensuu, Finland.
| |
Collapse
|
39
|
Yaras N, Ugur M, Ozdemir S, Gurdal H, Purali N, Lacampagne A, Vassort G, Turan B. Effects of diabetes on ryanodine receptor Ca release channel (RyR2) and Ca2+ homeostasis in rat heart. Diabetes 2005; 54:3082-3088. [PMID: 16249429 DOI: 10.2337/diabetes.54.11.3082] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The defects identified in the mechanical activity of the hearts from type 1 diabetic animals include alteration of Ca2+ signaling via changes in critical processes that regulate intracellular Ca2+ concentration. These defects result partially from a dysfunction of cardiac ryanodine receptor calcium release channel (RyR2). The present study was designed to determine whether the properties of the Ca2+ sparks might provide insight into the role of RyR2 in the altered Ca2+ signaling in cardiomyocytes from diabetic animals when they were analyzed together with Ca2+ transients. Basal Ca2+ level as well as Ca2+-spark frequency of cardiomyoctes isolated from 5-week streptozotocin (STZ)-induced diabetic rats significantly increased with respect to aged-matched control rats. Ca2+ transients exhibited significantly reduced amplitude and prolonged time courses as well as depressed Ca2+ loading of sarcoplasmic reticulum in diabetic rats. Spatio-temporal properties of the Ca2+ sparks in cardiomyocytes isolated from diabetic rats were also significantly altered to being almost parallel to the changes of Ca2+ transients. In addition, RyR2 from diabetic rat hearts were hyperphosphorylated and protein levels of both RyR2 and FKBP12.6 depleted. These data show that STZ-induced diabetic rat hearts exhibit altered local Ca2+ signaling with increased basal Ca2+ level.
Collapse
Affiliation(s)
- Nazmi Yaras
- Department of Biophysics, School of Medicine, Ankara University, Ankara, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Calcium (Ca) is a multifunctional regulator of diverse cellular functions. In cardiac muscle Ca is a direct central mediator of electrical activation, ion channel gating, and excitation-contraction (E-C) coupling that all occur on the millisecond time scale. The key amplification step in E-C coupling is under tight control of very local [Ca]. Ca also directly activates signaling via kinases and phosphatases (e.g., Ca-calmodulin-dependent protein kinase [CaMKII] and calcineurin) that occur over a longer time scale (seconds to minutes), and the co-localization of these Ca-dependent modulators to their targets and to Ca is also critical in distinct signaling pathways. Finally, Ca-dependent signaling is also involved in long-term (minutes to hours/days) alterations in gene expression (or excitation-transcription coupling). These pathways are involved in hypertrophy and heart failure, and they can alter the expression of some of the key Ca regulatory proteins involved in E-C coupling and their regulation by kinases and phosphatases. There may again be physical microenvironments involved in this nuclear transcription, such that they sense a discrete Ca signal that is distinct from that involved in E-C coupling. In this way cells can use Ca signaling in multiple ways that function in spatially and temporally distinct manners.
Collapse
Affiliation(s)
- Donald M Bers
- Department of Physiology, Loyola University Chicago, 2160 S. First Ave, Maywood, IL 60153, USA.
| | | |
Collapse
|
41
|
Greenstein JL, Hinch R, Winslow RL. Mechanisms of excitation-contraction coupling in an integrative model of the cardiac ventricular myocyte. Biophys J 2005; 90:77-91. [PMID: 16214852 PMCID: PMC1367039 DOI: 10.1529/biophysj.105.065169] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It is now well established that characteristic properties of excitation-contraction (EC) coupling in cardiac myocytes, such as high gain and graded Ca(2+) release, arise from the interactions that occur between L-type Ca(2+) channels (LCCs) and nearby ryanodine-sensitive Ca(2+) release channels (RyRs) in localized microdomains. Descriptions of Ca(2+)-induced Ca(2+) release (CICR) that account for these local mechanisms are lacking from many previous models of the cardiac action potential, and those that do include local control of CICR are able to reconstruct properties of EC coupling, but require computationally demanding stochastic simulations of approximately 10(5) individual ion channels. In this study, we generalize a recently developed analytical approach for deriving simplified mechanistic models of CICR to formulate an integrative model of the canine cardiac myocyte which is computationally efficient. The resulting model faithfully reproduces experimentally measured properties of EC coupling and whole cell phenomena. The model is used to study the role of local redundancy in L-type Ca(2+) channel gating and the role of dyad configuration on EC coupling. Simulations suggest that the characteristic steep rise in EC coupling gain observed at hyperpolarized potentials is a result of increased functional coupling between LCCs and RyRs. We also demonstrate mechanisms by which alterations in the early repolarization phase of the action potential, resulting from reduction of the transient outward potassium current, alters properties of EC coupling.
Collapse
Affiliation(s)
- Joseph L Greenstein
- The Center for Cardiovascular Bioinformatics and Modeling and The Whitaker Biomedical Engineering Institute, The Johns Hopkins University Whiting School of Engineering and School of Medicine, Baltimore, Maryland, USA.
| | | | | |
Collapse
|
42
|
Fu Y, Zhang GQ, Hao XM, Wu CH, Chai Z, Wang SQ. Temperature dependence and thermodynamic properties of Ca2+ sparks in rat cardiomyocytes. Biophys J 2005; 89:2533-41. [PMID: 16113119 PMCID: PMC1366752 DOI: 10.1529/biophysj.105.067074] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
To elucidate the temperature dependence and underlying thermodynamic determinants of the elementary Ca2+ release from the sarcoplasmic reticulum, we characterized Ca2+ sparks originating from ryanodine receptors (RyRs) in rat cardiomyocytes over a wide range of temperature. From 35 degrees C to 10 degrees C, the normalized fluo-3 fluorescence of Ca2+ sparks decreased monotonically, but the Delta[Ca2+]i were relatively unchanged due to increased resting [Ca2+]i. The time-to-peak of Ca2+ sparks, which represents the RyR Ca2+ release duration, was prolonged by 37% from 35 degrees C to 10 degrees C. An Arrhenius plot of the data identified a jump of apparent activation energy from 5.2 to 14.6 kJ/mol at 24.8 degrees C, which presumably reflects a transition of sarcoplasmic reticulum lipids. Thermodynamic analysis of the decay kinetics showed that active transport plays little role in early recovery but a significant role in late recovery of local Ca2+ concentration. These results provided a basis for quantitative interpretation of intracellular Ca2+ signaling under various thermal conditions. The relative temperature insensitivity above the transitional 25 degrees C led to the notion that Ca2+ sparks measured at a "warm room" temperature are basically acceptable in elucidating mammalian heart function.
Collapse
Affiliation(s)
- Yu Fu
- National Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
Ca(2+) sparks monitor transient local releases of Ca(2+) from the sarcoplasmic reticulum (SR) into the myoplasm. The release takes place through ryanodine receptors (RYRs), the Ca(2+)-release channels of the SR. In intact fibers from frog skeletal muscle, the temporal and spatial properties of voltage-activated Ca(2+) sparks are well simulated by a model that assumes that the Ca(2+) flux underlying a spark is 2.5 pA (units of Ca(2+) current) for 4.6 ms (18 degrees C). This flux amplitude suggests that 1-5 active RYRs participate in the generation of a typical voltage-activated spark under physiological conditions. A major goal of future experiments is to estimate this number more precisely and, if it is two or more, to investigate the communication mechanism that allows multiple RYRs to be co-activated in a rapid but self-limited fashion.
Collapse
Affiliation(s)
- Stephen M Baylor
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, 19104-6085, USA.
| |
Collapse
|
44
|
Shiels HA, White E. Temporal and spatial properties of cellular Ca2+flux in trout ventricular myocytes. Am J Physiol Regul Integr Comp Physiol 2005; 288:R1756-66. [PMID: 15650128 DOI: 10.1152/ajpregu.00510.2004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Confocal microscopy was used to investigate the temporal and spatial properties of Ca2+transients and Ca2+sparks in ventricular myocytes of the rainbow trout ( Oncorhynchus mykiss). Confocal imaging confirmed the absence of T tubules and the long (∼160 μm), thin (∼8 μm) morphology of trout myocytes. Line scan imaging of Ca2+transients evoked by electrical stimulation in cells loaded with fluo 4 revealed spatial inhomogeneities in the temporal properties of Ca2+transients across the width of the myocytes. The Ca2+wavefront initiated faster, rose faster, and reached larger peak amplitudes in the periphery of the myocyte compared with the center. These differences were exacerbated by stimulation with the L-type Ca2+channel agonist (−)BAY K 8644 or by sarcoplasmic reticulum (SR) inhibition with ryanodine and thapsigargin. Results reveal that the shape of the trout myocyte allows for rapid diffusion of Ca2+from the cell periphery to the cell center, with SR Ca2+release contributing to the cytosolic Ca2+rise in a time-dependent manner. Spontaneous Ca2+sparks were exceedingly rare in trout myocytes under control conditions (1 sparking cell from 238 cells examined). This is in marked contrast to the rat where a total of 56 spontaneous Ca2+sparks were observed in 9 of 11 myocytes examined. Ca2+sparklike events were observed in a very small number of trout myocytes (15 sparks from 9 of 378 cells examined) after stimulation with either (−)BAY K 8644 or high Ca2+(6 mM). Reducing temperature to 15°C in intact myocytes or permeabilizing myocytes to adjust intracellular conditions to favor Ca2+spark detection was without significant effects. Possible reasons for the rarity of Ca2+sparks in a cardiac myocyte with an active SR are discussed.
Collapse
|
45
|
Yin J, Wang Y, Li Q, Shang Z, Su S, Cheng Y, Xu Y. Effects of nanomolar concentration dihydroouabain on calcium current and intracellular calcium in guinea pig ventricular myocytes. Life Sci 2005; 76:613-28. [PMID: 15567187 DOI: 10.1016/j.lfs.2004.01.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2003] [Accepted: 01/12/2004] [Indexed: 11/25/2022]
Abstract
The effects of nanomolar concentration of dihydroouabain (DHO) on L-type calcium current (ICa-L), TTX-sensitive calcium current (ICa(TTX)), and intracellular calcium concentration ([Ca2+]i) were investigated in guinea pig ventricular myocytes. The whole-cell patch-clamp technique was used to record ICa-L and ICa(TTX); [Ca2+]i was detected and recorded with the confocal microscopy. The nanomolar concentration of DHO increased the ICa-L, ICa(TTX), and [Ca2+]i, which could be partially inhibited by nisoldipine or TTX, but still appeared in the absence of extracellular K+ and Na+. These data suggest that DHO could increase [Ca2+]i in non-beating myocytes via stimulating the ICa-L and ICa(TTX), or perhaps triggering directly a release of intracellular calcium.
Collapse
Affiliation(s)
- Jingxiang Yin
- Department of Pharmacology, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
46
|
Hui CS, Besch HR, Bidasee KR. Effects of ryanoids on spontaneous and depolarization-evoked calcium release events in frog muscle. Biophys J 2005; 87:243-55. [PMID: 15240461 PMCID: PMC1304347 DOI: 10.1529/biophysj.103.031435] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The effects of ryanoids on calcium sparks and transients were studied in voltage-clamped cut frog muscle fibers with a laser scanning confocal microscope. For each ryanoid employed, several sequential effects were observed, including: a), transient increases in spontaneous spark frequency; b), conversions of sparks to long-lasting steady glows; and c), occasional interruptions of the glows. The ratio of the amplitude of the glow induced by a ryanoid to that of the precursory spark followed the order: ryanodol > ryanodine > C(10)-O(eq)-glycyl-ryanodine > C(10)-O(eq)-beta-alanyl-ryanodol. This sequence of glow amplitudes parallels that of the subconductances induced by these ryanoids in single-channel studies, suggesting that the glows reflect Ca(2+) fluxes through semiopen calcium release channels. Ryanoids also abolished depolarization-evoked sparks elicited with small pulses, and transformed the calcium release during depolarization to a uniform nonsparking fluorescence signal. The ratio of this signal, averaged spatially, to that of the control followed the order: ryanodol < ryanodine < C(10)-O(eq)-glycyl-ryanodine < C(10)-O(eq)-beta-alanyl-ryanodol, implying an inverse relationship with the amplitudes of ryanoid-induced glows. The observation that depolarization-evoked calcium release can occur after ryanoid suppression of calcium sparks suggests the possibility of a new strategic approach for treating skeletal muscle diseases resulting from leaky calcium release channels.
Collapse
Affiliation(s)
- Chiu Shuen Hui
- Department of Cellular and Integrative Physiology, Indiana University Medical Center, Indianapolis, 46202, USA.
| | | | | |
Collapse
|
47
|
Abstract
Calcium sparks are local regenerative releases of Ca(2+) from a cluster of ryanodine receptors on the sarcoplasmic reticulum. During excitation-contraction coupling in cardiac cells, Ca(2+) sparks are triggered by Ca(2+) entering the cell via the T-tubules (Ca(2+)-induced Ca(2+) release). However under conditions of calcium overload, Ca(2+) sparks can be triggered spontaneously. The exact process by which Ca(2+) sparks terminate is still an open question, although both deterministic and stochastic processes are likely to be important. In this article, asymptotic methods are used to analyze a single Ca(2+) spark model, which includes both deterministic and stochastic biophysical mechanisms. The analysis calculates both spark frequencies and spark duration distributions, and shows under what circumstances stochastic transitions are important. Additionally, a model of the coupling of the release channels via the FK-binding protein is analyzed.
Collapse
Affiliation(s)
- R Hinch
- University Laboratory of Physiology and Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
48
|
Abstract
Ca2+ ions passing through a single or a cluster of Ca2+-permeable channels create microscopic, short-lived Ca2+ gradients that constitute the building blocks of cellular Ca2+ signaling. Over the last decade, imaging microdomain Ca2+ in muscle cells has unveiled the exquisite spatial and temporal architecture of intracellular Ca2+ dynamics and has reshaped our understanding of Ca2+ signaling mechanisms. Major advances include the visualization of "Ca2+ sparks" as the elementary events of Ca2+ release from the sarcoplasmic reticulum (SR), "Ca2+ sparklets" produced by openings of single Ca2+-permeable channels, miniature Ca2+ transients in single mitochondria ("marks"), and SR luminal Ca2+ depletion transients ("scraps"). As a model system, a cardiac myocyte contains a 3-dimensional grid of 104 spark ignition sites, stochastic activation of which summates into global Ca2+ transients. Tracking intermolecular coupling between single L-type Ca2+ channels and Ca2+ sparks has provided direct evidence validating the local control theory of Ca2+-induced Ca2+ release in the heart. In vascular smooth muscle myocytes, Ca2+ can paradoxically signal both vessel constriction (by global Ca2+ transients) and relaxation (by subsurface Ca2+ sparks). These findings shed new light on the origin of Ca2+ signaling efficiency, specificity, and versatility. In addition, microdomain Ca2+ imaging offers a novel modality that complements electrophysiological approaches in characterizing Ca2+ channels in intact cells.
Collapse
MESH Headings
- Animals
- CHO Cells
- Calcium/analysis
- Calcium Channels, L-Type/physiology
- Calcium Signaling/physiology
- Chelating Agents/pharmacology
- Cricetinae
- Egtazic Acid/pharmacology
- Humans
- Ion Channel Gating
- Ion Transport
- Microscopy, Confocal/methods
- Mitochondria, Heart/chemistry
- Mitochondria, Heart/ultrastructure
- Muscle, Smooth, Vascular/chemistry
- Muscle, Smooth, Vascular/cytology
- Myocytes, Cardiac/chemistry
- Myocytes, Cardiac/ultrastructure
- Myocytes, Smooth Muscle/chemistry
- Myocytes, Smooth Muscle/ultrastructure
- Patch-Clamp Techniques
- Rabbits
- Rats
- Ryanodine Receptor Calcium Release Channel/physiology
- Sarcoplasmic Reticulum/chemistry
- Sarcoplasmic Reticulum/ultrastructure
Collapse
Affiliation(s)
- Shi-Qiang Wang
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, Md 21224, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Genetic engineering has already provided critical data on the Ca-induced Ca(2+) release (CICR) hypothesis issues and promises even greater future insights. The two approaches employed thus far are (1) the construction of transgenic animal models with deletion or overexpression of Ca(2+) signaling proteins, and (2) direct structure-function studies of these proteins in artificial systems. In our laboratory both approaches have provided some insight into molecular modulation of CICR and the pathophysiology arising from the deletion or overactivity of these proteins. Probing the cytoplasmic segments of the carboxyl c-terminal tail of Ca(2+) channel, we identified two calcium sensing and calmodulin binding domains (LA and K) that have been implicated in Ca(2+)-induced inactivation of Ca(2+) channels. Introducing these peptides into atrial myocytes, where a large fraction of Ca(2+) release sites are unassociated with the dihydropyridine receptors (DHPRs) (no t-tubules), suggests that LA, but not K motif, increases the sensitivity of RyRs to Ca(2+), is responsible for the higher frequency of Ca(2+) sparks in the peripheral sites, and provides for the voltage dependence of CICR. Genetic overexpression or deletion of the primary proteins of the Ca(2+) signaling cascade also provides supportive evidence for the Ca(2+) current (I(Ca))-gated CICR mechanism, generates some novel and unexpected cardiac phenotypes in transgenic mice, and suggests that Ca(2+) signaling defects can trigger compensatory molecular mechanisms that underlie the observed cardiac phenotype and pathophysiology.
Collapse
Affiliation(s)
- Martin Morad
- Pharmacology and Medicine, Georgetown University, 4000 Reservoir Rd., Washington, DC 20057, USA.
| | | |
Collapse
|
50
|
Ginsburg KS, Bers DM. Modulation of excitation-contraction coupling by isoproterenol in cardiomyocytes with controlled SR Ca2+ load and Ca2+ current trigger. J Physiol 2004; 556:463-80. [PMID: 14724205 PMCID: PMC1664945 DOI: 10.1113/jphysiol.2003.055384] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Cardiac Ca(2+) transients are enhanced by cAMP-dependent protein kinase (PKA). However, PKA-dependent modulation of ryanodine receptor (RyR) function in intact cells is difficult to measure, because PKA simultaneously increases Ca(2+) current (I(Ca)), SR Ca(2+) uptake and SR Ca(2+) loading (which independently increase SR Ca(2+) release). We measured I(Ca) and SR Ca(2+) release +/- 1 microm isoproterenol (ISO; isoprenaline) in voltage-clamped ventricular myocytes of rabbits and transgenic mice (expressing only non-phosphorylatable phospholamban). This mouse model helps control for any effect of ISO-enhanced SR uptake on observed release, but the two species produced essentially identical results. SR Ca(2+) load and I(Ca) were adjusted by conditioning. We thus evaluated PKA effects on SR Ca(2+) release at constant SR Ca(2+) load and I(Ca) trigger (with constant unitary I(Ca)). The amount of SR Ca(2+) release increased as a function of either I(Ca) or SR Ca(2+) load, but ISO did not alter the relationships (measured as gain or fractional release). This was true over a wide range of SR Ca(2+) load and I(Ca). However, the maximal rate of SR Ca(2+) release was approximately 50% faster with ISO (at most loads and I(Ca) levels). We conclude that the isolated effect of PKA on SR Ca(2+) release is an increase in maximal rate of release and faster turn-off of release (such that integrated SR Ca(2+) release is unchanged). The increased amount of SR Ca(2+) release normally seen with ISO depends primarily on increased I(Ca) trigger and SR Ca(2+) load, whereas faster release kinetics may be the main result of RyR phosphorylation.
Collapse
Affiliation(s)
- Kenneth S Ginsburg
- Department of Physiology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA
| | | |
Collapse
|