1
|
Kornfield JM, Bright H, Drake MG. Touching a Nerve: Neuroimmune Interactions in Asthma. Immunol Rev 2025; 331:e70025. [PMID: 40186378 DOI: 10.1111/imr.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 03/04/2025] [Accepted: 03/21/2025] [Indexed: 04/07/2025]
Abstract
Asthma is an inflammatory airway disease characterized by excessive bronchoconstriction and airway hyperresponsiveness. Airway nerves play a crucial role in regulating these processes. In asthma, interactions between inflammatory cells and nerves result in nerve dysfunction, which worsens airway function. This review discusses new insights regarding the role of airway nerves in healthy lungs and examines how communication between nerves and leukocytes, including eosinophils, mast cells, dendritic cells, and innate lymphoid cells, contributes to nerve dysfunction and the worsening of airway disease. Clinical implications and therapeutic opportunities presented by neuroimmune interactions are also addressed.
Collapse
Affiliation(s)
- James M Kornfield
- Division of Pulmonary, Allergy, and Critical Care, Oregon Health and Science University, Portland, Oregon, USA
| | - Hoyt Bright
- Division of Pulmonary, Allergy, and Critical Care, Oregon Health and Science University, Portland, Oregon, USA
| | - Matthew G Drake
- Division of Pulmonary, Allergy, and Critical Care, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
2
|
Hossain MZ, Ando H, Roy RR, Kitagawa J. Topical ATP Application in the Peripheral Swallowing-Related Regions Facilitates Triggering of the Swallowing Reflex Involving P2X3 Receptors. FUNCTION 2025; 6:zqaf010. [PMID: 40042973 PMCID: PMC11931623 DOI: 10.1093/function/zqaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/27/2025] [Accepted: 02/27/2025] [Indexed: 03/25/2025] Open
Abstract
The swallowing reflex is a critical component of the digestive process, triggered when food or liquids pass from the oral cavity to the oesophagus. Although adenosine triphosphate (ATP) is involved in various physiological processes, its potential to trigger the swallowing reflex has not been fully explored. This study investigated the ability of ATP to induce the swallowing reflex and examined the involvement of the purinoreceptor P2X3 in this process. We observed that the topical application of exogenous ATP to the superior laryngeal nerve (SLN)-innervated swallowing-related regions dose-dependently facilitated the triggering of the swallowing reflex. P2X3 receptors were predominantly localized on nerve fibres within these regions, including intraepithelial and subepithelial nerves and those associated with taste-bud-like structures. In the nodose-petrosal-jugular ganglionic complex, approximately 40% of retrogradely traced SLN-afferent neurons expressed P2X3, with 59% being medium-sized, 30% small, and 11% large. Prior topical application of a P2X3 antagonist in SLN-innervated, swallowing-related regions significantly reduced the number of ATP-induced swallowing reflexes. Furthermore, topical application of a P2X3 receptor agonist more selective than ATP facilitated reflex triggering in a dose-dependent manner. These findings suggest that exogenous ATP facilitates the triggering of the swallowing reflex through the activation of P2X3 receptors. This activation excites afferent neurons that supply peripheral swallowing-related regions, stimulating the swallowing central pattern generator to facilitate the reflex. The current findings suggest the therapeutic potential of ATP or P2X3 agonists for dysphagia treatment and provide valuable physiological insights into the involvement of purinergic signaling in triggering the swallowing reflex.
Collapse
Affiliation(s)
- Mohammad Zakir Hossain
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, Shiojiri 399-0781, Japan
| | - Hiroshi Ando
- Department of Biology, School of Dentistry, Matsumoto Dental University, Shiojiri 399-0781, Japan
| | - Rita Rani Roy
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, Shiojiri 399-0781, Japan
| | - Junichi Kitagawa
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, Shiojiri 399-0781, Japan
| |
Collapse
|
3
|
Foti Randazzese S, Toscano F, Gambadauro A, La Rocca M, Altavilla G, Carlino M, Caminiti L, Ruggeri P, Manti S. Neuromodulators in Acute and Chronic Cough in Children: An Update from the Literature. Int J Mol Sci 2024; 25:11229. [PMID: 39457010 PMCID: PMC11508565 DOI: 10.3390/ijms252011229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Cough is one of the most common reasons leading to pediatric consultations, negatively impacting the quality of life of patients and caregivers. It is defined as a sudden and forceful expulsion of air from the lungs through the mouth, typically triggered by irritation or the stimulation of sensory nerves in the respiratory tract. This reflex is controlled by a neural pathway that includes sensory receptors, afferent nerves, the brainstem's cough center, efferent nerves, and the muscles involved in coughing. Based on its duration, cough in children may be classified as acute, lasting less than four weeks, and chronic, persisting for more than four weeks. Neuromodulators have shown promise in reducing the frequency and severity of cough by modulating the neural pathways involved in the cough reflex, although they require careful monitoring and patient selection to optimize the outcomes. This review aims to examine the rationale for using neuromodulators in the management of cough in children.
Collapse
Affiliation(s)
- Simone Foti Randazzese
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 1, 98124 Messina, Italy; (S.F.R.); (F.T.); (M.L.R.); (G.A.); (L.C.)
| | - Fabio Toscano
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 1, 98124 Messina, Italy; (S.F.R.); (F.T.); (M.L.R.); (G.A.); (L.C.)
| | - Antonella Gambadauro
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 1, 98124 Messina, Italy; (S.F.R.); (F.T.); (M.L.R.); (G.A.); (L.C.)
| | - Mariarosaria La Rocca
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 1, 98124 Messina, Italy; (S.F.R.); (F.T.); (M.L.R.); (G.A.); (L.C.)
| | - Giulia Altavilla
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 1, 98124 Messina, Italy; (S.F.R.); (F.T.); (M.L.R.); (G.A.); (L.C.)
| | - Mariagrazia Carlino
- Pediatric Unit, Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy;
| | - Lucia Caminiti
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 1, 98124 Messina, Italy; (S.F.R.); (F.T.); (M.L.R.); (G.A.); (L.C.)
| | - Paolo Ruggeri
- Pulmonology Unit, Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Via Consolare Valeria, 1, 98124 Messina, Italy;
| | - Sara Manti
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 1, 98124 Messina, Italy; (S.F.R.); (F.T.); (M.L.R.); (G.A.); (L.C.)
| |
Collapse
|
4
|
Pollard KJ, Traina-Dorge V, Medearis SM, Bosak A, Bix GJ, Moore MJ, Piedimonte G. Respiratory Syncytial Virus Infects Peripheral and Spinal Nerves and Induces Chemokine-Mediated Neuropathy. J Infect Dis 2024; 230:467-479. [PMID: 38135285 PMCID: PMC11326824 DOI: 10.1093/infdis/jiad596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 12/24/2023] Open
Abstract
Respiratory syncytial virus (RSV) primarily infects the respiratory epithelium, but growing evidence suggests that it may also be responsible for neurologic sequelae. In 3-dimensional microphysiologic peripheral nerve cultures, RSV infected neurons, macrophages, and dendritic cells along 2 distinct trajectories depending on the initial viral load. Low-level infection was transient, primarily involved macrophages, and induced moderate chemokine release with transient neural hypersensitivity. Infection with higher viral loads was persistent, infected neuronal cells in addition to monocytes, and induced robust chemokine release followed by progressive neurotoxicity. In spinal cord cultures, RSV infected microglia and dendritic cells but not neurons, producing a moderate chemokine expression pattern. The persistence of infection was variable but could be identified in dendritic cells as long as 30 days postinoculation. This study suggests that RSV can disrupt neuronal function directly through infection of peripheral neurons and indirectly through infection of resident monocytes and that inflammatory chemokines likely mediate both mechanisms.
Collapse
Affiliation(s)
| | - Vicki Traina-Dorge
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans
- Division of Microbiology, Tulane National Primate Research Center, Covington
| | - Stephen M Medearis
- Department of Pediatrics
- Department of Biochemistry and Molecular Biology
| | | | - Gregory J Bix
- Clinical Neuroscience Research Center
- Department of Neurosurgery
- Department of Neurology, School of Medicine
- Tulane Brain Institute, Tulane University
| | - Michael J Moore
- Department of Biomedical Engineering
- Tulane Brain Institute, Tulane University
- Axosim, Inc, New Orleans, Louisiana
| | | |
Collapse
|
5
|
Chan PYS, Lee LY, Davenport PW. Neural mechanisms of respiratory interoception. Auton Neurosci 2024; 253:103181. [PMID: 38696917 DOI: 10.1016/j.autneu.2024.103181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/03/2024] [Accepted: 04/22/2024] [Indexed: 05/04/2024]
Abstract
Respiratory interoception is one of the internal bodily systems that is comprised of different types of somatic and visceral sensations elicited by different patterns of afferent input and respiratory motor drive mediating multiple respiratory modalities. Respiratory interoception is a complex system, having multiple afferents grouped into afferent clusters and projecting into both discriminative and affective centers that are directly related to the behavioral assessment of breathing. The multi-afferent system provides a spectrum of input that result in the ability to interpret the different types of respiratory interceptive sensations. This can result in a response, commonly reported as breathlessness or dyspnea. Dyspnea can be differentiated into specific modalities. These respiratory sensory modalities lead to a general sensation of an Urge-to-Breathe, driven by a need to compensate for the modulation of ventilation that has occurred due to factors that have affected breathing. The multiafferent system for respiratory interoception can also lead to interpretation of the sensory signals resulting in respiratory related sensory experiences, including the Urge-to-Cough and Urge-to-Swallow. These behaviors are modalities that can be driven through the differentiation and integration of multiple afferent input into the respiratory neural comparator. Respiratory sensations require neural somatic and visceral interoceptive elements that include gated attention and detection leading to respiratory modality discrimination with subsequent cognitive decision and behavioral compensation. Studies of brain areas mediating cortical and subcortical respiratory sensory pathways are summarized and used to develop a model of an integrated respiratory neural network mediating respiratory interoception.
Collapse
Affiliation(s)
- Pei-Ying Sarah Chan
- Department of Occupational Therapy, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
| | - Lu-Yuan Lee
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Paul W Davenport
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
6
|
Verzele NAJ, Chua BY, Short KR, Moe AAK, Edwards IN, Bielefeldt-Ohmann H, Hulme KD, Noye EC, Tong MZW, Reading PC, Trewella MW, Mazzone SB, McGovern AE. Evidence for vagal sensory neural involvement in influenza pathogenesis and disease. PLoS Pathog 2024; 20:e1011635. [PMID: 38626267 PMCID: PMC11051609 DOI: 10.1371/journal.ppat.1011635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 04/26/2024] [Accepted: 04/01/2024] [Indexed: 04/18/2024] Open
Abstract
Influenza A virus (IAV) is a common respiratory pathogen and a global cause of significant and often severe morbidity. Although inflammatory immune responses to IAV infections are well described, little is known about how neuroimmune processes contribute to IAV pathogenesis. In the present study, we employed surgical, genetic, and pharmacological approaches to manipulate pulmonary vagal sensory neuron innervation and activity in the lungs to explore potential crosstalk between pulmonary sensory neurons and immune processes. Intranasal inoculation of mice with H1N1 strains of IAV resulted in stereotypical antiviral lung inflammation and tissue pathology, changes in breathing, loss of body weight and other clinical signs of severe IAV disease. Unilateral cervical vagotomy and genetic ablation of pulmonary vagal sensory neurons had a moderate effect on the pulmonary inflammation induced by IAV infection, but significantly worsened clinical disease presentation. Inhibition of pulmonary vagal sensory neuron activity via inhalation of the charged sodium channel blocker, QX-314, resulted in a moderate decrease in lung pathology, but again this was accompanied by a paradoxical worsening of clinical signs. Notably, vagal sensory ganglia neuroinflammation was induced by IAV infection and this was significantly potentiated by QX-314 administration. This vagal ganglia hyperinflammation was characterized by alterations in IAV-induced host defense gene expression, increased neuropeptide gene and protein expression, and an increase in the number of inflammatory cells present within the ganglia. These data suggest that pulmonary vagal sensory neurons play a role in the regulation of the inflammatory process during IAV infection and suggest that vagal neuroinflammation may be an important contributor to IAV pathogenesis and clinical presentation. Targeting these pathways could offer therapeutic opportunities to treat IAV-induced morbidity and mortality.
Collapse
Affiliation(s)
- Nathalie A. J. Verzele
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia Queensland, Australia
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, Victoria, Australia
| | - Brendon Y. Chua
- The Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - Kirsty R. Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Queensland, Australia
| | - Aung Aung Kywe Moe
- Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, Victoria, Australia
| | - Isaac N. Edwards
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia Queensland, Australia
| | - Helle Bielefeldt-Ohmann
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Queensland, Australia
| | - Katina D. Hulme
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia Queensland, Australia
| | - Ellesandra C. Noye
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia Queensland, Australia
| | - Marcus Z. W. Tong
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia Queensland, Australia
| | - Patrick C. Reading
- The Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Disease Reference Laboratory, Peter Doherty Institute for Infection, and Immunity, 792 Elizabeth St., Melbourne, Victoria, Australia
| | - Matthew W. Trewella
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, Victoria, Australia
| | - Stuart B. Mazzone
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, Victoria, Australia
| | - Alice E. McGovern
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
7
|
Kleinbeck S, Wolkoff P. Exposure limits for indoor volatile substances concerning the general population: The role of population-based differences in sensory irritation of the eyes and airways for assessment factors. Arch Toxicol 2024; 98:617-662. [PMID: 38243103 PMCID: PMC10861400 DOI: 10.1007/s00204-023-03642-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/16/2023] [Indexed: 01/21/2024]
Abstract
Assessment factors (AFs) are essential in the derivation of occupational exposure limits (OELs) and indoor air quality guidelines. The factors shall accommodate differences in sensitivity between subgroups, i.e., workers, healthy and sick people, and occupational exposure versus life-long exposure for the general population. Derivation of AFs itself is based on empirical knowledge from human and animal exposure studies with immanent uncertainty in the empirical evidence due to knowledge gaps and experimental reliability. Sensory irritation in the eyes and airways constitute about 30-40% of OELs and is an abundant symptom in non-industrial buildings characterizing the indoor air quality and general health. Intraspecies differences between subgroups of the general population should be quantified for the proposal of more 'empirical' based AFs. In this review, we focus on sensitivity differences in sensory irritation about gender, age, health status, and vulnerability in people, based solely on human exposure studies. Females are more sensitive to sensory irritation than males for few volatile substances. Older people appear less sensitive than younger ones. However, impaired defense mechanisms may increase vulnerability in the long term. Empirical evidence of sensory irritation in children is rare and limited to children down to the age of six years. Studies of the nervous system in children compared to adults suggest a higher sensitivity in children; however, some defense mechanisms are more efficient in children than in adults. Usually, exposure studies are performed with healthy subjects. Exposure studies with sick people are not representative due to the deselection of subjects with moderate or severe eye or airway diseases, which likely underestimates the sensitivity of the group of people with diseases. Psychological characterization like personality factors shows that concentrations of volatile substances far below their sensory irritation thresholds may influence the sensitivity, in part biased by odor perception. Thus, the protection of people with extreme personality traits is not feasible by an AF and other mitigation strategies are required. The available empirical evidence comprising age, lifestyle, and health supports an AF of not greater than up to 2 for sensory irritation. Further, general AFs are discouraged for derivation, rather substance-specific derivation of AFs is recommended based on the risk assessment of empirical data, deposition in the airways depending on the substance's water solubility and compensating for knowledge and experimental gaps. Modeling of sensory irritation would be a better 'empirical' starting point for derivation of AFs for children, older, and sick people, as human exposure studies are not possible (due to ethical reasons) or not generalizable (due to self-selection). Dedicated AFs may be derived for environments where dry air, high room temperature, and visually demanding tasks aggravate the eyes or airways than for places in which the workload is balanced, while indoor playgrounds might need other AFs due to physical workload and affected groups of the general population.
Collapse
Affiliation(s)
- Stefan Kleinbeck
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany.
| | - Peder Wolkoff
- National Research Centre for the Working Environment, Copenhagen, Denmark
| |
Collapse
|
8
|
Kornfield J, De La Torre U, Mize E, Drake MG. Illuminating Airway Nerve Structure and Function in Chronic Cough. Lung 2023; 201:499-509. [PMID: 37985513 PMCID: PMC10673771 DOI: 10.1007/s00408-023-00659-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023]
Abstract
Airway nerves regulate vital airway functions including bronchoconstriction, cough, and control of respiration. Dysregulation of airway nerves underlies the development and manifestations of airway diseases such as chronic cough, where sensitization of neural pathways leads to excessive cough triggering. Nerves are heterogeneous in both expression and function. Recent advances in confocal imaging and in targeted genetic manipulation of airway nerves have expanded our ability to visualize neural organization, study neuro-immune interactions, and selectively modulate nerve activation. As a result, we have an unprecedented ability to quantitatively assess neural remodeling and its role in the development of airway disease. This review highlights our existing understanding of neural heterogeneity and how advances in methodology have illuminated airway nerve morphology and function in health and disease.
Collapse
Affiliation(s)
- James Kornfield
- OHSU Division of Pulmonary, Allergy, and Critical Care Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Mail Code UHN67, Portland, OR, 97239, USA
| | - Ubaldo De La Torre
- OHSU Division of Pulmonary, Allergy, and Critical Care Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Mail Code UHN67, Portland, OR, 97239, USA
| | - Emily Mize
- OHSU Division of Pulmonary, Allergy, and Critical Care Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Mail Code UHN67, Portland, OR, 97239, USA
| | - Matthew G Drake
- OHSU Division of Pulmonary, Allergy, and Critical Care Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Mail Code UHN67, Portland, OR, 97239, USA.
| |
Collapse
|
9
|
Zhi H, Zhong M, Huang J, Zheng Z, Ji X, Xu Y, Dong J, Yan W, Chen Z, Zhan C, Chen R. Gabapentin alleviated the cough hypersensitivity and neurogenic inflammation in a guinea pig model with repeated intra-esophageal acid perfusion. Eur J Pharmacol 2023; 959:176078. [PMID: 37805133 DOI: 10.1016/j.ejphar.2023.176078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/09/2023]
Abstract
OBJECTIVE The anti-tussive effect of gabapentin and its underlying neuromodulatory mechanism were investigated via a modified guinea pig model of gastroesophageal reflux-related cough (GERC). METHODS Intra-esophageal perfusion with hydrochloric acid (HCl) was performed every other day 12 times to establish the GERC model. High-dose gabapentin (48 mg/kg), low-dose gabapentin (8 mg/kg), or saline was orally administered for 2 weeks after modeling. Cough sensitivity, airway inflammation, lung and esophagus histology, levels of substance P (SP), and neurokinin-1 (NK1)-receptors were monitored. RESULTS Repeated intra-esophageal acid perfusion aggravated the cough sensitivity in guinea pigs in a time-dependent manner. The number of cough events was significantly increased after 12 times HCl perfusion, and the hypersensitivity period was maintained for 2 weeks. The SP levels in BALF, trachea, lung, distal esophagus, and vagal ganglia were increased in guinea pigs receiving HCl perfusion. The intensity of cough hypersensitivity in the GERC model was significantly correlated with increased SP expression in the airways. Both high and low doses of gabapentin administration could reduce cough hypersensitivity exposed to HCl perfusion, attenuate airway inflammatory damage, and inhibit neurogenic inflammation by reducing SP expression from the airway and vagal ganglia. CONCLUSIONS Gabapentin can desensitize the cough sensitivity in the GERC model of guinea pig. The anti-tussive effect is associated with the alleviated peripheral neurogenic inflammation as reflected in the decreased level of SP.
Collapse
Affiliation(s)
- Haopeng Zhi
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Department of Allergy and Clinical Immunology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China.
| | - Mingyu Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Department of Allergy and Clinical Immunology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China.
| | - Junfeng Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Department of Allergy and Clinical Immunology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China.
| | - Ziwen Zheng
- Guangzhou Medical University, Guangzhou, Guangdong, 510180, China.
| | - Xiaolong Ji
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Department of Allergy and Clinical Immunology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China.
| | - Yilin Xu
- Guangzhou Medical University, Guangzhou, Guangdong, 510180, China.
| | - Junguo Dong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Department of Allergy and Clinical Immunology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China.
| | - Wenbo Yan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Department of Allergy and Clinical Immunology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China.
| | - Zhe Chen
- Laboratory of Cough, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, 215300, China.
| | - Chen Zhan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Department of Allergy and Clinical Immunology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China.
| | - Ruchong Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Department of Allergy and Clinical Immunology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China.
| |
Collapse
|
10
|
Liao X, Gao S, Xie F, Wang K, Wu X, Wu Y, Gao W, Wang M, Sun J, Liu D, Xu W, Li Q. An underlying mechanism behind interventional pulmonology techniques for refractory asthma treatment: Neuro-immunity crosstalk. Heliyon 2023; 9:e20797. [PMID: 37867902 PMCID: PMC10585236 DOI: 10.1016/j.heliyon.2023.e20797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 09/11/2023] [Accepted: 10/06/2023] [Indexed: 10/24/2023] Open
Abstract
Asthma is a common disease that seriously threatens public health. With significant developments in bronchoscopy, different interventional pulmonology techniques for refractory asthma treatment have been developed. These technologies achieve therapeutic purposes by targeting diverse aspects of asthma pathophysiology. However, even though these newer techniques have shown appreciable clinical effects, their differences in mechanisms and mutual commonalities still deserve to be carefully explored. Therefore, in this review, we summarized the potential mechanisms of bronchial thermoplasty, targeted lung denervation, and cryoablation, and analyzed the relationship between these different methods. Based on available evidence, we speculated that the main pathway of chronic airway inflammation and other pathophysiologic processes in asthma is sensory nerve-related neurotransmitter release that forms a "neuro-immunity crosstalk" and amplifies airway neurogenic inflammation. The mechanism of completely blocking neuro-immunity crosstalk through dual-ablation of both efferent and afferent fibers may have a leading role in the clinical efficacy of interventional pulmonology in the treatment of asthma and deserves further investigation.
Collapse
Affiliation(s)
- Ximing Liao
- Department of Respiratory and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shaoyong Gao
- Department of Respiratory and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fengyang Xie
- Department of Hematology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kun Wang
- Department of Respiratory and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaodong Wu
- Department of Respiratory and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yin Wu
- Department of Respiratory and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wei Gao
- Department of Respiratory and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Muyun Wang
- Department of Respiratory and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiaxing Sun
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dongchen Liu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, China
| | - Wujian Xu
- Department of Respiratory and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qiang Li
- Department of Respiratory and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Hernández-Plata E, Cruz AA, Becerril C. Na V1.7 channels are expressed in the lower airways of the human respiratory tract. Respir Physiol Neurobiol 2023; 311:104034. [PMID: 36792043 DOI: 10.1016/j.resp.2023.104034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/01/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023]
Abstract
NaV channels expression have been reported in upper airways and tracheal smooth muscle cells controlling the generation and propagation of action potentials in the respiratory tract sensory neurons, but information about the presence of these proteins in the bronchioalveolar structures in human lungs was missing. The main objective covered in this work was to determine whether the NaV1.7 channels are expressed in lower airways, and to identify the cellular identities expressing these proteins. We detected high levels of the mRNA coding for NaV1.7 channels in isolated lung fibroblasts obtained from both normal lungs, and fibrotic lungs of patients with respiratory diseases. The protein was detected with two different antibodies in the bronchioalveolar tissue, alveolar endothelium, and capillary endothelium, in normal and pathologic lungs. These evidences are useful in the dissection of molecular mechanisms of pulmonary pathologies, and lead to consider the NaV1.7 channels as potential therapeutic targets for the treatment of pulmonary diseases.
Collapse
Affiliation(s)
- Everardo Hernández-Plata
- Investigador por México, Consejo Nacional de Ciencia y Tecnología, and Instituto Nacional de Medicina Genómica, Mexico City, Mexico.
| | - Ana Alfaro Cruz
- Departamento de Patología, Hospital General de México, "Dr. Eduardo Liceaga", Mexico City, Mexico
| | - Carina Becerril
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| |
Collapse
|
12
|
Changes of the airway reactivity in patients with rhinosinusitis. ACTA MEDICA MARTINIANA 2022. [DOI: 10.2478/acm-2022-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Rhinosinusitis is one of the most common conditions in primary and secondary care all over the world. Rhinosinusitis together with asthma and gastroesophageal reflux disease represent the most common causes of chronic cough. The relationship between rhinosinusitis and cough is still not completely understood, however, direct stimulation of nasal mucosa, upper airway cough syndrome, inflammation of the airways, and cough reflex sensitisation play the crucial role in the pathogenesis of chronic cough.
Collapse
|
13
|
Kim SH, Patil MJ, Hadley SH, Bahia PK, Butler SG, Madaram M, Taylor-Clark TE. Mapping of the Sensory Innervation of the Mouse Lung by Specific Vagal and Dorsal Root Ganglion Neuronal Subsets. eNeuro 2022; 9:ENEURO.0026-22.2022. [PMID: 35365503 PMCID: PMC9015009 DOI: 10.1523/eneuro.0026-22.2022] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/10/2022] [Accepted: 03/26/2022] [Indexed: 11/21/2022] Open
Abstract
The airways are densely innervated by sensory afferent nerves, whose activation regulates respiration and triggers defensive reflexes (e.g., cough, bronchospasm). Airway innervation is heterogeneous, and distinct afferent subsets have distinct functional responses. However, little is known of the innervation patterns of subsets within the lung. A neuroanatomical map is critical for understanding afferent activation under physiological and pathophysiological conditions. Here, we quantified the innervation of the mouse lung by vagal and dorsal root ganglion (DRG) sensory subsets defined by the expression of Pirt (all afferents), 5HT3 (vagal nodose afferents), Tac1 (tachykinergic afferents), and transient receptor potential vanilloid 1 channel (TRPV1; defensive/nociceptive afferents) using Cre-mediated reporter expression. We found that vagal afferents innervate almost all conducting airways and project into the alveolar region, whereas DRG afferents only innervate large airways. Of the two vagal ganglia, only nodose afferents project into the alveolar region, but both nodose and jugular afferents innervate conducting airways throughout the lung. Many afferents that project into the alveolar region express TRPV1. Few DRG afferents expressed TRPV1. Approximately 25% of blood vessels were innervated by vagal afferents (many were Tac1+). Approximately 10% of blood vessels had DRG afferents (some were Tac1+), but this was restricted to large vessels. Lastly, innervation of neuroepithelial bodies (NEBs) correlated with the cell number within the bodies. In conclusion, functionally distinct sensory subsets have distinct innervation patterns within the conducting airways, alveoli and blood vessels. Physiologic (e.g., stretch) and pathophysiological (e.g., inflammation, edema) stimuli likely vary throughout these regions. Our data provide a neuroanatomical basis for understanding afferent responses in vivo.
Collapse
Affiliation(s)
- Seol-Hee Kim
- Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - Mayur J Patil
- Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - Stephen H Hadley
- Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - Parmvir K Bahia
- Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - Shane G Butler
- Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - Meghana Madaram
- Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - Thomas E Taylor-Clark
- Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| |
Collapse
|
14
|
Taylor-Clark TE, Undem BJ. Neural control of the lower airways: Role in cough and airway inflammatory disease. HANDBOOK OF CLINICAL NEUROLOGY 2022; 188:373-391. [PMID: 35965034 PMCID: PMC10688079 DOI: 10.1016/b978-0-323-91534-2.00013-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Airway function is under constant neurophysiological control, in order to maximize airflow and gas exchange and to protect the airways from aspiration, damage, and infection. There are multiple sensory nerve subtypes, whose disparate functions provide a wide array of sensory information into the CNS. Activation of these subtypes triggers specific reflexes, including cough and alterations in autonomic efferent control of airway smooth muscle, secretory cells, and vasculature. Importantly, every aspect of these reflex arcs can be impacted and altered by local inflammation caused by chronic lung disease such as asthma, bronchitis, and infections. Excessive and inappropriate activity in sensory and autonomic nerves within the airways is thought to contribute to the morbidity and symptoms associated with lung disease.
Collapse
Affiliation(s)
- Thomas E Taylor-Clark
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Bradley J Undem
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
15
|
Taylor-Clark TE. Molecular identity, anatomy, gene expression and function of neural crest vs. placode-derived nociceptors in the lower airways. Neurosci Lett 2020; 742:135505. [PMID: 33197519 DOI: 10.1016/j.neulet.2020.135505] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022]
Abstract
The lower airways (larynx to alveoli) are protected by a complex array of neural networks that regulate respiration and airway function. Harmful stimuli trigger defensive responses such as apnea, cough and bronchospasm by activating a subpopulation of sensory afferent nerves (termed nociceptors) which are found throughout the airways. Airway nociceptive fibers are projected from the nodose vagal ganglia, the jugular vagal ganglia and the dorsal root ganglia, which are derived from distinct embryological sources: the former from the epibranchial placodes, the latter two from the neural crest. Embryological source determines nociceptive gene expression of receptors and neurotransmitters and recent evidence suggests that placode- and neural crest-derived nociceptors have distinct stimuli sensitivity, innervation patterns and functions. Improved understanding of the function of each subset in specific reflexes has substantial implications for therapeutic targeting of the neuronal components of airway disease such as asthma, viral infections and chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Thomas E Taylor-Clark
- Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd., Tampa, FL 33612, USA.
| |
Collapse
|
16
|
Abstract
Air pollutants pose a serious worldwide health hazard, causing respiratory and cardiovascular morbidity and mortality. Pollutants perturb the autonomic nervous system, whose function is critical to cardiopulmonary homeostasis. Recent studies suggest that pollutants can stimulate defensive sensory nerves within the cardiopulmonary system, thus providing a possible mechanism for pollutant-induced autonomic dysfunction. A better understanding of the mechanisms involved would likely improve the management and treatment of pollution-related disease.
Collapse
Affiliation(s)
- Thomas E Taylor-Clark
- Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| |
Collapse
|
17
|
Development of a Mouse Reporter Strain for the Purinergic P2X 2 Receptor. eNeuro 2020; 7:ENEURO.0203-20.2020. [PMID: 32669344 PMCID: PMC7418537 DOI: 10.1523/eneuro.0203-20.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/23/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
The ATP-sensitive P2X2 ionotropic receptor plays a critical role in a number of signal processes including taste and hearing, carotid body detection of hypoxia, the exercise pressor reflex and sensory transduction of mechanical stimuli in the airways and bladder. Elucidation of the role of P2X2 has been hindered by the lack of selective tools. In particular, detection of P2X2 using established pharmacological and biochemical techniques yields dramatically different expression patterns, particularly in the peripheral and central nervous systems. Here, we have developed a knock-in P2X2-cre mouse, which we crossed with a cre-sensitive tdTomato reporter mouse to determine P2X2 expression. P2X2 was found in more than 80% of nodose vagal afferent neurons, but not in jugular vagal afferent neurons. Reporter expression correlated in vagal neurons with sensitivity to α,β methylene ATP (αβmATP). P2X2 was expressed in 75% of petrosal afferents, but only 12% and 4% of dorsal root ganglia (DRG) and trigeminal afferents, respectively. P2X2 expression was limited to very few cell types systemically. Together with the central terminals of P2X2-expressing afferents, reporter expression in the CNS was mainly found in brainstem neurons projecting mossy fibers to the cerebellum, with little expression in the hippocampus or cortex. The structure of peripheral terminals of P2X2-expressing afferents was demonstrated in the tongue (taste buds), carotid body, trachea and esophagus. P2X2 was observed in hair cells and support cells in the cochlear, but not in spiral afferent neurons. This mouse strain provides a novel approach to the identification and manipulation of P2X2-expressing cell types.
Collapse
|
18
|
Driessen AK, McGovern AE, Behrens R, Moe AAK, Farrell MJ, Mazzone SB. A role for neurokinin 1 receptor expressing neurons in the paratrigeminal nucleus in bradykinin-evoked cough in guinea-pigs. J Physiol 2020; 598:2257-2275. [PMID: 32237239 DOI: 10.1113/jp279644] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/16/2020] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS Airway projecting sensory neurons arising from the jugular vagal ganglia terminate centrally in the brainstem paratrigeminal nucleus, synapsing upon neurons expressing the neurokinin 1 receptor. This study aimed to assess the involvement of paratrigeminal neurokinin 1 receptor neurons in the regulation of cough, breathing and airway defensive responses. Lesioning neurokinin 1 receptor expressing paratrigeminal neurons significantly reduced cough evoked by inhaled bradykinin but not inhaled ATP or tracheal mechanical stimulation. The reduction in bradykinin-evoked cough was not accompanied by changes in baseline or evoked respiratory variables (e.g. frequency, volume or timing), animal avoidance behaviours or the laryngeal apnoea reflex. These findings warrant further investigations into targeting the jugular ganglia and paratrigeminal nucleus as a therapy for treating cough in disease. ABSTRACT Jugular vagal ganglia sensory neurons innervate the large airways and are thought to mediate cough and associated perceptions of airway irritations to a range of chemical irritants. The central terminals of jugular sensory neurons lie within the brainstem paratrigeminal nucleus, where postsynaptic neurons can be differentiated based on the absence or presence of the neurokinin 1 (NK1) receptor. Therefore, in the present study, we set out to test the hypothesis that NK1 receptor expressing paratrigeminal neurons play a role in cough evoked by inhaled chemical irritants. To test this, we performed selective neurotoxin lesions of NK1 receptor expressing neurons in the paratrigeminal nucleus in guinea-pigs using substance P conjugated to saporin (SSP-SAP). Sham lesion control or SSP-SAP lesion guinea-pigs received nebulised challenges, with the pan-nociceptor stimulant bradykinin or the nodose ganglia specific stimulant adenosine 5'-triphosphate (ATP), in conscious whole-body plethysmography to study cough and associated behaviours. Laryngeal apnoea reflexes and cough evoked by mechanical stimulation of the trachea were additionally investigated in anaesthetised guinea-pigs. SSP-SAP significantly and selectively reduced the number of NK1 receptor expressing neurons in the paratrigeminal nucleus. This was associated with a significant reduction in bradykinin-evoked cough, but not ATP-evoked cough, mechanical cough or laryngeal apnoeic responses. These data provide further evidence for a role of jugular vagal pathways in cough, and additionally suggest an involvement of NK1 receptor expressing neurons in the paratrigeminal nucleus. Therefore, this neural pathway may provide novel therapeutic opportunities to treat conditions of chronic cough.
Collapse
Affiliation(s)
- Alexandria K Driessen
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Alice E McGovern
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Robert Behrens
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Aung Aung Kywe Moe
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Michael J Farrell
- Department of Medical Imaging and Radiation Sciences, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Stuart B Mazzone
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
19
|
Koskela HO, Nurmi HM, Purokivi MK. Cough-provocation tests with hypertonic aerosols. ERJ Open Res 2020; 6:00338-2019. [PMID: 32337214 PMCID: PMC7167210 DOI: 10.1183/23120541.00338-2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/23/2020] [Indexed: 12/19/2022] Open
Abstract
Recent advances in cough research suggest a more widespread use of cough-provocation tests to demonstrate the hypersensitivity of the cough reflex arc. Cough-provocation tests with capsaicin or acidic aerosols have been used for decades in scientific studies. Several factors have hindered their use in everyday clinical work: i.e. lack of standardisation, the need for special equipment and the limited clinical importance of the response. Cough-provocation tests with hypertonic aerosols (CPTHAs) involve provocations with hypertonic saline, hypertonic histamine, mannitol and hyperpnoea. They probably act via different mechanisms than capsaicin and acidic aerosols. They are safe and well tolerated and the response is repeatable. CPTHAs can assess not only the sensitivity of the cough reflex arc but also the tendency of the airway smooth muscles to constrict (airway hyper-responsiveness). They can differentiate between subjects with asthma or chronic cough and healthy subjects. The responsiveness to CPTHAs correlates with the cough-related quality of life among asthmatic subjects. Furthermore, the responsiveness to them decreases during treatment of chronic cough. A severe response to CPTHAs may indicate poor long-term prognosis in chronic cough. The mannitol test has been stringently standardised, is easy to administer with simple equipment, and has regulatory approval for the assessment of airway hyper-responsiveness. Manual counting of coughs during a mannitol challenge would allow the measurement of the function of the cough reflex arc as a part of clinical routine. Cough-provocation tests with hypertonic aerosols offer the possibility to measure the function of the cough reflex arc even in everyday clinical workhttp://bit.ly/2RTOfMI
Collapse
Affiliation(s)
- Heikki O Koskela
- Unit for Medicine and Clinical Research, Pulmonary Division, Kuopio University Hospital, Kuopio, Finland.,School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Hanna M Nurmi
- Unit for Medicine and Clinical Research, Pulmonary Division, Kuopio University Hospital, Kuopio, Finland.,School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Minna K Purokivi
- Unit for Medicine and Clinical Research, Pulmonary Division, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
20
|
Mapping of Sensory Nerve Subsets within the Vagal Ganglia and the Brainstem Using Reporter Mice for Pirt, TRPV1, 5-HT3, and Tac1 Expression. eNeuro 2020; 7:ENEURO.0494-19.2020. [PMID: 32060036 PMCID: PMC7294455 DOI: 10.1523/eneuro.0494-19.2020] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/09/2020] [Accepted: 01/30/2020] [Indexed: 11/21/2022] Open
Abstract
Vagal afferent sensory nerves, originating in jugular and nodose ganglia, are composed of functionally distinct subsets whose activation evokes distinct thoracic and abdominal reflex responses. We used Cre-expressing mouse strains to identify specific vagal afferent populations and map their central projections within the brainstem. We show that Pirt is expressed in virtually all vagal afferents; whereas, 5-HT3 is expressed only in nodose neurons, with little expression in jugular neurons. Transient receptor potential vanilloid 1 (TRPV1), the capsaicin receptor, is expressed in a subset of small nodose and jugular neurons. Tac1, the gene for tachykinins, is expressed predominantly in jugular neurons, some of which also express TRPV1. Vagal fibers project centrally to the nucleus tractus solitarius (nTS), paratrigeminal complex, area postrema, and to a limited extent the dorsal motor nucleus of the vagus. nTS subnuclei preferentially receive projections by specific afferent subsets, with TRPV1+ fibers terminating in medial and dorsal regions predominantly caudal of obex, whereas TRPV1− fibers terminate in ventral and lateral regions throughout the rostral–caudal aspect of the medulla. Many vagal Tac1+ afferents (mostly derived from the jugular ganglion) terminate in the nTS. The paratrigeminal complex was the target of multiple vagal afferent subsets. Importantly, lung-specific TRPV1+ and Tac1+ afferent terminations were restricted to the caudal medial nTS, with no innervation of other medulla regions. In summary, this study identifies the specific medulla regions innervated by vagal afferent subsets. The distinct terminations provide a neuroanatomic substrate for the diverse range of reflexes initiated by vagal afferent activation.
Collapse
|
21
|
Pecova T, Kocan I, Vysehradsky R, Pecova R. Itch and Cough - Similar Role of Sensory Nerves in Their Pathogenesis. Physiol Res 2020; 69:S43-S54. [PMID: 32228011 DOI: 10.33549/physiolres.934403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Itch is the most common chief complaint in patients visiting dermatology clinics and is analogous to cough and also sneeze of the lower and upper respiratory tract, all three of which are host actions trying to clear noxious stimuli. The pathomechanisms of these symptoms are not completely determined. The itch can originate from a variety of etiologies. Itch originates following the activation of peripheral sensory nerve endings following damage or exposure to inflammatory mediators. More than one sensory nerve subtype is thought to subservepruriceptive itch which includes both unmyelinated C-fibers and thinly myelinated Adelta nerve fibers. There are a lot of mediators capable of stimulating these afferent nerves leading to itch. Cough and itch pathways are mediated by small-diameter sensory fibers. These cough and itch sensory fibers release neuropeptides upon activation, which leads to inflammation of the nerves. The inflammation is involved in the development of chronic conditions of itch and cough. The aim of this review is to point out the role of sensory nerves in the pathogenesis of cough and itching. The common aspects of itch and cough could lead to new thoughts and perspectives in both fields.
Collapse
Affiliation(s)
- T Pecova
- Clinic of Dermatovenerology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Hospital in Martin, Martin, Slovak
| | | | | | | |
Collapse
|
22
|
Transcriptional Profiling of Individual Airway Projecting Vagal Sensory Neurons. Mol Neurobiol 2019; 57:949-963. [DOI: 10.1007/s12035-019-01782-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/12/2019] [Indexed: 12/11/2022]
|
23
|
Comparison of mannitol and citric acid cough provocation tests. Respir Med 2019; 158:14-20. [PMID: 31542680 DOI: 10.1016/j.rmed.2019.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 11/23/2022]
Abstract
RATIONALE Citric acid has been used as a cough provocation test for decades. However, the methods of administration have not been standardized. Inhaled mannitol is a novel cough provocation test, which has regulatory approval and can be performed utilizing a simple disposable inhaler in a standardized manner. OBJECTIVE To compare the mannitol and citric acid cough provocation tests with respect to their ability to identify subjects with chronic cough and their tolerability. METHODS Subjects with chronic cough (n = 36) and controls (n = 25) performed provocation tests with mannitol and citric acid. Both tests were video recorded. Cough sensitivity was expressed as coughs-to-dose ratios (CDR) and the cumulative doses to mannitol or concentration to citric acid evoking 5 coughs (C5). Forced expiratory volume in 1 s (FEV1), visual analogue scales (VAS), test completion rates and the total cough frequencies were analysed. RESULTS Mannitol and citric acid CDR both effectively separated those with cough and the control subjects (AUC 0.847 and 0.803, respectively) as did C5 (AUC 0.823 and 0.763, respectively). There was a good correlation between the cough sensitivity provoked by the two stimuli, either expressed as CDR (r = 0.65, p < 0.001) or C5 (r = 0.53, p = 0.001). Both tests were similarly tolerated in terms of VAS, although more patients discontinued the mannitol test early, primarily due to cough. CONCLUSIONS Mannitol and citric acid tests correlated well, equally identified subjects with chronic cough and their tolerability was similar. The feasibility issues, strict standardisation and regulatory approval may favour mannitol to be used in clinical cough research.
Collapse
|
24
|
Driessen AK. Vagal Afferent Processing by the Paratrigeminal Nucleus. Front Physiol 2019; 10:1110. [PMID: 31555145 PMCID: PMC6722180 DOI: 10.3389/fphys.2019.01110] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/12/2019] [Indexed: 12/26/2022] Open
Abstract
The paratrigeminal nucleus is an obscure region in the dorsal lateral medulla, which has been best characterized as a collection of interstitial cells located in the dorsal tip of the spinal trigeminal tract. The paratrigeminal nucleus receives afferent input from the vagus, trigeminal, spinal, and glossopharyngeal nerves, which contribute to its long-known roles in the baroreceptor reflex and nociceptive processing. More recently, studies have shown that this region is also involved in the processing of airway-derived sensory information. Notably, these studies highlight an underappreciated complexity in the neuronal content and circuit connectivity of the paratrigeminal nucleus. However, much remains to be understood about how paratrigeminal processing of vagal afferents is altered in disease. The aim of the present review is to provide an update of the current understanding of vagal afferent processing in the paratrigeminal nucleus and to explore how dysregulation at this site may contribute to vagal sensory neural dysfunction during disease.
Collapse
Affiliation(s)
- Alexandria K Driessen
- School of Biomedical Science, Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
25
|
Kollarik M, Sun H, Herbstsomer RA, Ru F, Kocmalova M, Meeker SN, Undem BJ. Different role of TTX-sensitive voltage-gated sodium channel (Na V 1) subtypes in action potential initiation and conduction in vagal airway nociceptors. J Physiol 2019; 596:1419-1432. [PMID: 29435993 DOI: 10.1113/jp275698] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/23/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The action potential initiation in the nerve terminals and its subsequent conduction along the axons of afferent nerves are not necessarily dependent on the same voltage-gated sodium channel (NaV 1) subunits. The action potential initiation in jugular C-fibres within airway tissues is not blocked by TTX; nonetheless, conduction of action potentials along the vagal axons of these nerves is often dependent on TTX-sensitive channels. This is not the case for nodose airway Aδ-fibres and C-fibres, where both action potential initiation and conduction is abolished by TTX or selective NaV 1.7 blockers. The difference between the initiation of action potentials within the airways vs. conduction along the axons should be considered when developing NaV 1 blocking drugs for topical application to the respiratory tract. ABSTRACT The action potential (AP) initiation in the nerve terminals and its subsequent AP conduction along the axons do not necessarily depend on the same subtypes of voltage-gated sodium channels (NaV 1s). We evaluated the role of TTX-sensitive and TTX-resistant NaV 1s in vagal afferent nociceptor nerves derived from jugular and nodose ganglia innervating the respiratory system. Single cell RT-PCR was performed on vagal afferent neurons retrogradely labelled from the guinea pig trachea. Almost all of the jugular neurons expressed the TTX-sensitive channel NaV 1.7 along with TTX-resistant NaV 1.8 and NaV 1.9. Tracheal nodose neurons also expressed NaV 1.7 but, less frequently, NaV 1.8 and NaV 1.9. NaV 1.6 were expressed in ∼40% of the jugular and 25% of nodose tracheal neurons. Other NaV 1 α subunits were only rarely expressed. Single fibre recordings were made from the vagal nodose and jugular nerve fibres innervating the trachea or lung in the isolated perfused vagally-innervated preparations that allowed for selective drug delivery to the nerve terminal compartment (AP initiation) or to the desheathed vagus nerve (AP conduction). AP initiation in jugular C-fibres was unaffected by TTX, although it was inhibited by NaV 1.8 blocker (PF-01247324) and abolished by combination of TTX and PF-01247324. However, AP conduction in the majority of jugular C-fibres was abolished by TTX. By contrast, both AP initiation and conduction in nodose nociceptors was abolished by TTX or selective NaV 1.7 blockers. Distinction between the effect of a drug with respect to inhibiting AP in the nerve terminals within the airways vs. at conduction sites along the vagus nerve is relevant to therapeutic strategies involving inhaled NaV 1 blocking drugs.
Collapse
Affiliation(s)
- M Kollarik
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pathophysiology, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - H Sun
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - R A Herbstsomer
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - F Ru
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - M Kocmalova
- Department of Pharmacology, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - S N Meeker
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - B J Undem
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
26
|
Tsujimura T, Ueha R, Yoshihara M, Takei E, Nagoya K, Shiraishi N, Magara J, Inoue M. Involvement of the epithelial sodium channel in initiation of mechanically evoked swallows in anaesthetized rats. J Physiol 2019; 597:2949-2963. [PMID: 31032906 DOI: 10.1113/jp277895] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 04/25/2019] [Indexed: 12/17/2022] Open
Abstract
KEY POINTS Afferents carried by the superior laryngeal nerve play a primary role in the initiation of laryngeal mechanically evoked swallows in anaesthetized rats. Amiloride and its analogues inhibit swallowing evoked by mechanical stimulation, but not swallowing evoked by chemical and electrical stimulation. The epithelial sodium channel is probably involved in the initiation of laryngeal mechanically evoked swallows. ABSTRACT The swallowing reflex plays a critical role in airway protection. Because impaired laryngeal mechanosensation is associated with food bolus aspiration, it is important to know how the laryngeal sensory system regulates swallowing initiation. This study was performed to clarify the neuronal mechanism of mechanically evoked swallows. Urethane-anaesthetized Sprague-Dawley male rats were used. A swallow was identified by activation of the suprahyoid and thyrohyoid muscles on electromyography. The swallowing threshold was measured by von Frey filament and electrical stimulation of the larynx. The number of swallows induced by upper airway distension and capsaicin application (0.03 nmol, 3 μl) to the vocal folds was counted. The effects of topical application (0.3-30 nmol, 3 μl) of the epithelial sodium channel (ENaC) blocker amiloride and its analogues (benzamil and dimethylamiloride), acid-sensing ion channel (ASIC) inhibitors (mambalgine-1 and diminazene) and gadolinium to the laryngeal mucosa on swallowing initiation were evaluated. A nerve transection study indicated that afferents carried by the superior laryngeal nerve play a primary role in the initiation of laryngeal mechanically evoked swallows. The mechanical threshold of swallowing was increased in a dose-dependent manner by amiloride and its analogues and gadolinium, but not by ASIC inhibitors. The number of swallows by upper airway distension was significantly decreased by benzamil application. However, the initiation of swallows evoked by capsaicin and electrical stimulation was not affected by benzamil application. We speculate that the ENaC is involved in the initiation of laryngeal mechanically evoked swallows.
Collapse
Affiliation(s)
- Takanori Tsujimura
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Rumi Ueha
- Department of Otolaryngology, University of Tokyo, Tokyo, 113-8655, Japan
| | - Midori Yoshihara
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Eri Takei
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Kouta Nagoya
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Naru Shiraishi
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Jin Magara
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | - Makoto Inoue
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| |
Collapse
|
27
|
Regulation of Cough by Voltage-Gated Sodium Channels in Airway Sensory Nerves. ACTA MEDICA MARTINIANA 2019. [DOI: 10.2478/acm-2018-0012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Abstract
Chronic cough is a significant clinical problem in many patients. Current cough suppressant therapies are largely ineffective and have many dangerous adverse effects. Therefore, the identification of novel therapeutic targets and strategies for chronic cough treatment may lead to development of novel effective antitussive therapies with fewer adverse effects. The experimental research in the area of airway sensory nerves suggests that there are two main vagal afferent nerve subtypes that can directly activate cough – extrapulmonary airway C-fibres and Aδ-fibres (described as cough receptors) innervating the trachea. There are different receptors on the vagal nerve terminals that can trigger coughing, such as TRP channels and P2X2/3 receptors. However, in many patients with chronic respiratory diseases multiple activation of these receptors could be involved and it is also difficult to target these receptors. For that reason, a strategy that would inhibit cough-triggering nerve afferents regardless of activated receptors would be of great benefit. In recent years huge progress in understanding of voltage-gated sodium channels (NaVs) leads to a hypothesis that selective targeting of NaVs in airways may represent an effective treatment of pathological cough. The NaVs (NaV1.1 – NaV1.9) are essential for initiation and conduction of action potentials in these nerve fibres. Effective blocking of NaVs will prevent communication between airways and central nervous system and that would inhibit provoked cough irrespective to stimuli. This review provides an overview of airway afferent nerve subtypes that have been described in respiratory tract of human and in animal models. Moreover, the review highlights the current knowledge about cough, the sensory nerves involved in cough, and the voltage-gated sodium channels as a novel neural target in regulation of cough.
Collapse
|
28
|
Spinou A. Non-pharmacological techniques for the extremes of the cough spectrum. Respir Physiol Neurobiol 2018. [DOI: 10.1016/j.resp.2018.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
Driessen AK, Farrell MJ, Dutschmann M, Stanic D, McGovern AE, Mazzone SB. Reflex regulation of breathing by the paratrigeminal nucleus via multiple bulbar circuits. Brain Struct Funct 2018; 223:4005-4022. [PMID: 30116890 DOI: 10.1007/s00429-018-1732-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/04/2018] [Indexed: 01/06/2023]
Abstract
Sensory neurons of the jugular vagal ganglia innervate the respiratory tract and project to the poorly studied medullary paratrigeminal nucleus. In the present study, we used neuroanatomical tracing, pharmacology and physiology in guinea pig to investigate the paratrigeminal neural circuits mediating jugular ganglia-evoked respiratory reflexes. Retrogradely traced laryngeal jugular ganglia neurons were largely (> 60%) unmyelinated and expressed the neuropeptide substance P and calcitonin gene-related peptide, although a population (~ 30%) of larger diameter myelinated jugular neurons was defined by the expression of vGlut1. Within the brainstem, vagal afferent terminals were confined to the caudal two-thirds of the paratrigeminal nucleus. Electrical stimulation of the laryngeal mucosa evoked a vagally mediated respiratory slowing that was mimicked by laryngeal capsaicin application. These laryngeal reflexes were modestly reduced by neuropeptide receptor antagonist microinjections into the paratrigeminal nucleus, but abolished by ionotropic glutamate receptor antagonists. D,L-Homocysteic acid microinjections into the paratrigeminal nucleus mimicked the laryngeal-evoked respiratory slowing, whereas capsaicin microinjections evoked a persistent tachypnoea that was insensitive to glutamatergic inhibition but abolished by neuropeptide receptor antagonists. Extensive projections from paratrigeminal neurons were anterogradely traced throughout the pontomedullary respiratory column. Dual retrograde tracing from pontine and ventrolateral medullary termination sites, as well as immunohistochemical staining for calbindin and neurokinin 1 receptors, supported the existence of different subpopulations of paratrigeminal neurons. Collectively, these data provide anatomical and functional evidence for at least two types of post-synaptic paratrigeminal neurons involved in respiratory reflexes, highlighting an unrecognised complexity in sensory processing in this region of the brainstem.
Collapse
Affiliation(s)
- Alexandria K Driessen
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Michael J Farrell
- Department of Medical Imaging and Radiation Sciences, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Mathias Dutschmann
- The Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Davor Stanic
- The Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Alice E McGovern
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Stuart B Mazzone
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
30
|
Stanford KR, Taylor-Clark TE. Mitochondrial modulation-induced activation of vagal sensory neuronal subsets by antimycin A, but not CCCP or rotenone, correlates with mitochondrial superoxide production. PLoS One 2018; 13:e0197106. [PMID: 29734380 PMCID: PMC5937758 DOI: 10.1371/journal.pone.0197106] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/26/2018] [Indexed: 11/19/2022] Open
Abstract
Inflammation causes nociceptive sensory neuron activation, evoking debilitating symptoms and reflexes. Inflammatory signaling pathways are capable of modulating mitochondrial function, resulting in reactive oxygen species (ROS) production, mitochondrial depolarization and calcium release. Previously we showed that mitochondrial modulation with antimycin A, a complex III inhibitor, selectively stimulated nociceptive bronchopulmonary C-fibers via the activation of transient receptor potential (TRP) ankyrin 1 (A1) and vanilloid 1 (V1) cation channels. TRPA1 is ROS-sensitive, but there is little evidence that TRPV1 is activated by ROS. Here, we used dual imaging of dissociated vagal neurons to investigate the correlation of mitochondrial superoxide production (mitoSOX) or mitochondrial depolarization (JC-1) with cytosolic calcium (Fura-2AM), following mitochondrial modulation by antimycin A, rotenone (complex I inhibitor) and carbonyl cyanide m-chlorophenyl hydrazone (CCCP, mitochondrial uncoupling agent). Mitochondrial modulation by all agents selectively increased cytosolic calcium in a subset of TRPA1/TRPV1-expressing (A1/V1+) neurons. There was a significant correlation between antimycin A-induced calcium responses and mitochondrial superoxide in wild-type 'responding' A1/V1+ neurons, which was eliminated in TRPA1-/- neurons, but not TRPV1-/- neurons. Nevertheless, antimycin A-induced superoxide production did not always increase calcium in A1/V1+ neurons, suggesting a critical role of an unknown factor. CCCP caused both superoxide production and mitochondrial depolarization but neither correlated with calcium fluxes in A1/V1+ neurons. Rotenone-induced calcium responses in 'responding' A1/V1+ neurons correlated with mitochondrial depolarization but not superoxide production. Our data are consistent with the hypothesis that mitochondrial dysfunction causes calcium fluxes in a subset of A1/V1+ neurons via ROS-dependent and ROS-independent mechanisms.
Collapse
Affiliation(s)
- Katherine R. Stanford
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States of America
| | - Thomas E. Taylor-Clark
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States of America
| |
Collapse
|
31
|
Lee LY, Lin RL, Khosravi M, Xu F. Reflex bronchoconstriction evoked by inhaled nicotine aerosol in guinea pigs: role of the nicotinic acetylcholine receptor. J Appl Physiol (1985) 2018; 125:117-123. [PMID: 29369741 DOI: 10.1152/japplphysiol.01039.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inhaled cigarette smoke stimulated vagal bronchopulmonary C fibers via an action of nicotine on neuronal nicotinic acetylcholine receptor (nAChR). Recent studies have reported that nicotine at high concentrations can also activate the transient receptor potential ankyrin 1 receptor (TRPA1) expressed in these sensory nerves. This study was performed to characterize the airway response to inhaled nicotine aerosol and to investigate the relative roles of nAChR and TRPA1 in this response. Guinea pigs were anesthetized and mechanically ventilated; one tidal volume of nicotine aerosol (2% solution) was diluted by an equal volume of air and delivered directly into the lung via a tracheal cannula in a single breath. Our results showed the following: 1) Inhalation of nicotine aerosol triggered an immediate and pronounced bronchoconstriction; the increase in total pulmonary resistance reached a peak of 588 ± 205% (mean ± SE) in 10-40 s, which gradually returned to baseline after 1-5 min. 2) Pretreatment with either atropine (iv) or mecamylamine (aerosol) almost completely abolished the nicotine-induced bronchoconstriction; the mecamylamine pretreatment did not block the bronchoconstriction and bradycardia evoked by electrical stimulation of the distal end of one sectioned vagus nerve, indicating its minimal systemic effects. 3) Pretreatment with HC-030031, a selective TRPA1 antagonist, abolished the bronchoconstriction induced by allyl isothiocyanate, a selective TRPA1 agonist, but did not attenuate the nicotine-evoked bronchoconstriction. In conclusion, inhalation of a single breath of nicotine aerosol evoked acute bronchoconstriction mediated through the cholinergic reflex pathway. This reflex response was triggered by activation of nAChR, but not TRPA1, located in airway sensory nerves. NEW & NOTEWORTHY Recent reports revealed that nicotine at high concentration activated transient receptor potential ankyrin 1 receptor (TRPA1) expressed in vagal bronchopulmonary sensory nerves. This study showed that inhalation of a single breath of nicotine aerosol consistently evoked acute bronchoconstriction that was mediated through the cholinergic reflex pathway and triggered by activation of nicotinic acetylcholine receptor, but not TRPA1, located in these nerves. This is new and important information considering the recent rapid and alarming rise in the prevalence of e-cigarette use for nicotine inhalation.
Collapse
Affiliation(s)
- L-Y Lee
- Department of Physiology, University of Kentucky Medical Center , Lexington, Kentucky
| | - R-L Lin
- Department of Physiology, University of Kentucky Medical Center , Lexington, Kentucky
| | - M Khosravi
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Kentucky Medical Center , Lexington, Kentucky
| | - F Xu
- Lovelace Respiratory Research Institute , Albuquerque, New Mexico
| |
Collapse
|
32
|
Chou YL, Mori N, Canning BJ. Opposing effects of bronchopulmonary C-fiber subtypes on cough in guinea pigs. Am J Physiol Regul Integr Comp Physiol 2017; 314:R489-R498. [PMID: 29187382 DOI: 10.1152/ajpregu.00313.2017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We have addressed the hypothesis that the opposing effects of bronchopulmonary C-fiber activation on cough are attributable to the activation of C-fiber subtypes. Coughing was evoked in anesthetized guinea pigs by citric acid (0.001-2 M) applied topically in 100-µl aliquots to the tracheal mucosa. In control preparations, citric acid evoked 10 ± 1 coughs cumulatively. Selective activation of the pulmonary C fibers arising from the nodose ganglia with either aerosols or continuous intravenous infusion of adenosine or the 5-HT3 receptor-selective agonist 2-methyl-5-HT nearly abolished coughing evoked subsequently by topical citric acid challenge. Delivering adenosine or 2-methyl-5-HT directly to the tracheal mucosa (where few if any nodose C fibers terminate) was without effect on citric acid-evoked cough. These actions of pulmonary administration of adenosine and 2-methyl-5-HT were accompanied by an increase in respiratory rate, but it is unlikely that the change in respiratory pattern caused the decrease in coughing, as the rapidly adapting receptor stimulant histamine also produced a marked tachypnea but was without effect on cough. In awake guinea pigs, adenosine failed to evoke coughing but reduced coughing induced by the nonselective C-fiber stimulant capsaicin. We conclude that bronchopulmonary C-fiber subtypes in guinea pigs have opposing effects on cough, with airway C fibers arising from the jugular ganglia initiating and/or sensitizing the cough reflex and the intrapulmonary C fibers arising from the nodose ganglia actively inhibiting cough upon activation.
Collapse
Affiliation(s)
- Yang-Ling Chou
- Johns Hopkins Asthma and Allergy Center , Baltimore, Maryland
| | - Nanako Mori
- Johns Hopkins Asthma and Allergy Center , Baltimore, Maryland
| | | |
Collapse
|
33
|
Sex differences in cough reflex. Respir Physiol Neurobiol 2017; 245:122-129. [DOI: 10.1016/j.resp.2016.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/07/2016] [Accepted: 12/08/2016] [Indexed: 12/31/2022]
|
34
|
Mazzone SB, Undem BJ. Vagal Afferent Innervation of the Airways in Health and Disease. Physiol Rev 2017; 96:975-1024. [PMID: 27279650 DOI: 10.1152/physrev.00039.2015] [Citation(s) in RCA: 378] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Vagal sensory neurons constitute the major afferent supply to the airways and lungs. Subsets of afferents are defined by their embryological origin, molecular profile, neurochemistry, functionality, and anatomical organization, and collectively these nerves are essential for the regulation of respiratory physiology and pulmonary defense through local responses and centrally mediated neural pathways. Mechanical and chemical activation of airway afferents depends on a myriad of ionic and receptor-mediated signaling, much of which has yet to be fully explored. Alterations in the sensitivity and neurochemical phenotype of vagal afferent nerves and/or the neural pathways that they innervate occur in a wide variety of pulmonary diseases, and as such, understanding the mechanisms of vagal sensory function and dysfunction may reveal novel therapeutic targets. In this comprehensive review we discuss historical and state-of-the-art concepts in airway sensory neurobiology and explore mechanisms underlying how vagal sensory pathways become dysfunctional in pathological conditions.
Collapse
Affiliation(s)
- Stuart B Mazzone
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, Australia; and Department of Medicine, Johns Hopkins University Medical School, Asthma & Allergy Center, Baltimore, Maryland
| | - Bradley J Undem
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, Australia; and Department of Medicine, Johns Hopkins University Medical School, Asthma & Allergy Center, Baltimore, Maryland
| |
Collapse
|
35
|
Tsujimura T, Sakai S, Suzuki T, Ujihara I, Tsuji K, Magara J, Canning BJ, Inoue M. Central inhibition of initiation of swallowing by systemic administration of diazepam and baclofen in anaesthetized rats. Am J Physiol Gastrointest Liver Physiol 2017; 312:G498-G507. [PMID: 28254772 PMCID: PMC6347068 DOI: 10.1152/ajpgi.00299.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 02/15/2017] [Accepted: 02/26/2017] [Indexed: 01/31/2023]
Abstract
Dysphagia is caused not only by neurological and/or structural damage but also by medication. We hypothesized memantine, dextromethorphan, diazepam, and baclofen, all commonly used drugs with central sites of action, may regulate swallowing function. Swallows were evoked by upper airway (UA)/pharyngeal distension, punctate mechanical stimulation using a von Frey filament, capsaicin or distilled water (DW) applied topically to the vocal folds, and electrical stimulation of a superior laryngeal nerve (SLN) in anesthetized rats and were documented by recording electromyographic activation of the suprahyoid and thyrohyoid muscles and by visualizing laryngeal elevation. The effects of intraperitoneal or topical administration of each drug on swallowing function were studied. Systemic administration of diazepam and baclofen, but not memantine or dextromethorphan, inhibited swallowing evoked by mechanical, chemical, and electrical stimulation. Both benzodiazepines and GABAA receptor antagonists diminished the inhibitory effects of diazepam, whereas a GABAB receptor antagonist diminished the effects of baclofen. Topically applied diazepam or baclofen had no effect on swallowing. These data indicate that diazepam and baclofen act centrally to inhibit swallowing in anesthetized rats.NEW & NOTEWORTHY Systemic administration of diazepam and baclofen, but not memantine or dextromethorphan, inhibited swallowing evoked by mechanical, chemical, and electrical stimulation. Both benzodiazepines and GABAA receptor antagonists diminished the inhibitory effects of diazepam, whereas a GABAB receptor antagonist diminished the effects of baclofen. Topical applied diazepam or baclofen was without effect on swallowing. Diazepam and baclofen act centrally to inhibit swallowing in anesthetized rats.
Collapse
Affiliation(s)
- Takanori Tsujimura
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; and
| | - Shogo Sakai
- 1Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; and
| | - Taku Suzuki
- 1Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; and
| | - Izumi Ujihara
- 1Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; and
| | - Kojun Tsuji
- 1Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; and
| | - Jin Magara
- 1Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; and
| | | | - Makoto Inoue
- 1Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; and
| |
Collapse
|
36
|
Audrit KJ, Delventhal L, Aydin Ö, Nassenstein C. The nervous system of airways and its remodeling in inflammatory lung diseases. Cell Tissue Res 2017; 367:571-590. [PMID: 28091773 DOI: 10.1007/s00441-016-2559-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 12/13/2016] [Indexed: 12/20/2022]
Abstract
Inflammatory lung diseases are associated with bronchospasm, cough, dyspnea and airway hyperreactivity. The majority of these symptoms cannot be primarily explained by immune cell infiltration. Evidence has been provided that vagal efferent and afferent neurons play a pivotal role in this regard. Their functions can be altered by inflammatory mediators that induce long-lasting changes in vagal nerve activity and gene expression in both peripheral and central neurons, providing new targets for treatment of pulmonary inflammatory diseases.
Collapse
Affiliation(s)
- Katrin Julia Audrit
- Institute of Anatomy and Cell Biology, Aulweg 123, 35385, Giessen, Germany.,German Center for Lung Research (DZL), Giessen, Germany
| | - Lucas Delventhal
- Institute of Anatomy and Cell Biology, Aulweg 123, 35385, Giessen, Germany.,German Center for Lung Research (DZL), Giessen, Germany
| | - Öznur Aydin
- Institute of Anatomy and Cell Biology, Aulweg 123, 35385, Giessen, Germany.,German Center for Lung Research (DZL), Giessen, Germany
| | - Christina Nassenstein
- Institute of Anatomy and Cell Biology, Aulweg 123, 35385, Giessen, Germany. .,German Center for Lung Research (DZL), Giessen, Germany.
| |
Collapse
|
37
|
Hewitt MM, Adams G, Mazzone SB, Mori N, Yu L, Canning BJ. Pharmacology of Bradykinin-Evoked Coughing in Guinea Pigs. J Pharmacol Exp Ther 2016; 357:620-8. [PMID: 27000801 PMCID: PMC4885511 DOI: 10.1124/jpet.115.230383] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 03/18/2016] [Indexed: 12/20/2022] Open
Abstract
Bradykinin has been implicated as a mediator of the acute pathophysiological and inflammatory consequences of respiratory tract infections and in exacerbations of chronic diseases such as asthma. Bradykinin may also be a trigger for the coughing associated with these and other conditions. We have thus set out to evaluate the pharmacology of bradykinin-evoked coughing in guinea pigs. When inhaled, bradykinin induced paroxysmal coughing that was abolished by the bradykinin B2 receptor antagonist HOE 140. These cough responses rapidly desensitized, consistent with reports of B2 receptor desensitization. Bradykinin-evoked cough was potentiated by inhibition of both neutral endopeptidase and angiotensin-converting enzyme (with thiorphan and captopril, respectively), but was largely unaffected by muscarinic or thromboxane receptor blockade (atropine and ICI 192605), cyclooxygenase, or nitric oxide synthase inhibition (meclofenamic acid and N(G)-nitro-L-arginine). Calcium influx studies in bronchopulmonary vagal afferent neurons dissociated from vagal sensory ganglia indicated that the tachykinin-containing C-fibers arising from the jugular ganglia mediate bradykinin-evoked coughing. Also implicating the jugular C-fibers was the observation that simultaneous blockade of neurokinin2 (NK2; SR48968) and NK3 (SR142801 or SB223412) receptors nearly abolished the bradykinin-evoked cough responses. The data suggest that bradykinin induces coughing in guinea pigs by activating B2 receptors on bronchopulmonary C-fibers. We speculate that therapeutics targeting the actions of bradykinin may prove useful in the treatment of cough.
Collapse
Affiliation(s)
- Matthew M Hewitt
- The Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland (G.A., N.M., B.J.C.); University of Pennsylvania, Philadelphia, Pennsylvania (M.M.H.); University of Queensland, Australia (S.B.M.); and Department of Respiratory Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai, China (L.Y.)
| | - Gregory Adams
- The Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland (G.A., N.M., B.J.C.); University of Pennsylvania, Philadelphia, Pennsylvania (M.M.H.); University of Queensland, Australia (S.B.M.); and Department of Respiratory Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai, China (L.Y.)
| | - Stuart B Mazzone
- The Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland (G.A., N.M., B.J.C.); University of Pennsylvania, Philadelphia, Pennsylvania (M.M.H.); University of Queensland, Australia (S.B.M.); and Department of Respiratory Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai, China (L.Y.)
| | - Nanako Mori
- The Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland (G.A., N.M., B.J.C.); University of Pennsylvania, Philadelphia, Pennsylvania (M.M.H.); University of Queensland, Australia (S.B.M.); and Department of Respiratory Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai, China (L.Y.)
| | - Li Yu
- The Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland (G.A., N.M., B.J.C.); University of Pennsylvania, Philadelphia, Pennsylvania (M.M.H.); University of Queensland, Australia (S.B.M.); and Department of Respiratory Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai, China (L.Y.)
| | - Brendan J Canning
- The Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland (G.A., N.M., B.J.C.); University of Pennsylvania, Philadelphia, Pennsylvania (M.M.H.); University of Queensland, Australia (S.B.M.); and Department of Respiratory Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai, China (L.Y.)
| |
Collapse
|
38
|
Zaccone EJ, Lieu T, Muroi Y, Potenzieri C, Undem BE, Gao P, Han L, Canning BJ, Undem BJ. Parainfluenza 3-Induced Cough Hypersensitivity in the Guinea Pig Airways. PLoS One 2016; 11:e0155526. [PMID: 27213574 PMCID: PMC4877001 DOI: 10.1371/journal.pone.0155526] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/29/2016] [Indexed: 02/06/2023] Open
Abstract
The effect of respiratory tract viral infection on evoked cough in guinea pigs was evaluated. Guinea pigs were inoculated intranasally with either parainfluenza type 3 (PIV3) and cough was quantified in conscious animals. The guinea pigs infected with PIV3 (day 4) coughed nearly three times more than those treated with the viral growth medium in response to capsaicin, citric acid, and bradykinin. Since capsaicin, citric acid, and bradykinin evoked coughing in guinea pigs can be inhibited by drugs that antagonize the transient receptor potential cation channel, subfamily V, member 1 (TRPV1), it was reasoned that the virally-induced hypertussive state may involve alterations in TPRV1 activity. PIV3 infection caused a phenotypic switch in tracheal nodose Aδ “cough receptors” such that nearly 50% of neurons began to express, de novo, TRPV1 mRNA. There was also an increase TRPV1 expression in jugular C-fiber neurons as determined by qPCR. It has previously been reported that tracheal-specific nodose neurons express the BDNF receptor TrkB and jugular neurons express the NGF receptor TrkA. Jugular neurons also express the artemin receptor GFRα3. All these neurotrophic factors have been associated with increases in TRPV1 expression. In an ex vivo perfused guinea pig tracheal preparation, we demonstrated that within 8 h of PIV3 infusion there was no change in NGF mRNA expression, but there was nearly a 10-fold increase in BDNF mRNA in the tissue, and a small but significant elevation in the expression of artemin mRNA. In summary, PIV3 infection leads to elevations in TRPV1 expression in the two key cough evoking nerve subtypes in the guinea pig trachea, and this is associated with a hypertussive state with respect to various TRPV1 activating stimuli.
Collapse
Affiliation(s)
- Eric J. Zaccone
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - TinaMarie Lieu
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Yukiko Muroi
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Carl Potenzieri
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Blair E. Undem
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Peisong Gao
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Liang Han
- The Solomon H. Snyder Department of Neuroscience, Center of Sensory Biology, the Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Brendan J. Canning
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Bradley J. Undem
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
39
|
Kaelberer MM, Jordt SE. A Method to Target and Isolate Airway-innervating Sensory Neurons in Mice. J Vis Exp 2016. [PMID: 27168016 DOI: 10.3791/53917] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Somatosensory nerves transduce thermal, mechanical, chemical, and noxious stimuli caused by both endogenous and environmental agents. The cell bodies of these afferent neurons are located within the sensory ganglia. Sensory ganglia innervate a specific organ or portion of the body. For instance, the dorsal root ganglia (DRG) are located in the vertebral column and extend processes throughout the body and limbs. The trigeminal ganglia are located in the skull and innervate the face, and upper airways. Vagal afferents of the nodose ganglia extend throughout the gut, heart, and lungs. The nodose neurons control a diverse array of functions such as: respiratory rate, airway irritation, and cough reflexes. Thus, to understand and manipulate their function, it is critical to identify and isolate airway specific neuronal sub-populations. In the mouse, the airways are exposed to a fluorescent tracer dye, Fast Blue, for retrograde tracing of airway-specific nodose neurons. The nodose ganglia are dissociated and fluorescence activated cell (FAC) sorting is used to collect dye positive cells. Next, high quality ribonucleic acid (RNA) is extracted from dye positive cells for next generation sequencing. Using this method airway specific neuronal gene expression is determined.
Collapse
Affiliation(s)
- Melanie Maya Kaelberer
- Department of Cellular & Molecular Physiology, Yale University; Department of Anesthesiology, Duke University Medical Center
| | - Sven-Eric Jordt
- Department of Anesthesiology, Duke University Medical Center;
| |
Collapse
|
40
|
Taylor-Clark TE. Role of reactive oxygen species and TRP channels in the cough reflex. Cell Calcium 2016; 60:155-62. [PMID: 27016063 DOI: 10.1016/j.ceca.2016.03.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 12/15/2022]
Abstract
The cough reflex is evoked by noxious stimuli in the airways. Although this reflex is essential for health, it can be triggered chronically in inflammatory and infectious airway disease. Neuronal transient receptor potential (TRP) channels such as ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) are polymodal receptors expressed on airway nociceptive afferent nerves. Reactive oxygen species (ROS) and other reactive compounds are associated with inflammation, from either NADPH oxidase or mitochondria. These reactive compounds cause activation and hyperexcitability of nociceptive afferents innervating the airways, and evidence suggests key contributions of TRPA1 and TRPV1.
Collapse
Affiliation(s)
- Thomas E Taylor-Clark
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| |
Collapse
|
41
|
Driessen AK, Farrell MJ, Mazzone SB, McGovern AE. The Role of the Paratrigeminal Nucleus in Vagal Afferent Evoked Respiratory Reflexes: A Neuroanatomical and Functional Study in Guinea Pigs. Front Physiol 2015; 6:378. [PMID: 26733874 PMCID: PMC4685097 DOI: 10.3389/fphys.2015.00378] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 11/23/2015] [Indexed: 02/05/2023] Open
Abstract
The respiratory tree receives sensory innervation from the jugular and nodose vagal sensory ganglia. Neurons of these ganglia are derived from embryologically distinct origins and as such demonstrate differing molecular, neurochemical and physiological phenotypes. Furthermore, whereas nodose afferent neurons project to the nucleus of the solitary tract (nTS), recent neuroanatomical studies in rats suggest that jugular neurons have their central terminations in the paratrigeminal nucleus (Pa5). In the present study we confirm that guinea pigs demonstrate a comparable distinction between the brainstem terminations of nodose and jugular ganglia afferents. Thus, microinjection of fluorescently conjugated cholera toxin B (CT-B) neural tracers into the caudal nTS and Pa5 resulted in highly specific retrograde labeling of neurons in the nodose and jugular ganglia, respectively. Whereas, nodose neurons more often expressed 160 KD neurofilament proteins and the alpha3 subunit of Na+/K+ ATPase, significantly more jugular neurons expressed the neuropeptides substance P (SP) and, especially, Calcitonin Gene-Related Peptide (CGRP). Indeed, terminal fibers in the Pa5 compared to the nTS were characterized by their significantly greater expression of CGRP, further supporting the notion that jugular afferents project to trigeminal-related brainstem regions. Electrical stimulation of the guinea pig larynx following selective surgical denervation of the nodose afferent innervation to the larynx (leaving intact the jugular innervation) resulted in stimulus dependent respiratory slowing and eventual apnea. This jugular ganglia neuron mediated response was unaffected by bilateral microinjections of the GABAA agonist muscimol into the nTS, but was abolished by muscimol injected into the Pa5. Taken together these data confirm that jugular and nodose vagal ganglia afferent neurons innervate distinct central circuits and support the notion that multiple peripheral and central pathways mediate sensory responses associated with airway irritations.
Collapse
Affiliation(s)
- Alexandria K Driessen
- School of Biomedical Sciences, The University of Queensland St Lucia, QLD, Australia
| | - Michael J Farrell
- Monash Biomedicine Discovery Institute and Department of Medical Imaging and Radiation Sciences, Monash University Clayton, VIC Australia
| | - Stuart B Mazzone
- School of Biomedical Sciences, The University of Queensland St Lucia, QLD, Australia
| | - Alice E McGovern
- School of Biomedical Sciences, The University of Queensland St Lucia, QLD, Australia
| |
Collapse
|
42
|
Multiple neural circuits mediating airway sensations: Recent advances in the neurobiology of the urge-to-cough. Respir Physiol Neurobiol 2015; 226:115-20. [PMID: 26455780 DOI: 10.1016/j.resp.2015.09.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 09/30/2015] [Accepted: 09/30/2015] [Indexed: 12/31/2022]
Abstract
The respiratory system is densely innervated by sensory neurons arising from the jugular (superior) and nodose (inferior) vagal ganglia. However, a distinction exists between jugular and nodose neurons as these ganglia developmentally originate from the neural crest and the epibranchial placodes, respectively. This different embryological origin underpins an important source of heterogeneity in vagal afferent biology, and may extend to include fundamentally different central neural circuits that are in receipt of jugular versus nodose afferent inputs. Indeed, recent studies using viral tract tracing and human brain imaging support the notion that airway sensors contribute inputs to multiple central circuits. Understanding the neural pathways arising from the airways and lungs may provide novel insights into aberrant sensations, such as the urge-to-cough, characteristic of respiratory disease.
Collapse
|
43
|
Taylor-Clark TE. Oxidative stress as activators of sensory nerves for cough. Pulm Pharmacol Ther 2015; 35:94-9. [PMID: 26095768 DOI: 10.1016/j.pupt.2015.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 06/17/2015] [Indexed: 02/07/2023]
Abstract
Excessive activation of the cough reflex is a major clinical problem in respiratory diseases. The cough reflex is triggered by activation of nociceptive sensory nerve terminals innervating the airways by noxious stimuli. Oxidative stress is a noxious stimuli associated with inhalation of pollutants and inflammatory airway disease. Here, we discuss recent findings that oxidative stress, in particular downstream of mitochondrial dysfunction, evokes increased electrical activity in airway nociceptive sensory nerves. Mechanisms include activation of transient receptor potential (TRP) channels and protein kinase C. Such mechanisms may contribute to excessive cough reflexes in respiratory diseases.
Collapse
Affiliation(s)
- Thomas E Taylor-Clark
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA.
| |
Collapse
|
44
|
Bonvini SJ, Birrell MA, Smith JA, Belvisi MG. Targeting TRP channels for chronic cough: from bench to bedside. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2015; 388:401-20. [PMID: 25572384 DOI: 10.1007/s00210-014-1082-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/16/2014] [Indexed: 12/24/2022]
Abstract
Cough is currently the most common reason for patients to visit a primary care physician in the UK, yet it remains an unmet medical need. Current therapies have limited efficacy or have potentially dangerous side effects. Under normal circumstances, cough is a protective reflex to clear the lungs of harmful particles; however, in disease, cough can become excessive, dramatically impacting patients' lives. In many cases, this condition is linked to inflammatory diseases such as asthma and chronic obstructive pulmonary disease (COPD), but can also be refractory to treatment and idiopathic in nature. Therefore, there is an urgent need to develop therapies, and targeting the sensory afferent arm of the reflex which initiates the cough reflex may uncover novel therapeutic targets. The cough reflex is initiated following activation of ion channels present on vagal sensory afferents. These ion channels include the transient receptor potential (TRP) family of cation-selective ion channels which act as cellular sensors and respond to changes in the external environment. Many direct activators of TRP channels, including arachidonic acid derivatives, a lowered airway pH, changes in temperature, and altered airway osmolarity are present in the diseased airway where responses to challenge agents which activate airway sensory nerve activity are known to be enhanced. Furthermore, the expression of some TRP channels is increased in airway disease. Together, this makes them promising targets for the treatment of chronic cough. This review will cover the current understanding of the role of the TRP family of ion channels in the activation of airway sensory nerves and cough, focusing on four members, transient receptor potential vanilloid (TRPV) 1, transient receptor potential ankyrin (TRPA) 1, TRPV4, and transient receptor potential melastatin (TRPM) 8 as these represent the channels where most information has been gathered with relevance to the airways. We will describe recent data and highlight the possible therapeutic utility of specific TRP channel antagonists as antitussives in the clinic.
Collapse
Affiliation(s)
- Sara J Bonvini
- Respiratory Pharmacology Group, Airway Disease Section, National Heart & Lung Institute, Imperial College, Exhibition Road, London, SW7 2AZ, UK
| | | | | | | |
Collapse
|
45
|
Peripheral neural circuitry in cough. Curr Opin Pharmacol 2015; 22:9-17. [PMID: 25704498 DOI: 10.1016/j.coph.2015.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/02/2015] [Accepted: 02/04/2015] [Indexed: 01/22/2023]
Abstract
Cough is a reflex that serves to protect the airways. Excessive or chronic coughing is a major health issue that is poorly controlled by current therapeutics. Significant effort has been made to understand the mechanisms underlying the cough reflex. The focus of this review is the evidence supporting the role of specific airway sensory nerve (afferent) populations in the initiation and modulation of the cough reflex in health and disease.
Collapse
|
46
|
Abstract
Sensory nerves innervating the lung and airways play an important role in regulating various cardiopulmonary functions and maintaining homeostasis under both healthy and disease conditions. Their activities conducted by both vagal and sympathetic afferents are also responsible for eliciting important defense reflexes that protect the lung and body from potential health-hazardous effects of airborne particulates and chemical irritants. This article reviews the morphology, transduction properties, reflex functions, and respiratory sensations of these receptors, focusing primarily on recent findings derived from using new technologies such as neural immunochemistry, isolated airway-nerve preparation, cultured airway neurons, patch-clamp electrophysiology, transgenic mice, and other cellular and molecular approaches. Studies of the signal transduction of mechanosensitive afferents have revealed a new concept of sensory unit and cellular mechanism of activation, and identified additional types of sensory receptors in the lung. Chemosensitive properties of these lung afferents are further characterized by the expression of specific ligand-gated ion channels on nerve terminals, ganglion origin, and responses to the action of various inflammatory cells, mediators, and cytokines during acute and chronic airway inflammation and injuries. Increasing interest and extensive investigations have been focused on uncovering the mechanisms underlying hypersensitivity of these airway afferents, and their role in the manifestation of various symptoms under pathophysiological conditions. Several important and challenging questions regarding these sensory nerves are discussed. Searching for these answers will be a critical step in developing the translational research and effective treatments of airway diseases.
Collapse
Affiliation(s)
- Lu-Yuan Lee
- Department of Physiology, University of Kentucky, Lexington, Kentucky
| | | |
Collapse
|
47
|
Canning BJ, Chang AB, Bolser DC, Smith JA, Mazzone SB, McGarvey L. Anatomy and neurophysiology of cough: CHEST Guideline and Expert Panel report. Chest 2014; 146:1633-1648. [PMID: 25188530 PMCID: PMC4251621 DOI: 10.1378/chest.14-1481] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 07/21/2014] [Indexed: 12/11/2022] Open
Abstract
Bronchopulmonary C-fibers and a subset of mechanically sensitive, acid-sensitive myelinated sensory nerves play essential roles in regulating cough. These vagal sensory nerves terminate primarily in the larynx, trachea, carina, and large intrapulmonary bronchi. Other bronchopulmonary sensory nerves, sensory nerves innervating other viscera, as well as somatosensory nerves innervating the chest wall, diaphragm, and abdominal musculature regulate cough patterning and cough sensitivity. The responsiveness and morphology of the airway vagal sensory nerve subtypes and the extrapulmonary sensory nerves that regulate coughing are described. The brainstem and higher brain control systems that process this sensory information are complex, but our current understanding of them is considerable and increasing. The relevance of these neural systems to clinical phenomena, such as urge to cough and psychologic methods for treatment of dystussia, is high, and modern imaging methods have revealed potential neural substrates for some features of cough in the human.
Collapse
Affiliation(s)
| | - Anne B Chang
- Queensland Children's Respiratory Centre, Royal Children's Hospital, Brisbane, QLD, Australia, Child Health Division, Menzies School of Health, Darwin, NT, Australia
| | - Donald C Bolser
- Department of Physiological Sciences, University of Florida, Gainesville, FL
| | - Jaclyn A Smith
- Centre for Respiratory and Allergy, University of Manchester, Manchester, England
| | - Stuart B Mazzone
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Lorcan McGarvey
- Centre for Infection and Immunity, The Queen's University of Belfast, Belfast, Northern Ireland.
| |
Collapse
|
48
|
Narula M, McGovern AE, Yang SK, Farrell MJ, Mazzone SB. Afferent neural pathways mediating cough in animals and humans. J Thorac Dis 2014; 6:S712-9. [PMID: 25383205 DOI: 10.3978/j.issn.2072-1439.2014.03.15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 03/04/2014] [Indexed: 12/12/2022]
Abstract
The airways and lungs are densely innervated by sensory nerves, which subserve multiple roles in both the normal physiological control of respiratory functions and in pulmonary defense. These sensory nerves are therefore not homogeneous in nature, but rather have physiological, molecular and anatomical phenotypes that reflect their purpose. All sensory neuron subtypes provide input to the central nervous system and drive reflex changes in respiratory and airway functions. But less appreciated is that ascending projections from these brainstem inputs to higher brain regions can also induce behavioural changes in respiration. In this brief review we provide an overview of the current understanding of airway sensory pathways, with specific reference to those involved in reflex and behavioural cough responses following airways irritation.
Collapse
Affiliation(s)
- Monica Narula
- 1 School of Biomedical Sciences, University of Queensland, QLD 4072, Australia ; 2 The Florey Institute of Neuroscience and Mental Health, VIC 3010, Australia
| | - Alice E McGovern
- 1 School of Biomedical Sciences, University of Queensland, QLD 4072, Australia ; 2 The Florey Institute of Neuroscience and Mental Health, VIC 3010, Australia
| | - Seung-Kwon Yang
- 1 School of Biomedical Sciences, University of Queensland, QLD 4072, Australia ; 2 The Florey Institute of Neuroscience and Mental Health, VIC 3010, Australia
| | - Michael J Farrell
- 1 School of Biomedical Sciences, University of Queensland, QLD 4072, Australia ; 2 The Florey Institute of Neuroscience and Mental Health, VIC 3010, Australia
| | - Stuart B Mazzone
- 1 School of Biomedical Sciences, University of Queensland, QLD 4072, Australia ; 2 The Florey Institute of Neuroscience and Mental Health, VIC 3010, Australia
| |
Collapse
|
49
|
Evidence for multiple sensory circuits in the brain arising from the respiratory system: an anterograde viral tract tracing study in rodents. Brain Struct Funct 2014; 220:3683-99. [PMID: 25158901 DOI: 10.1007/s00429-014-0883-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 08/20/2014] [Indexed: 01/07/2023]
Abstract
Complex sensations accompany the activation of sensory neurons within the respiratory system, yet little is known about the organization of sensory pathways in the brain that mediate these sensations. In the present study, we employ anterograde viral neuroanatomical tract tracing with isogenic self-reporting recombinants of HSV-1 strain H129 to map the higher brain regions in receipt of vagal sensory neurons arising from the trachea versus the lungs, and single-cell PCR to characterize the phenotype of sensory neurons arising from these two divisions of the respiratory tree. The results suggest that the upper and lower airways are predominantly innervated by sensory neurons derived from the somatic jugular and visceral nodose cranial ganglia, respectively. This coincides with central circuitry that is predominately somatic-like, arising from the trachea, and visceral-like, arising from the lungs. Although some convergence of sensory pathways was noted in preautonomic cell groups, this was notably absent in thalamic and cortical regions. These data support the notion that distinct afferent subtypes, via distinct central circuits, subserve sensations arising from the upper versus lower airways. The findings may explain why sensations arising from different levels of the respiratory tree are qualitatively and quantitatively unique.
Collapse
|
50
|
Liu C, Chen R, Luo W, Lai K, Zhong N. Neurogenic airway inflammation induced by repeated intra-esophageal instillation of HCl in guinea pigs. Inflammation 2013; 36:493-500. [PMID: 23225164 DOI: 10.1007/s10753-012-9570-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
This study was conducted to investigate if repeated intra-esophageal acid administrations may induce neurogenic inflammation in the airways and nodose ganglion in a guinea pig model. Guinea pigs were sedated and perfused with 0.1 N HCl in the distal esophagus via a nasoesophageal catheter for 14 consecutive days. Substance P (SP), neurokinin A (NKA), neurokinin B (NKB), and calcitonin gene-related peptide concentration were measured by ELISA or radioimmunoassay. Neuropeptide expression in the airways and nodose ganglion was detected by immunohistochemistry and assessed semi-quantitatively. Inflammation was found in the trachea and bronchi. There was a threefold increase in substance P concentration in the trachea, main bronchi, and lung homogenate and a twofold increase in NKA and NKB concentration in the main bronchi, lung homogenate, and bronchial alveolus lavage fluid, respectively. The SP and NKA expressions in the airways and nodose ganglion were also significantly increased. Chronic intra-esophageal acid instillation induces significant neurogenic inflammation in the airways and nodose ganglion in the vagus nerve in guinea pigs.
Collapse
Affiliation(s)
- Chunli Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical College, 151 Yanjiang Rd., Guangzhou, 510120, China
| | | | | | | | | |
Collapse
|