1
|
Ulupınar S, İnce İ, Gençoğlu C, Özbay S, Çabuk S. Enhancing Post-Exercise Oxygen Kinetics Modeling With Physiological Bounds and Manual V̇O 2_ baseline Input: A Novel Approach. Eur J Sport Sci 2025; 25:e12306. [PMID: 40261850 PMCID: PMC12013733 DOI: 10.1002/ejsc.12306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 02/27/2025] [Accepted: 04/04/2025] [Indexed: 04/24/2025]
Abstract
This study addresses a critical limitation in existing computational tools for modeling post-exercise oxygen consumption kinetics (V̇O2). Although exponential modeling provides practical insights into recovery dynamics, the inability to incorporate an individual's pre-exercise baseline oxygen consumption value (V̇O2_baseline) can lead to inaccurate interpretations. A user-defined baseline allows for more precise modeling by aligning recovery kinetics with the true physiological endpoint, representing the individual's actual recovery target after a sufficient rest. To overcome this limitation, this study employs a customized Python algorithm that incorporates user-defined baseline V̇O2 and uses both mono-exponential and bi-exponential models, aiming to improve upon existing analytical methods. Twenty-two male amateur soccer players participated in this study and performed a 30-s Wingate test. V̇O2 was measured continuously before, during, and after exercise via a metabolic gas analyzer. Both mono-exponential and bi-exponential models were used to analyze post-exercise V̇O2 kinetics. The analysis was performed using Origin software (as the reference tool), GedaeLab (a specialized web-based platform), and a custom-developed Python algorithm. The bi-exponential model demonstrated superior fit compared to the mono-exponential model with higher determination coefficient (R2) values. Specifically, R2 values were 0.963 ± 0.013 and 0.805 ± 0.078 for the bi-exponential and mono-exponential models, respectively. The bi-exponential model also provided a more accurate approximation of real post-exercise oxygen consumption integrals at both 5 min and 15 min. Additionally, variations in V̇O2_baseline values had different impacts on key parameters in both models, showing that higher V̇O2_baseline values generally improved the model fit in the mono-exponential model but had minimal impact on the bi-exponential model.
Collapse
Affiliation(s)
- Süleyman Ulupınar
- Faculty of Sports SciencesErzurum Technical UniversityErzurumTürkiye
| | - İzzet İnce
- Faculty of Sports SciencesAnkara Yıldırım Beyazıt UniversityAnkaraTürkiye
| | - Cebrail Gençoğlu
- Faculty of Sports SciencesErzurum Technical UniversityErzurumTürkiye
| | - Serhat Özbay
- Faculty of Sports SciencesErzurum Technical UniversityErzurumTürkiye
| | - Salih Çabuk
- Faculty of Sports SciencesErzurum Technical UniversityErzurumTürkiye
| |
Collapse
|
2
|
Taboni A, Barilari C, Vinetti G, Fagoni N, Ferretti G. Energy balance analysis suggests that lactate is not a direct cause of the slow component of oxygen uptake kinetics. Eur J Appl Physiol 2025; 125:957-966. [PMID: 39625506 DOI: 10.1007/s00421-024-05657-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/01/2024] [Indexed: 03/28/2025]
Abstract
PURPOSE The mechanisms of oxygen uptake (V ˙ O 2 ) slow component in the severe exercise intensity domain are still a matter of debate. We tested the hypothesis that the rate of blood lactate ([La]) accumulation above maximal lactate steady state (MLSS) is a major cause ofV ˙ O 2 slow component. METHODS On 13 males exercising on a cycle-ergometer, we measured gas exchanges, heart rate, and [La] during maximal incremental exercise test to determine maximal aerobic power ( w . max) and at constant power exercise tests at 60%, 65%, 70%, and 80% of w . max. RESULTS MaximalV ˙ O 2 was 3.19 ± 0.37 l·min-1, w . max was 283 ± 28 W. At 60% w . max all variables attained steady state in all subjects. Power at MLSS was 177 ± 21 W. At 80% w . max a clearV ˙ O 2 slow component was observed in all subjects, exercise lasted 11.3 ± 3.1 min and [La] was 7.4 ± 2.2 mmol at 5 min and 11.5 ± 3.6 mmol at 10 min. The energy balance computed at 80% w . max resulted compatible with the principles of the energetics of muscular exercise, if we assume linear [La] increase, and thus constant metabolic power provided by [La] accumulation. Conversely, the metabolic power provided byV ˙ O 2 slow component increases with time. This contrast is incompatible with the tested hypothesis that consequently must be rejected. CONCLUSION This study excluded [La] accumulation as a main cause ofV ˙ O 2 slow component.
Collapse
Affiliation(s)
- Anna Taboni
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Caterina Barilari
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Giovanni Vinetti
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Nazzareno Fagoni
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Guido Ferretti
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| |
Collapse
|
3
|
Erol ME, Bannon ST, Matias AA, Siokas T, Nagarajan R, Fur YL, Park S, Layec G. Mitochondrial efficiency in resting skeletal muscle in vivo: a novel non-invasive approach using multinuclear magnetic resonance spectroscopy in humans. J Physiol 2025; 603:1503-1519. [PMID: 39960635 PMCID: PMC11908483 DOI: 10.1113/jp287412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/28/2025] [Indexed: 03/15/2025] Open
Abstract
Mitochondrial efficiency is a critical metabolic parameter with far-reaching implications for tissue homeostasis. However, the direct measurement of oxygen consumption (VO2) and ATP production from a large tissue sample in vivo remains challenging. Using phosphorus (31P) and proton (1H) magnetic resonance spectroscopy (MRS), this study aimed to non-invasively quantify the skeletal muscle ATP synthesis rate and VO2 to determine mitochondrial efficiency at rest and during muscle contraction in humans. We assessed mitochondrial efficiency in the plantar flexor muscles of 12 healthy adults (21 ± 1 years) using 31P and 1H MRS within a 3T MR system. MRS data were acquired at rest and during constant workloads to quantify oxidative ATP synthesis (ATPox) rate and myoglobin-derived oxygen consumption (Mb-derived VO2). At rest, ATPox was 0.85 ± 0.24 mm min-1, and Mb-derived VO2 was 0.46 ± 0.11 mm min-1, resulting in a P/O ratio of 1.95 ± 0.68. During graded exercise, end-exercise PCr concentration decreased from 29 ± 5.7 mm to 18 ± 4.8 mm, and end-exercise Mb oxygenation declined linearly to 47 ± 11%. ATPox synthesis rate increased linearly with exercise workload (r = 0.65 ± 0.31), whereas there was no significant change in Mb-derived VO2 (r = -0.19 ± 0.60), leading to non-physiological P/O values during exercise (>3). The results indicate that combined 31P/1H-MRS at rest offers a promising approach for non-invasively quantifying mitochondrial efficiency in large muscle samples, suggesting its potential as a clinical endpoint of mitochondrial function. However, further refinement is needed for use during exercise. KEY POINTS: Mitochondrial efficiency, converting chemical energy from carbon fuels into ATP, is a vital metabolic parameter for tissue homeostasis, but measuring oxygen consumption (VO2) and ATP production in vivo has been challenging. This study used phosphorus (31P) and proton (1H) magnetic resonance spectroscopy (MRS) to non-invasively quantify the skeletal muscle ATP synthesis rate and VO2 at rest and during muscle contraction in humans. At rest, the oxidative ATP synthesis (ATPox) and myoglobin-derived VO2 (Mb-derived VO2) were measured, resulting in a P/O ratio of 1.95 in the plantar flexor muscles. During exercise, the ATPox rate increased with workload, but Mb-derived VO2 did not change significantly, leading to non-physiological P/O ratios. The findings suggest that 31P/1H-MRS at rest is a promising method for assessing mitochondrial efficiency and could be used as a clinical endpoint for mitochondrial function in vivo, although further refinement is needed for exercise conditions.
Collapse
Affiliation(s)
- Muhammet Enes Erol
- Department of Kinesiology and Institute for Applied Life SciencesUniversity of Massachusetts AmherstMAUSA
- School of Health and KinesiologyUniversity of Nebraska OmahaNEUSA
| | - Sean T. Bannon
- Department of Kinesiology and Institute for Applied Life SciencesUniversity of Massachusetts AmherstMAUSA
| | - Alexs A. Matias
- Department of Kinesiology and Institute for Applied Life SciencesUniversity of Massachusetts AmherstMAUSA
| | - Triantafyllia Siokas
- Department of Kinesiology and Institute for Applied Life SciencesUniversity of Massachusetts AmherstMAUSA
| | - Rajakumar Nagarajan
- Human Magnetic Resonance CenterInstitute for Applied Life SciencesUniversity of Massachusetts AmherstMAUSA
| | - Yann Le Fur
- CRMBM, Aix‐Marseille Universite, CNRS 7339MarseilleFrance
| | - Song‐Young Park
- School of Health and KinesiologyUniversity of Nebraska OmahaNEUSA
| | - Gwenael Layec
- Department of Kinesiology and Institute for Applied Life SciencesUniversity of Massachusetts AmherstMAUSA
- School of Health and KinesiologyUniversity of Nebraska OmahaNEUSA
| |
Collapse
|
4
|
Estrela RLD, Dos Santos JDS, Salvador PCDN, Ventura TP, Oneda G, de Lucas RD, Turnes T, Guglielmo LGA. Effects of Caffeine Ingestion on Pulmonary V˙O2 Kinetics and Muscle Fatigue During Severe-Intensity Cycling Exercise. Int J Sport Nutr Exerc Metab 2025; 35:112-119. [PMID: 39515310 DOI: 10.1123/ijsnem.2024-0141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/08/2024] [Accepted: 09/23/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION This study aimed to analyze the effect of caffeine (CAF) intake on pulmonary oxygen uptake (V˙O2) kinetics, muscle fatigue, and physiological and perceptual parameters during severe-intensity cycling exercise. METHODS Twelve physically active men (age: 26 ± 5 years; V˙O2peak: 46.7 ± 7.8 ml·kg-1·min-1) participated of this placebo (PLA)-controlled, randomized, double-blinded, and crossover design study. Participants performed on separate days (a) a ramp incremental test to determine V˙O2peak and gas exchange threshold and (b) four 8-min constant work rate tests at 60% of the difference between gas exchange threshold and maximal V˙O2peak (i.e., Δ60%) 1 hr after taking either 6 mg/kg of body mass of CAF or PLA. Before and immediately after constant work rate tests, a 5-s all-out isokinetic sprint was performed to assess the muscle torque. V˙O2 kinetics, blood lactate concentration ([La]), and rating of perceived exertion were analyzed during constant work rate tests. RESULTS CAF did not alter the primary time constant of V˙O2 kinetics (PLA: 38.3 ± 14; CAF: 36.7 ± 7.5 s), V˙O2 slow component (PLA: 0.5 ± 0.2; CAF: 0.5 ± 0.2 L/min), or peak torque (PLA: 144.6 ± 18.6; CAF: 143.9 ± 18.7 N·m). CAF decreased rating of perceived exertion (15.9 ± 1.8 vs. 17.0 ± 1.5 a.u.) and increased blood lactate concentration (9.0 ± 2.5 vs. 8.3 ± 2.2 mmol/L; p < .05) after constant work rate tests compared with PLA. CONCLUSION CAF ingestion does not alter V˙O2 kinetics or muscle torque production during 8 min of severe-intensity cycling exercise.
Collapse
Affiliation(s)
- Rafael Leal Dantas Estrela
- Physical Effort Laboratory, Department of Physical Education, Sports Center, Federal University of Santa Catarina (UFSC), Florianopolis, Brazil
- Research and Extension Center, Education Department, University of the State of Bahia (UNEB), Campus II, Alagoinhas, Brazil
| | - Jean de Souza Dos Santos
- Physical Effort Laboratory, Department of Physical Education, Sports Center, Federal University of Santa Catarina (UFSC), Florianopolis, Brazil
| | - Paulo Cesar do Nascimento Salvador
- Physical Effort Laboratory, Department of Physical Education, Sports Center, Federal University of Santa Catarina (UFSC), Florianopolis, Brazil
| | - Thiago Pereira Ventura
- Physical Effort Laboratory, Department of Physical Education, Sports Center, Federal University of Santa Catarina (UFSC), Florianopolis, Brazil
| | - Gustavo Oneda
- Physical Effort Laboratory, Department of Physical Education, Sports Center, Federal University of Santa Catarina (UFSC), Florianopolis, Brazil
- Environmental Condition and Endurance Performance Analysis Unit, Sports Center, Department of Physical Education, Federal University of Santa Catarina (UFSC), Florianopolis, Brazil
| | - Ricardo Dantas de Lucas
- Physical Effort Laboratory, Department of Physical Education, Sports Center, Federal University of Santa Catarina (UFSC), Florianopolis, Brazil
| | - Tiago Turnes
- Physical Effort Laboratory, Department of Physical Education, Sports Center, Federal University of Santa Catarina (UFSC), Florianopolis, Brazil
| | - Luiz Guilherme Antonacci Guglielmo
- Physical Effort Laboratory, Department of Physical Education, Sports Center, Federal University of Santa Catarina (UFSC), Florianopolis, Brazil
| |
Collapse
|
5
|
Korzeniewski B. Biochemical origin of (near-) linear curvature constant (W')- V ˙ O 2 slow component ( Δ V ˙ O 2 sc ) and critical power (CP)- V ˙ O 2 transition time (t 0.63) relationship in skeletal muscle. Eur J Appl Physiol 2025; 125:455-468. [PMID: 39312007 DOI: 10.1007/s00421-024-05612-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/10/2024] [Indexed: 02/16/2025]
Abstract
PURPOSE The biochemical background of the (near-)linear direct relationship between the curvature constant (W') of the power-duration curve and the magnitude ( Δ V ˙ O 2sc ) of the slow component of theV ˙ O 2 on-kinetics (V ˙ O 2sc ) as well as reverse relationship between critical power (CP) and the characteristic transition time (t0.63, analogous to τp) of the primary phase II of theV ˙ O 2 on-kinetics encountered in experimental studies is studied. METHODS A computer model of the bioenergetic system in skeletal muscle, involving the each-step-activation mechanism of work transitions and Pi double-threshold mechanism of muscle fatigue, is used. RESULTS The activity (rate constant) (kadd) of the additional ATP usage, underlying the slow component, determines to a large extent the (near-)linear direct W'- Δ V ˙ O 2sc relationship, as an increase in kadd increases markedly both W' and Δ V ˙ O 2sc . t0.63 is a derivative of the changes in metabolite (M = PCr or Cr or Pi) concentrations between rest and the steady-state of the phase II M on-kinetics after the onset of exercise. The oxidative phosphorylation (OXPHOS) activity (kOX) mostly determines the (near)-linear inverse CP-t0.63 relationship, as an increase in kOX markedly decreases ΔM and t0.63, and elevates CP. CONCLUSIONS TheV ˙ O 2 on-kinetics (e.g.,V ˙ O 2sc or t0.63) cannot cause anything in the system, as it is an emergent property of the system functioning on the biochemical level. Physiological variables: muscleV ˙ O 2sc and W' as well as t0.63 and CP, and relationships between them, are determined by biochemical parameters, mainly kadd and kOX, respectively.
Collapse
|
6
|
Mendonça PT, Dutra YM, Antunes BM, Lira F, Zagatto AM. Fourteen weeks of β-alanine supplementation and HIIT did not improve serum BDNF concentrations and Stroop test performance. Int J Sports Med 2025. [PMID: 39832765 DOI: 10.1055/a-2500-5556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
This study aimed to investigate whether 14 weeks of β-alanine supplementation and high-intensity intermittent training improves brain-derived neurotrophic factor concentrations and cognitive aspects related to executive functions assessed by the Stroop test. Thirteen healthy and active men underwent a 4-week supplementation period (β-alanine: 6.4 g/d or a placebo) followed by 10-week supplementation combined with high-intensity intermittent training, totaling 14 weeks of intervention. Participants underwent a graded exercise test, while the blood samples for brain-derived neurotrophic factor analysis and the Stroop test (cognitive task) were assessed before and after a high-intensity intermittent exercise (10 runs of 1:1 min effort and a pause ratio at 130% of respiratory compensation point). These measurements were performed three times across the study being at baseline, after 4 weeks of supplementation (POST4weeks) and at the end of the 14 weeks of study (POST14weeks). Compared to baseline values, there were no improvements in brain-derived neurotrophic factor concentrations or Stroop test performance with either β-alanine or high-intensity intermittent training. Lactate peak concentrations in a high-intensity intermittent exercise session also did not differ between groups. However, high-intensity intermittent training did improve some cardiorespiratory parameters (i.e., intensity associated with V̇O2max p=0.01 and respiratory compensation point, p=0.01). In conclusion, β-alanine supplementation alone or associated with high-intensity intermittent training did not improve the brain-derived neurotrophic factor concentrations and Stroop test performance in healthy men.
Collapse
|
7
|
Urianstad T, Hamarsland H, Odden I, Lorentzen HC, Hammarström D, Mølmen KS, Rønnestad BR. The higher oxygen consumption during multiple short intervals is sex-independent and not influenced by skeletal muscle characteristics in well-trained cyclists. Eur J Sport Sci 2024; 24:1614-1626. [PMID: 39435498 PMCID: PMC11534666 DOI: 10.1002/ejsc.12214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 09/18/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024]
Abstract
It has been suggested that time spent at a high fraction of maximal oxygen consumption (%V ˙ $\dot{\mathrm{V}}$ O2max) plays a decisive role for adaptations to interval training. However, previous studies examining how interval sessions should be designed to achieve a high %V ˙ $\dot{\mathrm{V}}$ O2max have exclusively been performed in males. The present study compared the %V ˙ $\dot{\mathrm{V}}$ O2max attained during three different 6 × 8 min interval protocols, in female (n = 11;V ˙ $\dot{\mathrm{V}}$ O2max, 62.5 (6.4) mL · min-1·kg-1) and male (n = 8;V ˙ $\dot{\mathrm{V}}$ O2max, 81.0 (5.2) mL · min-1·kg-1) cyclists. Mean power output during work intervals were identical across the three interval protocols, corresponding to the cyclist's 40 min maximal effort (PO40min): (1) 30 s intervals at 118% of PO40min interspersed with 15 s active recovery at 60% (30/15), (2) constant pace at 100% of PO40min (CON), and (3) altering between 60 s intervals at 110% and 60 s at 90% of PO40min (60/60). Additionally, the study explored whether the m. vastus lateralis characteristics of the cyclists (fiber type proportion, capillarization, and citrate synthase activity) were associated with the %V ˙ $\dot{\mathrm{V}}$ O2max attained during the interval sessions. Overall, mean %V ˙ $\dot{\mathrm{V}}$ O2max and time ≥90% ofV ˙ $\dot{\mathrm{V}}$ O2max were higher during 30/15 compared to CON (86.7 (10.1)% and 1123 (787) s versus 85.0 (10.4)% and 879 (779) s, respectively; both p ≤ 0.01) and 60/60 (85.6 (10.0)% and 917 (745) s, respectively; both p ≤ 0.05), while no difference was observed between 60/60 and CON (both p ≥ 0.36). During interval sessions, %V ˙ $\dot{\mathrm{V}}$ O2max and time ≥90% ofV ˙ $\dot{\mathrm{V}}$ O2max did not differ between sexes. Skeletal muscle characteristics were not related to %V ˙ $\dot{\mathrm{V}}$ O2max during interval sessions. In conclusion, well-trained cyclists demonstrate highest %V ˙ $\dot{\mathrm{V}}$ O2max during 30/15, irrespective of sex and skeletal muscle characteristics.
Collapse
Affiliation(s)
- Tomas Urianstad
- Physiological Test LaboratoryInland Norway University of Applied SciencesLillehammerNorway
| | - Håvard Hamarsland
- Physiological Test LaboratoryInland Norway University of Applied SciencesLillehammerNorway
| | - Ingvill Odden
- Physiological Test LaboratoryInland Norway University of Applied SciencesLillehammerNorway
| | | | - Daniel Hammarström
- Physiological Test LaboratoryInland Norway University of Applied SciencesLillehammerNorway
| | - Knut Sindre Mølmen
- Physiological Test LaboratoryInland Norway University of Applied SciencesLillehammerNorway
| | - Bent R. Rønnestad
- Physiological Test LaboratoryInland Norway University of Applied SciencesLillehammerNorway
| |
Collapse
|
8
|
Hovorka M, Prinz B, Simon D, Zöger M, Rumpl C, Nimmerichter A. Long-Term Alterations in Pulmonary V˙O2 and Muscle Deoxygenation On-Kinetics During Heavy-Intensity Exercise in Competitive Youth Cyclists: A Cohort Study. Pediatr Exerc Sci 2024; 36:295-301. [PMID: 38714302 DOI: 10.1123/pes.2023-0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 02/20/2024] [Accepted: 03/12/2024] [Indexed: 05/09/2024]
Abstract
PURPOSE The aim of this investigation was to assess alterations of pulmonary oxygen uptake (V˙O2) and muscle deoxygenation on-kinetics during heavy-intensity cycling in youth cyclists over a period of 15 months. METHODS Eleven cyclists (initial age, 14.3 [1.6] y; peak V˙O2, 62.2 [4.5] mL·min-1·kg-1) visited the laboratory twice on 3 occasions within 15 months. Participants performed an incremental ramp exercise test and a constant workrate test within the heavy-intensity domain during the first visit and second visit, respectively. Subsequently, parameter estimates of the V˙O2 and muscle deoxygenation on-kinetics were determined with mono-exponential models. RESULTS The V˙O2 phase II time constant decreased from occasion 1 (34 [4] s) to occasion 2 (30 [4] s, P = .005) and 3 (28 [4] s, P = .010). However, no significant alteration was observed between occasions 2 and 3 (P = .565). The V˙O2 slow component amplitude either expressed in absolute values (ie, L·min-1) or relative to end exercise V˙O2 (ie, %) showed no significant changes throughout the study (P = .972 and .996). Furthermore, the muscle deoxygenation on-kinetic mean response time showed no significant changes throughout the study (18 [8], 18 [3], and 16 [5] s for occasions 1, 2, and 3, respectively; P = .279). CONCLUSION These results indicate proportional enhancements of local muscle oxygen distribution and utilization, which both contributed to the speeding of the V˙O2 on-kinetics herein.
Collapse
Affiliation(s)
- Matthias Hovorka
- Training and Sports Sciences, University of Applied Sciences Wiener Neustadt, Wiener Neustadt,Austria
- Centre for Sport Science and University Sports, University of Vienna, Vienna,Austria
- Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, Vienna,Austria
| | - Bernhard Prinz
- Training and Sports Sciences, University of Applied Sciences Wiener Neustadt, Wiener Neustadt,Austria
| | - Dieter Simon
- Training and Sports Sciences, University of Applied Sciences Wiener Neustadt, Wiener Neustadt,Austria
| | - Manfred Zöger
- Training and Sports Sciences, University of Applied Sciences Wiener Neustadt, Wiener Neustadt,Austria
| | - Clemens Rumpl
- Training and Sports Sciences, University of Applied Sciences Wiener Neustadt, Wiener Neustadt,Austria
| | - Alfred Nimmerichter
- Training and Sports Sciences, University of Applied Sciences Wiener Neustadt, Wiener Neustadt,Austria
- Centre for Sport Science and University Sports, University of Vienna, Vienna,Austria
| |
Collapse
|
9
|
Arnold JI, Yogev A, Nelson H, van Hooff M, Koehle MS. Muscle reoxygenation is slower after higher cycling intensity, and is faster and more reliable in locomotor than in accessory muscle sites. Front Physiol 2024; 15:1449384. [PMID: 39206382 PMCID: PMC11349675 DOI: 10.3389/fphys.2024.1449384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Wearable near-infrared spectroscopy (NIRS) can be used during dynamic exercise to reflect the balance of muscle oxygen delivery and uptake. This study describes the behaviour and reliability of postexercise reoxygenation with NIRS as a function of exercise intensity at four muscle sites during an incremental cycling test. We discuss physiological components of faster and slower reoxygenation kinetics in the context of sport science and clinical applications. We hypothesised that reoxygenation would be slower at higher intensity, and that locomotor muscles would be faster than accessory muscles. We quantified test-retest reliability and agreement for each site. Methods Twenty-one trained cyclists performed two trials of an incremental cycling protocol with 5-min work stages and 1-min rest between stages. NIRS was recorded from the locomotor vastus lateralis and rectus femoris muscles, and accessory lumbar paraspinal and lateral deltoid muscles. Reoxygenation time course was analysed as the half-recovery time (HRT) from the end of work to half of the peak reoxygenation amplitude during rest. Coefficient of variability (CV) between participants, standard error of the measurement (SEM) within participants, and intraclass correlation coefficient (ICC) for test-retest reliability were evaluated at 50%, 75%, and 100% peak workloads. A linear mixed-effects model was used to compare differences between workloads and muscle sites. Results HRT was slower with increasing workload in the VL, RF, and PS, but not DL. VL had the fastest reoxygenation (lowest HRT) across muscle sites at all workloads (HRT = 8, 12, 17 s at 50%, 75%, 100% workload, respectively). VL also had the greatest reliability and agreement. HRT was sequentially slower between muscle sites in the order of VL < RF < PS < DL, and reliability was lower than for the VL. Discussion This study highlights the potential for using wearable NIRS on multiple muscle sites during exercise. Reoxygenation kinetics differ between local muscle sites with increasing intensity. Moderate-to-good reliability in the VL support its increasing use in sport science and clinical applications. Lower reliability in other muscle sites suggest they are not appropriate to be used alone, but may add information when combined to better reflect systemic intensity and fatigue during exercise at different intensities.
Collapse
Affiliation(s)
- Jem I. Arnold
- School of Kinesiology, The University of British Columbia, Vancouver, BC, Canada
| | - Assaf Yogev
- School of Kinesiology, The University of British Columbia, Vancouver, BC, Canada
| | - Hannah Nelson
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Martijn van Hooff
- Department of Sports and Exercise, Máxima Medical Centre, Veldhoven, Netherlands
| | - Michael S. Koehle
- School of Kinesiology, The University of British Columbia, Vancouver, BC, Canada
- Department of Biomedical Physiology and Kinesiology, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
- Division of Sport and Exercise Medicine, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
10
|
Borrelli M, Shokohyar S, Rampichini S, Bruseghini P, Doria C, Limonta EG, Ferretti G, Esposito F. Energetics of sinusoidal exercise below and across critical power and the effects of fatigue. Eur J Appl Physiol 2024; 124:1845-1859. [PMID: 38242972 PMCID: PMC11130025 DOI: 10.1007/s00421-023-05410-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/23/2023] [Indexed: 01/21/2024]
Abstract
PURPOSE Previous studies investigating sinusoidal exercise were not devoted to an analysis of its energetics and of the effects of fatigue. We aimed to determine the contribution of aerobic and anaerobic lactic metabolism to the energy balance and investigate the fatigue effects on the cardiorespiratory and metabolic responses to sinusoidal protocols, across and below critical power (CP). METHODS Eight males (26.6 ± 6.2 years; 75.6 ± 8.7 kg; maximum oxygen uptake 52.8 ± 7.9 ml·min-1·kg-1; CP 218 ± 13 W) underwent exhausting sinusoidal cycloergometric exercises, with sinusoid midpoint (MP) at CP (CPex) and 50 W below CP (CP-50ex). Sinusoid amplitude (AMP) and period were 50 W and 4 min, respectively. MP, AMP, and time-delay (tD) between mechanical and metabolic signals of expiratory ventilation (V ˙ E ), oxygen uptake (V ˙ O 2 ), and heart rate ( f H ) were assessed sinusoid-by-sinusoid. Blood lactate ([La-]) and rate of perceived exertion (RPE) were determined at each sinusoid. RESULTS V ˙ O 2 AMP was 304 ± 11 and 488 ± 36 ml·min-1 in CPex and CP-50ex, respectively. Asymmetries between rising and declining sinusoid phases occurred in CPex (36.1 ± 7.7 vs. 41.4 ± 9.7 s forV ˙ O 2 tD up and tD down, respectively; P < 0.01), with unchanged tDs.V ˙ O 2 MP and RPE increased progressively during CPex. [La-] increased by 2.1 mM in CPex but remained stable during CP-50ex. Anaerobic contribution was larger in CPex than CP-50ex. CONCLUSION The lower aerobic component during CPex than CP-50ex associated with lactate accumulation explained lowerV ˙ O 2 AMP in CPex. The asymmetries in CPex suggest progressive decline of muscle phosphocreatine concentration, leading to fatigue, as witnessed by RPE.
Collapse
Affiliation(s)
- Marta Borrelli
- Department of Biomedical Sciences for Health, Università Degli Studi Di Milano, Via Giuseppe Colombo 71, 20133, Milan, Italy
| | - Sheida Shokohyar
- Department of Biomedical Sciences for Health, Università Degli Studi Di Milano, Via Giuseppe Colombo 71, 20133, Milan, Italy
| | - Susanna Rampichini
- Department of Biomedical Sciences for Health, Università Degli Studi Di Milano, Via Giuseppe Colombo 71, 20133, Milan, Italy.
| | - Paolo Bruseghini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Christian Doria
- Department of Biomedical Sciences for Health, Università Degli Studi Di Milano, Via Giuseppe Colombo 71, 20133, Milan, Italy
| | - Eloisa Guglielmina Limonta
- Department of Biomedical Sciences for Health, Università Degli Studi Di Milano, Via Giuseppe Colombo 71, 20133, Milan, Italy
- IRCCS Ospedale Galeazzi - Sant'Ambrogio, Via Cristina Belgioioso, 173, 20157, Milan, Italy
| | - Guido Ferretti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Fabio Esposito
- Department of Biomedical Sciences for Health, Università Degli Studi Di Milano, Via Giuseppe Colombo 71, 20133, Milan, Italy
- IRCCS Ospedale Galeazzi - Sant'Ambrogio, Via Cristina Belgioioso, 173, 20157, Milan, Italy
| |
Collapse
|
11
|
Flensted-Jensen M, Kleis-Olsen AS, Hassø RK, Lindtofte S, Corral Pérez J, Ortega-Gómez S, Larsen S. Combined changes in temperature and pH mimicking exercise result in decreased efficiency in muscle mitochondria. J Appl Physiol (1985) 2024; 136:79-88. [PMID: 37969081 DOI: 10.1152/japplphysiol.00293.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/17/2023] Open
Abstract
It is well known that exercise efficiency declines at intensities above the lactate threshold, yet the underlying mechanisms are poorly understood. Some have suggested it is due to a decline in mitochondrial efficiency, but this is difficult to examine in vivo. Therefore, the aim of the current study was to examine how changes in temperature and pH, mimicking those that occur during exercise, affect mitochondrial efficiency in skeletal muscle mitochondria. This study was performed on quadriceps muscle of 20 wild-type mice. Muscle tissue was dissected and either permeabilized (n = 10) or homogenized for isolation of mitochondria (n = 10), and oxidative phosphorylation capacity and P/O ratio were assessed using high-resolution respirometry. Samples from each muscle were analyzed in both normal physiological conditions (37°C, pH 7.4), decreased pH (6.8), increased temperature (40°C), and a combination of both. The combination of increased temperature and decreased pH resulted in a significantly lower P/O ratio, mirrored by an increase in leak respiration and a decrease in respiratory control ratio (RCR), in isolated mitochondria. In permeabilized fibers, RCR and leak were relatively unaffected, though a main effect of temperature was observed. Oxidative phosphorylation capacity was unaffected by changes in pH and temperature in both isolated mitochondria and permeabilized fibers. These results indicate that exercise-like changes in temperature and pH lead to impaired mitochondrial efficiency. These findings offer some degree of support to the concept of decreased mitochondrial efficiency during exercise, and may have implications for the assessment of mitochondrial function related to exercise.NEW & NOTEWORTHY To the best of our knowledge, this is the first study to examine the effects of combined changes in temperature and pH, mimicking intramuscular alterations during exercise. Our findings suggest that mitochondrial efficiency is impaired during exercise of moderate to high intensity, which could be a possible mechanism contributing to the decline in exercise efficiency at intensities above the lactate threshold.
Collapse
Affiliation(s)
- Mathias Flensted-Jensen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ann-Sofie Kleis-Olsen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Kinimond Hassø
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Søren Lindtofte
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Juan Corral Pérez
- MOVE-IT Research Group, Department of Physical Education, Faculty of Education Sciences, University of Cádiz, Cádiz, Spain
- ExPhy Research Group, Department of Physical Education, Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Universidad de Cádiz, Cádiz, Spain
| | - Sonia Ortega-Gómez
- MOVE-IT Research Group, Department of Physical Education, Faculty of Education Sciences, University of Cádiz, Cádiz, Spain
- Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital, Cádiz, Spain
| | - Steen Larsen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
12
|
Zimmer RT, Auth A, Schierbauer J, Haupt S, Wachsmuth N, Zimmermann P, Voit T, Battelino T, Sourij H, Moser O. (Hybrid) Closed-Loop Systems: From Announced to Unannounced Exercise. Diabetes Technol Ther 2023. [PMID: 38133645 DOI: 10.1089/dia.2023.0293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Physical activity and exercise have many beneficial effects on general and type 1 diabetes (T1D) specific health and are recommended for individuals with T1D. Despite these health benefits, many people with T1D still avoid exercise since glycemic management during physical activity poses substantial glycemic and psychological challenges - which hold particularly true for unannounced exercise when using an AID system. Automated insulin delivery (AID) systems have demonstrated their efficacy in improving overall glycemia and in managing announced exercise in numerous studies. They are proven to increase time in range (70-180 mg/dL) and can especially counteract nocturnal hypoglycemia, even when evening exercise was performed. AID-systems consist of a pump administering insulin as well as a CGM sensor (plus transmitter), both communicating with a control algorithm integrated into a device (insulin pump, mobile phone/smart watch). Nevertheless, without manual pre-exercise adaptions, these systems still face a significant challenge around physical activity. Automatically adapting to the rapidly changing insulin requirements during unannounced exercise and physical activity is still the Achilles' heel of current AID systems. There is an urgent need for improving current AID-systems to safely and automatically maintain glucose management without causing derailments - so that going forward, exercise announcements will not be necessary in the future. Therefore, this narrative literature review aimed to discuss technological strategies to how current AID-systems can be improved in the future and become more proficient in overcoming the hurdle of unannounced exercise. For this purpose, the current state-of-the-art therapy recommendations for AID and exercise as well as novel research approaches are presented along with potential future solutions - in order to rectify their deficiencies in the endeavor to achieve fully automated AID-systems even around unannounced exercise.
Collapse
Affiliation(s)
- Rebecca Tanja Zimmer
- University of Bayreuth, 26523, Division Exercise Physiology and Metabolism Institute of Sport Science, Bayreuth, Bavaria, Germany;
| | - Alexander Auth
- University of Bayreuth, 26523, Division Exercise Physiology and Metabolism Institute of Sport Science, Bayreuth, Bavaria, Germany;
| | - Janis Schierbauer
- University of Bayreuth, 26523, Division Exercise Physiology and Metabolism Institute of Sport Science, Bayreuth, Bavaria, Germany;
| | - Sandra Haupt
- University of Bayreuth, 26523, Division Exercise Physiology and Metabolism Institute of Sport Science, Bayreuth, Bavaria, Germany;
| | - Nadine Wachsmuth
- University of Bayreuth, 26523, Division Exercise Physiology and Metabolism Institute of Sport Science, Bayreuth, Bavaria, Germany;
| | - Paul Zimmermann
- University of Bayreuth, 26523, Division Exercise Physiology and Metabolism Institute of Sport Science, Bayreuth, Bavaria, Germany;
| | - Thomas Voit
- University of Bayreuth, 26523, Division Exercise Physiology and Metabolism Institute of Sport Science, Bayreuth, Bavaria, Germany;
| | - Tadej Battelino
- University Children's Hospital, Ljubljana, Slovenia, Department of Endocrinology, Diabetes and Metabolism, Bohoriceva 20, Ljubljana, Slovenia, 1000
- Slovenia;
| | - Harald Sourij
- Medical University of Graz, 31475, Auenbruggerplatz 15, 8036 Graz, Graz, Austria, 8036;
| | - Othmar Moser
- University of Bayreuth, 26523, Division Exercise Physiology and Metabolism Institute of Sport Science, Universitätsstraße 30, Bayreuth, Bayern, Germany, 95440;
| |
Collapse
|
13
|
Ortiz de Zevallos J, Hogwood AC, Kruse K, De Guzman J, Buckley M, Weltman AL, Allen JD. Sex differences in the effects of inorganic nitrate supplementation on exercise economy and endurance capacity in healthy young adults. J Appl Physiol (1985) 2023; 135:1157-1166. [PMID: 37823208 DOI: 10.1152/japplphysiol.00220.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/13/2023] Open
Abstract
Dietary nitrate (NO3-) is a widely used supplement purported to provide beneficial effects during exercise. Most studies to date include predominantly males. Therefore, the present study aimed to investigate if there is a sex-dependent effect of NO3- supplementation on exercise outcomes. We hypothesized that both sexes would exhibit improvements in exercise economy and exercise capacity following NO3- supplementation, but males would benefit to a greater extent. In a double-blind, randomized, crossover study, twelve females (24 ± 4 yr) and fourteen males (23 ± 4 yr) completed two 4-min moderate-intensity (MOD) exercise bouts followed by a time-to-exhaustion (TTE) task after following 3 days of NO3- supplementation (beetroot juice or BRJ) or NO3--depleted placebo (PL). Females were tested during the early follicular phase of the menstrual cycle. During MOD exercise, BRJ reduced the steady-state V̇o2 by ∼5% in males (M: Δ -87 ± 115 mL·min-1; P < 0.05) but not in females (F: Δ 6 ± 195 mL·min-1). Similarly, BRJ extended TTE by ∼15% in males (P < 0.05) but not in females. Dietary NO3- supplementation improved exercise economy during moderate-intensity exercise and exercise capacity during severe-intensity TTE in males but not in females. These differences could be related to estrogen levels, antioxidant capacity, nitrate-reducing bacteria, or a variety of known physiologic differences such as skeletal muscle calcium handling, and/or fiber type. Overall, our data suggests the ergogenic benefits of oral NO3- supplementation found in studies predominantly on male subjects may not be applicable to females.NEW & NOTEWORTHY While inorganic nitrate (NO3-) supplementation has increased in popularity as an ergogenic aid to improve exercise performance, the role of sex in NO3- supplementation on exercise outcomes is lacking despite known physiological differences during exercise between sex. This study revealed that males, but not females, improved exercise economy during submaximal exercise and exercise capacity during exercise within the severe-intensity domain following NO3- supplementation.
Collapse
Affiliation(s)
- Joaquin Ortiz de Zevallos
- Department of Kinesiology, School of Education and Human Development, University of Virginia, Charlottesville, Virginia, United States
| | - Austin C Hogwood
- Department of Kinesiology, School of Education and Human Development, University of Virginia, Charlottesville, Virginia, United States
| | - Ka'eo Kruse
- Department of Kinesiology, School of Education and Human Development, University of Virginia, Charlottesville, Virginia, United States
| | - Jeison De Guzman
- Department of Kinesiology, School of Education and Human Development, University of Virginia, Charlottesville, Virginia, United States
| | - Meredith Buckley
- Department of Kinesiology, School of Education and Human Development, University of Virginia, Charlottesville, Virginia, United States
| | - Arthur L Weltman
- Department of Kinesiology, School of Education and Human Development, University of Virginia, Charlottesville, Virginia, United States
- Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, Virginia, United States
| | - Jason D Allen
- Department of Kinesiology, School of Education and Human Development, University of Virginia, Charlottesville, Virginia, United States
- Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, Virginia, United States
| |
Collapse
|
14
|
Korzeniewski B. V̇O 2 (non-)linear increase in ramp-incremental exercise vs. V̇O 2 slow component in constant-power exercise: Underlying mechanisms. Respir Physiol Neurobiol 2023; 311:104023. [PMID: 36731708 DOI: 10.1016/j.resp.2023.104023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/31/2022] [Accepted: 01/28/2023] [Indexed: 02/01/2023]
Abstract
A computer model of the skeletal muscle bioenergetic system involving the Pi double-threshold mechanism of muscle fatigue was used to study the V̇O2 (non-)linear increase in time in ramp-incremental exercise as compared to the V̇O2 slow component in constant-power exercise. The Pi double-threshold mechanism applies to both constant-power and ramp-incremental exercise. The additional ATP usage is initiated at a significantly higher ATP usage activity (power output), determining the moderate/heavy exercise border, in ramp-incremental, than in constant-power exercise. A significantly lowered additional ATP usage activity or elevated glycolysis stimulation at the highest power outputs in ramp-incremental exercise in relation to constant-power exercise can additionally explain the much smaller (or zero) V̇O2 non-linearity in ramp-incremental exercise, than V̇O2 slow component in constant-power exercise. The V̇O2 (non-)linearity in ramp-incremental exercise and V̇O2 slow component in constant-power exercise is a derivative of a balance between the additional ATP usage and ATP production by anaerobic glycolysis.
Collapse
|
15
|
Goulding RP, Burnley M, Wüst RCI. How Priming Exercise Affects Oxygen Uptake Kinetics: From Underpinning Mechanisms to Endurance Performance. Sports Med 2023; 53:959-976. [PMID: 37010782 PMCID: PMC10115720 DOI: 10.1007/s40279-023-01832-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 04/04/2023]
Abstract
The observation that prior heavy or severe-intensity exercise speeds overall oxygen uptake ([Formula: see text]O2) kinetics, termed the "priming effect", has garnered significant research attention and its underpinning mechanisms have been hotly debated. In the first part of this review, the evidence for and against (1) lactic acidosis, (2) increased muscle temperature, (3) O2 delivery, (4) altered motor unit recruitment patterns and (5) enhanced intracellular O2 utilisation in underpinning the priming effect is discussed. Lactic acidosis and increased muscle temperature are most likely not key determinants of the priming effect. Whilst priming increases muscle O2 delivery, many studies have demonstrated that an increased muscle O2 delivery is not a prerequisite for the priming effect. Motor unit recruitment patterns are altered by prior exercise, and these alterations are consistent with some of the observed changes in [Formula: see text]O2 kinetics in humans. Enhancements in intracellular O2 utilisation likely play a central role in mediating the priming effect, probably related to elevated mitochondrial calcium levels and parallel activation of mitochondrial enzymes at the onset of the second bout. In the latter portion of the review, the implications of priming on the parameters of the power-duration relationship are discussed. The effect of priming on subsequent endurance performance depends critically upon which phases of the [Formula: see text]O2 response are altered. A reduced [Formula: see text]O2 slow component or increased fundamental phase amplitude tend to increase the work performable above critical power (i.e. W´), whereas a reduction in the fundamental phase time constant following priming results in an increased critical power.
Collapse
Affiliation(s)
- Richie P Goulding
- Laboratory for Myology, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.
| | - Mark Burnley
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Rob C I Wüst
- Laboratory for Myology, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Michel CP, Bendahan D, Giannesini B, Vilmen C, Le Fur Y, Messonnier LA. Effects of hydroxyurea on skeletal muscle energetics and force production in a sickle cell disease murine model. J Appl Physiol (1985) 2023; 134:415-425. [PMID: 36603048 DOI: 10.1152/japplphysiol.00333.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Hydroxyurea (HU) is commonly used as a treatment for patients with sickle cell disease (SCD) to enhance fetal hemoglobin production. This increased production is expected to reduce anemia (which depresses oxygen transport) and abnormal Hb content alleviating clinical symptoms such as vaso-occlusive crisis and acute chest syndrome. The effects of HU on skeletal muscle bioenergetics in vivo are still unknown. Due to the beneficial effects of HU upon oxygen delivery, improved skeletal muscle energetics and function in response to a HU treatment have been hypothesized. Muscle energetics and function were analyzed during a standardized rest-exercise-recovery protocol, using 31P-magnetic resonance spectroscopy in Townes SCD mice. Measurements were performed in three groups of mice: one group of 2-mo-old mice (SCD2m, n = 8), another one of 4-mo-old mice (SCD4m, n = 8), and a last group of 4-mo-old mice that have been treated from 2 mo of age with HU at 50 mg/kg/day (SCD4m-HU, n = 8). As compared with SCD2m mice, SCD4m mice were heavier and displayed a lower acidosis. As lower specific forces were developed by SCD4m compared with SCD2m, greater force-normalized phosphocreatine consumption and oxidative and nonoxidative costs of contraction were also reported. HU-treated mice (SCD4m-HU) displayed a significantly higher specific force production as compared with untreated mice (SCD4m), whereas muscle energetics was unchanged. Overall, our results support a beneficial effect of HU on muscle function.NEW & NOTEWORTHY Our results highlighted that force production decreases between 2 and 4 mo of age in SCD mice thereby indicating a decrease of muscle function during this period. Of interest, HU treatment seemed to blunt the observed age effect given that SCD4m-HU mice displayed a higher specific force production as compared with SCD4m mice. In that respect, HU treatment would help to maintain a higher capacity of force production during aging in SCD.
Collapse
Affiliation(s)
| | - David Bendahan
- CNRS, CRMBM, Aix-Marseille Université, Marseille, France
| | | | | | - Yann Le Fur
- CNRS, CRMBM, Aix-Marseille Université, Marseille, France
| | - Laurent A Messonnier
- Laboratoire Interuniversitaire de Biologie de la Motricité EA7424, Université Savoie Mont Blanc, Chambéry, France
| |
Collapse
|
17
|
Mancilla RF, Lindeboom L, Grevendonk L, Hoeks J, Koves TR, Muoio DM, Schrauwen P, Schrauwen-Hinderling V, Hesselink MK. Skeletal muscle mitochondrial inertia is associated with carnitine acetyltransferase activity and physical function in humans. JCI Insight 2023; 8:e163855. [PMID: 36413408 PMCID: PMC9870054 DOI: 10.1172/jci.insight.163855] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUNDAt the onset of exercise, the speed at which phosphocreatine (PCr) decreases toward a new steady state (PCr on-kinetics) reflects the readiness to activate mitochondrial ATP synthesis, which is secondary to Acetyl-CoA availability in skeletal muscle. We hypothesized that PCr on-kinetics are slower in metabolically compromised and older individuals and are associated with low carnitine acetyltransferase (CrAT) protein activity and compromised physical function.METHODSWe applied 31P-magnetic resonance spectroscopy (31P-MRS) to assess PCr on-kinetics in 2 cohorts of volunteers. Cohort 1 included patients who had type 2 diabetes, were obese, were lean trained (VO2max > 55 mL/kg/min), and were lean untrained (VO2max < 45 mL/kg/min). Cohort 2 included young (20-30 years) and older (65-80 years) individuals with normal physical activity and older, trained individuals. Previous results of CrAT protein activity and acetylcarnitine content in muscle tissue were used to explore the underlying mechanisms of PCr on-kinetics, along with various markers of physical function.RESULTSPCr on-kinetics were significantly slower in metabolically compromised and older individuals (indicating mitochondrial inertia) as compared with young and older trained volunteers, regardless of in vivo skeletal muscle oxidative capacity (P < 0.001). Mitochondrial inertia correlated with reduced CrAT protein activity, low acetylcarnitine content, and functional outcomes (P < 0.001).CONCLUSIONPCr on-kinetics are significantly slower in metabolically compromised and older individuals with normal physical activity compared with young and older trained individuals, regardless of in vivo skeletal muscle oxidative capacity, indicating greater mitochondrial inertia. Thus, PCr on-kinetics are a currently unexplored signature of skeletal muscle mitochondrial metabolism, tightly linked to functional outcomes. Skeletal muscle mitochondrial inertia might emerge as a target of intervention to improve physical function.TRIAL REGISTRATIONNCT01298375 and NCT03666013 (clinicaltrials.gov).FUNDINGRM and MH received an EFSD/Lilly grant from the European Foundation for the Study of Diabetes (EFSD). VS was supported by an ERC starting grant (grant 759161) "MRS in Diabetes."
Collapse
Affiliation(s)
- Rodrigo F. Mancilla
- NUTRIM School of Nutrition and Translational Research in Metabolism and
- Department of Nutrition and Movement Sciences, Maastricht University Medical Center, Maastricht, Netherlands
| | - Lucas Lindeboom
- NUTRIM School of Nutrition and Translational Research in Metabolism and
- Department of Nutrition and Movement Sciences, Maastricht University Medical Center, Maastricht, Netherlands
| | - Lotte Grevendonk
- NUTRIM School of Nutrition and Translational Research in Metabolism and
- Department of Nutrition and Movement Sciences, Maastricht University Medical Center, Maastricht, Netherlands
| | - Joris Hoeks
- NUTRIM School of Nutrition and Translational Research in Metabolism and
- Department of Nutrition and Movement Sciences, Maastricht University Medical Center, Maastricht, Netherlands
| | - Tim R. Koves
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, North Carolina, USA
| | - Deborah M. Muoio
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, North Carolina, USA
| | - Patrick Schrauwen
- NUTRIM School of Nutrition and Translational Research in Metabolism and
- Department of Nutrition and Movement Sciences, Maastricht University Medical Center, Maastricht, Netherlands
| | - Vera Schrauwen-Hinderling
- NUTRIM School of Nutrition and Translational Research in Metabolism and
- Department of Nutrition and Movement Sciences, Maastricht University Medical Center, Maastricht, Netherlands
- Department of Radiology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Matthijs K.C. Hesselink
- NUTRIM School of Nutrition and Translational Research in Metabolism and
- Department of Nutrition and Movement Sciences, Maastricht University Medical Center, Maastricht, Netherlands
| |
Collapse
|
18
|
Navarro VT, Díaz-Pintado JVSA, Piero DWD, Olmedo FH. Usefulness of V˙O2 Kinetics and Biomechanical Parameters as Predictors of Athlete's Performance in 800 m Running Race. Sports (Basel) 2023; 11:sports11010015. [PMID: 36668719 PMCID: PMC9862118 DOI: 10.3390/sports11010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/29/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Incremental tests to exhaustion have been usually employed as the “gold standard” to establish the fitness level of athletes. However, during real competition in many sport disciplines, exertion is not characterized by an increasing effort until failure. The purpose of this preliminary study was to add new evidence regarding the usability of parameters obtained from an on-field testing in 800 m running athletes. V˙O2 kinetics (mean, amplitude, phase time, and phase start time) and biomechanical parameters (velocity, stride frequency, and stride length) were analyzed in eight athletes during a maximal 800 m running race test. Our results showed that only the peak of blood lactate concentration after the 800 m test was correlated with the race time (p = 0.047). The race time was positively associated with both the phase duration and phase start time (all p-values < 0.05). Conversely, race time was negatively correlated with velocity, stride frequency, and amplitude (p-values < 0.05). Our results reveal that jointly studying the V˙O2 kinetics and biomechanical parameters during a maximal 800 m running race test is a useful tool to predict the athlete’s upcoming performance and improve the planning and control of the training process of 800 m running athletes.
Collapse
Affiliation(s)
- Vicente Torres Navarro
- Doctorate School, Catholic University of Valencia “San Vicente Martyr”, 46008 Valencia, Spain
| | | | - Diego Warr di Piero
- Faculty of Physical Education and Sport Sciences, Catholic University of Valencia “San Vicente Martyr”, 46900 Torrent, Spain
| | - Florentino Huertas Olmedo
- Faculty of Physical Education and Sport Sciences, Catholic University of Valencia “San Vicente Martyr”, 46900 Torrent, Spain
| |
Collapse
|
19
|
Rocha J, Gildea N, O’Shea D, Green S, Egaña M. Priming exercise accelerates oxygen uptake kinetics during high-intensity cycle exercise in middle-aged individuals with type 2 diabetes. Front Physiol 2022; 13:1006993. [PMID: 36505082 PMCID: PMC9727537 DOI: 10.3389/fphys.2022.1006993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/31/2022] [Indexed: 11/19/2022] Open
Abstract
Background: The primary phase time constant of pulmonary oxygen uptake kinetics (V · O 2 τ p) during submaximal efforts is longer in middle-aged people with type 2 diabetes (T2D), partly due to limitations in oxygen supply to active muscles. This study examined if a high-intensity "priming" exercise (PE) would speedV · O 2 τ p during a subsequent high-intensity cycling exercise in T2D due to enhanced oxygen delivery. Methods: Eleven (4 women) middle-aged individuals with type 2 diabetes and 11 (4 women) non-diabetic controls completed four separate cycling bouts each starting at an 'unloaded' baseline of 10 W and transitioning to a high-intensity constant-load. Two of the four cycling bouts were preceded by priming exercise. The dynamics of pulmonaryV · O 2 and muscle deoxygenation (i.e. deoxygenated haemoglobin and myoglobin concentration [HHb + Mb]), were calculated from breath-by-breath and near-infrared spectroscopy data at the vastus lateralis, respectively. Results: At baselineV · O 2 τ p, was slower (p < 0.001) in the type 2 diabetes group (48 ± 6 s) compared to the control group (34 ± 2 s) but priming exercise significantly reducedV · O 2 τ p (p < 0.001) in type 2 diabetes (32 ± 6 s) so that post priming exercise it was not different compared with controls (34 ± 3 s). Priming exercise reduced the amplitude of theV · O 2 slow component (As) in both groups (type 2 diabetes: 0.26 ± 0.11 to 0.16 ± 0.07 L/min; control: 0.33 ± 0.13 to 0.25 ± 0.14 L/min, p < 0.001), while [HHb + Mb] kinetics remained unchanged. Conclusion: These results suggest that in middle-aged men and women with T2D, PE speedsV · O 2 τ p likely by a better matching of O2 delivery to utilisation and reduces theV · O 2 As during a subsequent high-intensity exercise.
Collapse
Affiliation(s)
- Joel Rocha
- Division of Sport and Exercise Sciences, Abertay University, Dundee, United Kingdom
| | - Norita Gildea
- Department of Physiology, School of Medicine, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Donal O’Shea
- Endocrinology, St Columcille’s and St Vincent’s Hospitals, Dublin, Ireland
| | - Simon Green
- School of Science and Health, Western Sydney University, Sydney, AU-NSW, Australia
| | - Mikel Egaña
- Department of Physiology, School of Medicine, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| |
Collapse
|
20
|
Massini DA, Simionato AR, Almeida TAF, Macedo AG, Espada MC, Reis JF, Besone Alves F, Pessôa Filho DM. The reliability of back-extrapolation in estimating V˙O2peak in different swimming performances at the severe-intensity domain. Front Physiol 2022; 13:982638. [DOI: 10.3389/fphys.2022.982638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
The amount of anerobic energy released during exercise might modify the initial phase of oxygen recovery (fast-O2debt) post-exercise. Therefore, the present study aimed to analyze the reliability of peak oxygen uptake (V˙O2peak) estimate by back-extrapolation (BE−V˙O2peak) under different swimming conditions in the severe-intensity domain, verifying how the alterations of the V˙O2 recovery profile and anerobic energy demand might affect BE−V˙O2peak values. Twenty swimmers (16.7 ± 2.4 years, 173.5 ± 10.2 cm, and 66.4 ± 10.6 kg) performed an incremental intermittent step protocol (IIST: 6 × 250 plus 1 × 200 m, IIST_v200m) for the assessment of V˙O2peak. The V˙O2 off-kinetics used a bi-exponential model to discriminate primary amplitude, time delay, and time constant (A1off, TD1off, and τoff) for assessment of fast-O2debt post IIST_v200m, 200-m single-trial (v200 m), and rest-to-work transition at 90% delta (v90%Δ) tests. The linear regression estimated BE−V˙O2peak and the rate of V˙O2 recovery (BE-slope) post each swimming performance. The ANOVA (Sidak as post hoc) compared V˙O2peak to the estimates of BE−V˙O2peak in v200 m, IIST_v200 m, and v90%Δ, and the coefficient of dispersion (R2) analyzed the association between tests. The values of V˙O2peak during IIST did not differ from BE−V˙O2peak in v200 m, IIST_v200 m, and v90%Δ (55.7 ± 7.1 vs. 53.7 ± 8.2 vs. 56.3 ± 8.2 vs. 54.1 ± 9.1 ml kg−1 min−1, p > 0.05, respectively). However, the V˙O2peak variance is moderately explained by BE−V˙O2peak only in IIST_v200 m and v90%Δ (RAdj2 = 0.44 and RAdj2 = 0.43, p < 0.01). The TD1off and τoff responses post IIST_v200 m were considerably lower than those in both v200 m (6.1 ± 3.8 and 33.0 ± 9.5 s vs. 10.9 ± 3.5 and 47.7 ± 7.9 s; p < 0.05) and v90%Δ ( 10.1 ± 3.8 and 44.3 ± 6.3 s, p < 0.05). The BE-slope post IIST_v200m was faster than in v200 m and v90%Δ (-47.9 ± 14.6 vs. -33.0 ± 10.4 vs. -33.6 ± 13.8 ml kg−1, p < 0.01), and the total anerobic (AnaerTotal) demand was lower in IIST_v200 m (37.4 ± 9.4 ml kg−1) than in 200 m and 90%Δ (51.4 ± 9.4 and 46.2 ± 7.7 ml kg−1, p < 0.01). Finally, the τ1off was related to AnaerTotal in IIST_v200m, v200 m, and v90%Δ (r = 0.64, r = 0.61, and r = 0.64, p < 0.01). The initial phase of the V˙O2 recovery profile provided different (although reliable) conditions for the estimate of V˙O2peak with BE procedures, which accounted for the moderate effect of anerobic release on V˙O2 off-kinetics, but compromised exceptionally the V˙O2peak estimate in the 200-m single trial.
Collapse
|
21
|
Sex-Related Differences in Oxygen Consumption Recovery After High-Intensity Rowing Exercise During Childhood and Adolescence. Pediatr Exerc Sci 2022; 34:210–218. [PMID: 35468587 DOI: 10.1123/pes.2021-0173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/04/2022] [Accepted: 03/01/2022] [Indexed: 11/18/2022]
Abstract
PURPOSE To determine sex-related differences in oxygen consumption (V˙O2) recovery after high-intensity exercise during childhood and adolescence. METHODS Forty-two boys and 35 girls (10-17 y) performed a 60-second all-out test on a rowing ergometer. Postexercise V˙O2 recovery was analyzed from (1) the V˙O2 recovery time constant obtained from a biexponential model (τ1V˙O2) and (2) excess postexercise oxygen consumption calculated over a period of 8 minutes (EPOC8) and until τ1V˙O2 was reached (EPOCτ1). Multiplicative allometric modeling was used to assess the concurrent effects of body mass or lean body mass, and age on EPOC8 and EPOCτ1. RESULTS EPOC8 increased significantly more in boys from the age of 14 years. However, the sex difference was no longer significant when EPOC8 was analyzed using an allometric model including body mass + age or lean body mass + age. In addition, despite a greater increase in EPOCτ1 in boys from the age of 14 years, τ1V˙O2 was not significantly different between sexes whatever age. CONCLUSION While age and lean body mass accounted for the sex-related differences of EPOC during childhood and adolescence, no significant effect of age and sex was observed on the V˙O2 recovery time constant after high-intensity exercise.
Collapse
|
22
|
Hori A, Saito R, Suijo K, Kushnick MR, Hasegawa D, Ishida K, Hotta N. Blood flow restriction accelerates aerobic training-induced adaptation of [Formula: see text] kinetics at the onset of moderate-intensity exercise. Sci Rep 2022; 12:18160. [PMID: 36307460 PMCID: PMC9616915 DOI: 10.1038/s41598-022-22852-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 10/20/2022] [Indexed: 12/31/2022] Open
Abstract
It is unclear whether blood flow restriction (BFR) accelerates the adaptation of the time constant (τ) of phase II oxygen uptake ([Formula: see text]) kinetics in the moderate-intensity exercise domain via moderate-intensity aerobic training. Therefore, healthy participants underwent moderate-intensity [45-60% [Formula: see text] Reserve] aerobic cycle training with or without BFR (BFR group, n = 9; CON group, n = 9) for 8 weeks to evaluate [Formula: see text] kinetics during moderate-intensity cycle exercise before (Pre) and after 4 (Mid) and 8 (Post) weeks of training. Both groups trained for 30 min, 3 days weekly. BFR was performed for 5 min every 10 min by applying cuffs to the upper thighs. The τ significantly decreased by Mid in the BFR group (23.7 ± 2.9 s [Pre], 15.3 ± 1.8 s [Mid], 15.5 ± 1.4 s [Post], P < 0.01) and by Post in the CON group (27.5 ± 2.0 s [Pre], 22.1 ± 0.7 s [Mid], 18.5 ± 1.9 s [Post], P < 0.01). Notably, the BFR group's τ was significantly lower than that of the CON group at Mid (P < 0.01) but not at Post. In conclusion, BFR accelerates the adaptation of the [Formula: see text] kinetics of phase II by moderate-intensity aerobic training.
Collapse
Affiliation(s)
- Amane Hori
- Graduate School of Life and Health Sciences, Chubu University, Kasugai, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Ryuji Saito
- College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | - Kenichi Suijo
- Graduate School of Life and Health Sciences, Chubu University, Kasugai, Japan
- College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | - Michael R. Kushnick
- College of Health and Human Sciences, Northern Illinois University, DeKalb, IL USA
| | - Daisuke Hasegawa
- Graduate School of Life and Health Sciences, Chubu University, Kasugai, Japan
| | - Koji Ishida
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan
| | - Norio Hotta
- Graduate School of Life and Health Sciences, Chubu University, Kasugai, Japan
- College of Life and Health Sciences, Chubu University, Kasugai, Japan
| |
Collapse
|
23
|
Cuenca-Fernández F, Boullosa D, López-Belmonte Ó, Gay A, Ruiz-Navarro JJ, Arellano R. Swimming Warm-Up and Beyond: Dryland Protocols and Their Related Mechanisms-A Scoping Review. SPORTS MEDICINE - OPEN 2022; 8:120. [PMID: 36153425 PMCID: PMC9509505 DOI: 10.1186/s40798-022-00514-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/02/2022] [Indexed: 11/21/2022]
Abstract
In swimming, the beneficial effects of the in-water warm-up are often undermined by the long transition periods before competition (≥ 20 min). For that reason, studies comparing the effects of in-water warm-ups followed by dryland activities have been conducted in the swimming literature. This has brought conflicting evidence due to large combinations of supervised and unsupervised warm-up procedures used. Therefore, a scoping review was performed to discuss (1) why warm-up strategies are important for competitive swimming; to identify (2) what are the different warm-up approaches available in the literature, and; to establish (3) what are the main conclusions, considerations and gaps that should be addressed in further research to provide clearer guidance for interventions. The search was conducted on PubMed, Web of Science, Scopus, and SPORTDiscus databases. To be considered eligible, studies must have assessed acute short-term responses of warm-up procedures in swimmers by using randomized controlled trials or pre-post study designs. A total of 42 articles were included in this review. The effectiveness of warm-up responses was evaluated based on the inclusion or not of warm-up, the type of conditioning activity (in-water exercise, in-water exercise combined with dryland or dryland exercise only), its duration, and intensity. (1) Warm-up mechanisms have been mainly related to temperature changes associated to cardiovascular adaptations and short-term specific neuromuscular adaptations. Thus, maintaining muscle activity and body temperature during the transition phase immediately prior to competition could help swimmers' performance; (2) the most common approach before a race usually included a moderate mileage of in-water warm-up (~ 1000 m) performed at an intensity of ≤ 60% of the maximal oxygen consumption, followed by dryland protocols to keep the muscle activity and body temperature raised during the transition phase. Dryland activities could only optimize performance in sprint swimming if performed after the in-water warm-up, especially if heated clothing elements are worn. Using tethered swimming and hand-paddles during warm-ups does not provide superior muscular responses to those achieved by traditional in-water warm-ups, possibly because of acute alterations in swimming technique. In contrast, semi-tethered resisted swimming may be considered as an appropriate stimulus to generate post-activation performance enhancements; (3) nothing has yet been investigated in backstroke, butterfly or individual medley, and there is a paucity of research on the effects of experimental warm-ups over distances greater than 100 m. Women are very under-represented in warm-up research, which prevents conclusions about possible sex-regulated effects on specific responses to the warm-up procedures.
Collapse
Affiliation(s)
- Francisco Cuenca-Fernández
- Aquatics Lab. Department of Physical Education and Sports. Faculty of Sport Sciences, University of Granada, Ctra. Alfacar SN (18071), Granada, Spain.
- International Strength and Conditioning Society, Murcia, Spain.
| | - Daniel Boullosa
- Integrated Institute of Health, Federal University of Mato Grosso Do Sul, Campo Grande, Brazil
- College of Healthcare Sciences, James Cook University, Townsville, Australia
- Research and Development Department, iLOAD Solutions, Campo Grande, Brazil
| | - Óscar López-Belmonte
- Aquatics Lab. Department of Physical Education and Sports. Faculty of Sport Sciences, University of Granada, Ctra. Alfacar SN (18071), Granada, Spain
| | - Ana Gay
- Aquatics Lab. Department of Physical Education and Sports. Faculty of Sport Sciences, University of Granada, Ctra. Alfacar SN (18071), Granada, Spain
| | - Jesús Juan Ruiz-Navarro
- Aquatics Lab. Department of Physical Education and Sports. Faculty of Sport Sciences, University of Granada, Ctra. Alfacar SN (18071), Granada, Spain
| | - Raúl Arellano
- Aquatics Lab. Department of Physical Education and Sports. Faculty of Sport Sciences, University of Granada, Ctra. Alfacar SN (18071), Granada, Spain
| |
Collapse
|
24
|
MacDougall KB, Falconer TM, MacIntosh BR. Efficiency of cycling exercise: Quantification, mechanisms, and misunderstandings. Scand J Med Sci Sports 2022; 32:951-970. [PMID: 35253274 DOI: 10.1111/sms.14149] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/19/2022] [Accepted: 02/09/2022] [Indexed: 12/24/2022]
Abstract
The energetics of cycling represents a well-studied area of exercise science, yet there are still many questions that remain. Efficiency, broadly defined as the ratio of energy output to energy input, is one key metric that, despite its importance from both a scientific as well as performance perspective, is commonly misunderstood. There are many factors that may affect cycling efficiency, both intrinsic (e.g., muscle fiber type composition) and extrinsic (e.g., cycling cadence, prior exercise, and training), creating a complex interplay of many components. Due to its relative simplicity, the measurement of oxygen uptake continues to be the most common means of measuring the energy cost of exercise (and thus efficiency); however, it is limited to only a small proportion of the range of outputs humans are capable of, further limiting our understanding of the energetics of high-intensity exercise and any mechanistic bases therein. This review presents evidence that delta efficiency does not represent muscular efficiency and challenges the notion that the slow component of oxygen uptake represents decreasing efficiency. It is noted that gross efficiency increases as intensity of exercise increases in spite of the fact that fast-twitch fibers are recruited to achieve this high power output. Understanding the energetics of high-intensity exercise will require critical evaluation of the available data.
Collapse
Affiliation(s)
- Keenan B MacDougall
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Tara M Falconer
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Brian R MacIntosh
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
25
|
Ferretti G, Fagoni N, Taboni A, Vinetti G, di Prampero PE. A century of exercise physiology: key concepts on coupling respiratory oxygen flow to muscle energy demand during exercise. Eur J Appl Physiol 2022; 122:1317-1365. [PMID: 35217911 PMCID: PMC9132876 DOI: 10.1007/s00421-022-04901-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/25/2022] [Indexed: 12/26/2022]
Abstract
After a short historical account, and a discussion of Hill and Meyerhof's theory of the energetics of muscular exercise, we analyse steady-state rest and exercise as the condition wherein coupling of respiration to metabolism is most perfect. The quantitative relationships show that the homeostatic equilibrium, centred around arterial pH of 7.4 and arterial carbon dioxide partial pressure of 40 mmHg, is attained when the ratio of alveolar ventilation to carbon dioxide flow ([Formula: see text]) is - 21.6. Several combinations, exploited during exercise, of pertinent respiratory variables are compatible with this equilibrium, allowing adjustment of oxygen flow to oxygen demand without its alteration. During exercise transients, the balance is broken, but the coupling of respiration to metabolism is preserved when, as during moderate exercise, the respiratory system responds faster than the metabolic pathways. At higher exercise intensities, early blood lactate accumulation suggests that the coupling of respiration to metabolism is transiently broken, to be re-established when, at steady state, blood lactate stabilizes at higher levels than resting. In the severe exercise domain, coupling cannot be re-established, so that anaerobic lactic metabolism also contributes to sustain energy demand, lactate concentration goes up and arterial pH falls continuously. The [Formula: see text] decreases below - 21.6, because of ensuing hyperventilation, while lactate keeps being accumulated, so that exercise is rapidly interrupted. The most extreme rupture of the homeostatic equilibrium occurs during breath-holding, because oxygen flow from ambient air to mitochondria is interrupted. No coupling at all is possible between respiration and metabolism in this case.
Collapse
Affiliation(s)
- Guido Ferretti
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Brescia, Italy.
- Département d'Anesthésiologie, Pharmacologie et Soins Intensifs, Université de Genève, Genève, Switzerland.
| | - Nazzareno Fagoni
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Brescia, Italy
| | - Anna Taboni
- Département d'Anesthésiologie, Pharmacologie et Soins Intensifs, Université de Genève, Genève, Switzerland
| | - Giovanni Vinetti
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Brescia, Italy
| | | |
Collapse
|
26
|
Cao M, Calmelat RA, Kierstead P, Carraro N, Stringer WW, Porszasz J, Casaburi R, Rossiter HB. A randomized, crossover, placebo controlled, double blind trial of the effects of tiotropium-olodaterol on neuromuscular performance during exercise in COPD. J Appl Physiol (1985) 2022; 132:1145-1153. [PMID: 35323052 PMCID: PMC9054255 DOI: 10.1152/japplphysiol.00332.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exercise intolerance in COPD is associated with dyspnea, reduced inspiratory capacity (IC) and occurs with a neuromuscular "power reserve" i.e. an acute ability to increase isokinetic locomotor power. This power reserve is associated with resting FEV1/FVC suggesting that treatments to target pulmonary function may protect neuromuscular performance and extend whole-body exercise in COPD. We, therefore, tested whether combination long-acting β-agonist and muscarinic antagonist bronchodilator therapy (LAMA+LABA; Stiolto Respimat®) would ameliorate the decline in neuromuscular performance and increase endurance time during constant power cycling at 80% peak incremental power. Fourteen COPD patients (4 female; 64[58,72] years; FEV1 67[56,75]% predicted; median[25th,75th percentile]), participated in a randomized, placebo-controlled cross-over trial (NCT02845752). Pulmonary function and cardiopulmonary exercise responses were assessed before and after 1 week of treatment, with 2 weeks washout between conditions. Performance fatigue was assessed using a ~4-second maximal isokinetic cycling effort at pre-exercise, isotime and intolerance. Isotime was the shorter exercise duration of the two treatment conditions. Significance was assessed using ANOVA with treatment as fixed factor and subject as random factor. FEV1 was greater with LAMA+LABA vs. placebo (1.81[1.58,1.98] L vs 1.72[1.29,1.99] L; P=0.006), but IC at isotime, performance fatigue at isotime and constant power endurance time were not different between condition (each P>0.05). A modest (~95 mL) FEV1 increase in following 1 week of combination LAMA+LABA treatment did not alleviate neuromuscular performance fatigue or enhance cycle exercise tolerance in mild to severe COPD patients with largely preserved "static" lung volumes.
Collapse
Affiliation(s)
- Min Cao
- Rehabilitation Clinical Trials Center, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States.,Department of Respiratory and Critical Care Medicine, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Robert A Calmelat
- Rehabilitation Clinical Trials Center, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Peter Kierstead
- Antioch Medical Center, Pulmonary Medicine, Antioch, CA, United States
| | - Nicolo Carraro
- High Specialization Rehabilitation Hospital, ORAS, Motta di Livenza, Italy
| | - William W Stringer
- Rehabilitation Clinical Trials Center, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Janos Porszasz
- Rehabilitation Clinical Trials Center, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Richard Casaburi
- Rehabilitation Clinical Trials Center, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Harry B Rossiter
- Rehabilitation Clinical Trials Center, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| |
Collapse
|
27
|
de Aguiar RA, Turnes T, Borszcz FK, Raimundo JAG, Caputo F. NIRS-derived muscle V̇O 2 kinetics after moderate running exercise in healthy males: reliability and associations with parameters of aerobic fitness. Exp Physiol 2022; 107:476-488. [PMID: 35244956 DOI: 10.1113/ep090105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/01/2022] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? In vivo muscle oxidative capacity has been evaluated through the mV̇O2 kinetics following single joint exercise using NIRS system. Here, we demonstrated its utility following running exercise. What is the main finding and its importance? We demonstrated that time constant of mV̇O2 kinetics in gastrocnemius following moderate running exercise presents good to excellent reliability. In addition, it was well correlated with parameters of aerobic fitness, such as maximal speed of the incremental test, ventilatory threshold and pulmonary V̇O2 on-kinetics. Therefore, NIRS-derived muscle oxidative capacity together with other physiological measurements may allow a concomitant local and systemic analysis of the components of the oxidative system. ABSTRACT NIRS-derived muscle oxygen uptake (mV̇O2 ) kinetics following single-joint exercise has been used to assess muscle oxidative capacity. However, little evidence is available on the use of this technique following whole-body exercises. Therefore, this study aimed to assess the reliability of the NIRS-derived mV̇O2 kinetics following running exercise and to investigate the relationship between the time constant of mV̇O2 off-kinetics (τmV̇O2 ) with parameters of aerobic fitness. After an incremental test to determine V̇O2 max, first (VT1 ) and second (VT2 ) ventilatory thresholds, and maximal speed (Smax), thirteen males (age = 21 ± 4 years; V̇O2 max = 55.9 ± 3.4 mlꞏkg-1ꞏmin-1) performed three sets (two in the first day and one on a subsequent day) of two repetitions of 6-min running exercise at 90%VT1 . The pulmonary V̇O2 on-kinetics (pV̇O2 ) and mV̇O2 off-kinetics in gastrocnemius were assessed. τmV̇O2 presented no systematic change and satisfactory reliability (SEM and ICC of 4.21 s and 0.49 for between transitions; and 2.65 s and 0.74 averaging τmV̇O2 within each time-set), with no difference (p > 0.3) between the within- (SEM = 2.92 s) and between-day variability (SEM = 2.78 s and 2.19 s between first vs. third set, and second vs. third set, respectively). τmV̇O2 (28.5 ± 4.17 s) correlated significantly (p < 0.05) with Smax (r = -0.66), VT1 (r = -0.64) and time constant of the pV̇O2 on-kinetics (r = 0.69). These findings indicate that NIRS-derived mV̇O2 kinetics in the gastrocnemius following moderate running exercise is a useful and reliable method to assess muscle oxidative capacity. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Rafael A de Aguiar
- Human Performance Research Group, College of Health and Sport Science, Santa Catarina State University, Florianópolis, Brazil
| | - Tiago Turnes
- Human Performance Research Group, College of Health and Sport Science, Santa Catarina State University, Florianópolis, Brazil.,Physical Effort Laboratory, Sports Centre, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Fernando K Borszcz
- Physical Effort Laboratory, Sports Centre, Federal University of Santa Catarina, Florianópolis, Brazil
| | - João A G Raimundo
- Human Performance Research Group, College of Health and Sport Science, Santa Catarina State University, Florianópolis, Brazil
| | - Fabrizio Caputo
- Human Performance Research Group, College of Health and Sport Science, Santa Catarina State University, Florianópolis, Brazil
| |
Collapse
|
28
|
Massini DA, Almeida TAF, Vasconcelos CMT, Macedo AG, Espada MAC, Reis JF, Alves FJB, Fernandes RJP, Pessôa Filho DM. Are Young Swimmers Short and Middle Distances Energy Cost Sex-Specific? Front Physiol 2022; 12:796886. [PMID: 34970159 PMCID: PMC8712663 DOI: 10.3389/fphys.2021.796886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/16/2021] [Indexed: 12/23/2022] Open
Abstract
This study assessed the energy cost in swimming (C) during short and middle distances to analyze the sex-specific responses of C during supramaximal velocity and whether body composition account to the expected differences. Twenty-six swimmers (13 men and 13 women: 16.7 ± 1.9 vs. 15.5 ± 2.8 years old and 70.8 ± 10.6 vs. 55.9 ± 7.0 kg of weight) performed maximal front crawl swimming trials in 50, 100, and 200 m. The oxygen uptake (V˙O2) was analyzed along with the tests (and post-exercise) through a portable gas analyser connected to a respiratory snorkel. Blood samples were collected before and after exercise (at the 1st, 3rd, 5th, and 7th min) to determine blood lactate concentration [La–]. The lean mass of the trunk (LMTrunk), upper limb (LMUL), and lower limb (LMLL) was assessed using dual X-ray energy absorptiometry. Anaerobic energy demand was calculated from the phosphagen and glycolytic components, with the first corresponding to the fast component of the V˙O2 bi-exponential recovery phase and the second from the 2.72 ml × kg–1 equivalent for each 1.0 mmol × L–1 [La–] variation above the baseline value. The aerobic demand was obtained from the integral value of the V˙O2 vs. swimming time curve. The C was estimated by the rate between total energy releasing (in Joules) and swimming velocity. The sex effect on C for each swimming trial was verified by the two-way ANOVA (Bonferroni post hoc test) and the relationships between LMTrunk, LMUL, and LMLL to C were tested by Pearson coefficient. The C was higher for men than women in 50 (1.8 ± 0.3 vs. 1.3 ± 0.3 kJ × m–1), 100 (1.4 ± 0.1 vs. 1.0 ± 0.2 kJ × m–1), and 200 m (1.0 ± 0.2 vs. 0.8 ± 0.1 kJ × m–1) with p < 0.01 for all comparisons. In addition, C differed between distances for each sex (p < 0.01). The regional LMTrunk (26.5 ± 3.6 vs. 20.1 ± 2.6 kg), LMUL (6.8 ± 1.0 vs. 4.3 ± 0.8 kg), and LMLL (20.4 ± 2.6 vs. 13.6 ± 2.5 kg) for men vs. women were significantly correlated to C in 50 (R2adj = 0.73), 100 (R2adj = 0.61), and 200 m (R2adj = 0.60, p < 0.01). Therefore, the increase in C with distance is higher for men than women and is determined by the lean mass in trunk and upper and lower limbs independent of the differences in body composition between sexes.
Collapse
Affiliation(s)
- Danilo A Massini
- Postgraduate Programme in Human Development and Technologies, São Paulo State University - UNESP, Rio Claro, Brazil
| | - Tiago A F Almeida
- São Paulo State University - UNESP, Bauru, Brazil.,CIPER, Faculdade de Motricidade Humana, University de Lisboa, Lisbon, Portugal
| | - Camila M T Vasconcelos
- Postgraduate Programme in Human Development and Technologies, São Paulo State University - UNESP, Rio Claro, Brazil
| | - Anderson G Macedo
- Postgraduate Programme in Human Development and Technologies, São Paulo State University - UNESP, Rio Claro, Brazil.,São Paulo State University - UNESP, Bauru, Brazil
| | - Mário A C Espada
- School of Education (CIEF - CDP2T), Polytechnic Institute of Setúbal, Setúbal, Portugal.,Quality of Life Research Centre (CIEQV - Politécnico de Leiria), Leiria, Portugal
| | - Joana F Reis
- CIPER, Faculdade de Motricidade Humana, University de Lisboa, Lisbon, Portugal.,Faculdade de Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal
| | - Francisco J B Alves
- CIPER, Faculdade de Motricidade Humana, University de Lisboa, Lisbon, Portugal.,Faculdade de Motricidade Humana, Universidade de Lisboa, Lisbon, Portugal
| | - Ricardo J P Fernandes
- Faculty of Sport, Centre of Research, Education, Innovation and Intervention in Sport, University of Porto, Porto, Portugal
| | - Dalton M Pessôa Filho
- Postgraduate Programme in Human Development and Technologies, São Paulo State University - UNESP, Rio Claro, Brazil.,São Paulo State University - UNESP, Bauru, Brazil
| |
Collapse
|
29
|
Increasing Oxygen Uptake in Cross-Country Skiers by Speed Variation in Work Intervals. Int J Sports Physiol Perform 2021; 17:384-390. [PMID: 34814113 DOI: 10.1123/ijspp.2021-0226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/21/2021] [Accepted: 07/04/2021] [Indexed: 11/18/2022]
Abstract
PURPOSE Accumulated time at a high percentage of peak oxygen consumption (VO2peak) is important for improving performance in endurance athletes. The present study compared the acute physiological and perceived effects of performing high-intensity intervals with roller ski double poling containing work intervals with (1) fast start followed by decreasing speed (DEC), (2) systematic variation in exercise intensity (VAR), and (3) constant speed (CON). METHODS Ten well-trained cross-country skiers (double-poling VO2peak 69.6 [3.5] mL·min-1·kg-1) performed speed- and duration-matched DEC, VAR, and CON on 3 separate days in a randomized order (5 × 5-min work intervals and 3-min recovery). RESULTS DEC and VAR led to longer time ≥90% VO2peak (P = .016 and P = .033, respectively) and higher mean %VO2peak (P = .036, and P = .009) compared with CON, with no differences between DEC and VAR (P = .930 and P = .759, respectively). VAR, DEC, and CON led to similar time ≥90% of peak heart rate (HRpeak), mean HR, mean breathing frequency, mean ventilation, and mean blood lactate concentration ([La-]). Furthermore, no differences between sessions were observed for perceptual responses, such as mean rate of perceived exertion, session rate of perceived exertion or pain score (all Ps > .147). CONCLUSIONS In well-trained XC skiers, DEC and VAR led to longer time ≥90% of VO2peak compared with CON, without excessive perceptual effort, indicating that these intervals can be a good alternative for accumulating more time at a high percentage of VO2peak and at the same time mimicking the pronounced variation in exercise intensities experienced during XC-skiing competitions.
Collapse
|
30
|
Font-Farré M, Farche ACS, de Medeiros Takahashi AC, Guerra-Balic M, Figueroa A, Oviedo GR. Cardiac Autonomic Modulation Response Before, During, and After Submaximal Exercise in Older Adults With Intellectual Disability. Front Physiol 2021; 12:702418. [PMID: 34721053 PMCID: PMC8554113 DOI: 10.3389/fphys.2021.702418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/22/2021] [Indexed: 11/23/2022] Open
Abstract
The analysis of the heart rate variability (HRV) consists of changes in the time intervals between consecutive R waves. It provides information on the autonomic nervous system regulation and it is a predictor of adverse cardiovascular events. Several studies analyzed this parameter in youth and adults with Intellectual Disability (ID). Nevertheless, there is a lack of information regarding the HRV before, during, and after exercise in older adults with ID. Therefore, we aimed to describe and compare the cardiac autonomic modulation before, during, and after the six-minute walk test (6MWT) in older adults with and without ID. Twenty-four volunteers with ID and 24 without ID (non-ID) participated in this study. HRV was assessed by R-R intervals at rest, during and after the 6MWT. At rest and recovery periods, the participants remained sited. The symbolic analysis was used to evaluate non-linear HRV components. The recovery HR kinetics was assessed by the mean response time, which is equivalent to time constant (τ)+time delay (TD). Between groups differences in HRV variables were not significant. During the recovery period, HR kinetics time variables showed significant better results in non-ID participants (TD: 6±5s vs. 15±11s; τ: 19±10s vs. 35±17s; and MRT: 25±9s vs. 50±11s, all p<0.050). In conclusion, our results suggest that the HRV in older adults with and without ID is similar during rest, exercise, and recovery. Recovery HR kinetics after the 6MWT was slower in older adults with ID. The reason for these results may be a reduced post-exercise vagal rebound in older adults with ID.
Collapse
Affiliation(s)
- Manel Font-Farré
- Faculty of Psychology, Education and Sport Science Blanquerna, University Ramon Llull, Barcelona, Spain
| | | | | | - Myriam Guerra-Balic
- Faculty of Psychology, Education and Sport Science Blanquerna, University Ramon Llull, Barcelona, Spain
| | - Arturo Figueroa
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, United States
| | - Guillermo R Oviedo
- Faculty of Psychology, Education and Sport Science Blanquerna, University Ramon Llull, Barcelona, Spain.,School of Health Science Blanquerna, University Ramon Llull, Barcelona, Spain
| |
Collapse
|
31
|
Kirby BS, Clark DA, Bradley EM, Wilkins BW. The balance of muscle oxygen supply and demand reveals critical metabolic rate and predicts time to exhaustion. J Appl Physiol (1985) 2021; 130:1915-1927. [PMID: 33914662 DOI: 10.1152/japplphysiol.00058.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We tested the hypothesis that during whole body exercise, the balance between muscle O2 supply and metabolic demand may elucidate intensity domains, reveal a critical metabolic rate, and predict time to exhaustion. Seventeen active, healthy volunteers (12 males, 5 females; 32 ± 2 yr) participated in two distinct protocols. Study 1 (n = 7) consisted of constant work rate cycling in the moderate, heavy, and severe exercise intensity domains with concurrent measures of pulmonary V̇o2 and local %SmO2 [via near-infrared spectroscopy (NIRS)] on quadriceps and forearm sites. Average %SmO2 at both sites displayed a domain-dependent response (P < 0.05). A negative %SmO2 slope was evident during severe-domain exercise but was positive during exercise below critical power (CP) at both muscle sites. In study 2 (n = 10), quadriceps and forearm site %SmO2 was measured during three continuous running trials to exhaustion and three intermittent intensity (ratio = 60 s severe: 30 s lower intensity) trials to exhaustion. Intensity-dependent negative %SmO2 slopes were observed for all trials (P < 0.05) and predicted zero slope at critical velocity. %SmO2 accurately predicted depletion and repletion of %D' balance on a second-by-second basis (R2 = 0.99, P < 0.05; both sites). Time to exhaustion predictions during continuous and intermittent exercise were either not different or better with %SmO2 [standard error of the estimate (SEE) < 20.52 s for quad, <44.03 s for forearm] versus running velocity (SEE < 65.76 s). Muscle O2 balance provides a dynamic physiological delineation between sustainable and unsustainable exercise (consistent with a "critical metabolic rate") and predicts real-time depletion and repletion of finite work capacity and time to exhaustion.NEW & NOTEWORTHY Dynamic muscle O2 saturation discriminates boundaries between exercise intensity domains, exposes a critical metabolic rate as the highest rate of steady state O2 supply and demand, describes time series depletion and repletion for work above critical power, and predicts time to exhaustion during severe domain whole body exercise. These results highlight the matching of O2 supply and demand as a primary determinant for sustainable exercise intensities from those that are unsustainable and lead to exhaustion.
Collapse
Affiliation(s)
- Brett S Kirby
- Nike Sport Research Lab, Nike Inc., Beaverton, Oregon
| | - David A Clark
- Nike Sport Research Lab, Nike Inc., Beaverton, Oregon
| | | | - Brad W Wilkins
- Department of Human Physiology, Gonzaga University, Spokane, Washington
| |
Collapse
|
32
|
Prinz B, Zöger M, Tschan H, Nimmerichter A. Oxygen Uptake Kinetics in Endurance Trained Youth and Adult Cyclists. JOURNAL OF SPORTS SCIENCE AND MEDICINE 2021; 20:398-403. [PMID: 34267578 DOI: 10.52082/jssm.2021.398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 04/24/2021] [Indexed: 11/24/2022]
Abstract
Previous studies reported faster pulmonary oxygen uptake kinetics at the onset of exercise in untrained youth compared with adults. Whether or not these differences are identical for trained groups have not been examined. The purpose of this study was to compare ˙VO2 kinetics of youth and adult cyclists at moderate and heavy-intensity exercise. Thirteen adult (age: 23.2 ± 4.8 years; ˙VO2peak 68.4 ± 6.8 mL·min-1.kg-1) and thirteen youth cyclists (age: 14.3 ± 1.5 years; ˙VO2peak 61.7 ± 4.3 mL·min-1.kg-1) completed a series of 6-min square wave exercises at moderate and heavy-intensity exercise at 90 rev·min-1. A two-way repeated-measure ANOVA was conducted to identify differences between groups and intensities. The time constant, time delay and the mean response time were not significantly different between youth and adult cyclists (p > 0.05). We found significant differences between intensities, with a faster time constant during moderate than heavy-intensity exercise in youth (24.1 ± 7.0 s vs. 31.8 ± 5.6 s; p = 0.004) and adults (22.7 ± 5.6 s vs. 28.6 ± 5.7 s; p < 0.001). The present data suggest that the effect of training history in adult cyclists compensate for the superior primary response of the oxygen uptake kinetics typically seen in youth compared to adults. Furthermore, the ˙VO2 response is dependent of work rate intensity in trained youth and adult cyclists.
Collapse
Affiliation(s)
- Bernhard Prinz
- Training and Sports Sciences, University of Applied Sciences, Wiener Neustadt, Austria.,Centre for Sport Science and University Sports, University of Vienna, Austria
| | - Manfred Zöger
- Training and Sports Sciences, University of Applied Sciences, Wiener Neustadt, Austria
| | - Harald Tschan
- Centre for Sport Science and University Sports, University of Vienna, Austria
| | - Alfred Nimmerichter
- Training and Sports Sciences, University of Applied Sciences, Wiener Neustadt, Austria
| |
Collapse
|
33
|
Bartlett MF, Fitzgerald LF, Kent JA. Rates of oxidative ATP synthesis are not augmented beyond the pH threshold in human vastus lateralis muscles during a stepwise contraction protocol. J Physiol 2021; 599:1997-2013. [PMID: 33576028 DOI: 10.1113/jp280851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/05/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The oxygen cost of high-intensity exercise at power outputs above an individual's lactate threshold (LT) is greater than would be predicted by the linear oxygen consumption-power relationship observed below the LT. However, whether these augmentations are caused by an increased ATP cost of force generation (ATPCOST ) or an increased oxygen cost of ATP synthesis is unclear. We used 31 P-MRS to measure changes in cytosolic [ADP] (intramyocellular marker of oxidative metabolism), oxidative ATP synthesis (ATPOX ) and ATPCOST during a 6-stage, stepwise knee extension protocol. ATPCOST was unchanged across stages. The relationship between [ADP] and muscle power output was augmented at workloads above the pH threshold (pHT ; proxy for LT), whereas increases in ATPOX were attenuated. These results suggest the greater oxygen cost of contractions at workloads beyond the pHT is not caused by mechanisms that increase ATPCOST , but rather mechanisms that alter intrinsic mitochondrial function or capacity. ABSTRACT Increases in skeletal muscle metabolism and oxygen consumption are linearly related to muscle power output for workloads below the lactate threshold (LT), but are augmented (i.e. greater rate of increase relative to workload) thereafter. Presently, it is unclear whether these metabolic augmentations are caused by increases in the ATP cost of force generation (ATPCOST ) or changes in the efficiency of mitochondrial oxygen consumption and oxidative ATP synthesis (ATPOX ). To partition these two hypotheses in vivo, we used 31 P-MRS to calculate slopes relating step-changes in muscle work to concurrent changes in cytosolic phosphates and ATPOX before and after the pH threshold (pHT ; used here as a proxy for LT) within the vastus lateralis muscle of eight young adults during a stepwise knee extension test. Changes in muscle phosphates and ATPOX were linearly related to workload below the pHT . However, slopes above the pHT were greater for muscle phosphates (P < 0.05) and lower for ATPOX (P < 0.05) than were the slopes observed below the pHT . The maximal capacity for ATPOX ( V ̇ max ) and ADP-specific ATPOX also declined beyond the pHT (P < 0.05), whereas ATPCOST was unchanged (P = 0.10). These results oppose the hypothesis that high-intensity contractions increase ATPCOST and suggest that greater oxidative metabolism at workloads beyond the pHT is caused by mechanisms that affect intrinsic mitochondrial function or capacity, such as alterations in substrate selection or electron entry into the electron transport chain, temperature-mediated changes in mitochondrial permeability to protons, or stimulation of mitochondrial uncoupling by reactive oxygen species generation.
Collapse
Affiliation(s)
- Miles F Bartlett
- Muscle Physiology Laboratory, Department of Kinesiology, University of Massachusetts, Amherst, MA, 01003, USA
| | - Liam F Fitzgerald
- Muscle Physiology Laboratory, Department of Kinesiology, University of Massachusetts, Amherst, MA, 01003, USA
| | - Jane A Kent
- Muscle Physiology Laboratory, Department of Kinesiology, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
34
|
Fullerton MM, Passfield L, MacInnis MJ, Iannetta D, Murias JM. Prior exercise impairs subsequent performance in an intensity- and duration-dependent manner. Appl Physiol Nutr Metab 2021; 46:976-985. [PMID: 33641346 DOI: 10.1139/apnm-2020-0689] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Prior constant-load exercise performed for 30-min at or above maximal lactate steady state (MLSSp) significantly impairs subsequent time-to-task failure (TTF) compared with TTF performed without prior exercise. We tested the hypothesis that TTF would decrease in relation to the intensity and the duration of prior exercise compared with a baseline TTF trial. Eleven individuals (6 males, 5 females, aged 28 ± 8 yrs) completed the following tests on a cycle ergometer (randomly assigned after MLSSp was determined): (i) a ramp-incremental test; (ii) a baseline TTF trial performed at 80% of peak power (TTFb); (iii) five 30-min constant-PO rides at 5% below lactate threshold (LT-5%), halfway between LT and MLSSp (Delta50), 5% below MLSSp (MLSS-5%), MLSSp, and 5% above MLSSp (MLSS+5%); and (iv) 15- and 45-min rides at MLSSp (MLSS15 and MLSS45, respectively). Each condition was immediately followed by a TTF trial at 80% of peak power. Compared with TTFb (330 ± 52 s), there was 8.0 ± 24.1, 23.6 ± 20.2, 41.0 ± 14.8, 52.2 ± 18.9, and 75.4 ± 7.4% reduction in TTF following LT-5%, Delta50, MLSS-5%, MLSSp, and MLSS+5%, respectively. Following MLSS15 and MLSS45 there were 29.0 ± 20.1 and 69.4 ± 19.6% reductions in TTF, respectively (P < 0.05). It is concluded that TTF is reduced following prior exercise of varying duration at MLSSp and at submaximal intensities below MLSS. Novelty: Prior constant-PO exercise, performed at intensities below MLSSp, reduces subsequent TTF performance. Subsequent TTF performance is reduced in a linear fashion following an increase in the duration of constant-PO exercise at MLSSp.
Collapse
Affiliation(s)
| | - Louis Passfield
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.,School of Sport and Exercise Sciences, University of Kent, Canterbury, United Kingdom
| | | | - Danilo Iannetta
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Juan M Murias
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
35
|
Dutra YM, Claus GM, Malta EDS, Seda DMDF, Zago AS, Campos EZ, Ferraresi C, Zagatto AM. Photobiomodulation 30 min or 6 h Prior to Cycling Does Not Alter Resting Blood Flow Velocity, Exercise-Induced Physiological Responses or Time to Exhaustion in Healthy Men. Front Physiol 2021; 11:607302. [PMID: 33519511 PMCID: PMC7844325 DOI: 10.3389/fphys.2020.607302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/02/2020] [Indexed: 11/13/2022] Open
Abstract
Purpose The aim of the current study was to investigate the effects of photobiomodulation therapy (PBMT) applied 30 min or 6 h prior to cycling on blood flow velocity and plasma nitrite concentrations at rest, time to exhaustion, cardiorespiratory responses, blood acid-base balance, and K+ and lactate concentrations during exercise. Methods In a randomized, crossover design, 13 healthy untrained men randomly completed four cycling bouts until exhaustion at the severe-intensity domain (i.e., above respiratory compensation point). Thirty minutes or 6 h prior to the cycling trials, participants were treated with PBMT on the quadriceps, hamstrings, and gastrocnemius muscles of both limbs using a multi-diode array (11 cm × 30 cm with 264 diodes) at doses of 152 J or a sham irradiation (with device turned off, placebo). Blood samples were collected before and 30 min or 6 h after treatments to measure plasmatic nitrite concentrations. Doppler ultrasound exams of the femoral artery were also performed at the same time points. Cardiorespiratory responses, blood acid-base balance, and K+ and lactate concentrations were monitored during exercise sessions. Results PBMT did not improve the time to exhaustion (p = 0.30). At rest, no differences were found in the peak systolic velocity (p = 0.97) or pulsatility index (p = 0.83) in the femoral artery, and in plasma nitrite concentrations (p = 0.47). During exercise, there were no differences for any cardiorespiratory response monitored (heart rate, p = 0.15; oxygen uptake, p = 0.15; pulmonary ventilation, p = 0.67; carbon dioxide output, p = 0.93; and respiratory exchange ratio, p = 0.32), any blood acid-base balance indicator (pH, p = 0.74; base excess, p = 0.33; bicarbonate concentration, p = 0.54), or K+ (p = 0.22) and lactate (p = 0.55) concentrations. Conclusions PBMT at 152 J applied 30 min or 6 h before cycling at severe-intensity did not alter resting plasma nitrite and blood flow velocity in the femoral artery, exercise-induced physiological responses, or time to exhaustion in healthy untrained men.
Collapse
Affiliation(s)
- Yago Medeiros Dutra
- Post-Graduate Program in Movement Sciences, Laboratory of Physiology and Sport Performance (LAFIDE), Department of Physical Education, School of Sciences, São Paulo State University - UNESP, Bauru, Brazil
| | - Gabriel Machado Claus
- Post-Graduate Program in Movement Sciences, Laboratory of Physiology and Sport Performance (LAFIDE), Department of Physical Education, School of Sciences, São Paulo State University - UNESP, Bauru, Brazil
| | - Elvis de Souza Malta
- Post-Graduate Program in Movement Sciences, Laboratory of Physiology and Sport Performance (LAFIDE), Department of Physical Education, School of Sciences, São Paulo State University - UNESP, Bauru, Brazil
| | - Daniela Moraes de Franco Seda
- Post-Graduate Program in Movement Sciences, Laboratory of Physiology and Sport Performance (LAFIDE), Department of Physical Education, School of Sciences, São Paulo State University - UNESP, Bauru, Brazil
| | - Anderson Saranz Zago
- Post-Graduate Program in Movement Sciences, Department of Physical Education, School of Sciences, São Paulo State University - UNESP, Bauru, Brazil
| | | | - Cleber Ferraresi
- Physical Therapy Department, Federal University of Sao Carlos (UFSCar), São Paulo, Brazil
| | - Alessandro Moura Zagatto
- Post-Graduate Program in Movement Sciences, Laboratory of Physiology and Sport Performance (LAFIDE), Department of Physical Education, School of Sciences, São Paulo State University - UNESP, Bauru, Brazil.,Department of Physical Education, Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|
36
|
Maximal Time Spent at VO 2max from Sprint to the Marathon. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17249250. [PMID: 33321958 PMCID: PMC7763525 DOI: 10.3390/ijerph17249250] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/01/2020] [Accepted: 12/08/2020] [Indexed: 12/30/2022]
Abstract
Until recently, it was thought that maximal oxygen uptake (VO2max) was elicited only in middle-distance events and not the sprint or marathon distances. We tested the hypothesis that VO2max can be elicited in both the sprint and marathon distances and that the fraction of time spent at VO2max is not significantly different between distances. Methods: Seventy-eight well-trained males (mean [SD] age: 32 [13]; weight: 73 [9] kg; height: 1.80 [0.8] m) performed the University of Montreal Track Test using a portable respiratory gas sampling system to measure a baseline VO2max. Each participant ran one or two different distances (100 m, 200 m, 800 m, 1500 m, 3000 m, 10 km or marathon) in which they are specialists. Results: VO2max was elicited and sustained in all distances tested. The time limit (Tlim) at VO2max on a relative scale of the total time (Tlim at VO2max%Ttot) during the sprint, middle-distance, and 1500 m was not significantly different (p > 0.05). The relevant time spent at VO2max was only a factor for performance in the 3000 m group, where the Tlim at VO2max%Ttot was the highest (51.4 [18.3], r = 0.86, p = 0.003). Conclusions: By focusing on the solicitation of VO2max, we demonstrated that the maintenance of VO2max is possible in the sprint, middle, and marathon distances.
Collapse
|
37
|
Gildea N, Rocha J, O'Shea D, Green S, Egaña M. Priming exercise accelerates pulmonary oxygen uptake kinetics during "work-to-work" cycle exercise in middle-aged individuals with type 2 diabetes. Eur J Appl Physiol 2020; 121:409-423. [PMID: 33084929 DOI: 10.1007/s00421-020-04518-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/25/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE The time constant of phase II pulmonary oxygen uptake kinetics ([Formula: see text]) is increased when high-intensity exercise is initiated from an elevated baseline (work-to-work). A high-intensity priming exercise (PE), which enhances muscle oxygen supply, does not reduce this prolonged [Formula: see text] in healthy active individuals, likely because [Formula: see text] is limited by metabolic inertia (rather than oxygen delivery) in these individuals. Since [Formula: see text] is more influenced by oxygen delivery in type 2 diabetes (T2D), this study tested the hypothesis that PE would reduce [Formula: see text] in T2D during work-to-work cycle exercise. METHODS Nine middle-aged individuals with T2D and nine controls (ND) performed four bouts of constant-load, high-intensity work-to-work transitions, each commencing from a baseline of moderate-intensity. Two bouts were completed without PE and two were preceded by PE. The rate of muscle deoxygenation ([HHb + Mb]) and surface integrated electromyography (iEMG) were measured at the right and left vastus lateralis, respectively. RESULTS Subsequent to PE, [Formula: see text] was reduced (P = 0.001) in T2D (from 59 ± 17 to 37 ± 20 s) but not (P = 0.24) in ND (44 ± 10 to 38 ± 7 s). The amplitude of the [Formula: see text] slow component ([Formula: see text]2 As) was reduced (P = 0.001) in both groups (T2D: 0.16 ± 0.09 to 0.11 ± 0.04 l/min; ND: 0.21 ± 0.13 to 0.13 ± 0.09 l/min). This was accompanied by a reduction in ΔiEMG from the onset of [Formula: see text] slow component to end-exercise in both groups (P < 0.001), while [HHb + Mb] kinetics remained unchanged. CONCLUSIONS PE accelerates [Formula: see text] in T2D, likely by negating the O2 delivery limitation extant in the unprimed condition, and reduces the [Formula: see text]As possibly due to changes in muscle fibre activation.
Collapse
Affiliation(s)
- Norita Gildea
- Department of Physiology, School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Joel Rocha
- Division of Sport and Exercise Sciences, Abertay University, Dundee, UK
| | - Donal O'Shea
- Department of Endocrinology, St. Columcille's Hospital, Dublin, Ireland.,Department of Endocrinology and Diabetes Mellitus, St. Vincent's University Hospital, Dublin, Ireland
| | - Simon Green
- Schools of Health Sciences and Medicine, Western Sydney University, Sydney, Australia
| | - Mikel Egaña
- Department of Physiology, School of Medicine, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
38
|
Johnson D, Roberts J, Gordon D. Effect of an acute blood donation on oxygen uptake kinetics in moderate and heavy domains over a period of 96 hours. Transfusion 2020; 60:2896-2906. [PMID: 32914882 DOI: 10.1111/trf.16058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 01/17/2023]
Abstract
BACKGROUND Studies determining the effects of blood donation (BD) on oxygen uptake kinetics are limited. This study aims to ascertain the effects of BD (~470 mL) over a period of 96 hours on oxygen uptake kinetics in moderate and heavy exercise domains. STUDY DESIGN AND METHODS Twelve participants (nine males and three females; 31.1 ± 11.7 years, mass 79.9 ± 12.8 kg, height 175.5 ± 7.5 cm) completed four consecutive days (24-96 hours) of moderate and heavy V˙O2 on-kinetics trials pre BD and post BD. Visit one (0 hour), pre BD established hematological levels, V˙O2max and Gas Exchange Threshold (GET). Subsequent visits comprised two 6-minute moderate (∆ 50% rest-GET) and 1 heavy (∆ 20% GET-V˙O2max ) trial. Post BD 0 hour the participants donated blood post hematological testing only. RESULTS Despite non-significances for V˙O2 amplitude, time constant-2 (tau2 ) for V˙O2 showed significant decreases at 24 and 48 hours, and tau3 showed significant increases at 72 and 96 hours pre to post BD (P < .05). Hemoglobin (Hb) values reduced (P < .05) pre (14.48 ± 0.16 g·dL-1 ) to post BD (13.47 ± 0.66 g·dL- 1). Hb significantly decreased at 24, 48, 72, and 96 hours compared to 0 hour post BD (P < .05). CONCLUSION BD has no effect on V˙O2 amplitude, but time-based components show sensitivity to reduced circulating O2 ; with a decreased PO2 a slower O2 exchange across the blood myocyte barrier could result in altering O2 kinetics.
Collapse
Affiliation(s)
- Diane Johnson
- Cambridge Centre for Sport & Exercise Sciences, Anglia Ruskin University, Cambridge, UK
| | - Justin Roberts
- Cambridge Centre for Sport & Exercise Sciences, Anglia Ruskin University, Cambridge, UK
| | - Dan Gordon
- Cambridge Centre for Sport & Exercise Sciences, Anglia Ruskin University, Cambridge, UK
| |
Collapse
|
39
|
The Application of Critical Power, the Work Capacity above Critical Power (W'), and its Reconstitution: A Narrative Review of Current Evidence and Implications for Cycling Training Prescription. Sports (Basel) 2020; 8:sports8090123. [PMID: 32899777 PMCID: PMC7552657 DOI: 10.3390/sports8090123] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 12/17/2022] Open
Abstract
The two-parameter critical power (CP) model is a robust mathematical interpretation of the power–duration relationship, with CP being the rate associated with the maximal aerobic steady state, and W′ the fixed amount of tolerable work above CP available without any recovery. The aim of this narrative review is to describe the CP concept and the methodologies used to assess it, and to summarize the research applying it to intermittent cycle training techniques. CP and W′ are traditionally assessed using a number of constant work rate cycling tests spread over several days. Alternatively, both the 3-min all-out and ramp all-out protocols provide valid measurements of CP and W′ from a single test, thereby enhancing their suitability to athletes and likely reducing errors associated with the assumptions of the CP model. As CP represents the physiological landmark that is the boundary between heavy and severe intensity domains, it presents several advantages over the de facto arbitrarily defined functional threshold power as the basis for cycle training prescription at intensities up to CP. For intensities above CP, precise prescription is not possible based solely on aerobic measures; however, the addition of the W′ parameter does facilitate the prescription of individualized training intensities and durations within the severe intensity domain. Modelling of W′ reconstitution extends this application, although more research is needed to identify the individual parameters that govern W′ reconstitution rates and their kinetics.
Collapse
|
40
|
Bossi AH, Mesquida C, Passfield L, Rønnestad BR, Hopker JG. Optimizing Interval Training Through Power-Output Variation Within the Work Intervals. Int J Sports Physiol Perform 2020; 15:982-989. [PMID: 32244222 DOI: 10.1123/ijspp.2019-0260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 10/02/2019] [Accepted: 10/17/2019] [Indexed: 11/18/2022]
Abstract
PURPOSE Maximal oxygen uptake (V˙O2max) is a key determinant of endurance performance. Therefore, devising high-intensity interval training (HIIT) that maximizes stress of the oxygen-transport and -utilization systems may be important to stimulate further adaptation in athletes. The authors compared physiological and perceptual responses elicited by work intervals matched for duration and mean power output but differing in power-output distribution. METHODS Fourteen cyclists (V˙O2max 69.2 [6.6] mL·kg-1·min-1) completed 3 laboratory visits for a performance assessment and 2 HIIT sessions using either varied-intensity or constant-intensity work intervals. RESULTS Cyclists spent more time at >90%V˙O2max during HIIT with varied-intensity work intervals (410 [207] vs 286 [162] s, P = .02), but there were no differences between sessions in heart-rate- or perceptual-based training-load metrics (all P ≥ .1). When considering individual work intervals, minute ventilation (V˙E) was higher in the varied-intensity mode (F = 8.42, P = .01), but not respiratory frequency, tidal volume, blood lactate concentration [La], ratings of perceived exertion, or cadence (all F ≤ 3.50, ≥ .08). Absolute changes (Δ) between HIIT sessions were calculated per work interval, and Δ total oxygen uptake was moderately associated with ΔV˙E (r = .36, P = .002). CONCLUSIONS In comparison with an HIIT session with constant-intensity work intervals, well-trained cyclists sustain higher fractions of V˙O2max when work intervals involved power-output variations. This effect is partially mediated by an increased oxygen cost of hyperpnea and not associated with a higher [La], perceived exertion, or training-load metrics.
Collapse
|
41
|
|
42
|
Haeufle DFB, Siegel J, Hochstein S, Gussew A, Schmitt S, Siebert T, Rzanny R, Reichenbach JR, Stutzig N. Energy Expenditure of Dynamic Submaximal Human Plantarflexion Movements: Model Prediction and Validation by in-vivo Magnetic Resonance Spectroscopy. Front Bioeng Biotechnol 2020; 8:622. [PMID: 32671034 PMCID: PMC7332772 DOI: 10.3389/fbioe.2020.00622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/21/2020] [Indexed: 11/30/2022] Open
Abstract
To understand the organization and efficiency of biological movement, it is important to evaluate the energy requirements on the level of individual muscles. To this end, predicting energy expenditure with musculoskeletal models in forward-dynamic computer simulations is currently the most promising approach. However, it is challenging to validate muscle models in-vivo in humans, because access to the energy expenditure of single muscles is difficult. Previous approaches focused on whole body energy expenditure, e.g., oxygen consumption (VO2), or on thermal measurements of individual muscles by tracking blood flow and heat release (through measurements of the skin temperature). This study proposes to validate models of muscular energy expenditure by using functional phosphorus magnetic resonance spectroscopy (31P-MRS). 31P-MRS allows to measure phosphocreatine (PCr) concentration which changes in relation to energy expenditure. In the first 25 s of an exercise, PCr breakdown rate reflects ATP hydrolysis, and is therefore a direct measure of muscular enthalpy rate. This method was applied to the gastrocnemius medialis muscle of one healthy subject during repetitive dynamic plantarflexion movements at submaximal contraction, i.e., 20% of the maximum plantarflexion force using a MR compatible ergometer. Furthermore, muscle activity was measured by surface electromyography (EMG). A model (provided as open source) that combines previous models for muscle contraction dynamics and energy expenditure was used to reproduce the experiment in simulation. All parameters (e.g., muscle length and volume, pennation angle) in the model were determined from magnetic resonance imaging or literature (e.g., fiber composition), leaving no free parameters to fit the experimental data. Model prediction and experimental data on the energy supply rates are in good agreement with the validation phase (<25 s) of the dynamic movements. After 25 s, the experimental data differs from the model prediction as the change in PCr does not reflect all metabolic contributions to the energy expenditure anymore and therefore underestimates the energy consumption. This shows that this new approach allows to validate models of muscular energy expenditure in dynamic movements in vivo.
Collapse
Affiliation(s)
- Daniel F B Haeufle
- Multi-level Modeling in Motor Control and Rehabilitation Robotics, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Johannes Siegel
- Multi-level Modeling in Motor Control and Rehabilitation Robotics, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Department of Motion and Exercise Science, Institute of Sport and Movement Science, University of Stuttgart, Stuttgart, Germany
| | - Stefan Hochstein
- Motion Science, Institute of Sport Science, Martin-Luther-University Halle, Halle, Germany
| | - Alexander Gussew
- Department of Radiology, University Hospital Halle (Saale), Halle, Germany
| | - Syn Schmitt
- Computational Biophysics and Biorobotics, Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany.,Stuttgart Center of Simulation Science, University of Stuttgart, Stuttgart, Germany
| | - Tobias Siebert
- Department of Motion and Exercise Science, Institute of Sport and Movement Science, University of Stuttgart, Stuttgart, Germany
| | - Reinhard Rzanny
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University, Jena, Germany
| | - Jürgen R Reichenbach
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University, Jena, Germany
| | - Norman Stutzig
- Department of Motion and Exercise Science, Institute of Sport and Movement Science, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
43
|
Nimmerichter A, Breese BC, Prinz B, Zoeger M, Rumpl C, Williams CA. Test-retest reliability of pulmonary oxygen uptake and muscle deoxygenation during moderate- and heavy-intensity cycling in youth elite-cyclists. J Sports Sci 2020; 38:2462-2470. [PMID: 32654597 DOI: 10.1080/02640414.2020.1792115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
To establish the test-retest reliability of pulmonary oxygen uptake (V̇O2), muscle deoxygenation (deoxy[haem]) and tissue oxygen saturation (StO2) kinetics in youth elite-cyclists. From baseline pedalling, 15 youth cyclists completed 6-min step transitions to a moderate- and heavy-intensity work rate separated by 8 min of baseline cycling. The protocol was repeated after 1 h of passive rest. V̇O2 was measured breath-by-breath alongside deoxy[haem] and StO2 of the vastus lateralis by near-infrared spectroscopy. Reliability was assessed using 95% limits of agreement (LoA), the typical error (TE) and the intraclass correlation coefficient (ICC). During moderate- and heavy-intensity step cycling, TEs for the amplitude, time delay and time constant ranged between 3.5-21.9% and 3.9-12.1% for V̇O2 and between 6.6-13.7% and 3.5-10.4% for deoxy[haem], respectively. The 95% confidence interval for estimating the kinetic parameters significantly improved for ensemble-averaged transitions of V̇O2 (p < 0.01) but not for deoxy[haem]. For StO2, the TEs for the baseline, end-exercise and the rate of deoxygenation were 1.0-42.5% and 1.1-5.5% during moderate- and heavy-intensity exercise, respectively. The ICC ranged from 0.81 to 0.99 for all measures. Test-retest reliability data provide limits within which changes in V̇O2, deoxy[haem] and StO2 kinetics may be interpreted with confidence in youth athletes.
Collapse
Affiliation(s)
- Alfred Nimmerichter
- Training and Sports Sciences, University of Applied Sciences Wiener Neustadt , Wiener Neustadt, Austria
| | - Brynmor C Breese
- School of Biomedical Sciences, Faculty of Medicine and Dentistry, University of Plymouth , Plymouth, UK
| | - Bernhard Prinz
- Training and Sports Sciences, University of Applied Sciences Wiener Neustadt , Wiener Neustadt, Austria
| | - Manfred Zoeger
- Training and Sports Sciences, University of Applied Sciences Wiener Neustadt , Wiener Neustadt, Austria
| | - Clemens Rumpl
- Training and Sports Sciences, University of Applied Sciences Wiener Neustadt , Wiener Neustadt, Austria
| | - Craig A Williams
- Children's Health and Exercise Research Centre, Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter , Exeter, UK
| |
Collapse
|
44
|
Korzeniewski B, Rossiter HB. Exceeding a "critical" muscle P i: implications for
V
˙
O
2
and metabolite slow components, muscle fatigue and the power-duration relationship. Eur J Appl Physiol 2020; 120:1609-1619. [PMID: 32435984 DOI: 10.1007/s00421-020-04388-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/02/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE The consequences of the assumption that the additional ATP usage, underlying the slow component of oxygen consumption (V ˙ O 2 ) and metabolite on-kinetics, starts when cytosolic inorganic phosphate (Pi) exceeds a certain "critical" Pi concentration, and muscle work terminates because of fatigue when Pi exceeds a certain, higher, "peak" Pi concentration are investigated. METHODS A previously developed computer model of the myocyte bioenergetic system is used. RESULTS Simulated time courses of muscleV ˙ O 2 , cytosolic ADP, pH, PCr and Pi at various ATP usage activities agreed well with experimental data. Computer simulations resulted in a hyperbolic power-duration relationship, with critical power (CP) as an asymptote. CP was increased, and phase IIV ˙ O 2 on-kinetics was accelerated, by progressive increase in oxygen tension (hyperoxia). CONCLUSIONS Pi is a major factor responsible for the slow component of theV ˙ O 2 and metabolite on-kinetics, fatigue-related muscle work termination and hyperbolic power-duration relationship. The successful generation of experimental system properties suggests that the additional ATP usage, underlying the slow component, indeed starts when cytosolic Pi exceeds a "critical" Pi concentration, and muscle work terminates when Pi exceeds a "peak" Pi concentration. The contribution of other factors, such as cytosolic acidification, or glycogen depletion and central fatigue should not be excluded. Thus, a detailed quantitative unifying mechanism underlying various phenomena related to skeletal muscle fatigue and exercise tolerance is offered that was absent in the literature. This mechanism is driven by reciprocal stimulation of Pi increase and additional ATP usage when "critical" Pi is exceeded.
Collapse
Affiliation(s)
| | - Harry B Rossiter
- Rehabilitation Clinical Trials Center, Division of Pulmonary and Critical Care Physiology and Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
45
|
Conde Alonso S, Gajanand T, Ramos JS, Antonietti JP, Borrani F. The metabolic profiles of different fiber type populations under the emergence of the slow component of oxygen uptake. J Physiol Sci 2020; 70:27. [PMID: 32466745 PMCID: PMC10716939 DOI: 10.1186/s12576-020-00754-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/11/2020] [Indexed: 11/10/2022]
Abstract
To investigate the influence of different metabolic muscle fiber profiles on the emergence of the slow component of oxygen uptake ([Formula: see text]SC), 12 habitually active males completed four sessions of different combinations of work-to-work transition exercises up to severe intensity. Each transition was modeled to analyze the different kinetic parameters. Using a new approach, combining Henneman's principle and superposition principle, a reconstructed kinetics was built by temporally aligning the start of each new transition and summing them. The primary phase time constant significantly slowed and the gain at the end (GainEnd) significantly increased when transitions started from a higher intensity (p < 0.001). Kinetic parameters from the reconstructed curve ([Formula: see text], time delay of primary phase, [Formula: see text]End and GainEnd) were not significantly different from one transition to severe exercise. These results suggest that the appearance of the [Formula: see text]SC is at least related to, if not the result of, the different metabolic properties of muscle fibers.
Collapse
Affiliation(s)
- Sonia Conde Alonso
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.
| | - Trishan Gajanand
- School of Human Movement and Nutrition Sciences, The University of Queensland, St Lucia, QLD, Australia
- Department of Exercise Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Joyce S Ramos
- SHAPE Research Centre, Exercise Science and Clinical Exercise Physiology, College of Nursing and Health Sciences, Flinders University, Bedford Park, SA, 5042, Australia
| | | | - Fabio Borrani
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
- Department of Exercise Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| |
Collapse
|
46
|
Bräuer EK, Smekal G. VO2 Steady State at and Just Above Maximum Lactate Steady State Intensity. Int J Sports Med 2020; 41:574-581. [PMID: 32353881 DOI: 10.1055/a-1100-7253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Over recent decades the association between metabolic and gas exchange parameters during exercise has become evident. Different "thresholds" (such as lactate thresholds, critical power, EMG thresholds) and intensity domains appear to be linked to an upper limit of oxygen uptake steady state (V̇O2SS). The aim of this study was to investigate whether MLSS is associated with the upper limit for a V̇O2SS. Forty-five subjects underwent one incremental test and 4-6 30-minute MLSS tests on a cycle ergometer. A three-component model was used to describe V̇O2 response at PMLSS and just above PMLSS+1. To evaluate the results, breath-by-breath V̇O2 and lactate (LA) values were analyzed using the intraclass correlation coefficient (ICC), increasing (k-) values and the Wilcoxon test. According to the calculated k-values of LA and VO2 at PMLSS and PMLSS+1, no significant increase of VO2 occurred during both intensities (PMLSS and PMLSS+1) from minute 10 to minute 30, confirming the existence of a V̇O2SS. Additionally, the ICC of 0.94 confirmed high accordance of the VO2 kinetics at both intensities (PMLSS and PMLSS+1). This study shows that power output at MLSS workload does not represent an accurate cut for an upper limit of V̇O2SS.
Collapse
Affiliation(s)
- Elisabeth K Bräuer
- Sports Science, Pädagogische Hochschule Niederösterreich, Baden, Austria
| | - Gerhard Smekal
- Department of Sports Physiology, University Vienna, Vienna, Austria
| |
Collapse
|
47
|
Bartlett MF, Fitzgerald LF, Nagarajan R, Hiroi Y, Kent JA. Oxidative ATP synthesis in human quadriceps declines during 4 minutes of maximal contractions. J Physiol 2020; 598:1847-1863. [PMID: 32045011 DOI: 10.1113/jp279339] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/30/2020] [Indexed: 12/16/2022] Open
Abstract
KEY POINTS During maximal exercise, skeletal muscle metabolism and oxygen consumption remain elevated despite precipitous declines in power. Presently, it is unclear whether these responses are caused by an increased ATP cost of force generation (ATPCOST ) or mitochondrial uncoupling; a process that reduces the efficiency of oxidative ATP synthesis (ATPOX ). To address this gap, we used 31-phosphorus magnetic resonance spectroscopy to measure changes in ATPCOST and ATPOX in human quadriceps during repeated trials of maximal intensity knee extensions lasting up to 4 min. ATPCOST remained unchanged. In contrast, ATPOX plateaued by ∼2 min and then declined (∼15%) over the final 2 min. The maximal capacity for ATPOX (Vmax ), as well as ADP-specific rates of ATPOX , were also significantly diminished. Collectively, these results suggest that mitochondrial uncoupling, and not increased ATPCOST , is responsible for altering the regulation of skeletal muscle metabolism and oxygen consumption during maximal exercise. ABSTRACT The relationship between skeletal muscle oxygen consumption and power output is augmented during exercise at workloads above the lactate threshold. Potential mechanisms for this response have been hypothesized, including increased ATP cost of force generation (ATPCOST ) and mitochondrial uncoupling, a process that reduces the efficiency of oxidative ATP synthesis (ATPOX ). To test these hypotheses, we used phosphorus magnetic resonance spectroscopy to non-invasively measure changes in phosphate concentrations and pH in the vastus lateralis muscle of nine young adults during repeated trials of maximal, all-out dynamic knee extensions (120°s-1 , 1 every 2 s) lasting 24, 60, 120, and 240 s. ATPOX was measured at each time point from the initial velocity of PCr resynthesis, and ATPCOST was calculated as the sum of ATP synthesized by the creatine and adenylate kinase reactions, non-oxidative glycolysis, ATPOX and net changes in [ATP]. Power output declined in a reproducible manner for all four trials. ATPCOST did not change over time (main effect P = 0.45). ATPOX plateaued from 60 to 120 s and then decreased over the final 120 s (main effect P = 0.001). The maximal capacity for oxidative ATP synthesis (Vmax ), as well as ADP-specific rates of ATPOX , also decreased over time (main effect P = 0.001, both). Collectively, these results demonstrate that prolonged maximal contraction protocols impair oxidative energetics and implicate mitochondrial uncoupling as the mechanism for this response. The causes of mitochondrial uncoupling are presently unknown but may offer a potential explanation for the dissociation between skeletal muscle power output and oxygen consumption during maximal, all-out exercise protocols.
Collapse
Affiliation(s)
- Miles F Bartlett
- Muscle Physiology Laboratory, Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, 01003.,Department of Kinesiology, University of Texas, Arlington, Texas, 76019
| | - Liam F Fitzgerald
- Muscle Physiology Laboratory, Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, 01003
| | - Rajakumar Nagarajan
- Human Magnetic Resonance Center, Institute for Applied Life Sciences (IALS), University of Massachusetts, Amherst, Massachusetts, 01003
| | - Yeun Hiroi
- Muscle Physiology Laboratory, Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, 01003
| | - Jane A Kent
- Muscle Physiology Laboratory, Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, 01003
| |
Collapse
|
48
|
Limb blood flow and muscle oxygenation responses during handgrip exercise above vs. below critical force. Microvasc Res 2020; 131:104002. [PMID: 32198059 DOI: 10.1016/j.mvr.2020.104002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/14/2020] [Accepted: 03/14/2020] [Indexed: 11/20/2022]
Abstract
This study compared the brachial artery blood flow (Q̇BA) and microvascular oxygen delivery responses during handgrip exercise above vs. below critical force (CF; the isometric analog of critical power). Q̇BA and microvascular oxygen delivery are important determinants of oxygen utilization and metabolite accumulation during exercise, both of which increase progressively during exercise above CF. However the Q̇BA and microvascular oxygen delivery responses above vs. below CF remain unknown. We hypothesized that Q̇BA, deoxygenated-heme (deoxy-[heme]; an estimate of microvascular fractional oxygen extraction), and total-heme concentrations (total-[heme]; an estimate of changes in microvascular hematocrit) would demonstrate physiological maximums above CF despite increases in exercise intensity. Seven men and six women performed 1) a 5-min rhythmic isometric-handgrip maximal-effort test (MET) to determine CF and 2) two constant target-force tests above (severe-intensity; S1 and S2) and two constant target-force tests below (heavy-intensity; H1 and H2) CF. CF was 189.3 ± 16.7 N (29.7 ± 1.6%MVC). At end-exercise, Q̇BA was greater for tests above CF (S1: 418 ± 147 mL/min; S2: 403 ± 137 mL/min) compared to tests below CF (H1: 287 ± 97 mL/min; H2: 340 ± 116 mL/min; all p < 0.05) but was not different between S1 and S2. Further, end-test Q̇BA during both tests above CF was not different from Q̇BA estimated at CF (392 ± 37 mL/min). At end-exercise, deoxy-[heme] was not different between tests above CF (S1: 150 ± 50 μM; S2: 155 ± 57 μM), but was greater during tests above CF compared to tests below CF (H1: 101 ± 24 μM; H2: 111 ± 21 μM; all p < 0.05). At end-exercise, total-[heme] was not different between tests above CF (S1: 404 ± 58 μM; S2: 397 ± 73 μM), but was greater during tests above CF compared to H1 (352 ± 58 μM; p < 0.01) but not H2 (371 ± 57 μM). These data suggest limb blood flow limitations exist and maximal levels of muscle microvascular oxygen delivery and extraction occur during exercise above, but not below, CF.
Collapse
|
49
|
Zuccarelli L, do Nascimento Salvador PC, Del Torto A, Fiorentino R, Grassi B. Skeletal muscle V̇o2 kinetics by the NIRS repeated occlusions method during the recovery from cycle ergometer exercise. J Appl Physiol (1985) 2020; 128:534-544. [DOI: 10.1152/japplphysiol.00580.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Near-infrared spectroscopy (NIRS) has been utilized as a noninvasive method to evaluate skeletal muscle mitochondrial function in humans, by calculating muscle V̇o2 (V̇o2 m) recovery (off-) kinetics following short light-intensity plantar flexion exercise. The aim of the present study was to determine V̇o2 m off- kinetics following standard cycle ergometer exercise of different intensities. Fifteen young physically active healthy men performed an incremental exercise (INCR) up to exhaustion and two repetitions of constant work-rate (CWR) exercises at 80% of gas exchange threshold (GET; MODERATE) and at 40% of the difference between GET and peak pulmonary V̇o2 (V̇o2 p; HEAVY). V̇o2 p and vastus lateralis muscle fractional O2 extraction by NIRS (Δ[deoxy(Hb+Mb)]) were recorded continuously. Transient arterial occlusions were carried out at rest and during the recovery for V̇o2 m calculation. All subjects tolerated the repeated occlusions protocol without problems. The quality of the monoexponential fitting for V̇o2 m off-kinetics analysis was excellent (0.93≤ r2≤0.99). According to interclass correlation coefficient, the test-retest reliability was moderate to good. V̇o2 m values at the onset of recovery were ~27, ~38, and ~35 times higher (in MODERATE, HEAVY, and INCR, respectively) than at rest. The time constants (τ) of V̇o2 m off-kinetics were lower ( P < 0.001) following MODERATE (29.1 ± 6.8 s) vs. HEAVY (40.8 ± 10.9) or INCR (42.9 ± 10.9), suggesting an exercise intensity dependency of V̇o2 m off-kinetics. Only following MODERATE the V̇o2 m off-kinetics were faster than the V̇o2 p off-kinetics. V̇o2 m off-kinetics, determined noninvasively by the NIRS repeated occlusions technique, can be utilized as a functional evaluation tool of skeletal muscle oxidative metabolism also following conventional cycle ergometer exercise. NEW & NOTEWORTHY This is the first study in which muscle V̇o2 recovery kinetics, determined noninvasively by near-infrared spectroscopy (NIRS) by utilizing the repeated occlusions method, was applied following standard cycle ergometer exercise of different intensities. The results demonstrate that muscle V̇o2 recovery kinetics, determined noninvasively by the NIRS repeated occlusions technique, can be utilized as a functional evaluation tool of skeletal muscle oxidative metabolism also following conventional cycle ergometer exercise, overcoming significant limitations associated with the traditionally proposed protocol.
Collapse
Affiliation(s)
| | | | | | | | - Bruno Grassi
- Department of Medicine, University of Udine, Udine, Italy
| |
Collapse
|
50
|
Abstract
BACKGROUND The aim of this study was to examine the effect of the menstrual cycle on running economy (RE). METHODS Using a repeated-measures design, ten eumenorrheic, trained female runners (age: 32±6 yrs, V̇O2max: 59.7±4.7 mL·kg-1·min-1) completed four, weekly, identical sub-maximal and maximal incremental step tests on a treadmill to measure physiological responses across a full menstrual cycle. For phase comparison, the results from the trials that fell in the early follicular (low estrogen, low progesterone), late follicular (high estrogen, low progesterone) and mid-luteal (high estrogen, high progesterone) phases were used. RESULTS There was a significant effect of menstrual cycle phase on RE (P=0.001), with RE in the mid-luteal (ML) phase being worse than that of the early follicular (EF) (+2.33 mL·kg-1·min-1; P=0.026) and late follicular (LF) (+2.17 mL·kg-1·min-1; P=0.011) phases. The ML phase also resulted in elevated core temperature versus the EF (+0.51 ºC; P=0.001) and LF (+0.66 ºC; P=0.037) phases, and elevated minute ventilation versus the EF phase (+3.83 L·min-1; P=0.003). No significant effects of menstrual cycle phase were found on body mass, heart rate, ratings of perceived exertion, time-to-exhaustion, maximal oxygen consumption, or blood lactate concentration. CONCLUSIONS In the ML phase, which causes increased core temperature and minute ventilation, RE is impaired at exercise intensities that are applicable to training and performance. In physiologically stressful environments, this impairment in RE may have a significant impact on training and performance.
Collapse
Affiliation(s)
- Esther Goldsmith
- Faculty of Sport, Health, and Applied Sciences, St Mary's University, Strawberry Hill, Twickenham, UK -
| | - Mark Glaister
- Faculty of Sport, Health, and Applied Sciences, St Mary's University, Strawberry Hill, Twickenham, UK
| |
Collapse
|