1
|
Wang X, Solaro RJ, Dong WJ. Myosin-actin crossbridge independent sarcomere length induced Ca 2+ sensitivity changes in skinned myocardial fibers: Role of myosin heads. J Mol Cell Cardiol 2025; 202:90-101. [PMID: 40073932 DOI: 10.1016/j.yjmcc.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025]
Abstract
Sarcomere length-dependent activation (LDA) is essential to engaging the Frank-Starling mechanism in the beat-to-beat regulation of cardiac output. Through LDA, the heart increases the Ca2+ sensitivity of myocardial contraction at a longer sarcomere length, leading to an enhanced maximal force at the same level of Ca2+. Despite its importance in both normal and pathological states, the molecular mechanism underlying LDA, especially the origin of the sarcomere length (SL) induced increase in myofilament Ca2+sensitivity, remains elusive. The aim of this study is to interrogate the role of changes in the state of myosin heads during diastole as well as effects of strong force-generating cross-bridges (XB) as determinants of SL-induced Ca2+ sensitivity of troponin in membrane-free (skinned) rat myocardial fibers. Skinned myocardial fibers were reconstituted with troponin complex containing a fluorophore-modified cardiac troponin C, cTnC(13C/51C)AEDANS-DDPM, and recombinant cardiac troponin I (cTnI) mutant, ΔSP-cTnI, in which the switch peptide (Sp) of cTnI was replaced by a non-functional peptide link to partially block the force-generating reaction of myosin with actin. We used the reconstituted myocardial fibers as a platform to investigate how Ca2+ sensitivity of troponin within skinned myocardial fibers responds to sarcomere stretch with variations in the status of myosin-actin XBs. Muscle mechanics and fluorescence measurements clearly showed similar SL-induced increases in troponin Ca2+ sensitivity in either the presence or the absence of strong XBs, suggesting that the SL-induced Ca2+ sensitivity change is independent of reactions of force generating XB with the thin filament. The presence of mavacamten, a selective myosin-motor inhibitor known to promote transition of myosin heads from the weakly actin-bound state (ON or disordered relaxed (DRX) state) to the ordered off state (OFF or super-relaxed (SRX) state), blunted the observed SL-induced increases in Ca2+ sensitivity of troponin regardless of the presence of XBs, suggesting that the presence of the myosin heads in the weakly actin bound state, is essential for Ca2+-troponin to sense the sarcomere stretch. Results from skinned myocardial fibers reconstituted with troponin containing engineered TEV digestible mutant cTnI and cTnT suggest that the observed SL effect on Ca2+ sensitivity may involve potential interactions of weakly bound myosin heads with troponin in the actin/Tm cluster region interacting with cTnT-T1 and residues 182-229 of cTnT-T2. The mechanical stretch effects may then be subsequently transmitted to the N-cTnC via the IT arm of troponin and the N-terminus of cTnI. Our findings strongly indicate that SL-induced potential myosin-troponin interaction in diastole, rather than strong myosin-actin XBs, may be an essential molecular mechanism underlying LDA of myofilament.
Collapse
Affiliation(s)
- Xutu Wang
- Voiland School of Chemical and Bioengineering, Washington State University, Pullman, WA 99163-1062, USA
| | - R John Solaro
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612-7342, USA
| | - Wen-Ji Dong
- Voiland School of Chemical and Bioengineering, Washington State University, Pullman, WA 99163-1062, USA; Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99163-1062, USA.
| |
Collapse
|
2
|
Zero AM, Rice CL, Nogueira L. Competing effects of activation history on force and cytosolic Ca 2+ in intact single mice myofibers. Pflugers Arch 2025; 477:407-419. [PMID: 39738587 DOI: 10.1007/s00424-024-03061-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/02/2025]
Abstract
The purpose was to investigate the changes in cytosolic Ca2+ and force output during post-tetanic potentiation (PTP) during pre-fatigue and during prolonged low-frequency force depression (PLFFD) following fatigue. Intact single myofibers from the flexor digitorum brevis of mice were electrically stimulated to record force (n = 8) and free cytosolic Ca2+ concentration ([Ca2+]c) with FURA-2 (n = 6) at 32 °C. Initially, force and [Ca2+]c were measured during brief (350 ms) trains of stimuli at 30, 50, 70, and 200 Hz at ~ 2 s intervals (Force-frequency protocol, FFP). Then, a conditioning stimulus (CS) of six 120 Hz stimuli, separated by ~ 3 s, was used to induce PTP, immediately followed by an FFP. Myofiber fatigue was produced by 150 Hz trains every 3 s until peak force decayed 70% of the initial. Thirty minutes after the fatigue, the CS was repeated to assess the effect of PTP on force and [Ca2+]c during PLFFD. The CS in unfatigued myofibers induced PTP as the submaximal force was enhanced and accompanied by increased peak [Ca2+]c with no change in myofilament Ca2+ sensitivity. After fatigue, PLFFD was due to lowered peak [Ca2+]c. Inducing PTP during PLFFD enhanced submaximal force primarily through greater peak [Ca2+]c, mitigating the submaximal force deficits. Despite the impaired force during PLFFD, myofibers remained sensitive to PTP, and this mitigated the submaximal force deficits through increased peak [Ca2+]c without a change in myofilament Ca2+ sensitivity. Therefore, force adjustments of intact single myofibers due to activation history are principally accomplished by opposing adjustments in [Ca2+]c.
Collapse
Affiliation(s)
- Alexander M Zero
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, ON, Canada
| | - Charles L Rice
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, ON, Canada
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | - Leonardo Nogueira
- School of Exercise and Nutritional Sciences, College of Health and Human Services, San Diego State University, 5500 Campanile Dr., San Diego, CA, 92182, USA.
| |
Collapse
|
3
|
Tanner BCW. Design Principles and Benefits of Spatially Explicit Models of Myofilament Function. Methods Mol Biol 2024; 2735:43-62. [PMID: 38038843 DOI: 10.1007/978-1-0716-3527-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Spatially explicit models of muscle contraction include fine-scale details about the spatial, kinetic, and/or mechanical properties of the biological processes being represented within the model network. Over the past 25 years, this has primarily consisted of a set of mathematical and computational algorithms representing myosin cross-bridge activity, Ca2+-activation of contraction, and ensemble force production within a half-sarcomere representation of the myofilament network. Herein we discuss basic design principles associated with creating spatially explicit models of myofilament function, as well as model assumptions underlying model development. A brief overview of computational approaches is introduced. Opportunities for new model directions that could investigate coupled regulatory pathways between the thick-filament and thin-filaments are also presented. Given the modular design and flexibility associated with spatially explicit models, we highlight some advantages of this approach compared to other model formulations.
Collapse
Affiliation(s)
- Bertrand C W Tanner
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, USA.
| |
Collapse
|
4
|
Wiseman RW, Brown CM, Beck TW, Brault JJ, Reinoso TR, Shi Y, Chase PB. Creatine Kinase Equilibration and ΔG ATP over an Extended Range of Physiological Conditions: Implications for Cellular Energetics, Signaling, and Muscle Performance. Int J Mol Sci 2023; 24:13244. [PMID: 37686064 PMCID: PMC10487889 DOI: 10.3390/ijms241713244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
In this report, we establish a straightforward method for estimating the equilibrium constant for the creatine kinase reaction (CK Keq″) over wide but physiologically and experimentally relevant ranges of pH, Mg2+ and temperature. Our empirical formula for CK Keq″ is based on experimental measurements. It can be used to estimate [ADP] when [ADP] is below the resolution of experimental measurements, a typical situation because [ADP] is on the order of micromolar concentrations in living cells and may be much lower in many in vitro experiments. Accurate prediction of [ADP] is essential for in vivo studies of cellular energetics and metabolism and for in vitro studies of ATP-dependent enzyme function under near-physiological conditions. With [ADP], we were able to obtain improved estimates of ΔGATP, necessitating the reinvestigation of previously reported ADP- and ΔGATP-dependent processes. Application to actomyosin force generation in muscle provides support for the hypothesis that, when [Pi] varies and pH is not altered, the maximum Ca2+-activated isometric force depends on ΔGATP in both living and permeabilized muscle preparations. Further analysis of the pH studies introduces a novel hypothesis around the role of submicromolar ADP in force generation.
Collapse
Affiliation(s)
- Robert Woodbury Wiseman
- Departments of Physiology and Radiology, Michigan State University, East Lansing, MI 48824, USA;
| | - Caleb Micah Brown
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Thomas Wesley Beck
- Department of Radiology, University of Washington, Seattle, WA 98195, USA
| | - Jeffrey John Brault
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA;
| | - Tyler Robert Reinoso
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Yun Shi
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Prescott Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
5
|
Risi CM, Belknap B, White HD, Dryden K, Pinto JR, Chase PB, Galkin VE. High-resolution cryo-EM structure of the junction region of the native cardiac thin filament in relaxed state. PNAS NEXUS 2023; 2:pgac298. [PMID: 36712934 PMCID: PMC9832952 DOI: 10.1093/pnasnexus/pgac298] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Cardiac contraction depends on molecular interactions among sarcomeric proteins coordinated by the rising and falling intracellular Ca2+ levels. Cardiac thin filament (cTF) consists of two strands composed of actin, tropomyosin (Tm), and equally spaced troponin (Tn) complexes forming regulatory units. Tn binds Ca2+ to move Tm strand away from myosin-binding sites on actin to enable actomyosin cross-bridges required for force generation. The Tn complex has three subunits-Ca2+-binding TnC, inhibitory TnI, and Tm-binding TnT. Tm strand is comprised of adjacent Tm molecules that overlap "head-to-tail" along the actin filament. The N-terminus of TnT (e.g., TnT1) binds to the Tm overlap region to form the cTF junction region-the region that connects adjacent regulatory units and confers to cTF internal cooperativity. Numerous studies have predicted interactions among actin, Tm, and TnT1 within the junction region, although a direct structural description of the cTF junction region awaited completion. Here, we report a 3.8 Å resolution cryo-EM structure of the native cTF junction region at relaxing (pCa 8) Ca2+ conditions. We provide novel insights into the "head-to-tail" interactions between adjacent Tm molecules and interactions between the Tm junction with F-actin. We demonstrate how TnT1 stabilizes the Tm overlap region via its interactions with the Tm C- and N-termini and actin. Our data show that TnT1 works as a joint that anchors the Tm overlap region to actin, which stabilizes the relaxed state of the cTF. Our structure provides insight into the molecular basis of cardiac diseases caused by missense mutations in TnT1.
Collapse
Affiliation(s)
- Cristina M Risi
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Betty Belknap
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Howard D White
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Kelly Dryden
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22904, USA
| | - Jose R Pinto
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32304, USA
| | - P Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Vitold E Galkin
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| |
Collapse
|
6
|
Caremani M, Marcello M, Morotti I, Pertici I, Squarci C, Reconditi M, Bianco P, Piazzesi G, Lombardi V, Linari M. The force of the myosin motor sets cooperativity in thin filament activation of skeletal muscles. Commun Biol 2022; 5:1266. [DOI: 10.1038/s42003-022-04184-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/28/2022] [Indexed: 11/19/2022] Open
Abstract
AbstractContraction of striated muscle is regulated by a dual mechanism involving both thin, actin-containing filament and thick, myosin-containing filament. Thin filament is activated by Ca2+ binding to troponin, leading to tropomyosin displacement that exposes actin sites for interaction with myosin motors, extending from the neighbouring stress-activated thick filaments. Motor attachment to actin contributes to spreading activation along the thin filament, through a cooperative mechanism, still unclear, that determines the slope of the sigmoidal relation between isometric force and pCa (−log[Ca2+]), estimated by Hill coefficient nH. We use sarcomere-level mechanics in demembranated fibres of rabbit skeletal muscle activated by Ca2+ at different temperatures (12–35 °C) to show that nH depends on the motor force at constant number of attached motors. The definition of the role of motor force provides fundamental constraints for modelling the dynamics of thin filament activation and defining the action of small molecules as possible therapeutic tools.
Collapse
|
7
|
Powers JD, Malingen SA, Regnier M, Daniel TL. The Sliding Filament Theory Since Andrew Huxley: Multiscale and Multidisciplinary Muscle Research. Annu Rev Biophys 2021; 50:373-400. [PMID: 33637009 DOI: 10.1146/annurev-biophys-110320-062613] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Two groundbreaking papers published in 1954 laid out the theory of the mechanism of muscle contraction based on force-generating interactions between myofilaments in the sarcomere that cause filaments to slide past one another during muscle contraction. The succeeding decades of research in muscle physiology have revealed a unifying interest: to understand the multiscale processes-from atom to organ-that govern muscle function. Such an understanding would have profound consequences for a vast array of applications, from developing new biomimetic technologies to treating heart disease. However, connecting structural and functional properties that are relevant at one spatiotemporal scale to those that are relevant at other scales remains a great challenge. Through a lens of multiscale dynamics, we review in this article current and historical research in muscle physiology sparked by the sliding filament theory.
Collapse
Affiliation(s)
- Joseph D Powers
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, USA
| | - Sage A Malingen
- Department of Biology, University of Washington, Seattle, Washington 98195, USA;
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, Washington 98185, USA
- Center for Translational Muscle Research, University of Washington, Seattle, Washington 98185, USA
| | - Thomas L Daniel
- Department of Biology, University of Washington, Seattle, Washington 98195, USA;
- Department of Bioengineering, University of Washington, Seattle, Washington 98185, USA
- Center for Translational Muscle Research, University of Washington, Seattle, Washington 98185, USA
| |
Collapse
|
8
|
Risi CM, Pepper I, Belknap B, Landim-Vieira M, White HD, Dryden K, Pinto JR, Chase PB, Galkin VE. The structure of the native cardiac thin filament at systolic Ca 2+ levels. Proc Natl Acad Sci U S A 2021; 118:e2024288118. [PMID: 33753506 PMCID: PMC8020778 DOI: 10.1073/pnas.2024288118] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Every heartbeat relies on cyclical interactions between myosin thick and actin thin filaments orchestrated by rising and falling Ca2+ levels. Thin filaments are comprised of two actin strands, each harboring equally separated troponin complexes, which bind Ca2+ to move tropomyosin cables away from the myosin binding sites and, thus, activate systolic contraction. Recently, structures of thin filaments obtained at low (pCa ∼9) or high (pCa ∼3) Ca2+ levels revealed the transition between the Ca2+-free and Ca2+-bound states. However, in working cardiac muscle, Ca2+ levels fluctuate at intermediate values between pCa ∼6 and pCa ∼7. The structure of the thin filament at physiological Ca2+ levels is unknown. We used cryoelectron microscopy and statistical analysis to reveal the structure of the cardiac thin filament at systolic pCa = 5.8. We show that the two strands of the thin filament consist of a mixture of regulatory units, which are composed of Ca2+-free, Ca2+-bound, or mixed (e.g., Ca2+ free on one side and Ca2+ bound on the other side) troponin complexes. We traced troponin complex conformations along and across individual thin filaments to directly determine the structural composition of the cardiac native thin filament at systolic Ca2+ levels. We demonstrate that the two thin filament strands are activated stochastically with short-range cooperativity evident only on one of the two strands. Our findings suggest a mechanism by which cardiac muscle is regulated by narrow range Ca2+ fluctuations.
Collapse
Affiliation(s)
- Cristina M Risi
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507
| | - Ian Pepper
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507
| | - Betty Belknap
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507
| | - Maicon Landim-Vieira
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32304
| | - Howard D White
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507
| | - Kelly Dryden
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903
| | - Jose R Pinto
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32304
| | - P Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, FL 32306
| | - Vitold E Galkin
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507;
| |
Collapse
|
9
|
Fenwick AJ, Wood AM, Tanner BCW. The spatial distribution of thin filament activation influences force development and myosin activity in computational models of muscle contraction. Arch Biochem Biophys 2021; 703:108855. [PMID: 33781771 DOI: 10.1016/j.abb.2021.108855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 03/03/2021] [Accepted: 03/18/2021] [Indexed: 01/22/2023]
Abstract
Striated muscle contraction is initiated by Ca2+ binding to, and activating, thin filament regulatory units (RU) within the sarcomere, which then allows myosin cross-bridges from the opposing thick filament to bind actin and generate force. The amount of overlap between the filaments dictates how many potential cross-bridges are capable of binding, and thus how force is generated by the sarcomere. Myopathies and atrophy can impair muscle function by limiting cross-bridge interactions between the filaments, which can occur when the length of the thin filament is reduced or when RU function is disrupted. To investigate how variations in thin filament length and RU density affect ensemble cross-bridge behavior and force production, we simulated muscle contraction using a spatially explicit computational model of the half-sarcomere. Thin filament RUs were disabled either uniformly from the pointed end of the filament (to model shorter thin filament length) or randomly throughout the length of the half-sarcomere. Both uniform and random RU 'knockout' schemes decreased overall force generation during maximal and submaximal activation. The random knockout scheme also led to decreased calcium sensitivity and cooperativity of the force-pCa relationship. We also found that the rate of force development slowed with the random RU knockout, compared to the uniform RU knockout or conditions of normal RU activation. These findings imply that the relationship between RU density and force production within the sarcomere involves more complex coordination than simply the raw number of RUs available for myosin cross-bridge binding, and that the spatial pattern in which activatable RU are distributed throughout the sarcomere influences the dynamics of force production.
Collapse
Affiliation(s)
- Axel J Fenwick
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, 99164, USA
| | - Alexander M Wood
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, 99164, USA
| | - Bertrand C W Tanner
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
10
|
Nagamori A, Laine CM, Loeb GE, Valero-Cuevas FJ. Force variability is mostly not motor noise: Theoretical implications for motor control. PLoS Comput Biol 2021; 17:e1008707. [PMID: 33684099 PMCID: PMC7971898 DOI: 10.1371/journal.pcbi.1008707] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/18/2021] [Accepted: 01/15/2021] [Indexed: 11/19/2022] Open
Abstract
Variability in muscle force is a hallmark of healthy and pathological human behavior. Predominant theories of sensorimotor control assume 'motor noise' leads to force variability and its 'signal dependence' (variability in muscle force whose amplitude increases with intensity of neural drive). Here, we demonstrate that the two proposed mechanisms for motor noise (i.e. the stochastic nature of motor unit discharge and unfused tetanic contraction) cannot account for the majority of force variability nor for its signal dependence. We do so by considering three previously underappreciated but physiologically important features of a population of motor units: 1) fusion of motor unit twitches, 2) coupling among motoneuron discharge rate, cross-bridge dynamics, and muscle mechanics, and 3) a series-elastic element to account for the aponeurosis and tendon. These results argue strongly against the idea that force variability and the resulting kinematic variability are generated primarily by 'motor noise.' Rather, they underscore the importance of variability arising from properties of control strategies embodied through distributed sensorimotor systems. As such, our study provides a critical path toward developing theories and models of sensorimotor control that provide a physiologically valid and clinically useful understanding of healthy and pathologic force variability.
Collapse
Affiliation(s)
- Akira Nagamori
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California, United States of America
| | - Christopher M. Laine
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California, United States of America
- Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, California, United States of America
| | - Gerald E. Loeb
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, United States of America
| | - Francisco J. Valero-Cuevas
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California, United States of America
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
11
|
Mijailovich SM, Prodanovic M, Poggesi C, Powers JD, Davis J, Geeves MA, Regnier M. The effect of variable troponin C mutation thin filament incorporation on cardiac muscle twitch contractions. J Mol Cell Cardiol 2021; 155:112-124. [PMID: 33636222 DOI: 10.1016/j.yjmcc.2021.02.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 11/19/2022]
Abstract
One of the complexities of understanding the pathology of familial forms of cardiac diseases is the level of mutation incorporation in sarcomeres. Computational models of the sarcomere that are spatially explicit offer an approach to study aspects of mutational incorporation into myofilaments that are more challenging to get at experimentally. We studied two well characterized mutations of cardiac TnC, L48Q and I61Q, that decrease or increase the release rate of Ca2+ from cTnC, k-Ca, resulting in HCM and DCM respectively [1]. Expression of these mutations in transgenic mice was used to provide experimental data for incorporation of 30 and 50% (respectively) into sarcomeres. Here we demonstrate that fixed length twitch contractions of trabeculae from mice containing mutant differ from WT; L48Q trabeculae have slower relaxation while I61Q trabeculae have markedly reduced peak tension. Using our multiscale modelling approach [2] we were able to describe the tension transients of WT mouse myocardium. Tension transients for the mutant cTnCs were simulated with changes in k-Ca, measured experimentally for each cTnC mutant in whole troponin complex, a change in the affinity of cTnC for cTnI, and a reduction in the number of detached crossbridges available for binding. A major advantage of the multiscale explicit 3-D model is that it predicts the effects of variable mutation incorporation, and the effects of variations in mutation distribution within thin filaments in sarcomeres. Such effects are currently impossible to explore experimentally. We explored random and clustered distributions of mutant cTnCs in thin filaments, as well as distributions of individual thin filaments with only WT or mutant cTnCs present. The effects of variable amounts of incorporation and non-random distribution of mutant cTnCs are more marked for I61Q than L48Q cTnC. We conclude that this approach can be effective for study on mutations in multiple proteins of the sarcomere. SUMMARY: A challenge in experimental studies of diseases is accounting for the effect of variable mutation incorporation into myofilaments. Here we use a spatially explicit computational approach, informed by experimental data from transgenic mice expressing one of two mutations in cardiac Troponin C that increase or decrease calcium sensitivity. We demonstrate that the model can accurately describe twitch contractions for the data and go on to explore the effect of variable mutant incorporation and localization on simulated cardiac muscle twitches.
Collapse
Affiliation(s)
| | - Momcilo Prodanovic
- Bioengineering Research and Development Center (BioIRC), Kragujevac 34000, Serbia; Faculty of Engineering, University of Kragujevac, Kragujevac 34000, Serbia
| | - Corrado Poggesi
- Department of Experimental & Clinical Medicine, University of Florence, Florence 50134, Italy
| | - Joseph D Powers
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA; Dept. of Bioengineering, University of California, San Diego, CA 92093, USA
| | - Jennifer Davis
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Michael A Geeves
- Dept. of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
12
|
Zot HG, Chase PB, Hasbun JE, Pinto JR. Mechanical contribution to muscle thin filament activation. J Biol Chem 2020; 295:15913-15922. [PMID: 32900850 DOI: 10.1074/jbc.ra120.014438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/04/2020] [Indexed: 11/06/2022] Open
Abstract
Vertebrate striated muscle thin filaments are thought to be thermodynamically activated in response to an increase in Ca2+ concentration. We tested this hypothesis by measuring time intervals for gliding runs and pauses of individual skeletal muscle thin filaments in cycling myosin motility assays. A classic thermodynamic mechanism predicts that if chemical potential is constant, transitions between runs and pauses of gliding thin filaments will occur at constant rate as given by a Poisson distribution. In this scenario, rate is given by the odds of a pause, and hence, run times between pauses fit an exponential distribution that slopes negatively for all observable run times. However, we determined that relative density of observed run times fits an exponential only at low Ca2+ levels that activate filament gliding. Further titration with Ca2+, or adding excess regulatory proteins tropomyosin and troponin, shifted the relative density of short run times to fit the positive slope of a gamma distribution, which derives from waiting times between Poisson events. Events that arise during a run and prevent the chance of ending a run for a random interval of time account for the observed run time distributions, suggesting that the events originate with cycling myosin. We propose that regulatory proteins of the thin filament require the mechanical force of cycling myosin to achieve the transition state for activation. During activation, combinations of cycling myosin that contribute insufficient activation energy delay deactivation.
Collapse
Affiliation(s)
- Henry G Zot
- Department of Biology, University of West Georgia, Carrollton, Georgia, USA; Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, USA.
| | - P Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - Javier E Hasbun
- Department of Physics, University of West Georgia, Carrollton, Georgia, USA
| | - Jose R Pinto
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
13
|
Lehman W, Rynkiewicz MJ, Moore JR. A new twist on tropomyosin binding to actin filaments: perspectives on thin filament function, assembly and biomechanics. J Muscle Res Cell Motil 2020; 41:23-38. [PMID: 30771202 PMCID: PMC6697252 DOI: 10.1007/s10974-019-09501-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 02/07/2019] [Indexed: 02/07/2023]
Abstract
Tropomyosin, best known for its role in the steric regulation of muscle contraction, polymerizes head-to-tail to form cables localized along the length of both muscle and non-muscle actin-based thin filaments. In skeletal and cardiac muscles, tropomyosin, under the control of troponin and myosin, moves in a cooperative manner between blocked, closed and open positions on filaments, thereby masking and exposing actin-binding sites necessary for myosin crossbridge head interactions. While the coiled-coil signature of tropomyosin appears to be simple, closer inspection reveals surprising structural complexity required to perform its role in steric regulation. For example, component α-helices of coiled coils are typically zippered together along a continuous core hydrophobic stripe. Tropomyosin, however, contains a number of anomalous, functionally controversial, core amino acid residues. We argue that the atypical residues at this interface, including clusters of alanines and a charged aspartate, are required for preshaping tropomyosin to readily fit to the surface of the actin filament, but do so without compromising tropomyosin rigidity once the filament is assembled. Indeed, persistence length measurements of tropomyosin are characteristic of a semi-rigid cable, in this case conducive to cooperative movement on thin filaments. In addition, we also maintain that tropomyosin displays largely unrecognized and residue-specific torsional variance, which is involved in optimizing contacts between actin and tropomyosin on the assembled thin filament. Corresponding twist-induced stiffness may also enhance cooperative translocation of tropomyosin across actin filaments. We conclude that anomalous core residues of tropomyosin facilitate thin filament regulatory behavior in a multifaceted way.
Collapse
Affiliation(s)
- William Lehman
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, Massachusetts, U.S.A
| | - Michael J. Rynkiewicz
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, Massachusetts, U.S.A
| | - Jeffrey R. Moore
- Department of Biological Sciences, University of Massachusetts-Lowell, Lowell, Massachusetts, U.S.A
| |
Collapse
|
14
|
Aboelkassem Y, McCabe KJ, Huber GA, Regnier M, McCammon JA, McCulloch AD. A Stochastic Multiscale Model of Cardiac Thin Filament Activation Using Brownian-Langevin Dynamics. Biophys J 2019; 117:2255-2272. [PMID: 31547973 PMCID: PMC6990154 DOI: 10.1016/j.bpj.2019.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 11/16/2022] Open
Abstract
We use Brownian-Langevin dynamics principles to derive a coarse-graining multiscale myofilament model that can describe the thin-filament activation process during contraction. The model links atomistic molecular simulations of protein-protein interactions in the thin-filament regulatory unit to sarcomere-level activation dynamics. We first calculate the molecular interaction energy between tropomyosin and actin surface using Brownian dynamics simulations. This energy profile is then generalized to account for the observed tropomyosin transitions between its regulatory stable states. The generalized energy landscape then served as a basis for developing a filament-scale model using Langevin dynamics. This integrated analysis, spanning molecular to thin-filament scales, is capable of tracking the events of the tropomyosin conformational changes as it moves over the actin surface. The tropomyosin coil with flexible overlap regions between adjacent tropomyosins is represented in the model as a system of coupled stochastic ordinary differential equations. The proposed multiscale approach provides a more detailed molecular connection between tropomyosin dynamics, the trompomyosin-actin interaction-energy landscape, and the generated force by the sarcomere.
Collapse
Affiliation(s)
- Yasser Aboelkassem
- Department of Bioengineering, University of California San Diego, La Jolla, California.
| | - Kimberly J McCabe
- Department of Bioengineering, University of California San Diego, La Jolla, California
| | - Gary A Huber
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - J Andrew McCammon
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California
| | - Andrew D McCulloch
- Department of Bioengineering, University of California San Diego, La Jolla, California
| |
Collapse
|
15
|
Kopylova GV, Matyushenko AM, Koubassova NA, Shchepkin DV, Bershitsky SY, Levitsky DI, Tsaturyan AK. Functional outcomes of structural peculiarities of striated muscle tropomyosin. J Muscle Res Cell Motil 2019; 41:55-70. [DOI: 10.1007/s10974-019-09552-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 08/17/2019] [Indexed: 12/27/2022]
|
16
|
Aboelkassem Y, Trayanova N. Tropomyosin dynamics during cardiac muscle contraction as governed by a multi-well energy landscape. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 144:102-115. [PMID: 30145015 PMCID: PMC6386637 DOI: 10.1016/j.pbiomolbio.2018.07.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/29/2018] [Accepted: 07/31/2018] [Indexed: 01/12/2023]
Abstract
The dynamic oscillations of tropomyosin molecules in the azimuthal direction over the surface of the actin filament during thin filament activation are studied here from an energy landscape perspective. A mathematical model based on principles from nonlinear dynamics and chaos theory is derived to describe these dynamical motions. In particular, an energy potential with three wells is proposed to govern the tropomyosin oscillations between the observed regulatory positions observed during muscle contraction, namely the blocked "B", closed "C" and open "M" states. Based on the variations in both the frequency and amplitude of the environmental (surrounding the thin filament system) driving tractions, such as the electrostatic, hydrophobic, and Ca2+-dependent forces, the tropomyosin movements are shown to be complex; they can change from being simple harmonic oscillations to being fully chaotic. Three cases (periodic, period-2, and chaotic patterns) are presented to showcase the different possible dynamic responses of tropomyosin sliding over the actin filament. A probability density function is used as a statistical measure to calculate the average residence time spanned out by the tropomyosin molecule when visiting each (B, C, M) equilibrium state. The results were found to depend strongly on the energy landscape profile and its featured barriers, which normally govern the transitions between the B-C-M states during striated muscle activation.
Collapse
Affiliation(s)
- Yasser Aboelkassem
- Institute for Computational Medicine, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | - Natalia Trayanova
- Institute for Computational Medicine, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
17
|
Fenwick AJ, Wood AM, Tanner BCW. Effects of cross-bridge compliance on the force-velocity relationship and muscle power output. PLoS One 2017; 12:e0190335. [PMID: 29284062 PMCID: PMC5746261 DOI: 10.1371/journal.pone.0190335] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/12/2017] [Indexed: 11/19/2022] Open
Abstract
Muscles produce force and power by utilizing chemical energy through ATP hydrolysis. During concentric contractions (shortening), muscles generate less force compared to isometric contractions, but consume greater amounts of energy as shortening velocity increases. Conversely, more force is generated and less energy is consumed during eccentric muscle contractions (lengthening). This relationship between force, energy use, and the velocity of contraction has important implications for understanding muscle efficiency, but the molecular mechanisms underlying this behavior remain poorly understood. Here we used spatially-explicit, multi-filament models of Ca2+-regulated force production within a half-sarcomere to simulate how force production, energy utilization, and the number of bound cross-bridges are affected by dynamic changes in sarcomere length. These computational simulations show that cross-bridge binding increased during slow-velocity concentric and eccentric contractions, compared to isometric contractions. Over the full ranges of velocities that we simulated, cross-bridge cycling and energy utilization (i.e. ATPase rates) increased during shortening, and decreased during lengthening. These findings are consistent with the Fenn effect, but arise from a complicated relationship between velocity-dependent cross-bridge recruitment and cross-bridge cycling kinetics. We also investigated how force production, power output, and energy utilization varied with cross-bridge and myofilament compliance, which is impossible to address under typical experimental conditions. These important simulations show that increasing cross-bridge compliance resulted in greater cross-bridge binding and ATPase activity, but less force was generated per cross-bridge and throughout the sarcomere. These data indicate that the efficiency of force production decreases in a velocity-dependent manner, and that this behavior is sensitive to cross-bridge compliance. In contrast, significant effects of myofilament compliance on force production were only observed during isometric contractions, suggesting that changes in myofilament compliance may not influence power output during non-isometric contractions as greatly as changes in cross-bridge compliance. These findings advance our understanding of how cross-bridge and myofilament properties underlie velocity-dependent changes in contractile efficiency during muscle movement.
Collapse
Affiliation(s)
- Axel J. Fenwick
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington, United States of America
| | - Alexander M. Wood
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington, United States of America
| | - Bertrand C. W. Tanner
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| |
Collapse
|
18
|
Rupert CE, Coulombe KLK. IGF1 and NRG1 Enhance Proliferation, Metabolic Maturity, and the Force-Frequency Response in hESC-Derived Engineered Cardiac Tissues. Stem Cells Int 2017; 2017:7648409. [PMID: 28951744 PMCID: PMC5603111 DOI: 10.1155/2017/7648409] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/25/2017] [Indexed: 12/24/2022] Open
Abstract
Insulin-like growth factor 1 (IGF1) and neuregulin-1β (NRG1) play important roles during cardiac development both individually and synergistically. In this study, we analyze how 3D cardiac tissue engineered from human embryonic stem cell- (hESC-) derived cardiomyocytes and 2D-plated hESC-cardiomyocytes respond to developmentally relevant growth factors both to stimulate maturity and to characterize the therapeutic potential of IGF1 and NRG1. When administered to engineered cardiac tissues, a significant decrease in active force production of ~65% was measured in all treatment groups, likely due to changes in cellular physiology. Developmentally related processes were identified in engineered tissues as IGF1 increased hESC-cardiomyocyte proliferation 3-fold over untreated controls and NRG1 stimulated oxidative phosphorylation and promoted a positive force-frequency relationship in tissues up to 3 Hz. hESC-cardiomyocyte area increased significantly with NRG1 and IGF1 + NRG1 treatment in 2D culture and gene expression data suggested increased cardiac contractile components in engineered tissues, indicating the need for functional analysis in a 3D platform to accurately characterize engineered cardiac tissue response to biochemical stimulation. This study demonstrates the therapeutic potential of IGF1 for boosting proliferation and NRG1 for promoting metabolic and contractile maturation in engineered human cardiac tissue.
Collapse
Affiliation(s)
- Cassady E. Rupert
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI 02912, USA
| | - Kareen L. K. Coulombe
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI 02912, USA
| |
Collapse
|
19
|
Abstract
Understanding of the musculoskeletal system has evolved from the collection of individual phenomena in highly selected experimental preparations under highly controlled and often unphysiological conditions. At the systems level, it is now possible to construct complete and reasonably accurate models of the kinetics and energetics of realistic muscles and to combine them to understand the dynamics of complete musculoskeletal systems performing natural behaviors. At the reductionist level, it is possible to relate most of the individual phenomena to the anatomical structures and biochemical processes that account for them. Two large challenges remain. At a systems level, neuroscience must now account for how the nervous system learns to exploit the many complex features that evolution has incorporated into muscle and limb mechanics. At a reductionist level, medicine must now account for the many forms of pathology and disability that arise from the many diseases and injuries to which this highly evolved system is inevitably prone. © 2017 American Physiological Society. Compr Physiol 7:429-462, 2017.
Collapse
Affiliation(s)
| | - Gerald E Loeb
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
20
|
Vandenboom R. Modulation of Skeletal Muscle Contraction by Myosin Phosphorylation. Compr Physiol 2016; 7:171-212. [PMID: 28135003 DOI: 10.1002/cphy.c150044] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The striated muscle sarcomere is a highly organized and complex enzymatic and structural organelle. Evolutionary pressures have played a vital role in determining the structure-function relationship of each protein within the sarcomere. A key part of this multimeric assembly is the light chain-binding domain (LCBD) of the myosin II motor molecule. This elongated "beam" functions as a biological lever, amplifying small interdomain movements within the myosin head into piconewton forces and nanometer displacements against the thin filament during the cross-bridge cycle. The LCBD contains two subunits known as the essential and regulatory myosin light chains (ELC and RLC, respectively). Isoformic differences in these respective species provide molecular diversity and, in addition, sites for phosphorylation of serine residues, a highly conserved feature of striated muscle systems. Work on permeabilized skeletal fibers and thick filament systems shows that the skeletal myosin light chain kinase catalyzed phosphorylation of the RLC alters the "interacting head motif" of myosin motor heads on the thick filament surface, with myriad consequences for muscle biology. At rest, structure-function changes may upregulate actomyosin ATPase activity of phosphorylated cross-bridges. During activation, these same changes may increase the Ca2+ sensitivity of force development to enhance force, work, and power output, outcomes known as "potentiation." Thus, although other mechanisms may contribute, RLC phosphorylation may represent a form of thick filament activation that provides a "molecular memory" of contraction. The clinical significance of these RLC phosphorylation mediated alterations to contractile performance of various striated muscle systems are just beginning to be understood. © 2017 American Physiological Society. Compr Physiol 7:171-212, 2017.
Collapse
Affiliation(s)
- Rene Vandenboom
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, Ontario, Canada
| |
Collapse
|
21
|
Badr MA, Pinto JR, Davidson MW, Chase PB. Fluorescent Protein-Based Ca2+ Sensor Reveals Global, Divalent Cation-Dependent Conformational Changes in Cardiac Troponin C. PLoS One 2016; 11:e0164222. [PMID: 27736894 PMCID: PMC5063504 DOI: 10.1371/journal.pone.0164222] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 09/21/2016] [Indexed: 12/12/2022] Open
Abstract
Cardiac troponin C (cTnC) is a key effector in cardiac muscle excitation-contraction coupling as the Ca2+ sensing subunit responsible for controlling contraction. In this study, we generated several FRET sensors for divalent cations based on cTnC flanked by a donor fluorescent protein (CFP) and an acceptor fluorescent protein (YFP). The sensors report Ca2+ and Mg2+ binding, and relay global structural information about the structural relationship between cTnC’s N- and C-domains. The sensors were first characterized using end point titrations to decipher the response to Ca2+ binding in the presence or absence of Mg2+. The sensor that exhibited the largest responses in end point titrations, CTV-TnC, (Cerulean, TnC, and Venus) was characterized more extensively. Most of the divalent cation-dependent FRET signal originates from the high affinity C-terminal EF hands. CTV-TnC reconstitutes into skinned fiber preparations indicating proper assembly of troponin complex, with only ~0.2 pCa unit rightward shift of Ca2+-sensitive force development compared to WT-cTnC. Affinity of CTV-TnC for divalent cations is in agreement with known values for WT-cTnC. Analytical ultracentrifugation indicates that CTV-TnC undergoes compaction as divalent cations bind. C-terminal sites induce ion-specific (Ca2+ versus Mg2+) conformational changes in cTnC. Our data also provide support for the presence of additional, non-EF-hand sites on cTnC for Mg2+ binding. In conclusion, we successfully generated a novel FRET-Ca2+ sensor based on full length cTnC with a variety of cellular applications. Our sensor reveals global structural information about cTnC upon divalent cation binding.
Collapse
Affiliation(s)
- Myriam A. Badr
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
- * E-mail:
| | - Jose R. Pinto
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States of America
| | - Michael W. Davidson
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, United States of America
| | - P. Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
| |
Collapse
|
22
|
Marques MDA, de Oliveira GAP. Cardiac Troponin and Tropomyosin: Structural and Cellular Perspectives to Unveil the Hypertrophic Cardiomyopathy Phenotype. Front Physiol 2016; 7:429. [PMID: 27721798 PMCID: PMC5033975 DOI: 10.3389/fphys.2016.00429] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/09/2016] [Indexed: 12/12/2022] Open
Abstract
Inherited myopathies affect both skeletal and cardiac muscle and are commonly associated with genetic dysfunctions, leading to the production of anomalous proteins. In cardiomyopathies, mutations frequently occur in sarcomeric genes, but the cause-effect scenario between genetic alterations and pathological processes remains elusive. Hypertrophic cardiomyopathy (HCM) was the first cardiac disease associated with a genetic background. Since the discovery of the first mutation in the β-myosin heavy chain, more than 1400 new mutations in 11 sarcomeric genes have been reported, awarding HCM the title of the “disease of the sarcomere.” The most common macroscopic phenotypes are left ventricle and interventricular septal thickening, but because the clinical profile of this disease is quite heterogeneous, these phenotypes are not suitable for an accurate diagnosis. The development of genomic approaches for clinical investigation allows for diagnostic progress and understanding at the molecular level. Meanwhile, the lack of accurate in vivo models to better comprehend the cellular events triggered by this pathology has become a challenge. Notwithstanding, the imbalance of Ca2+ concentrations, altered signaling pathways, induction of apoptotic factors, and heart remodeling leading to abnormal anatomy have already been reported. Of note, a misbalance of signaling biomolecules, such as kinases and tumor suppressors (e.g., Akt and p53), seems to participate in apoptotic and fibrotic events. In HCM, structural and cellular information about defective sarcomeric proteins and their altered interactome is emerging but still represents a bottleneck for developing new concepts in basic research and for future therapeutic interventions. This review focuses on the structural and cellular alterations triggered by HCM-causing mutations in troponin and tropomyosin proteins and how structural biology can aid in the discovery of new platforms for therapeutics. We highlight the importance of a better understanding of allosteric communications within these thin-filament proteins to decipher the HCM pathological state.
Collapse
Affiliation(s)
- Mayra de A Marques
- Programa de Biologia Estrutural, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Guilherme A P de Oliveira
- Programa de Biologia Estrutural, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|
23
|
Aboelkassem Y, Bonilla JA, McCabe KJ, Campbell SG. Contributions of Ca2+-Independent Thin Filament Activation to Cardiac Muscle Function. Biophys J 2016; 109:2101-12. [PMID: 26588569 DOI: 10.1016/j.bpj.2015.09.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 09/03/2015] [Accepted: 09/11/2015] [Indexed: 12/29/2022] Open
Abstract
Although Ca2+ is the principal regulator of contraction in striated muscle, in vitro evidence suggests that some actin-myosin interaction is still possible even in its absence. Whether this Ca2+-independent activation (CIA) occurs under physiological conditions remains unclear, as does its potential impact on the function of intact cardiac muscle. The purpose of this study was to investigate CIA using computational analysis. We added a structurally motivated representation of this phenomenon to an existing myofilament model, which allowed predictions of CIA-dependent muscle behavior. We found that a certain amount of CIA was essential for the model to reproduce reported effects of nonfunctional troponin C on myofilament force generation. Consequently, those data enabled estimation of ΔGCIA, the energy barrier for activating a thin filament regulatory unit in the absence of Ca2+. Using this estimate of ΔGCIA as a point of reference (∼7 kJ mol(-1)), we examined its impact on various aspects of muscle function through additional simulations. CIA decreased the Hill coefficient of steady-state force while increasing myofilament Ca2+ sensitivity. At the same time, CIA had minimal effect on the rate of force redevelopment after slack/restretch. Simulations of twitch tension show that the presence of CIA increases peak tension while profoundly delaying relaxation. We tested the model's ability to represent perturbations to the Ca2+ regulatory mechanism by analyzing twitch records measured in transgenic mice expressing a cardiac troponin I mutation (R145G). The effects of the mutation on twitch dynamics were fully reproduced by a single parameter change, namely lowering ΔGCIA by 2.3 kJ mol(-1) relative to its wild-type value. Our analyses suggest that CIA is present in cardiac muscle under normal conditions and that its modulation by gene mutations or other factors can alter both systolic and diastolic function.
Collapse
Affiliation(s)
- Yasser Aboelkassem
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Jordan A Bonilla
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, California
| | - Kimberly J McCabe
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Stuart G Campbell
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut.
| |
Collapse
|
24
|
Maximum limit to the number of myosin II motors participating in processive sliding of actin. Sci Rep 2016; 6:32043. [PMID: 27554800 PMCID: PMC4995457 DOI: 10.1038/srep32043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 08/01/2016] [Indexed: 11/08/2022] Open
Abstract
In this work, we analysed processive sliding and breakage of actin filaments at various heavy meromyosin (HMM) densities and ATP concentrations in IVMA. We observed that with addition of ATP solution, the actin filaments fragmented stochastically; we then determined mean length and velocity of surviving actin filaments post breakage. Average filament length decreased with increase in HMM density at constant ATP, and increased with increase in ATP concentration at constant HMM density. Using density of HMM molecules and length of actin, we estimated the number of HMM molecules per actin filament (N) that participate in processive sliding of actin. N is solely a function of ATP concentration: 88 ± 24 and 54 ± 22 HMM molecules (mean ± S.D.) at 2 mM and 0.1 mM ATP respectively. Processive sliding of actin filament was observed only when N lay within a minimum lower limit (Nmin) and a maximum upper limit (Nmax) to the number of HMM molecules. When N < Nmin the actin filament diffused away from the surface and processivity was lost and when N > Nmax the filament underwent breakage eventually and could not sustain processive sliding. We postulate this maximum upper limit arises due to increased number of strongly bound myosin heads.
Collapse
|
25
|
Moore JR, Campbell SG, Lehman W. Structural determinants of muscle thin filament cooperativity. Arch Biochem Biophys 2016; 594:8-17. [PMID: 26891592 DOI: 10.1016/j.abb.2016.02.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/09/2016] [Accepted: 02/10/2016] [Indexed: 11/16/2022]
Abstract
End-to-end connections between adjacent tropomyosin molecules along the muscle thin filament allow long-range conformational rearrangement of the multicomponent filament structure. This process is influenced by Ca(2+) and the troponin regulatory complexes, as well as by myosin crossbridge heads that bind to and activate the filament. Access of myosin crossbridges onto actin is gated by tropomyosin, and in the case of striated muscle filaments, troponin acts as a gatekeeper. The resulting tropomyosin-troponin-myosin on-off switching mechanism that controls muscle contractility is a complex cooperative and dynamic system with highly nonlinear behavior. Here, we review key information that leads us to view tropomyosin as central to the communication pathway that coordinates the multifaceted effectors that modulate and tune striated muscle contraction. We posit that an understanding of this communication pathway provides a framework for more in-depth mechanistic characterization of myopathy-associated mutational perturbations currently under investigation by many research groups.
Collapse
Affiliation(s)
- Jeffrey R Moore
- Department of Biological Sciences, University of Massachusetts Lowell, One University Avenue, Lowell, MA 018154, USA
| | - Stuart G Campbell
- Department of Biomedical Engineering, Yale University, 55 Prospect Street, New Haven, CT 06511, USA
| | - William Lehman
- Department of Physiology & Biophysics, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA.
| |
Collapse
|
26
|
Sequeira V, van der Velden J. Historical perspective on heart function: the Frank-Starling Law. Biophys Rev 2015; 7:421-447. [PMID: 28510104 DOI: 10.1007/s12551-015-0184-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 09/21/2015] [Indexed: 12/18/2022] Open
Abstract
More than a century of research on the Frank-Starling Law has significantly advanced our knowledge about the working heart. The Frank-Starling Law mandates that the heart is able to match cardiac ejection to the dynamic changes occurring in ventricular filling and thereby regulates ventricular contraction and ejection. Significant efforts have been attempted to identify a common fundamental basis for the Frank-Starling heart and, although a unifying idea has still to come forth, there is mounting evidence of a direct relationship between length changes in individual constituents (cardiomyocytes) and their sensitivity to Ca2+ ions. As the Frank-Starling Law is a vital event for the healthy heart, it is of utmost importance to understand its mechanical basis in order to optimize and organize therapeutic strategies to rescue the failing human heart. The present review is a historic perspective on cardiac muscle function. We "revive" a century of scientific research on the heart's fundamental protein constituents (contractile proteins), to their assemblies in the muscle (the sarcomeres), culminating in a thorough overview of the several synergistically events that compose the Frank-Starling mechanism. It is the authors' personal beliefs that much can be gained by understanding the Frank-Starling relationship at the cellular and whole organ level, so that we can finally, in this century, tackle the pathophysiologic mechanisms underlying heart failure.
Collapse
Affiliation(s)
- Vasco Sequeira
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands.
| | - Jolanda van der Velden
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands.,ICIN- Netherlands Heart Institute, Utrecht, The Netherlands
| |
Collapse
|
27
|
Rao V, Cheng Y, Lindert S, Wang D, Oxenford L, McCulloch AD, McCammon JA, Regnier M. PKA phosphorylation of cardiac troponin I modulates activation and relaxation kinetics of ventricular myofibrils. Biophys J 2015; 107:1196-1204. [PMID: 25185555 DOI: 10.1016/j.bpj.2014.07.027] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 07/10/2014] [Accepted: 07/15/2014] [Indexed: 10/24/2022] Open
Abstract
Protein kinase A (PKA) phosphorylation of myofibril proteins constitutes an important pathway for β-adrenergic modulation of cardiac contractility and relaxation. PKA targets the N-terminus (Ser-23/24) of cardiac troponin I (cTnI), cardiac myosin-binding protein C (cMyBP-C) and titin. The effect of PKA-mediated phosphorylation on the magnitude of contraction has been studied in some detail, but little is known about how it modulates the kinetics of thin filament activation and myofibril relaxation as Ca(2+) levels vary. Troponin C (cTnC) interaction with cTnI (C-I interaction) is a critical step in contractile activation that can be modulated by cTnI phosphorylation. We tested the hypothesis that altering C-I interactions by PKA, or by cTnI phosphomimetic mutations (S23D/S24D-cTnI), directly affects thin filament activation and myofilament relaxation kinetics. Rat ventricular myofibrils were isolated and endogenous cTn was exchanged with either wild-type cTnI, or S23D/S24D-cTnI recombinant cTn. Contractile mechanics were monitored at maximum and submaximal Ca(2+) concentrations. PKA treatment of wild-type cTn or exchange of cTn containing S23D/S24D-cTnI resulted in an increase in the rate of early, slow phase of relaxation (kREL,slow) and a decrease in its duration (tREL,slow). These effects were greater for submaximal Ca(2+) activated contractions. PKA treatment also reduced the rate of contractile activation (kACT) at maximal, but not submaximal Ca(2+), and reduced the Ca(2+) sensitivity of contraction. Using a fluorescent probe coupled to cTnC (C35S-IANBD), the Ca(2+)-cTn binding affinity and C-I interaction were monitored. Ca(2+) binding to cTn (pCa50) was significantly decreased when cTnI was phosphorylated by PKA (ΔpCa50 = 0.31). PKA phosphorylation of cTnI also weakened C-I interaction in the presence of Ca(2+). These data suggest that weakened C-I interaction, via PKA phosphorylation of cTnI, may slow thin filament activation and result in increased myofilament relaxation kinetics, the latter of which could enhance early phase diastolic relaxation during β-adrenergic stimulation.
Collapse
Affiliation(s)
- Vijay Rao
- University of Washington, Department of Bioengineering, Seattle, Washington
| | - Yuanhua Cheng
- University of Washington, Department of Bioengineering, Seattle, Washington; National Biomedical Computational Resource, La Jolla, California
| | - Steffen Lindert
- University of California San Diego, Department of Pharmacology, La Jolla, California
| | - Dan Wang
- University of Washington, Department of Bioengineering, Seattle, Washington
| | - Lucas Oxenford
- University of Washington, Department of Bioengineering, Seattle, Washington
| | - Andrew D McCulloch
- University of California San Diego, Department of Bioengineering, La Jolla, California; National Biomedical Computational Resource, La Jolla, California
| | - J Andrew McCammon
- University of California San Diego, Department of Pharmacology, La Jolla, California; National Biomedical Computational Resource, La Jolla, California
| | - Michael Regnier
- University of Washington, Department of Bioengineering, Seattle, Washington.
| |
Collapse
|
28
|
Lard M, ten Siethoff L, Generosi J, Persson M, Linke H, Månsson A. Nanowire-imposed geometrical control in studies of actomyosin motor function. IEEE Trans Nanobioscience 2015; 14:289-97. [PMID: 25823040 DOI: 10.1109/tnb.2015.2412036] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Recently, molecular motor gliding assays with actin and myosin from muscle have been realized on semiconductor nanowires coated with Al2O3. This opens for unique nanotechnological applications and novel fundamental studies of actomyosin motor function. Here, we provide a comparison of myosin-driven actin filament motility on Al2O3 to both nitrocellulose and trimethylchlorosilane derivatized surfaces. We also show that actomyosin motility on the less than 200 nm wide tips of arrays of Al2O3-coated nanowires can be used to control the number, and density, of myosin-actin attachment points. Results obtained using nanowire arrays with different inter-wire spacing are consistent with the idea that the actin filament sliding velocity is determined both by the total number and the average density of attached myosin heads along the actin filament. Further, the results are consistent with buckling of long myosin-free segments of the filaments as a factor underlying reduced velocity. On the other hand, the findings do not support a mechanistic role in decreasing velocity, of increased nearest neighbor distance between available myosin heads. Our results open up for more advanced studies that may use nanowire-based structures for fundamental investigations of molecular motors, including the possibility to create a nanowire-templated bottom-up assembly of 3D, muscle-like structures.
Collapse
|
29
|
Walcott S. Muscle activation described with a differential equation model for large ensembles of locally coupled molecular motors. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:042717. [PMID: 25375533 DOI: 10.1103/physreve.90.042717] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Indexed: 06/04/2023]
Abstract
Molecular motors, by turning chemical energy into mechanical work, are responsible for active cellular processes. Often groups of these motors work together to perform their biological role. Motors in an ensemble are coupled and exhibit complex emergent behavior. Although large motor ensembles can be modeled with partial differential equations (PDEs) by assuming that molecules function independently of their neighbors, this assumption is violated when motors are coupled locally. It is therefore unclear how to describe the ensemble behavior of the locally coupled motors responsible for biological processes such as calcium-dependent skeletal muscle activation. Here we develop a theory to describe locally coupled motor ensembles and apply the theory to skeletal muscle activation. The central idea is that a muscle filament can be divided into two phases: an active and an inactive phase. Dynamic changes in the relative size of these phases are described by a set of linear ordinary differential equations (ODEs). As the dynamics of the active phase are described by PDEs, muscle activation is governed by a set of coupled ODEs and PDEs, building on previous PDE models. With comparison to Monte Carlo simulations, we demonstrate that the theory captures the behavior of locally coupled ensembles. The theory also plausibly describes and predicts muscle experiments from molecular to whole muscle scales, suggesting that a micro- to macroscale muscle model is within reach.
Collapse
Affiliation(s)
- Sam Walcott
- Department of Mathematics, University of California, Davis, Davis, California 95616, USA
| |
Collapse
|
30
|
Webb M, Jackson DR, Stewart TJ, Dugan SP, Carter MS, Cremo CR, Baker JE. The myosin duty ratio tunes the calcium sensitivity and cooperative activation of the thin filament. Biochemistry 2013; 52:6437-44. [PMID: 23947752 DOI: 10.1021/bi400262h] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In striated muscle, calcium binding to the thin filament (TF) regulatory complex activates actin-myosin ATPase activity, and actin-myosin kinetics in turn regulates TF activation. However, a quantitative description of the effects of actin-myosin kinetics on the calcium sensitivity (pCa50) and cooperativity (nH) of TF activation is lacking. With the assumption that TF structural transitions and TF-myosin binding transitions are inextricably coupled, we advanced the principles established by Kad et al. [Kad, N., et al. (2005) Proc. Natl. Acad. Sci. U.S.A. 102, 16990-16995] and Sich et al. [Sich, N. M., et al. (2011) J. Biol. Chem. 285, 39150-39159] to develop a simple model of TF regulation, which predicts that pCa50 varies linearly with duty ratio and that nH is maximal near physiological duty ratios. Using in vitro motility to determine the calcium sensitivity of TF sliding velocities, we measured pCa50 and nH at different myosin densities and in the presence of ATPase inhibitors. The observed effects of myosin density and actin-myosin duty ratio on pCa50 and nH are consistent with our model predictions. In striated muscle, pCa50 must match cytosolic calcium concentrations and a maximal nH optimizes calcium responsiveness. Our results indicate that pCa50 and nH can be predictably tuned through TF-myosin ATPase kinetics and that drugs and disease states that alter ATPase kinetics can, through their effects on calcium sensitivity, alter the efficiency of muscle contraction.
Collapse
Affiliation(s)
- Milad Webb
- Department of Electrical and Biomedical Engineering, University of Nevada, Reno , Reno, Nevada 89557, United States
| | | | | | | | | | | | | |
Collapse
|
31
|
Racca AW, Beck AE, Rao VS, Flint GV, Lundy SD, Born DE, Bamshad MJ, Regnier M. Contractility and kinetics of human fetal and human adult skeletal muscle. J Physiol 2013; 591:3049-61. [PMID: 23629510 DOI: 10.1113/jphysiol.2013.252650] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Little is known about the contraction and relaxation properties of fetal skeletal muscle, and measurements thus far have been made with non-human mammalian muscle. Data on human fetal skeletal muscle contraction are lacking, and there are no published reports on the kinetics of either fetal or adult human skeletal muscle myofibrils. Understanding the contractile properties of human fetal muscle would be valuable in understanding muscle development and a variety of muscle diseases that are associated with mutations in fetal muscle sarcomere proteins. Therefore, we characterised the contractile properties of developing human fetal skeletal muscle and compared them to adult human skeletal muscle and rabbit psoas muscle. Electron micrographs showed human fetal muscle sarcomeres are not fully formed but myofibril formation is visible. Isolated myofibril mechanical measurements revealed much lower specific force, and slower rates of isometric force development, slow phase relaxation, and fast phase relaxation in human fetal when compared to human adult skeletal muscle. The duration of slow phase relaxation was also significantly longer compared to both adult groups, but was similarly affected by elevated ADP. F-actin sliding on human fetal skeletal myosin coated surfaces in in vitro motility (IVM) assays was much slower compared with adult rabbit skeletal myosin, though the Km(app) (apparent (fitted) Michaelis-Menten constant) of F-actin speed with ATP titration suggests a greater affinity of human fetal myosin for nucleotide binding. Replacing ATP with 2 deoxy-ATP (dATP) increased F-actin speed for both groups by a similar amount. Titrations of ADP into IVM assays produced a similar inhibitory affect for both groups, suggesting ADP binding may be similar, at least under low load. Together, our results suggest slower but similar mechanisms of myosin chemomechanical transduction for human fetal muscle that may also be limited by immature myofilament structure.
Collapse
Affiliation(s)
- Alice W Racca
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
The tropomyosin binding region of cardiac troponin T modulates crossbridge recruitment dynamics in rat cardiac muscle fibers. J Mol Biol 2013; 425:1565-81. [PMID: 23357173 DOI: 10.1016/j.jmb.2013.01.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 01/15/2013] [Accepted: 01/17/2013] [Indexed: 11/22/2022]
Abstract
The cardiac muscle comprises dynamically interacting components that use allosteric/cooperative mechanisms to yield unique heart-specific properties. An essential protein in this allosteric/cooperative mechanism is cardiac muscle troponin T (cTnT), the central region (CR) and the T2 region of which differ significantly from those of fast skeletal muscle troponin T (fsTnT). To understand the biological significance of such sequence heterogeneity, we replaced the T1 or T2 domain of rat cTnT (RcT1 or RcT2) with its counterpart from rat fsTnT (RfsT1or RfsT2) to generate RfsT1-RcT2 and RcT1-RfsT2 recombinant proteins. In addition to contractile function measurements, dynamic features of RfsT1-RcT2- and RcT1-RfsT2-reconstituted rat cardiac muscle fibers were captured by fitting the recruitment-distortion model to the force response of small-amplitude (0.5%) muscle length changes. RfsT1-RcT2 fibers showed a 40% decrease in tension and a 44% decrease in ATPase activity, but RcT1-RfsT2 fibers were unaffected. The magnitude of length-mediated increase in crossbridge (XB) recruitment (E0) decreased by ~33% and the speed of XB recruitment (b) increased by ~100% in RfsT1-RcT2 fibers. Our data suggest the following: (1) the CR of cTnT modulates XB recruitment dynamics; (2) the N-terminal end region of cTnT has a synergistic effect on the ability of the CR to modulate XB recruitment dynamics; (3) the T2 region is important for tuning the Ca(2+) regulation of cardiac thin filaments. The combined effects of CR-tropomyosin interactions and the modulating effect of the N-terminal end of cTnT on CR-tropomyosin interactions may lead to the emergence of a unique property that tunes contractile dynamics to heart rates.
Collapse
|
33
|
Schachat F, Brandt PW. The troponin I: inhibitory peptide uncouples force generation and the cooperativity of contractile activation in mammalian skeletal muscle. J Muscle Res Cell Motil 2013; 34:83-92. [PMID: 23340900 DOI: 10.1007/s10974-013-9336-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 01/10/2013] [Indexed: 11/26/2022]
Abstract
Hodges and his colleagues identified a 12 amino acid fragment of troponin I (TnI-ip) that inhibits Ca(2+)-activated force and reduces the effectiveness Ca(2+) as an activator. To understand the role of troponin C (TnC) in the extended cooperative interactions of thin filament activation, we compared the effect of TnI-ip with that of partial troponin TnC extraction. Both methods reduce maximal Ca(2+)-activated force and increase [Ca(2+)] required for activation. In contrast to TnC extraction, TnI-ip does not reduce the extended cooperative interactions between adjacent thin filament regulatory units as assessed by the slope of the pCa/force relationship. Additional evidence that TnI-ip does not interfere with extended cooperativity comes from studies that activate muscle by rigor crossbridges (RXBs). TnI-ip increases both the cooperativity of activation and the concentration of RXBs needed for maximal force. This shows that TnI-ip binding to TnC increases the stability of the relaxed state of the thin filament. TnI-ip, therefore, uncouples force generation from extended cooperativity in both Ca(2+) and RXB activated muscle contraction. Because maximum force can be reduced with no change-or even an increase-in cooperativity, force-generating crossbridges do not appear to be the primary activators of cooperativity between thin filament regulatory units of skeletal muscle.
Collapse
Affiliation(s)
- Fred Schachat
- Division of Physiology, Department of Cell Biology, Duke University Medical School, Box 3011, Durham, NC, 27710, USA.
| | | |
Collapse
|
34
|
Loong CKP, Takeda AK, Badr MA, Rogers JS, Chase PB. Slowed Dynamics of Thin Filament Regulatory Units Reduces Ca 2+-Sensitivity of Cardiac Biomechanical Function. Cell Mol Bioeng 2013; 6:183-198. [PMID: 23833690 DOI: 10.1007/s12195-013-0269-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Actomyosin kinetics in both skinned skeletal muscle fibers at maximum Ca2+-activation and unregulated in vitro motility assays are modulated by solvent microviscosity in a manner consistent with a diffusion limited process. Viscosity might also influence cardiac thin filament Ca2+-regulatory protein dynamics. In vitro motility assays were conducted using thin filaments reconstituted with recombinant human cardiac troponin and tropomyosin; solvent microviscosity was varied by addition of sucrose or glucose. At saturating Ca2+, filament sliding speed (s) was inversely proportional to viscosity. Ca2+-sensitivity (pCa50 ) of s decreased markedly with elevated viscosity (η/η0 ≥ ~1.3). For comparison with unloaded motility assays, steady-state isometric force (F) and kinetics of isometric tension redevelopment (kTR ) were measured in single, permeabilized porcine cardiomyocytes when viscosity surrounding the myofilaments was altered. Maximum Ca2+-activated F changed little for sucrose ≤ 0.3 M (η/η0 ~1.4) or glucose ≤ 0.875 M (η/η0 ~1.66), but decreased at higher concentrations. Sucrose (0.3 M) or glucose (0.875 M) decreased pCa50 for F. kTR at saturating Ca2+ decreased steeply and monotonically with increased viscosity but there was little effect on kTR at sub-maximum Ca2+. Modeling indicates that increased solutes affect dynamics of cardiac muscle Ca2+-regulatory proteins to a much greater extent than actomyosin cross-bridge cycling.
Collapse
Affiliation(s)
- Campion K P Loong
- Department of Biological Science, The Florida State University, Tallahassee, FL, 32306, USA ; Department of Physics, The Florida State University, Tallahassee, FL, 32306, USA
| | | | | | | | | |
Collapse
|
35
|
Kowlessur D, Tobacman LS. Significance of troponin dynamics for Ca2+-mediated regulation of contraction and inherited cardiomyopathy. J Biol Chem 2012; 287:42299-311. [PMID: 23066014 DOI: 10.1074/jbc.m112.423459] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ca(2+) dissociation from troponin causes cessation of muscle contraction by incompletely understood structural mechanisms. To investigate this process, regulatory site Ca(2+) binding in the NH(2)-lobe of subunit troponin C (TnC) was abolished by mutagenesis, and effects on cardiac troponin dynamics were mapped by hydrogen-deuterium exchange (HDX)-MS. The findings demonstrate the interrelationships among troponin's detailed dynamics, troponin's regulatory actions, and the pathogenesis of cardiomyopathy linked to troponin mutations. Ca(2+) slowed HDX up to 2 orders of magnitude within the NH(2)-lobe and the NH(2)-lobe-associated TnI switch helix, implying that Ca(2+) greatly stabilizes this troponin regulatory region. HDX of the TnI COOH terminus indicated that its known role in regulation involves a partially folded rather than unfolded structure in the absence of Ca(2+) and actin. Ca(2+)-triggered stabilization extended beyond the known direct regulatory regions: to the start of the nearby TnI helix 1 and to the COOH terminus of the TnT-TnI coiled-coil. Ca(2+) destabilized rather than stabilized specific TnI segments within the coiled-coil and destabilized a region not previously implicated in Ca(2+)-mediated regulation: the coiled-coil's NH(2)-terminal base plus the preceding TnI loop with which the base interacts. Cardiomyopathy-linked mutations clustered almost entirely within influentially dynamic regions of troponin, and many sites were Ca(2+)-sensitive. Overall, the findings demonstrate highly selective effects of regulatory site Ca(2+), including opposite changes in protein dynamics at opposite ends of the troponin core domain. Ca(2+) release triggers an intramolecular switching mechanism that propagates extensively within the extended troponin structure, suggests specific movements of the TnI inhibitory regions, and prominently involves troponin's dynamic features.
Collapse
Affiliation(s)
- Devanand Kowlessur
- Department of Medicine, University of Illinois, Chicago, Illinois 60612, USA
| | | |
Collapse
|
36
|
Korte FS, Feest ER, Razumova MV, Tu AY, Regnier M. Enhanced Ca2+ binding of cardiac troponin reduces sarcomere length dependence of contractile activation independently of strong crossbridges. Am J Physiol Heart Circ Physiol 2012; 303:H863-70. [PMID: 22865385 PMCID: PMC3469702 DOI: 10.1152/ajpheart.00395.2012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 07/26/2012] [Indexed: 11/22/2022]
Abstract
Calcium sensitivity of the force-pCa relationship depends strongly on sarcomere length (SL) in cardiac muscle and is considered to be the cellular basis of the Frank-Starling law of the heart. SL dependence may involve changes in myofilament lattice spacing and/or myosin crossbridge orientation to increase probability of binding to actin at longer SLs. We used the L48Q cardiac troponin C (cTnC) variant, which has enhanced Ca(2+) binding affinity, to test the hypotheses that the intrinsic properties of cTnC are important in determining 1) thin filament binding site availability and responsiveness to crossbridge activation and 2) SL dependence of force in cardiac muscle. Trabeculae containing L48Q cTnC-cTn lost SL dependence of the Ca(2+) sensitivity of force. This occurred despite maintaining the typical SL-dependent changes in maximal force (F(max)). Osmotic compression of preparations at SL 2.0 μm with 3% dextran increased F(max) but not pCa(50) in L48Q cTnC-cTn exchanged trabeculae, whereas wild-type (WT)-cTnC-cTn exchanged trabeculae exhibited increases in both F(max) and pCa(50). Furthermore, crossbridge inhibition with 2,3-butanedione monoxime at SL 2.3 μm decreased F(max) and pCa(50) in WT cTnC-cTn trabeculae to levels measured at SL 2.0 μm, whereas only F(max) was decreased with L48Q cTnC-cTn. Overall, these results suggest that L48Q cTnC confers reduced crossbridge dependence of thin filament activation in cardiac muscle and that changes in the Ca(2+) sensitivity of force in response to changes in SL are at least partially dependent on properties of thin filament troponin.
Collapse
Affiliation(s)
- F Steven Korte
- Department of Bioengineering, University of Washington, Seattle, WA 98195-7962, USA
| | | | | | | | | |
Collapse
|
37
|
Loong CKP, Zhou HX, Chase PB. Persistence length of human cardiac α-tropomyosin measured by single molecule direct probe microscopy. PLoS One 2012; 7:e39676. [PMID: 22737252 PMCID: PMC3380901 DOI: 10.1371/journal.pone.0039676] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 05/29/2012] [Indexed: 12/20/2022] Open
Abstract
α-Tropomyosin (αTm) is the predominant tropomyosin isoform in adult human heart and constitutes a major component in Ca²+-regulated systolic contraction of cardiac muscle. We present here the first direct probe images of WT human cardiac αTm by atomic force microscopy, and quantify its mechanical flexibility with three independent analysis methods. Single molecules of bacterially-expressed human cardiac αTm were imaged on poly-lysine coated mica and their contours were analyzed. Analysis of tangent-angle (θ(s)) correlation along molecular contours, second moment of tangent angles (<θ²(s)>), and end-to-end length (L(e-e)) distributions respectively yielded values of persistence length (L(p)) of 41-46 nm, 40-45 nm, and 42-52 nm, corresponding to 1-1.3 molecular contour lengths (L(c)). We also demonstrate that a sufficiently large population, with at least 100 molecules, is required for a reliable L(p) measurement of αTm in single molecule studies. Our estimate that L(p) for αTm is only slightly longer than L(c) is consistent with a previous study showing there is little spread of cooperative activation into near-neighbor regulatory units of cardiac thin filaments. The L(p) determined here for human cardiac αTm perhaps represents an evolutionarily tuned optimum between Ca²+ sensitivity and cooperativity in cardiac thin filaments and likely constitutes an essential parameter for normal function in the human heart.
Collapse
Affiliation(s)
- Campion K. P. Loong
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
- Department of Physics, Florida State University, Tallahassee, Florida, United States of America
- * E-mail: (PBC) (CKPL)
| | - Huan-Xiang Zhou
- Department of Physics, Florida State University, Tallahassee, Florida, United States of America
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
| | - P. Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
- * E-mail: (PBC) (CKPL)
| |
Collapse
|
38
|
Wang D, Robertson IM, Li MX, McCully ME, Crane ML, Luo Z, Tu AY, Daggett V, Sykes BD, Regnier M. Structural and functional consequences of the cardiac troponin C L48Q Ca(2+)-sensitizing mutation. Biochemistry 2012; 51:4473-87. [PMID: 22591429 DOI: 10.1021/bi3003007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Calcium binding to the regulatory domain of cardiac troponin C (cNTnC) causes a conformational change that exposes a hydrophobic surface to which troponin I (cTnI) binds, prompting a series of protein-protein interactions that culminate in muscle contraction. A number of cTnC variants that alter the Ca(2+) sensitivity of the thin filament have been linked to disease. Tikunova and Davis engineered a series of cNTnC mutations that altered Ca(2+) binding properties and studied the effects on the Ca(2+) sensitivity of the thin filament and contraction [Tikunova, S. B., and Davis, J. P. (2004) J. Biol. Chem. 279, 35341-35352]. One of the mutations they engineered, the L48Q variant, resulted in a pronounced increase in the cNTnC Ca(2+) binding affinity and Ca(2+) sensitivity of cardiac muscle force development. In this work, we sought structural and mechanistic explanations for the increased Ca(2+) sensitivity of contraction for the L48Q cNTnC variant, using an array of biophysical techniques. We found that the L48Q mutation enhanced binding of both Ca(2+) and cTnI to cTnC. Nuclear magnetic resonance chemical shift and relaxation data provided evidence that the cNTnC hydrophobic core is more exposed with the L48Q variant. Molecular dynamics simulations suggest that the mutation disrupts a network of crucial hydrophobic interactions so that the closed form of cNTnC is destabilized. The findings emphasize the importance of cNTnC's conformation in the regulation of contraction and suggest that mutations in cNTnC that alter myofilament Ca(2+) sensitivity can do so by modulating Ca(2+) and cTnI binding.
Collapse
Affiliation(s)
- Dan Wang
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Tanner BCW, Daniel TL, Regnier M. Filament compliance influences cooperative activation of thin filaments and the dynamics of force production in skeletal muscle. PLoS Comput Biol 2012; 8:e1002506. [PMID: 22589710 PMCID: PMC3349719 DOI: 10.1371/journal.pcbi.1002506] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 03/17/2012] [Indexed: 12/03/2022] Open
Abstract
Striated muscle contraction is a highly cooperative process initiated by Ca2+ binding to the troponin complex, which leads to tropomyosin movement and myosin cross-bridge (XB) formation along thin filaments. Experimental and computational studies suggest skeletal muscle fiber activation is greatly augmented by cooperative interactions between neighboring thin filament regulatory units (RU-RU cooperativity; 1 RU = 7 actin monomers+1 troponin complex+1 tropomyosin molecule). XB binding can also amplify thin filament activation through interactions with RUs (XB-RU cooperativity). Because these interactions occur with a temporal order, they can be considered kinetic forms of cooperativity. Our previous spatially-explicit models illustrated that mechanical forms of cooperativity also exist, arising from XB-induced XB binding (XB-XB cooperativity). These mechanical and kinetic forms of cooperativity are likely coordinated during muscle contraction, but the relative contribution from each of these mechanisms is difficult to separate experimentally. To investigate these contributions we built a multi-filament model of the half sarcomere, allowing RU activation kinetics to vary with the state of neighboring RUs or XBs. Simulations suggest Ca2+ binding to troponin activates a thin filament distance spanning 9 to 11 actins and coupled RU-RU interactions dominate the cooperative force response in skeletal muscle, consistent with measurements from rabbit psoas fibers. XB binding was critical for stabilizing thin filament activation, particularly at submaximal Ca2+ levels, even though XB-RU cooperativity amplified force less than RU-RU cooperativity. Similar to previous studies, XB-XB cooperativity scaled inversely with lattice stiffness, leading to slower rates of force development as stiffness decreased. Including RU-RU and XB-RU cooperativity in this model resulted in the novel prediction that the force-[Ca2+] relationship can vary due to filament and XB compliance. Simulations also suggest kinetic forms of cooperativity occur rapidly and dominate early to get activation, while mechanical forms of cooperativity act more slowly, augmenting XB binding as force continues to develop. In striated muscle myosin binds to actin and converts chemical energy from ATP hydrolysis into force, work, and power. Myosin cross-bridge binding is regulated by Ca2+ and the thin filament proteins troponin and tropomyosin. Cooperative interactions between actin, myosin, troponin, and tropomyosin greatly influence spatial and kinetic properties of thin filament activation, thereby affecting muscle mechanics and contractility. Such cooperative interactions are complex and individual contributions from the different contractile and regulatory proteins are difficult to separate experimentally. However, a few theoretical models have explored interactions between the spatial, kinetic, and mechanical processes that affect cooperative cross-bridge binding to actin. Building on our prior spatially-explicit computational models, we investigated the relative contributions of thin filament regulatory proteins and cross-bridges to cooperatively amplify skeletal muscle force production. We find that Ca2+-dependent contraction in skeletal muscle is dominated by neighboring regulatory protein interactions along the thin filament, while cross-bridge binding is critical for maintaining or stabilizing thin filament activation as force develops. Moreover, we reveal that variations in filament and cross-bridge stiffness can alter Ca2+-sensitivity and cooperativity of skeletal muscle force production. In conclusion, these simulations show that multiple cooperative mechanisms combine to produce physiological force responses measured from muscle cells.
Collapse
Affiliation(s)
- Bertrand C W Tanner
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont, United States of America.
| | | | | |
Collapse
|
40
|
Loong CKP, Badr MA, Chase PB. Tropomyosin flexural rigidity and single ca(2+) regulatory unit dynamics: implications for cooperative regulation of cardiac muscle contraction and cardiomyocyte hypertrophy. Front Physiol 2012; 3:80. [PMID: 22493584 PMCID: PMC3318232 DOI: 10.3389/fphys.2012.00080] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 03/18/2012] [Indexed: 01/04/2023] Open
Abstract
Striated muscle contraction is regulated by dynamic and cooperative interactions among Ca2+, troponin, and tropomyosin on the thin filament. While Ca2+ regulation has been extensively studied, little is known about the dynamics of individual regulatory units and structural changes of individual tropomyosin molecules in relation to their mechanical properties, and how these factors are altered by cardiomyopathy mutations in the Ca2+ regulatory proteins. In this hypothesis paper, we explore how various experimental and analytical approaches could broaden our understanding of the cooperative regulation of cardiac contraction in health and disease.
Collapse
Affiliation(s)
- Campion K P Loong
- Department of Biological Science, The Florida State University Tallahassee, FL, USA
| | | | | |
Collapse
|
41
|
Bollensdorff C, Lookin O, Kohl P. Assessment of contractility in intact ventricular cardiomyocytes using the dimensionless 'Frank-Starling Gain' index. Pflugers Arch 2011; 462:39-48. [PMID: 21494804 PMCID: PMC3114067 DOI: 10.1007/s00424-011-0964-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 03/28/2011] [Accepted: 03/28/2011] [Indexed: 11/29/2022]
Abstract
This paper briefly recapitulates the Frank-Starling law of the heart, reviews approaches to establishing diastolic and systolic force-length behaviour in intact isolated cardiomyocytes, and introduces a dimensionless index called 'Frank-Starling Gain', calculated as the ratio of slopes of end-systolic and end-diastolic force-length relations. The benefits and limitations of this index are illustrated on the example of regional differences in Guinea pig intact ventricular cardiomyocyte mechanics. Potential applicability of the Frank-Starling Gain for the comparison of cell contractility changes upon stretch will be discussed in the context of intra- and inter-individual variability of cardiomyocyte properties.
Collapse
Affiliation(s)
- Christian Bollensdorff
- Cardiac Biophysics and Systems Biology, The National Heart and Lung Institute, Imperial College, London, UK.
| | | | | |
Collapse
|
42
|
Kreutziger KL, Piroddi N, McMichael JT, Tesi C, Poggesi C, Regnier M. Calcium binding kinetics of troponin C strongly modulate cooperative activation and tension kinetics in cardiac muscle. J Mol Cell Cardiol 2011; 50:165-74. [PMID: 21035455 PMCID: PMC3018540 DOI: 10.1016/j.yjmcc.2010.10.025] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 10/15/2010] [Accepted: 10/18/2010] [Indexed: 11/18/2022]
Abstract
Tension development and relaxation in cardiac muscle are regulated at the thin filament via Ca(2+) binding to cardiac troponin C (cTnC) and strong cross-bridge binding. However, the influence of cTnC Ca(2+)-binding properties on these processes in the organized structure of cardiac sarcomeres is not well-understood and likely differs from skeletal muscle. To study this we generated single amino acid variants of cTnC with altered Ca(2+) dissociation rates (k(off)), as measured in whole troponin (cTn) complex by stopped-flow spectroscopy (I61Q cTn>WT cTn>L48Q cTn), and exchanged them into cardiac myofibrils and demembranated trabeculae. In myofibrils at saturating Ca(2+), L48Q cTnC did not affect maximum tension (T(max)), thin filament activation (k(ACT)) and tension development (k(TR)) rates, or the rates of relaxation, but increased duration of slow phase relaxation. In contrast, I61Q cTnC reduced T(max), k(ACT) and k(TR) by 40-65% with little change in relaxation. Interestingly, k(ACT) was less than k(TR) with I61Q cTnC, and this difference increased with addition of inorganic phosphate, suggesting that reduced cTnC Ca(2+)-affinity can limit thin filament activation kinetics. Trabeculae exchanged with I61Q cTn had reduced T(max), Ca(2+) sensitivity of tension (pCa(50)), and slope (n(H)) of tension-pCa, while L48Q cTn increased pCa(50) and reduced n(H). Increased cross-bridge cycling with 2-deoxy-ATP increased pCa(50) with WT or L48Q cTn, but not I61Q cTn. We discuss the implications of these results for understanding the role of cTn Ca(2+)-binding properties on the magnitude and rate of tension development and relaxation in cardiac muscle.
Collapse
Affiliation(s)
- Kareen L. Kreutziger
- Department of Bioengineering, University of Washington, Box 355061, 3720 15 Avenue NE, Seattle, WA 98195, USA
| | - Nicoletta Piroddi
- Dipartimento di Scienze Fisiologiche, Universitá degli Studi di Firenze, Viale G.B. Morgagni, I-50134 Firenze, Italia
| | - Jonathan T. McMichael
- Department of Bioengineering, University of Washington, Box 355061, 3720 15 Avenue NE, Seattle, WA 98195, USA
| | - Chiara Tesi
- Dipartimento di Scienze Fisiologiche, Universitá degli Studi di Firenze, Viale G.B. Morgagni, I-50134 Firenze, Italia
| | - Corrado Poggesi
- Dipartimento di Scienze Fisiologiche, Universitá degli Studi di Firenze, Viale G.B. Morgagni, I-50134 Firenze, Italia
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Box 355061, 3720 15 Avenue NE, Seattle, WA 98195, USA
| |
Collapse
|
43
|
Sousa D, Cammarato A, Jang K, Graceffa P, Tobacman LS, Li XE, Lehman W. Electron microscopy and persistence length analysis of semi-rigid smooth muscle tropomyosin strands. Biophys J 2010; 99:862-8. [PMID: 20682264 DOI: 10.1016/j.bpj.2010.05.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 04/13/2010] [Accepted: 05/03/2010] [Indexed: 01/14/2023] Open
Abstract
The structural mechanics of tropomyosin are essential determinants of its affinity and positioning on F-actin. Thus, tissue-specific differences among tropomyosin isoforms may influence both access of actin-binding proteins along the actin filaments and the cooperativity of actin-myosin interactions. Here, 40 nm long smooth and striated muscle tropomyosin molecules were rotary-shadowed and compared by means of electron microscopy. Electron microscopy shows that striated muscle tropomyosin primarily consists of single molecules or paired molecules linked end-to-end. In contrast, smooth muscle tropomyosin is more a mixture of varying-length chains of end-to-end polymers. Both isoforms are characterized by gradually bending molecular contours that lack obvious signs of kinking. The flexural stiffness of the tropomyosins was quantified and evaluated. The persistence lengths along the shaft of rotary-shadowed smooth and striated muscle tropomyosin molecules are equivalent to each other (approximately 100 nm) and to values obtained from molecular-dynamics simulations of the tropomyosins; however, the persistence length surrounding the end-to-end linkage is almost twofold higher for smooth compared to cardiac muscle tropomyosin. The tendency of smooth muscle tropomyosin to form semi-rigid polymers with continuous and undampened rigidity may compensate for the lack of troponin-based structural support in smooth muscles and ensure positional fidelity on smooth muscle thin filaments.
Collapse
Affiliation(s)
- Duncan Sousa
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Solaro RJ, de Tombe PP. Reply to Smith letter: Controversy persists after over 100 years of the Frank–Starling mechanism. J Mol Cell Cardiol 2010. [DOI: 10.1016/j.yjmcc.2010.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
45
|
Comparative biomechanics of thick filaments and thin filaments with functional consequences for muscle contraction. J Biomed Biotechnol 2010; 2010:473423. [PMID: 20625489 PMCID: PMC2896680 DOI: 10.1155/2010/473423] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 03/26/2010] [Indexed: 02/02/2023] Open
Abstract
The scaffold of striated muscle is predominantly comprised of myosin and actin polymers known as thick filaments and thin filaments, respectively. The roles these filaments play in muscle contraction are well known, but the extent to which variations in filament mechanical properties influence muscle function is not fully understood. Here we review information on the material properties of thick filaments, thin filaments, and their primary constituents; we also discuss ways in which mechanical properties of filaments impact muscle performance.
Collapse
|
46
|
Functional differences between the N-terminal domains of mouse and human myosin binding protein-C. J Biomed Biotechnol 2010; 2010:789798. [PMID: 20379391 PMCID: PMC2850553 DOI: 10.1155/2010/789798] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 01/31/2010] [Indexed: 11/17/2022] Open
Abstract
The N-terminus of cMyBP-C can activate actomyosin interactions in the absence of Ca2+, but it is unclear which domains are necessary. Prior studies suggested that the Pro-Ala rich region of human cMyBP-C activated force in permeabilized human cardiomyocytes, whereas the C1 and M-domains of mouse cMyBP-C activated force in permeabilized rat cardiac trabeculae. Because the amino acid sequence of the P/A region differs between human and mouse cMyBP-C isoforms (46% identity), we investigated whether species-specific differences in the P/A region could account for differences in activating effects. Using chimeric fusion proteins containing combinations of human and mouse C0, Pro-Ala, and C1 domains, we demonstrate here that the human P/A and C1 domains activate actomyosin interactions, whereas the same regions of mouse cMyBP-C are less effective. These results suggest that species-specific differences between homologous cMyBP-C isoforms confer differential effects that could fine-tune cMyBP-C function in hearts of different species.
Collapse
|
47
|
Myofilament length dependent activation. J Mol Cell Cardiol 2010; 48:851-8. [PMID: 20053351 DOI: 10.1016/j.yjmcc.2009.12.017] [Citation(s) in RCA: 227] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2009] [Revised: 12/18/2009] [Accepted: 12/22/2009] [Indexed: 01/04/2023]
Abstract
The Frank-Starling law of the heart describes the interrelationship between end-diastolic volume and cardiac ejection volume, a regulatory system that operates on a beat-to-beat basis. The main cellular mechanism that underlies this phenomenon is an increase in the responsiveness of cardiac myofilaments to activating Ca(2+) ions at a longer sarcomere length, commonly referred to as myofilament length-dependent activation. This review focuses on what molecular mechanisms may underlie myofilament length dependency. Specifically, the roles of inter-filament spacing, thick and thin filament based regulation, as well as sarcomeric regulatory proteins are discussed. Although the "Frank-Starling law of the heart" constitutes a fundamental cardiac property that has been appreciated for well over a century, it is still not known in muscle how the contractile apparatus transduces the information concerning sarcomere length to modulate ventricular pressure development.
Collapse
|
48
|
Zot HG, Hasbun JE, Van Minh N. Striated muscle regulation of isometric tension by multiple equilibria. PLoS One 2009; 4:e8052. [PMID: 19997610 PMCID: PMC2784068 DOI: 10.1371/journal.pone.0008052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 10/28/2009] [Indexed: 11/30/2022] Open
Abstract
Cooperative activation of striated muscle by calcium is based on the movement of tropomyosin described by the steric blocking theory of muscle contraction. Presently, the Hill model stands alone in reproducing both myosin binding data and a sigmoidal-shaped curve characteristic of calcium activation (Hill TL (1983) Two elementary models for the regulation of skeletal muscle contraction by calcium. Biophys J 44: 383–396.). However, the free myosin is assumed to be fixed by the muscle lattice and the cooperative mechanism is based on calcium-dependent interactions between nearest neighbor tropomyosin subunits, which has yet to be validated. As a result, no comprehensive model has been shown capable of fitting actual tension data from striated muscle. We show how variable free myosin is a selective advantage for activating the muscle and describe a mechanism by which a conformational change in tropomyosin propagates free myosin given constant total myosin. This mechanism requires actin, tropomyosin, and filamentous myosin but is independent of troponin. Hence, it will work equally well with striated, smooth and non-muscle contractile systems. Results of simulations with and without data are consistent with a strand of tropomyosin composed of ∼20 subunits being moved by the concerted action of 3–5 myosin heads, which compares favorably with the predicted length of tropomyosin in the overlap region of thick and thin filaments. We demonstrate that our model fits both equilibrium myosin binding data and steady-state calcium-dependent tension data and show how both the steepness of the response and the sensitivity to calcium can be regulated by the actin-troponin interaction. The model simulates non-cooperative calcium binding both in the presence and absence of strong binding myosin as has been observed. Thus, a comprehensive model based on three well-described interactions with actin, namely, actin-troponin, actin-tropomyosin, and actin-myosin can explain the cooperative calcium activation of striated muscle.
Collapse
Affiliation(s)
- Henry G Zot
- Department of Biology, University of West Georgia, Carrollton, Georgia, United States of America.
| | | | | |
Collapse
|
49
|
Cell therapy enhances function of remote non-infarcted myocardium. J Mol Cell Cardiol 2009; 47:603-13. [PMID: 19683533 DOI: 10.1016/j.yjmcc.2009.07.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 07/21/2009] [Accepted: 07/31/2009] [Indexed: 11/22/2022]
Abstract
Cell transplantation improves cardiac function after myocardial infarction; however, the underlying mechanisms are not well-understood. Therefore, the goals of this study were to determine if neonatal rat cardiomyocytes transplanted into adult rat hearts 1 week after infarction would, after 8-10 weeks: 1) improve global myocardial function, 2) contract in a Ca2+ dependent manner, 3) influence mechanical properties of remote uninjured myocardium and 4) alter passive mechanical properties of infarct regions. The cardiomyocytes formed small grafts of ultrastructurally maturing myocardium that enhanced fractional shortening compared to non-treated infarcted hearts. Chemically demembranated tissue strips of cardiomyocyte grafts produced force when activated by Ca2+, whereas scar tissue did not. Furthermore, the Ca2+ sensitivity of force was greater in cardiomyocyte grafts compared to control myocardium. Surprisingly, cardiomyocytes grafts isolated in the infarct zone increased Ca2+ sensitivity of remote uninjured myocardium to levels greater than either remote myocardium from non-treated infarcted hearts or sham-operated controls. Enhanced calcium sensitivity was associated with decreased phosphorylation of cTnT, tropomyosin and MLC2, but not changes in myosin or troponin isoforms. Passive compliance of grafts resembled normal myocardium, while infarct tissue distant from grafts had compliance typical of scar. Thus, cardiomyocyte grafts are contractile, improve local tissue compliance and enhance calcium sensitivity of remote myocardium. Because the volume of remote myocardium greatly exceeds that of the grafts, this enhanced calcium sensitivity may be a major contributor to global improvements in ventricular function after cell transplantation.
Collapse
|
50
|
Cooperative cross-bridge activation of thin filaments contributes to the Frank-Starling mechanism in cardiac muscle. Biophys J 2009; 96:3692-702. [PMID: 19413974 DOI: 10.1016/j.bpj.2009.02.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 01/05/2009] [Accepted: 02/17/2009] [Indexed: 11/21/2022] Open
Abstract
Myosin cross-bridges play an important role in the regulation of thin-filament activation in cardiac muscle. To test the hypothesis that sarcomere length (SL) modulation of thin-filament activation by strong-binding cross-bridges underlies the Frank-Starling mechanism, we inhibited force and strong cross-bridge binding to intermediate levels with sodium vanadate (Vi). Force and stiffness varied proportionately with [Ca(2+)] and [Vi]. Increasing [Vi] (decreased force) reduced the pCa(50) of force-[Ca(2+)] relations at 2.3 and 2.0 microm SL, with little effect on slope (n(H)). When maximum force was inhibited to approximately 40%, the effects of SL on force were diminished at lower [Ca(2+)], whereas at higher [Ca(2+)] (pCa < 5.6) the relative influence of SL on force increased. In contrast, force inhibition to approximately 20% significantly reduced the sensitivity of force-[Ca(2+)] relations to changes in both SL and myofilament lattice spacing. Strong cross-bridge binding cooperatively induced changes in cardiac troponin C structure, as measured by dichroism of 5' iodoacetamido-tetramethylrhodamine-labeled cardiac troponin C. This apparent cooperativity was reduced at shorter SL. These data emphasize that SL and/or myofilament lattice spacing modulation of the cross-bridge component of cardiac thin-filament activation contributes to the Frank-Starling mechanism.
Collapse
|