1
|
Jing A, Xi S, Fransazov I, Goldwyn JH. Axon initial segment plasticity caused by auditory deprivation degrades time difference sensitivity in a model of neural responses to cochlear implants. J Comput Neurosci 2025:10.1007/s10827-025-00902-9. [PMID: 40244473 DOI: 10.1007/s10827-025-00902-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/15/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025]
Abstract
Synaptic and neural properties can change during periods of auditory deprivation. These changes may disrupt the computations that neurons perform. In the brainstem of chickens, auditory deprivation can lead to changes in the size and biophysics of the axon initial segment (AIS) of neurons in the sound source localization circuit. This is the phenomenon of axon initial segment (AIS) plasticity. Individuals who use cochlear implants (CIs) experience periods of hearing loss, and so we ask whether AIS plasticity in neurons of the medial superior olive (MSO), a key stage of sound location processing, would impact time difference sensitivity in the scenario of hearing with cochlear implants. The biophysical changes that we implement in our model of AIS plasticity include enlargement of the AIS and replacement of low-threshold potassium conductance with the more slowly-activated M-type potassium conductance. AIS plasticity has been observed to have a homeostatic effect with respect to excitability. In our model, AIS plasticity has the additional effect of converting MSO neurons from phasic firing type to tonic firing type. Phasic firing is known to have greater temporal sensitivity to coincident inputs. Consistent with this, we find AIS plasticity degrades time difference sensitivity in the auditory deprived MSO neuron model across a range of stimulus parameters. Our study illustrates a possible mechanism of cellular plasticity in a non-peripheral stage of neural processing that could impose barriers to sound source localization by bilateral cochlear implant users.
Collapse
Affiliation(s)
- Anna Jing
- Department of Mathematics and Statistics, Swarthmore College, 500 College Ave, Swarthmore, PA, 19081, USA
- Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY, 10012-1185, USA
| | - Sylvia Xi
- Department of Mathematics and Statistics, Swarthmore College, 500 College Ave, Swarthmore, PA, 19081, USA
| | - Ivan Fransazov
- Department of Mathematics and Statistics, Swarthmore College, 500 College Ave, Swarthmore, PA, 19081, USA
| | - Joshua H Goldwyn
- Department of Mathematics and Statistics, Swarthmore College, 500 College Ave, Swarthmore, PA, 19081, USA.
| |
Collapse
|
2
|
Wong NF, Brongo SE, Forero EA, Sun S, Cook CJ, Lauer AM, Müller U, Xu-Friedman MA. Convergence of Type 1 Spiral Ganglion Neuron Subtypes onto Principal Neurons of the Anteroventral Cochlear Nucleus. J Neurosci 2025; 45:e1507242024. [PMID: 39663118 PMCID: PMC11800758 DOI: 10.1523/jneurosci.1507-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/07/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024] Open
Abstract
The mammalian auditory system encodes sounds with subtypes of spiral ganglion neurons (SGNs) that differ in sound level sensitivity, permitting discrimination across a wide range of levels. Recent work suggests the physiologically defined SGN subtypes correspond to at least three molecular subtypes. It is not known how information from the different subtypes converges within the cochlear nucleus. We examined this issue using transgenic mice of both sexes that express Cre recombinase in SGNs that are positive for markers of two subtypes: CALB2 (calretinin) in type 1a SGNs and LYPD1 in type 1c SGNs, which correspond to high- and low-sensitivity subtypes, respectively. We crossed these with mice expressing floxed channelrhodopsin, which allowed specific activation of axons from type 1a or 1c SGNs using optogenetics. We made voltage-clamp recordings from bushy cells in the anteroventral cochlear nucleus (AVCN) and found that the synapses formed by CALB2- and LYPD1-positive SGNs had similar EPSC amplitudes and short-term plasticity. Immunohistochemistry revealed that individual bushy cells receive a mix of 1a, 1b, and 1c synapses with VGluT1-positive puncta of similar sizes. We used optogenetic stimulation during in vivo recordings to classify chopper and primary-like units as receiving versus nonreceiving 1a- or 1c-type inputs. These groups showed no significant difference in threshold or spontaneous rate, suggesting the subtypes do not segregate into distinct processing streams in the AVCN. Our results indicate that principal cells in the AVCN integrate information from all SGN subtypes with extensive convergence, which could optimize sound encoding across a large dynamic range.
Collapse
Affiliation(s)
- Nicole F Wong
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York 14260
| | - Sydney E Brongo
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York 14260
| | - Evan A Forero
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York 14260
| | - Shuohao Sun
- The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Connor J Cook
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York 14260
| | - Amanda M Lauer
- The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Department of Otolaryngology-HNS, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Department of Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Ulrich Müller
- The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Matthew A Xu-Friedman
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York 14260
| |
Collapse
|
3
|
Xie R, Wang M, Zhang C. Mechanisms of age-related hearing loss at the auditory nerve central synapses and postsynaptic neurons in the cochlear nucleus. Hear Res 2024; 442:108935. [PMID: 38113793 PMCID: PMC10842789 DOI: 10.1016/j.heares.2023.108935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023]
Abstract
Sound information is transduced from mechanical vibration to electrical signals in the cochlea, conveyed to and further processed in the brain to form auditory perception. During the process, spiral ganglion neurons (SGNs) are the key cells that connect the peripheral and central auditory systems by receiving information from hair cells in the cochlea and transmitting it to neurons of the cochlear nucleus (CN). Decades of research in the cochlea greatly improved our understanding of SGN function under normal and pathological conditions, especially about the roles of different subtypes of SGNs and their peripheral synapses. However, it remains less clear how SGN central terminals or auditory nerve (AN) synapses connect to CN neurons, and ultimately how peripheral pathology links to structural alterations and functional deficits in the central auditory nervous system. This review discusses recent progress about the morphological and physiological properties of different subtypes of AN synapses and associated postsynaptic CN neurons, their changes during aging, and the potential mechanisms underlying age-related hearing loss.
Collapse
Affiliation(s)
- Ruili Xie
- Department of Otolaryngology, The Ohio State University, 420 W 12th Ave, Columbus OH 43210, USA; Department of Neuroscience, The Ohio State University, 420W 12th Ave, Columbus, OH 43210, USA.
| | - Meijian Wang
- Department of Otolaryngology, The Ohio State University, 420 W 12th Ave, Columbus OH 43210, USA
| | - Chuangeng Zhang
- Department of Otolaryngology, The Ohio State University, 420 W 12th Ave, Columbus OH 43210, USA
| |
Collapse
|
4
|
Wang H, Lu Y. High calcium concentrations reduce cellular excitability of mouse MNTB neurons. Brain Res 2023; 1820:148568. [PMID: 37689332 PMCID: PMC10591835 DOI: 10.1016/j.brainres.2023.148568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Calcium, a universal intracellular signaling molecule, plays essential roles in neural functions. Historically, in most in vitro brain slice electrophysiology studies, the extracellular calcium concentration ([Ca2+]e) in artificial cerebrospinal fluid is of a wide range and typically higher than the physiological value. At high [Ca2+]e, synaptic transmission is generally enhanced. However, the effects and the underlying mechanisms of calcium on intrinsic neuronal properties are diverse. Using whole-cell patch clamp in acute brainstem slices obtained from mice of either sex, we investigated the effects and the underlying mechanisms of high [Ca2+]e on intrinsic neuronal properties of neurons in the medial nucleus of the trapezoid body (MNTB), an auditory brainstem component in the sound localization circuitry. Compared to the physiological [Ca2+]e (1.2 mM), high [Ca2+]e at 1.8 and 2.4 mM significantly reduced the cellular excitability of MNTB neurons, resulting in decreased spike firing rate, depolarized spike threshold, and decreased the ability to follow high frequency inputs. High extracellular magnesium concentrations at 1.8 and 2.4 mM produced similar but less robust effects, due to surface charge screening. Upon high calcium application, voltage-gated sodium channel currents remained largely unchanged. Calcium-sensing receptors were detected in MNTB neurons, but blocking these receptors did not eliminate the effects of high calcium on spontaneous spiking. We attribute the lack of significant effects in these last two experiments to the moderate changes in calcium we tested. Our results call for the use of physiological [Ca2+]e in brain slice experiments.
Collapse
Affiliation(s)
- Huimei Wang
- Department of Anatomy and Neurobiology, Hearing Research Group, College of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Yong Lu
- Department of Anatomy and Neurobiology, Hearing Research Group, College of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, USA.
| |
Collapse
|
5
|
Wong NF, Xu-Friedman MA. Induction of Activity-Dependent Plasticity at Auditory Nerve Synapses. J Neurosci 2022; 42:6211-6220. [PMID: 35790402 PMCID: PMC9374128 DOI: 10.1523/jneurosci.0666-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/26/2022] [Accepted: 06/25/2022] [Indexed: 11/21/2022] Open
Abstract
Exposure to nontraumatic noise in vivo drives long-lasting changes in auditory nerve synapses, which may influence hearing, but the induction mechanisms are not known. We mimicked activity in acute slices of the cochlear nucleus from mice of both sexes by treating them with high potassium, after which voltage-clamp recordings from bushy cells indicated that auditory nerve synapses had reduced EPSC amplitude, quantal size, and vesicle release probability (P r). The effects of high potassium were prevented by blockers of nitric oxide (NO) synthase and protein kinase A. Treatment with the NO donor, PAPA-NONOate, also decreased P r, suggesting NO plays a central role in inducing synaptic changes. To identify the source of NO, we activated auditory nerve fibers specifically using optogenetics. Strobing for 2 h led to decreased EPSC amplitude and P r, which was prevented by antagonists against ionotropic glutamate receptors and NO synthase. This suggests that the activation of AMPA and NMDA receptors in postsynaptic targets of auditory nerve fibers drives release of NO, which acts retrogradely to cause long-term changes in synaptic function in auditory nerve synapses. This may provide insight into preventing or treating disorders caused by noise exposure.SIGNIFICANCE STATEMENT Auditory nerve fibers undergo long-lasting changes in synaptic properties in response to noise exposure in vivo, which may contribute to changes in hearing. Here, we investigated the cellular mechanisms underlying induction of synaptic changes using high potassium and optogenetic stimulation in vitro and identified important signaling pathways using pharmacology. Our results suggest that auditory nerve activity drives postsynaptic depolarization through AMPA and NMDA receptors, leading to the release of nitric oxide, which acts retrogradely to regulate presynaptic neurotransmitter release. These experiments revealed that auditory nerve synapses are unexpectedly sensitive to activity and can show dramatic, long-lasting changes in a few hours that could affect hearing.
Collapse
Affiliation(s)
- Nicole F Wong
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York 14260
| | - Matthew A Xu-Friedman
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York 14260
| |
Collapse
|
6
|
Knipper M, Singer W, Schwabe K, Hagberg GE, Li Hegner Y, Rüttiger L, Braun C, Land R. Disturbed Balance of Inhibitory Signaling Links Hearing Loss and Cognition. Front Neural Circuits 2022; 15:785603. [PMID: 35069123 PMCID: PMC8770933 DOI: 10.3389/fncir.2021.785603] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/08/2021] [Indexed: 12/19/2022] Open
Abstract
Neuronal hyperexcitability in the central auditory pathway linked to reduced inhibitory activity is associated with numerous forms of hearing loss, including noise damage, age-dependent hearing loss, and deafness, as well as tinnitus or auditory processing deficits in autism spectrum disorder (ASD). In most cases, the reduced central inhibitory activity and the accompanying hyperexcitability are interpreted as an active compensatory response to the absence of synaptic activity, linked to increased central neural gain control (increased output activity relative to reduced input). We here suggest that hyperexcitability also could be related to an immaturity or impairment of tonic inhibitory strength that typically develops in an activity-dependent process in the ascending auditory pathway with auditory experience. In these cases, high-SR auditory nerve fibers, which are critical for the shortest latencies and lowest sound thresholds, may have either not matured (possibly in congenital deafness or autism) or are dysfunctional (possibly after sudden, stressful auditory trauma or age-dependent hearing loss linked with cognitive decline). Fast auditory processing deficits can occur despite maintained basal hearing. In that case, tonic inhibitory strength is reduced in ascending auditory nuclei, and fast inhibitory parvalbumin positive interneuron (PV-IN) dendrites are diminished in auditory and frontal brain regions. This leads to deficits in central neural gain control linked to hippocampal LTP/LTD deficiencies, cognitive deficits, and unbalanced extra-hypothalamic stress control. Under these conditions, a diminished inhibitory strength may weaken local neuronal coupling to homeostatic vascular responses required for the metabolic support of auditory adjustment processes. We emphasize the need to distinguish these two states of excitatory/inhibitory imbalance in hearing disorders: (i) Under conditions of preserved fast auditory processing and sustained tonic inhibitory strength, an excitatory/inhibitory imbalance following auditory deprivation can maintain precise hearing through a memory linked, transient disinhibition that leads to enhanced spiking fidelity (central neural gain⇑) (ii) Under conditions of critically diminished fast auditory processing and reduced tonic inhibitory strength, hyperexcitability can be part of an increased synchronization over a broader frequency range, linked to reduced spiking reliability (central neural gain⇓). This latter stage mutually reinforces diminished metabolic support for auditory adjustment processes, increasing the risks for canonical dementia syndromes.
Collapse
Affiliation(s)
- Marlies Knipper
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
- *Correspondence: Marlies Knipper,
| | - Wibke Singer
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Kerstin Schwabe
- Experimental Neurosurgery, Department of Neurosurgery, Hannover Medical School, Hanover, Germany
| | - Gisela E. Hagberg
- Department of Biomedical Magnetic Resonance, University Hospital Tübingen (UKT), Tübingen, Germany
- High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Yiwen Li Hegner
- MEG Center, University of Tübingen, Tübingen, Germany
- Center of Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Lukas Rüttiger
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Christoph Braun
- MEG Center, University of Tübingen, Tübingen, Germany
- Center of Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Rüdiger Land
- Department of Experimental Otology, Institute for Audioneurotechnology, Hannover Medical School, Hanover, Germany
| |
Collapse
|
7
|
Boero LE, Payne S, Gómez-Casati ME, Rutherford MA, Goutman JD. Noise Exposure Potentiates Exocytosis From Cochlear Inner Hair Cells. Front Synaptic Neurosci 2021; 13:740368. [PMID: 34658832 PMCID: PMC8511412 DOI: 10.3389/fnsyn.2021.740368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/10/2021] [Indexed: 11/19/2022] Open
Abstract
Noise-induced hearing loss has gained relevance as one of the most common forms of hearing impairment. The anatomical correlates of hearing loss, principally cell damage and/or death, are relatively well-understood histologically. However, much less is known about the physiological aspects of damaged, surviving cells. Here we addressed the functional consequences of noise exposure on the capacity of inner hair cells (IHCs) to release synaptic vesicles at synapses with spiral ganglion neurons (SGNs). Mice of either sex at postnatal day (P) 15–16 were exposed to 1–12 kHz noise at 120 dB sound pressure level (SPL), for 1 h. Exocytosis was measured by tracking changes in membrane capacitance (ΔCm) from IHCs of the apical cochlea. Upon IHC depolarization to different membrane potentials, ΔCm showed the typical bell-shaped curve that mirrors the voltage dependence of Ca2+ influx, in both exposed and unexposed cells. Surprisingly, from IHCs at 1-day after exposure (d.a.e.), we found potentiation of exocytosis at the peak of the bell-shaped curve. The increase in exocytosis was not accompanied by changes in whole-cell Ca2+ influx, suggesting a modification in coupling between Ca2+ channels and synaptic vesicles. Consistent with this notion, noise exposure also changed the Ca2+-dependence of exocytosis from linear to supralinear. Noise exposure did not cause loss of IHCs, but did result in a small reduction in the number of IHC-SGN synapses at 1-d.a.e. which recovered by 14-d.a.e. In contrast, a strong reduction in auditory brainstem response wave-I amplitude (representing synchronous firing of SGNs) and distortion product otoacoustic emissions (reflecting outer hair cell function) indicated a profound hearing loss at 1- and 14-d.a.e. To determine the role of glutamate release in the noise-induced potentiation of exocytosis, we evaluated vesicular glutamate transporter-3 (Vglut3) knock-out (KO) mice. Unlike WT, IHCs from Vglut3KO mice showed a noise-induced reduction in ΔCm and Ca2+ influx with no change in the Ca2+-dependence of exocytosis. Together, these results indicate that traumatic noise exposure triggers changes of IHC synaptic function including a Vglut3-dependent potentiation of exocytosis.
Collapse
Affiliation(s)
- Luis E Boero
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Buenos Aires, Argentina.,Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Shelby Payne
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, United States
| | | | - Mark A Rutherford
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, United States
| | - Juan D Goutman
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Buenos Aires, Argentina
| |
Collapse
|
8
|
Krohs C, Körber C, Ebbers L, Altaf F, Hollje G, Hoppe S, Dörflinger Y, Prosser HM, Nothwang HG. Loss of miR-183/96 Alters Synaptic Strength via Presynaptic and Postsynaptic Mechanisms at a Central Synapse. J Neurosci 2021; 41:6796-6811. [PMID: 34193555 PMCID: PMC8360680 DOI: 10.1523/jneurosci.0139-20.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/03/2021] [Accepted: 05/09/2021] [Indexed: 12/27/2022] Open
Abstract
A point mutation in miR-96 causes non-syndromic progressive peripheral hearing loss and alters structure and physiology of the central auditory system. To gain further insight into the functions of microRNAs (miRNAs) within the central auditory system, we investigated constitutive Mir-183/96dko mice of both sexes. In this mouse model, the genomically clustered miR-183 and miR-96 are constitutively deleted. It shows significantly and specifically reduced volumes of auditory hindbrain nuclei, because of decreases in cell number and soma size. Electrophysiological analysis of the calyx of Held synapse in the medial nucleus of the trapezoid body (MNTB) demonstrated strongly altered synaptic transmission in young-adult mice. We observed an increase in quantal content and readily releasable vesicle pool size in the presynapse while the overall morphology of the calyx was unchanged. Detailed analysis of the active zones (AZs) revealed differences in its molecular composition and synaptic vesicle (SV) distribution. Postsynaptically, altered clustering and increased synaptic abundancy of the AMPA receptor subunit GluA1 was observed resulting in an increase in quantal amplitude. Together, these presynaptic and postsynaptic alterations led to a 2-fold increase of the evoked excitatory postsynaptic currents in MNTB neurons. None of these changes were observed in deaf Cldn14ko mice, confirming an on-site role of miR-183 and miR-96 in the auditory hindbrain. Our data suggest that the Mir-183/96 cluster plays a key role for proper synaptic transmission at the calyx of Held and for the development of the auditory hindbrain.SIGNIFICANCE STATEMENT The calyx of Held is the outstanding model system to study basic synaptic physiology. Yet, genetic factors driving its morphologic and functional maturation are largely unknown. Here, we identify the Mir-183/96 cluster as an important factor to regulate its synaptic strength. Presynaptically, Mir-183/96dko calyces show an increase in release-ready synaptic vesicles (SVs), quantal content and abundance of the proteins Bassoon and Piccolo. Postsynaptically, the quantal size as well as number and size of GluA1 puncta were increased. The two microRNAs (miRNAs) are thus attractive candidates for regulation of synaptic maturation and long-term adaptations to sound levels. Moreover, the different phenotypic outcomes of different types of mutations in the Mir-183 cluster corroborate the requirement of mutation-tailored therapies in patients with hearing loss.
Collapse
Affiliation(s)
- Constanze Krohs
- Division of Neurogenetics, Department of Neuroscience, Carl von Ossietzky University Oldenburg, Oldenburg 26129, Germany
| | - Christoph Körber
- Institute of Anatomy und Cell Biology, Department of Functional Neuroanatomy, Heidelberg University, Heidelberg 69120, Germany
| | - Lena Ebbers
- Division of Neurogenetics, Department of Neuroscience, Carl von Ossietzky University Oldenburg, Oldenburg 26129, Germany
| | - Faiza Altaf
- Division of Neurogenetics, Department of Neuroscience, Carl von Ossietzky University Oldenburg, Oldenburg 26129, Germany
| | - Giulia Hollje
- Division of Neurogenetics, Department of Neuroscience, Carl von Ossietzky University Oldenburg, Oldenburg 26129, Germany
| | - Simone Hoppe
- Institute of Anatomy und Cell Biology, Department of Functional Neuroanatomy, Heidelberg University, Heidelberg 69120, Germany
| | - Yvette Dörflinger
- Institute of Anatomy und Cell Biology, Department of Functional Neuroanatomy, Heidelberg University, Heidelberg 69120, Germany
| | - Haydn M Prosser
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, United Kingdom
| | - Hans Gerd Nothwang
- Division of Neurogenetics, Department of Neuroscience, Carl von Ossietzky University Oldenburg, Oldenburg 26129, Germany
- Excellence Cluster Hearing4all, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| |
Collapse
|
9
|
Young SM, Veeraraghavan P. Presynaptic voltage-gated calcium channels in the auditory brainstem. Mol Cell Neurosci 2021; 112:103609. [PMID: 33662542 DOI: 10.1016/j.mcn.2021.103609] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/06/2021] [Accepted: 02/17/2021] [Indexed: 10/22/2022] Open
Abstract
Sound information encoding within the initial synapses in the auditory brainstem requires reliable and precise synaptic transmission in response to rapid and large fluctuations in action potential (AP) firing rates. The magnitude and location of Ca2+ entry through voltage-gated Ca2+ channels (CaV) in the presynaptic terminal are key determinants in triggering AP-mediated release. In the mammalian central nervous system (CNS), the CaV2.1 subtype is the critical subtype for CNS function, since it is the most efficient CaV2 subtype in triggering AP-mediated synaptic vesicle (SV) release. Auditory brainstem synapses utilize CaV2.1 to sustain fast and repetitive SV release to encode sound information. Therefore, understanding the presynaptic mechanisms that control CaV2.1 localization, organization and biophysical properties are integral to understanding auditory processing. Here, we review our current knowledge about the control of presynaptic CaV2 abundance and organization in the auditory brainstem and impact on the regulation of auditory processing.
Collapse
Affiliation(s)
- Samuel M Young
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Department of Otolaryngology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA.
| | | |
Collapse
|
10
|
Wang M, Zhang C, Lin S, Wang Y, Seicol BJ, Ariss RW, Xie R. Biased auditory nerve central synaptopathy is associated with age-related hearing loss. J Physiol 2021; 599:1833-1854. [PMID: 33450070 DOI: 10.1113/jp281014] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 01/03/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Sound information is transmitted by different subtypes of spiral ganglion neurons (SGN) from the ear to the brain. Selective damage of SGN peripheral synapses (cochlear synaptopathy) is widely recognized as one of the primary mechanisms of hearing loss, whereas the mechanisms at the SGN central synapses remain unclear. We report that different subtypes of SGN central synapses converge at different ratios onto individual target cochlear nucleus neurons with distinct physiological properties, and show biased morphological and physiological changes during age-related hearing loss (ARHL). The results reveal a new dimension in cochlear nucleus neural circuitry that systematically reassembles and processes auditory information from different SGN subtypes, which is altered during ageing and probably contributes to the development of ARHL. In addition to known cochlear synaptopathy, the present study shows that SGN central synapses are also pathologically changed during ageing, which collectively helps us better understand the structure and function of SGNs during ARHL. ABSTRACT Sound information is transmitted from the cochlea to the brain by different subtypes of spiral ganglion neurons (SGN), which show varying degrees of vulnerability under pathological conditions. Selective cochlear synaptopathy, the preferential damage of certain subtypes of SGN peripheral synapses, has been recognized as one of the main mechanisms of hearing loss. The organization and function of the auditory nerve (AN) central synapses from different subtypes of SGNs remain unclear, including how different AN synapses reassemble onto individual neurons in the cochlear nucleus, as well as how they differentially change during hearing loss. Combining immunohistochemistry with electrophysiology, we investigated the convergence pattern and subtype-specific synaptopathy of AN synapses at the endbulb of Held, as well as the response properties of their postsynaptic bushy neurons in CBA/CaJ mice of either sex under normal hearing and age-related hearing loss (ARHL). We found that calretinin-expressing (type Ia ) and non-calretinin-expressing (type Ib /Ic ) endbulbs converged along a continuum of different ratios onto individual bushy neurons with varying physiological properties. Endbulbs degenerated during ageing in parallel with ARHL. Furthermore, the degeneration was more severe in non-calretinin-expressing synapses, which correlated with a gradual decrease in bushy neuron subpopulation predominantly innervated by these inputs. These synaptic and cellular changes were profound in middle-aged mice when their hearing thresholds were still relatively normal and prior to severe ARHL. Our findings suggest that biased AN central synaptopathy and the correlated shift in cochlear nucleus neuronal composition play significant roles in weakened auditory input and altered central auditory processing during ARHL.
Collapse
Affiliation(s)
- Meijian Wang
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, OH, USA
| | - Chuangeng Zhang
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, OH, USA
| | - Shengyin Lin
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, OH, USA
| | - Yong Wang
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, OH, USA
| | - Benjamin J Seicol
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, OH, USA.,Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Robert W Ariss
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Ruili Xie
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, OH, USA.,Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
11
|
Mechanisms and Functional Consequences of Presynaptic Homeostatic Plasticity at Auditory Nerve Synapses. J Neurosci 2020; 40:6896-6909. [PMID: 32747441 DOI: 10.1523/jneurosci.1175-19.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 01/21/2023] Open
Abstract
Multiple forms of homeostasis influence synaptic function under diverse activity conditions. Both presynaptic and postsynaptic forms of homeostasis are important, but their relative impact on fidelity is unknown. To address this issue, we studied auditory nerve synapses onto bushy cells in the cochlear nucleus of mice of both sexes. These synapses undergo bidirectional presynaptic and postsynaptic homeostatic changes with increased and decreased acoustic stimulation. We found that both young and mature synapses exhibit similar activity-dependent changes in short-term depression. Experiments using chelators and imaging both indicated that presynaptic Ca2+ influx decreased after noise exposure, and increased after ligating the ear canal. By contrast, Ca2+ cooperativity was unaffected. Experiments using specific antagonists suggest that occlusion leads to changes in the Ca2+ channel subtypes driving neurotransmitter release. Furthermore, dynamic-clamp experiments revealed that spike fidelity primarily depended on changes in presynaptic depression, with some contribution from changes in postsynaptic intrinsic properties. These experiments indicate that presynaptic Ca2+ influx is homeostatically regulated in vivo to enhance synaptic fidelity.SIGNIFICANCE STATEMENT Homeostatic mechanisms in synapses maintain stable function in the face of different levels of activity. Both juvenile and mature auditory nerve synapses onto bushy cells modify short-term depression in different acoustic environments, which raises the question of what the underlying presynaptic mechanisms are and the relative importance of presynaptic and postsynaptic contributions to the faithful transfer of information. Changes in short-term depression under different acoustic conditions were a result of changes in presynaptic Ca2+ influx. Spike fidelity was affected by both presynaptic and postsynaptic changes after ear occlusion and was only affected by presynaptic changes after noise-rearing. These findings are important for understanding regulation of auditory synapses under normal conditions and also in disorders following noise exposure or conductive hearing loss.
Collapse
|
12
|
Müller NIC, Sonntag M, Maraslioglu A, Hirtz JJ, Friauf E. Topographic map refinement and synaptic strengthening of a sound localization circuit require spontaneous peripheral activity. J Physiol 2019; 597:5469-5493. [PMID: 31529505 DOI: 10.1113/jp277757] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 09/13/2019] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS Loss of the calcium sensor otoferlin disrupts neurotransmission from inner hair cells. Central auditory nuclei are functionally denervated in otoferlin knockout mice (Otof KOs) via gene ablation confined to the periphery. We employed juvenile and young adult Otof KO mice (postnatal days (P)10-12 and P27-49) as a model for lacking spontaneous activity and deafness, respectively. We studied the impact of peripheral activity on synaptic refinement in the sound localization circuit from the medial nucleus of the trapezoid body (MNTB) to the lateral superior olive (LSO). MNTB in vivo recordings demonstrated drastically reduced spontaneous spiking and deafness in Otof KOs. Juvenile KOs showed impaired synapse elimination and strengthening, manifested by broader MNTB-LSO inputs, imprecise MNTB-LSO topography and weaker MNTB-LSO fibres. The impairments persisted into young adulthood. Further functional refinement after hearing onset was undetected in young adult wild-types. Collectively, activity deprivation confined to peripheral protein loss impairs functional MNTB-LSO refinement during a critical prehearing period. ABSTRACT Circuit refinement is critical for the developing sound localization pathways in the auditory brainstem. In prehearing mice (hearing onset around postnatal day (P)12), spontaneous activity propagates from the periphery to central auditory nuclei. At the glycinergic projection from the medial nucleus of the trapezoid body (MNTB) to the lateral superior olive (LSO) of neonatal mice, super-numerous MNTB fibres innervate a given LSO neuron. Between P4 and P9, MNTB fibres are functionally eliminated, whereas the remaining fibres are strengthened. Little is known about MNTB-LSO circuit refinement after P20. Moreover, MNTB-LSO refinement upon activity deprivation confined to the periphery is largely unexplored. This leaves a considerable knowledge gap, as deprivation often occurs in patients with congenital deafness, e.g. upon mutations in the otoferlin gene (OTOF). Here, we analysed juvenile (P10-12) and young adult (P27-49) otoferlin knockout (Otof KO) mice with respect to MNTB-LSO refinement. MNTB in vivo recordings revealed drastically reduced spontaneous activity and deafness in knockouts (KOs), confirming deprivation. As RNA sequencing revealed Otof absence in the MNTB and LSO of wild-types, Otof loss in KOs is specific to the periphery. Functional denervation impaired MNTB-LSO synapse elimination and strengthening, which was assessed by glutamate uncaging and electrical stimulation. Impaired elimination led to imprecise MNTB-LSO topography. Impaired strengthening was associated with lower quantal content per MNTB fibre. In young adult KOs, the MNTB-LSO circuit remained unrefined. Further functional refinement after P12 appeared absent in wild-types. Collectively, we provide novel insights into functional MNTB-LSO circuit maturation governed by a cochlea-specific protein. The central malfunctions in Otof KOs may have implications for patients with sensorineuronal hearing loss.
Collapse
Affiliation(s)
- Nicolas I C Müller
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, D-67663, Kaiserslautern, Germany
| | - Mandy Sonntag
- Paul Flechsig Institute of Brain Research, Faculty of Medicine, University of Leipzig, D-04103, Leipzig, Germany
| | - Ayse Maraslioglu
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, D-67663, Kaiserslautern, Germany
| | - Jan J Hirtz
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, D-67663, Kaiserslautern, Germany.,Physiology of Neuronal Networks, Department of Biology, University of Kaiserslautern, D-67663, Kaiserslautern, Germany
| | - Eckhard Friauf
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, D-67663, Kaiserslautern, Germany
| |
Collapse
|
13
|
Stephani F, Scheuer V, Eckrich T, Blum K, Wang W, Obermair GJ, Engel J. Deletion of the Ca 2+ Channel Subunit α 2δ3 Differentially Affects Ca v2.1 and Ca v2.2 Currents in Cultured Spiral Ganglion Neurons Before and After the Onset of Hearing. Front Cell Neurosci 2019; 13:278. [PMID: 31293392 PMCID: PMC6606706 DOI: 10.3389/fncel.2019.00278] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 06/07/2019] [Indexed: 12/14/2022] Open
Abstract
Voltage-gated Ca2+ channels are composed of a pore-forming α1 subunit and auxiliary β and α2δ subunits, which modulate Ca2+ current properties and channel trafficking. So far, the partial redundancy and specificity of α1 for α2δ subunits in the CNS have remained largely elusive. Mature spiral ganglion (SG) neurons express α2δ subunit isoforms 1, 2, and 3 and multiple Ca2+ channel subtypes. Differentiation and in vivo functions of their endbulb of Held synapses, which rely on presynaptic P/Q channels (Lin et al., 2011), require the α2δ3 subunit (Pirone et al., 2014). This led us to hypothesize that P/Q channels may preferentially co-assemble with α2δ3. Using a dissociated primary culture, we analyzed the effects of α2δ3 deletion on somatic Ca2+ currents (ICa) of SG neurons isolated at postnatal day 20 (P20), when the cochlea is regarded to be mature. P/Q currents were the dominating steady-state Ca2+ currents (54% of total) followed by T-type, L-type, N-type, and R-type currents. Deletion of α2δ3 reduced P/Q- and R-type currents by 60 and 38%, respectively, whereas L-type, N-type, and T-type currents were not altered. A subset of ICa types was also analyzed in SG neurons isolated at P5, i.e., before the onset of hearing (P12). Both L-type and N-type current amplitudes of wildtype SG neurons were larger at P5 compared with P20. Deletion of α2δ3 reduced L-type and N-type currents by 23 and 44%, respectively. In contrast, small P/Q currents, which were just being up-regulated at P5, were unaffected by the lack of α2δ3. In summary, α2δ3 regulates amplitudes of L- and N-type currents of immature cultured SG neurons, whereas it regulates P/Q- and R-type currents at P20. Our data indicate a developmental switch from dominating somatic N- to P/Q-type currents in cultured SG neurons. A switch from N- to P/Q-type channels, which has been observed at several central synapses, may also occur at developing endbulbs of Held. In this case, reduction of both neonatal N- (P5) and more mature P/Q-type currents (around/after hearing onset) may contribute to the impaired morphology and function of endbulb synapses in α2δ3-deficient mice.
Collapse
Affiliation(s)
- Friederike Stephani
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Veronika Scheuer
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Tobias Eckrich
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Kerstin Blum
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Wenying Wang
- Department of Physiology, School of Medicine, University of Nevada, Reno, NV, United States
| | - Gerald J Obermair
- Department of Physiology and Medical Physics, Medical University Innsbruck, Innsbruck, Austria.,Division Physiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Jutta Engel
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| |
Collapse
|
14
|
Muniak MA, Ayeni FE, Ryugo DK. Hidden hearing loss and endbulbs of Held: Evidence for central pathology before detection of ABR threshold increases. Hear Res 2018; 364:104-117. [DOI: 10.1016/j.heares.2018.03.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/22/2018] [Accepted: 03/18/2018] [Indexed: 12/17/2022]
|
15
|
Tien NW, Kerschensteiner D. Homeostatic plasticity in neural development. Neural Dev 2018; 13:9. [PMID: 29855353 PMCID: PMC5984303 DOI: 10.1186/s13064-018-0105-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/24/2018] [Indexed: 02/06/2023] Open
Abstract
Throughout life, neural circuits change their connectivity, especially during development, when neurons frequently extend and retract dendrites and axons, and form and eliminate synapses. In spite of their changing connectivity, neural circuits maintain relatively constant activity levels. Neural circuits achieve functional stability by homeostatic plasticity, which equipoises intrinsic excitability and synaptic strength, balances network excitation and inhibition, and coordinates changes in circuit connectivity. Here, we review how diverse mechanisms of homeostatic plasticity stabilize activity in developing neural circuits.
Collapse
Affiliation(s)
- Nai-Wen Tien
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, USA. .,Graduate Program in Neuroscience, Washington University School of Medicine, Saint Louis, USA.
| | - Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, USA. .,Department of Neuroscience, Washington University School of Medicine, Saint Louis, USA. .,Department of Biomedical Engineering, Washington University School of Medicine, Saint Louis, USA. .,Hope Center for Neurological Disorders, Washington University School of Medicine, Saint Louis, MO, 63110, USA.
| |
Collapse
|
16
|
Lu Y, Liu Y, Curry RJ. Activity-dependent synaptic integration and modulation of bilateral excitatory inputs in an auditory coincidence detection circuit. J Physiol 2018; 596:1981-1997. [PMID: 29572827 DOI: 10.1113/jp275735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/05/2018] [Indexed: 02/05/2023] Open
Abstract
KEY POINTS Binaural excitatory inputs to coincidence detection neurons in nucleus laminaris (NL) play essential roles in interaural time difference coding for sound localization. Here, we show that the two excitatory inputs are physiologically nearly completely segregated. Synaptic integration shows linear summation of EPSPs, ensuring high efficiency of coincidence detection of the bilateral excitatory inputs. We further show that the two excitatory inputs to single NL neurons are symmetrical in synaptic strength, kinetics and short-term plasticity. Modulation of the EPSCs by metabotropic glutamate receptors (mGluRs) is identical between the two excitatory inputs, maintaining balanced bilateral excitation under neuromodulatory conditions. Unilateral hearing deprivation reduces synaptic excitation and paradoxically strengthens mGluR modulation of EPSCs, suggesting activity-dependent anti-homeostatic regulation, a novel synaptic plasticity in response to sensory manipulations. ABSTRACT Neurons in the avian nucleus laminaris (NL) receive bilateral excitatory inputs from the cochlear nucleus magnocellularis, via morphologically symmetrical dorsal (ipsilateral) and ventral (contralateral) dendrites. Using in vitro whole-cell patch recordings in chicken brainstem slices, we investigated synaptic integration and modulation of the bilateral inputs to NL under normal and hearing deprivation conditions. We found that the two excitatory inputs onto single NL neurons were nearly completely segregated, and integration of the two inputs was linear for EPSPs. The two inputs had similar synaptic strength, kinetics and short-term plasticity. EPSCs in low but not middle and high frequency neurons were suppressed by activation of group I and II metabotropic glutamate receptors (mGluR I and II), with similar modulatory strength between the ipsilateral and contralateral inputs. Unilateral hearing deprivation by cochlea removal reduced the excitatory transmission on the deprived dendritic domain of NL. Interestingly, EPSCs evoked at the deprived domain were modulated more strongly by mGluR II than at the counterpart domain that received intact input in low frequency neurons, suggesting anti-homeostatic regulation. This was supported by a stronger expression of mGluR II protein on the deprived neuropils of NL. Under mGluR II modulation, EPSCs on the deprived input show transient synaptic facilitation, forming a striking contrast with normal hearing conditions under which pure synaptic depression is observed. These results demonstrate physiological symmetry and thus balanced bilateral excitatory inputs to NL neurons. The activity-dependent anti-homeostatic plasticity of mGluR modulation constitutes a novel mechanism regulating synaptic transmission in response to sensory input manipulations.
Collapse
Affiliation(s)
- Yong Lu
- Hearing Research Group, Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, 44272, USA.,School of Biomedical Sciences, Kent State University, Kent, OH, 44240, USA
| | - Yuwei Liu
- Hearing Research Group, Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Rebecca J Curry
- Hearing Research Group, Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, 44272, USA.,School of Biomedical Sciences, Kent State University, Kent, OH, 44240, USA
| |
Collapse
|
17
|
Butola T, Wichmann C, Moser T. Piccolo Promotes Vesicle Replenishment at a Fast Central Auditory Synapse. Front Synaptic Neurosci 2017; 9:14. [PMID: 29118709 PMCID: PMC5660988 DOI: 10.3389/fnsyn.2017.00014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/09/2017] [Indexed: 12/20/2022] Open
Abstract
Piccolo and Bassoon are the two largest cytomatrix of the active zone (CAZ) proteins involved in scaffolding and regulating neurotransmitter release at presynaptic active zones (AZs), but have long been discussed as being functionally redundant. We employed genetic manipulation to bring forth and segregate the role of Piccolo from that of Bassoon at central auditory synapses of the cochlear nucleus—the endbulbs of Held. These synapses specialize in high frequency synaptic transmission, ideally poised to reveal even subtle deficits in the regulation of neurotransmitter release upon molecular perturbation. Combining semi-quantitative immunohistochemistry, electron microscopy, and in vitro and in vivo electrophysiology we first studied signal transmission in Piccolo-deficient mice. Our analysis was not confounded by a cochlear deficit, as a short isoform of Piccolo (“Piccolino”) present at the upstream ribbon synapses of cochlear inner hair cells (IHC), is unaffected by the mutation. Disruption of Piccolo increased the abundance of Bassoon at the AZs of endbulbs, while that of RIM1 was reduced and other CAZ proteins remained unaltered. Presynaptic fiber stimulation revealed smaller amplitude of the evoked excitatory postsynaptic currents (eEPSC), while eEPSC kinetics as well as miniature EPSCs (mEPSCs) remained unchanged. Cumulative analysis of eEPSC trains indicated that the reduced eEPSC amplitude of Piccolo-deficient endbulb synapses is primarily due to a reduced readily releasable pool (RRP) of synaptic vesicles (SV), as was corroborated by a reduction of vesicles at the AZ found on an ultrastructural level. Release probability seemed largely unaltered. Recovery from short-term depression was slowed. We then performed a physiological analysis of endbulb synapses from mice which, in addition to Piccolo deficiency, lacked one functional allele of the Bassoon gene. Analysis of the double-mutant endbulbs revealed an increase in release probability, while the synapses still exhibited the reduced RRP, and the impairment in SV replenishment was exacerbated. We propose additive roles of Piccolo and Bassoon in SV replenishment which in turn influences the organization and size of the RRP, and an additional role of Bassoon in regulation of release probability.
Collapse
Affiliation(s)
- Tanvi Butola
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences (GGNB), University of Göttingen, Göttingen, Germany.,International Max Planck Research School for Neurosciences (IMPRS), Göttingen, Germany.,Synaptic Nanophysiology Group, Max Planck Institute for Biophysical Chemistry (MPG), Göttingen, Germany
| | - Carolin Wichmann
- Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences (GGNB), University of Göttingen, Göttingen, Germany.,Collaborative Research Centers 889 and 1286, University of Göttingen, Göttingen, Germany.,Molecular Architecture of Synapses Group, Center for Biostructural Imaging of Neurodegeneration (BIN), University of Göttingen, Göttingen, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences (GGNB), University of Göttingen, Göttingen, Germany.,International Max Planck Research School for Neurosciences (IMPRS), Göttingen, Germany.,Synaptic Nanophysiology Group, Max Planck Institute for Biophysical Chemistry (MPG), Göttingen, Germany.,Collaborative Research Centers 889 and 1286, University of Göttingen, Göttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University of Göttingen, Göttingen, Germany
| |
Collapse
|
18
|
Changes in Properties of Auditory Nerve Synapses following Conductive Hearing Loss. J Neurosci 2017; 37:323-332. [PMID: 28077712 DOI: 10.1523/jneurosci.0523-16.2016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 11/10/2016] [Accepted: 11/19/2016] [Indexed: 02/08/2023] Open
Abstract
Auditory activity plays an important role in the development of the auditory system. Decreased activity can result from conductive hearing loss (CHL) associated with otitis media, which may lead to long-term perceptual deficits. The effects of CHL have been mainly studied at later stages of the auditory pathway, but early stages remain less examined. However, changes in early stages could be important because they would affect how information about sounds is conveyed to higher-order areas for further processing and localization. We examined the effects of CHL at auditory nerve synapses onto bushy cells in the mouse anteroventral cochlear nucleus following occlusion of the ear canal. These synapses, called endbulbs of Held, normally show strong depression in voltage-clamp recordings in brain slices. After 1 week of CHL, endbulbs showed even greater depression, reflecting higher release probability. We observed no differences in quantal size between control and occluded mice. We confirmed these observations using mean-variance analysis and the integration method, which also revealed that the number of release sites decreased after occlusion. Consistent with this, synaptic puncta immunopositive for VGLUT1 decreased in area after occlusion. The level of depression and number of release sites both showed recovery after returning to normal conditions. Finally, bushy cells fired fewer action potentials in response to evoked synaptic activity after occlusion, likely because of increased depression and decreased input resistance. These effects appear to reflect a homeostatic, adaptive response of auditory nerve synapses to reduced activity. These effects may have important implications for perceptual changes following CHL. SIGNIFICANCE STATEMENT Normal hearing is important to everyday life, but abnormal auditory experience during development can lead to processing disorders. For example, otitis media reduces sound to the ear, which can cause long-lasting deficits in language skills and verbal production, but the location of the problem is unknown. Here, we show that occluding the ear causes synapses at the very first stage of the auditory pathway to modify their properties, by decreasing in size and increasing the likelihood of releasing neurotransmitter. This causes synapses to deplete faster, which reduces fidelity at central targets of the auditory nerve, which could affect perception. Temporary hearing loss could cause similar changes at later stages of the auditory pathway, which could contribute to disorders in behavior.
Collapse
|
19
|
Ehlers E, Goupell MJ, Zheng Y, Godar SP, Litovsky RY. Binaural sensitivity in children who use bilateral cochlear implants. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 141:4264. [PMID: 28618809 PMCID: PMC5464955 DOI: 10.1121/1.4983824] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 05/04/2017] [Accepted: 05/08/2017] [Indexed: 05/29/2023]
Abstract
Children who are deaf and receive bilateral cochlear implants (BiCIs) perform better on spatial hearing tasks using bilateral rather than unilateral inputs; however, they underperform relative to normal-hearing (NH) peers. This gap in performance is multi-factorial, including the inability of speech processors to reliably deliver binaural cues. Although much is known regarding binaural sensitivity of adults with BiCIs, less is known about how the development of binaural sensitivity in children with BiCIs compared to NH children. Sixteen children (ages 9-17 years) were tested using synchronized research processors. Interaural time differences and interaural level differences (ITDs and ILDs, respectively) were presented to pairs of pitch-matched electrodes. Stimuli were 300-ms, 100-pulses-per-second, constant-amplitude pulse trains. In the first and second experiments, discrimination of interaural cues (either ITDs or ILDs) was measured using a two-interval left/right task. In the third experiment, subjects reported the perceived intracranial position of ITDs and ILDs in a lateralization task. All children demonstrated sensitivity to ILDs, possibly due to monaural level cues. Children who were born deaf had weak or absent sensitivity to ITDs; in contrast, ITD sensitivity was noted in children with previous exposure to acoustic hearing. Therefore, factors such as auditory deprivation, in particular, lack of early exposure to consistent timing differences between the ears, may delay the maturation of binaural circuits and cause insensitivity to binaural differences.
Collapse
Affiliation(s)
- Erica Ehlers
- University of Wisconsin-Madison, Waisman Center, 1500 Highland Avenue, Madison, Wisconsin 53705, USA
| | - Matthew J Goupell
- Department of Hearing and Speech Sciences, University of Maryland, College Park, Maryland 20742, USA
| | - Yi Zheng
- Beijing Advanced Innovation Center for Future Education, Beijing Normal University, Beijing 100875, China
| | - Shelly P Godar
- University of Wisconsin-Madison, Waisman Center, 1500 Highland Avenue, Madison, Wisconsin 53705, USA
| | - Ruth Y Litovsky
- University of Wisconsin-Madison, Waisman Center, 1500 Highland Avenue, Madison, Wisconsin 53705, USA
| |
Collapse
|
20
|
Jiang C, Luo B, Manohar S, Chen GD, Salvi R. Plastic changes along auditory pathway during salicylate-induced ototoxicity: Hyperactivity and CF shifts. Hear Res 2017; 347:28-40. [PMID: 27989950 PMCID: PMC5403591 DOI: 10.1016/j.heares.2016.10.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/30/2016] [Accepted: 10/26/2016] [Indexed: 12/27/2022]
Abstract
High dose of salicylate, the active ingredient in aspirin, has long been known to induce transient hearing loss, tinnitus and hyperacusis making it a powerful experimental tool. These salicylate-induced perceptual disturbances are associated with a massive reduction in the neural output of the cochlea. Paradoxically, the diminished neural output of the cochlea is accompanied by a dramatic increase in sound-evoked activity in the auditory cortex (AC) and several other parts of the central nervous system. Exactly where the increase in neural activity begins and builds up along the central auditory pathway are not fully understood. To address this issue, we measured sound-evoked neural activity in the cochlea, cochlear nucleus (CN), inferior colliculus (IC), and AC before and after administering a high dose of sodium salicylate (SS, 300 mg/kg). The SS-treatment abolished low-level sound-evoked responses along the auditory pathway resulting in a 20-30 dB threshold shift. While the neural output of the cochlea was substantially reduced at high intensities, the neural responses in the CN were only slightly reduced; those in the IC were nearly normal or slightly enhanced while those in the AC considerably enhanced, indicative of a progress increase in central gain. The SS-induced increase in central response in the IC and AC was frequency-dependent with the greatest increase occurring in the mid-frequency range the putative pitch of SS-induced tinnitus. This frequency-dependent hyperactivity appeared to result from shifts in the frequency receptive fields (FRF) such that the response areas of many FRF shifted/expanded toward the mid-frequencies. Our results suggest that the SS-induced threshold shift originates in the cochlea. In contrast, enhanced central gain is not localized to one region, but progressively builds up at successively higher stage of the auditory pathway either through a loss of inhibition and/or increased excitation.
Collapse
Affiliation(s)
- Chen Jiang
- Department of Neurosurgery, Anhui Provincial Hospital, 17 Lujiang Road, Hefei, Anhui 230001, China; Center for Hearing and Deafness, State University of New York at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA
| | - Bin Luo
- Department of Neurosurgery, Anhui Provincial Hospital, 17 Lujiang Road, Hefei, Anhui 230001, China; Center for Hearing and Deafness, State University of New York at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA
| | - Senthilvelan Manohar
- Center for Hearing and Deafness, State University of New York at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA
| | - Guang-Di Chen
- Center for Hearing and Deafness, State University of New York at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA.
| | - Richard Salvi
- Center for Hearing and Deafness, State University of New York at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA
| |
Collapse
|
21
|
Hasegawa H, Hatano M, Sugimoto H, Ito M, Kawasaki H, Yoshizaki T. The effects of unilateral cochlear ablation on the expression of vesicular glutamate transporter 1 in the lower auditory pathway of neonatal rats. Auris Nasus Larynx 2017; 44:690-699. [PMID: 28238468 DOI: 10.1016/j.anl.2017.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/27/2016] [Accepted: 01/26/2017] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Unilateral cochlear damage has profound effects on the central auditory pathways in the brain. METHODS We examined the effects of unilateral cochlear ablation on VGLUT1 expression in the cochlear nucleus (CN) and the superior olivary complex (SOC) in neonatal rats. RESULTS VGLUT1 expression in the CN subdivisions (the AVCN, the PVCN and the DCN-deep layers) and the SOC (the MnTB, the LSO and the MSO) ipsilateral to the ablated side was significantly suppressed by unilateral cochlear ablation. Interestingly, VGLUT1 expression in the PVCN and the DCN-deep layers contralateral to the ablated side was also reduced. CONCLUSION Our findings indicate that unilateral cochlear ablation affects VGLUT1 expression in the central auditory pathways not only ipsilateral but also contralateral to the ablated side.
Collapse
Affiliation(s)
- Hiroki Hasegawa
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan; Brain/Liver Interface Medicine Research Center, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan; Department of Otolaryngology-Head and Neck Surgery, Kanazawa University, Graduate School of Medical Science, Kanazawa, Ishikawa 920-8640, Japan
| | - Miyako Hatano
- Department of Otolaryngology-Head and Neck Surgery, Kanazawa University, Graduate School of Medical Science, Kanazawa, Ishikawa 920-8640, Japan
| | - Hisashi Sugimoto
- Department of Otolaryngology-Head and Neck Surgery, Kanazawa University, Graduate School of Medical Science, Kanazawa, Ishikawa 920-8640, Japan
| | - Makoto Ito
- Pediatric Otolaryngology, Jichi Children's Medical Center Tochigi, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Hiroshi Kawasaki
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan; Brain/Liver Interface Medicine Research Center, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan.
| | - Tomokazu Yoshizaki
- Department of Otolaryngology-Head and Neck Surgery, Kanazawa University, Graduate School of Medical Science, Kanazawa, Ishikawa 920-8640, Japan.
| |
Collapse
|
22
|
Leijon SC, Peyda S, Magnusson AK. Temporal processing capacity in auditory-deprived superior paraolivary neurons is rescued by sequential plasticity during early development. Neuroscience 2016; 337:315-330. [DOI: 10.1016/j.neuroscience.2016.09.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 09/01/2016] [Accepted: 09/09/2016] [Indexed: 01/04/2023]
|
23
|
Xie R, Manis PB. Synaptic transmission at the endbulb of Held deteriorates during age-related hearing loss. J Physiol 2016; 595:919-934. [PMID: 27618790 DOI: 10.1113/jp272683] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 09/07/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Synaptic transmission at the endbulb of Held was assessed by whole-cell patch clamp recordings from auditory neurons in mature (2-4 months) and aged (20-26 months) mice. Synaptic transmission is degraded in aged mice, which may contribute to the decline in neural processing of the central auditory system during age-related hearing loss. The changes in synaptic transmission in aged mice can be partially rescued by improving calcium buffering, or decreasing action potential-evoked calcium influx. These experiments suggest potential mechanisms, such as regulating intraterminal calcium, that could be manipulated to improve the fidelity of transmission at the aged endbulb of Held. ABSTRACT Age-related hearing loss (ARHL) is associated with changes to the auditory periphery that raise sensory thresholds and alter coding, and is accompanied by alterations in excitatory and inhibitory synaptic transmission, and intrinsic excitability in the circuits of the central auditory system. However, it remains unclear how synaptic transmission changes at the first central auditory synapses during ARHL. Using mature (2-4 months) and old (20-26 months) CBA/CaJ mice, we studied synaptic transmission at the endbulb of Held. Mature and old mice showed no difference in either spontaneous quantal synaptic transmission or low frequency evoked synaptic transmission at the endbulb of Held. However, when challenged with sustained high frequency stimulation, synapses in old mice exhibited increased asynchronous transmitter release and reduced synchronous release. This suggests that the transmission of temporally precise information is degraded at the endbulb during ARHL. Increasing intraterminal calcium buffering with EGTA-AM or decreasing calcium influx with ω-agatoxin IVA decreased the amount of asynchronous release and restored synchronous release in old mice. In addition, recovery from depression following high frequency trains was faster in old mice, but was restored to a normal time course by EGTA-AM treatment. These results suggest that intraterminal calcium in old endbulbs may rise to abnormally high levels during high rates of auditory nerve firing, or that calcium-dependent processes involved in release are altered with age. These observations suggest that ARHL is associated with a decrease in temporal precision of synaptic release at the first central auditory synapse, which may contribute to perceptual deficits in hearing.
Collapse
Affiliation(s)
- Ruili Xie
- Department of Neurosciences, University of Toledo, Toledo, OH, 43614-2598, USA
| | - Paul B Manis
- Department of Otolaryngology/Head and Neck Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7545, USA.,Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7070, USA
| |
Collapse
|
24
|
Clarkson C, Antunes FM, Rubio ME. Conductive Hearing Loss Has Long-Lasting Structural and Molecular Effects on Presynaptic and Postsynaptic Structures of Auditory Nerve Synapses in the Cochlear Nucleus. J Neurosci 2016; 36:10214-27. [PMID: 27683915 PMCID: PMC5039262 DOI: 10.1523/jneurosci.0226-16.2016] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 08/03/2016] [Accepted: 08/12/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Sound deprivation by conductive hearing loss increases hearing thresholds, but little is known about the response of the auditory brainstem during and after conductive hearing loss. Here, we show in young adult rats that 10 d of monaural conductive hearing loss (i.e., earplugging) leads to hearing deficits that persist after sound levels are restored. Hearing thresholds in response to clicks and frequencies higher than 8 kHz remain increased after a 10 d recovery period. Neural output from the cochlear nucleus measured at 10 dB above threshold is reduced and followed by an overcompensation at the level of the lateral lemniscus. We assessed whether structural and molecular substrates at auditory nerve (endbulb of Held) synapses in the cochlear nucleus could explain these long-lasting changes in hearing processing. During earplugging, vGluT1 expression in the presynaptic terminal decreased and synaptic vesicles were smaller. Together, there was an increase in postsynaptic density (PSD) thickness and an upregulation of GluA3 AMPA receptor subunits on bushy cells. After earplug removal and a 10 d recovery period, the density of synaptic vesicles increased, vesicles were also larger, and the PSD of endbulb synapses was larger and thicker. The upregulation of the GluA3 AMPAR subunit observed during earplugging was maintained after the recovery period. This suggests that GluA3 plays a role in plasticity in the cochlear nucleus. Our study demonstrates that sound deprivation has long-lasting alterations on structural and molecular presynaptic and postsynaptic components at the level of the first auditory nerve synapse in the auditory brainstem. SIGNIFICANCE STATEMENT Despite being the second most prevalent form of hearing loss, conductive hearing loss and its effects on central synapses have received relatively little attention. Here, we show that 10 d of monaural conductive hearing loss leads to an increase in hearing thresholds, to an increased central gain upstream of the cochlear nucleus at the level of the lateral lemniscus, and to long-lasting presynaptic and postsynaptic structural and molecular effects at the endbulb of the Held synapse. Knowledge of the structural and molecular changes associated with decreased sensory experience, along with their potential reversibility, is important for the treatment of hearing deficits, such as hyperacusis and chronic otitis media with effusion, which is prevalent in young children with language acquisition or educational disabilities.
Collapse
Affiliation(s)
| | | | - Maria E Rubio
- Departments of Otolaryngology and Neurobiology and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
25
|
Connelly CJ, Ryugo DK, Muniak MA. The effect of progressive hearing loss on the morphology of endbulbs of Held and bushy cells. Hear Res 2016; 343:14-33. [PMID: 27473502 DOI: 10.1016/j.heares.2016.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/15/2016] [Accepted: 07/18/2016] [Indexed: 10/21/2022]
Abstract
Studies of congenital and early-onset deafness have demonstrated that an absence of peripheral sound-evoked activity in the auditory nerve causes pathological changes in central auditory structures. The aim of this study was to establish whether progressive acquired hearing loss could lead to similar brain changes that would degrade the precision of signal transmission. We used complementary physiologic hearing tests and microscopic techniques to study the combined effect of both magnitude and duration of hearing loss on one of the first auditory synapses in the brain, the endbulb of Held (EB), along with its bushy cell (BC) target in the anteroventral cochlear nucleus. We compared two hearing mouse strains (CBA/Ca and heterozygous shaker-2+/-) against a model of early-onset progressive hearing loss (DBA/2) and a model of congenital deafness (homozygous shaker-2-/-), examining each strain at 1, 3, and 6 months of age. Furthermore, we employed a frequency model of the mouse cochlear nucleus to constrain our analyses to regions most likely to exhibit graded changes in hearing function with time. No significant differences in the gross morphology of EB or BC structure were observed in 1-month-old animals, indicating uninterrupted development. However, in animals with hearing loss, both EBs and BCs exhibited a graded reduction in size that paralleled the hearing loss, with the most severe pathology seen in deaf 6-month-old shaker-2-/- mice. Ultrastructural pathologies associated with hearing loss were less dramatic: minor changes were observed in terminal size but mitochondrial fraction and postsynaptic densities remained relatively stable. These results indicate that acquired progressive hearing loss can have consequences on auditory brain structure, with prolonged loss leading to greater pathologies. Our findings suggest a role for early intervention with assistive devices in order to mitigate long-term pathology and loss of function.
Collapse
Affiliation(s)
- Catherine J Connelly
- Hearing Research Unit, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia.
| | - David K Ryugo
- Hearing Research Unit, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia; Department of Otolaryngology, Head, Neck & Skull Base Surgery, St Vincent's Hospital, Sydney, NSW 2010, Australia
| | - Michael A Muniak
- Hearing Research Unit, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| |
Collapse
|
26
|
Somatic memory and gain increase as preconditions for tinnitus: Insights from congenital deafness. Hear Res 2016; 333:37-48. [DOI: 10.1016/j.heares.2015.12.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/27/2015] [Accepted: 12/18/2015] [Indexed: 11/19/2022]
|
27
|
Ahn J, MacLeod KM. Target-specific regulation of presynaptic release properties at auditory nerve terminals in the avian cochlear nucleus. J Neurophysiol 2016; 115:1679-90. [PMID: 26719087 DOI: 10.1152/jn.00752.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 12/23/2015] [Indexed: 02/04/2023] Open
Abstract
Short-term synaptic plasticity (STP) acts as a time- and firing rate-dependent filter that mediates the transmission of information across synapses. In the auditory brain stem, the divergent pathways that encode acoustic timing and intensity information express differential STP. To investigate what factors determine the plasticity expressed at different terminals, we tested whether presynaptic release probability differed in the auditory nerve projections to the two divisions of the avian cochlear nucleus, nucleus angularis (NA) and nucleus magnocellularis (NM). Estimates of release probability were made with an open-channel blocker ofN-methyl-d-aspartate (NMDA) receptors. Activity-dependent blockade of NMDA receptor-mediated excitatory postsynaptic currents (EPSCs) with application of 20 μM (+)-MK801 maleate was more rapid in NM than in NA, indicating that release probability was significantly higher at terminals in NM. Paired-pulse ratio (PPR) was tightly correlated with the blockade rate at terminals in NA, suggesting that PPR was a reasonable proxy for relative release probability at these synapses. To test whether release probability was similar across convergent inputs onto NA neurons, PPRs of different nerve inputs onto the same postsynaptic NA target neuron were measured. The PPRs, as well as the plasticity during short trains, were tightly correlated across multiple inputs, further suggesting that release probability is coordinated at auditory nerve terminals in a target-specific manner. This highly specific regulation of STP in the auditory brain stem provides evidence that the synaptic dynamics are tuned to differentially transmit the auditory information in nerve activity into parallel ascending pathways.
Collapse
Affiliation(s)
- J Ahn
- Department of Biology, University of Maryland, College Park, Maryland
| | - K M MacLeod
- Department of Biology, University of Maryland, College Park, Maryland; Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland; and Center for the Comparative and Evolutionary Biology of Hearing, University of Maryland, College Park, Maryland
| |
Collapse
|
28
|
Wichmann C. Molecularly and structurally distinct synapses mediate reliable encoding and processing of auditory information. Hear Res 2015; 330:178-90. [PMID: 26188105 DOI: 10.1016/j.heares.2015.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 06/21/2015] [Accepted: 07/10/2015] [Indexed: 01/20/2023]
Abstract
Hearing impairment is the most common human sensory deficit. Considering the sophisticated anatomy and physiology of the auditory system, disease-related failures frequently occur. To meet the demands of the neuronal circuits responsible for processing auditory information, the synapses of the lower auditory pathway are anatomically and functionally specialized to process acoustic information indefatigably with utmost temporal precision. Despite sharing some functional properties, the afferent synapses of the cochlea and of auditory brainstem differ greatly in their morphology and employ distinct molecular mechanisms for regulating synaptic vesicle release. Calyceal synapses of the endbulb of Held and the calyx of Held profit from a large number of release sites that project onto one principal cell. Cochlear inner hair cell ribbon synapses exhibit a unique one-to-one relation of the presynaptic active zone to the postsynaptic cell and use hair-cell-specific proteins such as otoferlin for vesicle release. The understanding of the molecular physiology of the hair cell ribbon synapse has been advanced by human genetics studies of sensorineural hearing impairment, revealing human auditory synaptopathy as a new nosological entity.
Collapse
Affiliation(s)
- Carolin Wichmann
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience & InnerEarLab, University Medical Center, Göttingen, Germany.
| |
Collapse
|
29
|
Wang HC, Bergles DE. Spontaneous activity in the developing auditory system. Cell Tissue Res 2015; 361:65-75. [PMID: 25296716 PMCID: PMC7046314 DOI: 10.1007/s00441-014-2007-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 09/09/2014] [Indexed: 12/13/2022]
Abstract
Spontaneous electrical activity is a common feature of sensory systems during early development. This sensory-independent neuronal activity has been implicated in promoting their survival and maturation, as well as growth and refinement of their projections to yield circuits that can rapidly extract information about the external world. Periodic bursts of action potentials occur in auditory neurons of mammals before hearing onset. This activity is induced by inner hair cells (IHCs) within the developing cochlea, which establish functional connections with spiral ganglion neurons (SGNs) several weeks before they are capable of detecting external sounds. During this pre-hearing period, IHCs fire periodic bursts of Ca(2+) action potentials that excite SGNs, triggering brief but intense periods of activity that pass through auditory centers of the brain. Although spontaneous activity requires input from IHCs, there is ongoing debate about whether IHCs are intrinsically active and their firing periodically interrupted by external inhibitory input (IHC-inhibition model), or are intrinsically silent and their firing periodically promoted by an external excitatory stimulus (IHC-excitation model). There is accumulating evidence that inner supporting cells in Kölliker's organ spontaneously release ATP during this time, which can induce bursts of Ca(2+) spikes in IHCs that recapitulate many features of auditory neuron activity observed in vivo. Nevertheless, the role of supporting cells in this process remains to be established in vivo. A greater understanding of the molecular mechanisms responsible for generating IHC activity in the developing cochlea will help reveal how these events contribute to the maturation of nascent auditory circuits.
Collapse
Affiliation(s)
- Han Chin Wang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
30
|
Activity-dependent, homeostatic regulation of neurotransmitter release from auditory nerve fibers. Proc Natl Acad Sci U S A 2015; 112:6479-84. [PMID: 25944933 DOI: 10.1073/pnas.1420885112] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Information processing in the brain requires reliable synaptic transmission. High reliability at specialized auditory nerve synapses in the cochlear nucleus results from many release sites (N), high probability of neurotransmitter release (Pr), and large quantal size (Q). However, high Pr also causes auditory nerve synapses to depress strongly when activated at normal rates for a prolonged period, which reduces fidelity. We studied how synapses are influenced by prolonged activity by exposing mice to constant, nondamaging noise and found that auditory nerve synapses changed to facilitating, reflecting low Pr. For mice returned to quiet, synapses recovered to normal depression, suggesting that these changes are a homeostatic response to activity. Two additional properties, Q and average excitatory postsynaptic current (EPSC) amplitude, were unaffected by noise rearing, suggesting that the number of release sites (N) must increase to compensate for decreased Pr. These changes in N and Pr were confirmed physiologically using the integration method. Furthermore, consistent with increased N, endbulbs in noise-reared animals had larger VGlut1-positive puncta, larger profiles in electron micrographs, and more release sites per profile. In current-clamp recordings, noise-reared BCs had greater spike fidelity even during high rates of synaptic activity. Thus, auditory nerve synapses regulate excitability through an activity-dependent, homeostatic mechanism, which could have major effects on all downstream processing. Our results also suggest that noise-exposed bushy cells would remain hyperexcitable for a period after returning to normal quiet conditions, which could have perceptual consequences.
Collapse
|
31
|
Synaptic plasticity in the auditory system: a review. Cell Tissue Res 2015; 361:177-213. [PMID: 25896885 DOI: 10.1007/s00441-015-2176-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/18/2015] [Indexed: 01/19/2023]
Abstract
Synaptic transmission via chemical synapses is dynamic, i.e., the strength of postsynaptic responses may change considerably in response to repeated synaptic activation. Synaptic strength is increased during facilitation, augmentation and potentiation, whereas a decrease in synaptic strength is characteristic for depression and attenuation. This review attempts to discuss the literature on short-term and long-term synaptic plasticity in the auditory brainstem of mammals and birds. One hallmark of the auditory system, particularly the inner ear and lower brainstem stations, is information transfer through neurons that fire action potentials at very high frequency, thereby activating synapses >500 times per second. Some auditory synapses display morphological specializations of the presynaptic terminals, e.g., calyceal extensions, whereas other auditory synapses do not. The review focuses on short-term depression and short-term facilitation, i.e., plastic changes with durations in the millisecond range. Other types of short-term synaptic plasticity, e.g., posttetanic potentiation and depolarization-induced suppression of excitation, will be discussed much more briefly. The same holds true for subtypes of long-term plasticity, like prolonged depolarizations and spike-time-dependent plasticity. We also address forms of plasticity in the auditory brainstem that do not comprise synaptic plasticity in a strict sense, namely short-term suppression, paired tone facilitation, short-term adaptation, synaptic adaptation and neural adaptation. Finally, we perform a meta-analysis of 61 studies in which short-term depression (STD) in the auditory system is opposed to short-term depression at non-auditory synapses in order to compare high-frequency neurons with those that fire action potentials at a lower rate. This meta-analysis reveals considerably less STD in most auditory synapses than in non-auditory ones, enabling reliable, failure-free synaptic transmission even at frequencies >100 Hz. Surprisingly, the calyx of Held, arguably the best-investigated synapse in the central nervous system, depresses most robustly. It will be exciting to reveal the molecular mechanisms that set high-fidelity synapses apart from other synapses that function much less reliably.
Collapse
|
32
|
The emerging framework of mammalian auditory hindbrain development. Cell Tissue Res 2015; 361:33-48. [DOI: 10.1007/s00441-014-2110-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 12/22/2014] [Indexed: 02/06/2023]
|
33
|
Auditory neuroplasticity, hearing loss and cochlear implants. Cell Tissue Res 2014; 361:251-69. [DOI: 10.1007/s00441-014-2004-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 09/04/2014] [Indexed: 10/24/2022]
|
34
|
Wright S, Hwang Y, Oertel D. Synaptic transmission between end bulbs of Held and bushy cells in the cochlear nucleus of mice with a mutation in Otoferlin. J Neurophysiol 2014; 112:3173-88. [PMID: 25253474 DOI: 10.1152/jn.00522.2014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Mice that carry a mutation in a calcium binding domain of Otoferlin, the putative calcium sensor at hair cell synapses, have normal distortion product otoacoustic emissions (DPOAEs), but auditory brain stem responses (ABRs) are absent. In mutant mice mechanotransduction is normal but transmission of acoustic information to the auditory pathway is blocked even before the onset of hearing. The cross-sectional area of the auditory nerve of mutant mice is reduced by 54%, and the volume of ventral cochlear nuclei is reduced by 46% relative to hearing control mice. While the tonotopic organization was not detectably changed in mutant mice, the axons to end bulbs of Held and the end bulbs themselves were smaller. In mutant mice bushy cells in the anteroventral cochlear nucleus (aVCN) have the electrophysiological hallmarks of control cells. Spontaneous miniature excitatory postsynaptic currents (EPSCs) occur with similar frequencies and have similar shapes in deaf as in hearing animals, but they are 24% larger in deaf mice. Bushy cells in deaf mutant mice are contacted by ∼2.6 auditory nerve fibers compared with ∼2.0 in hearing control mice. Furthermore, each fiber delivers more synaptic current, on average 4.8 nA compared with 3.4 nA, in deaf versus hearing control mice. The quantal content of evoked EPSCs is not different between mutant and control mice; the increase in synaptic current delivered in mutant mice is accounted for by the increased response to the size of the quanta. Although responses to shocks presented at long intervals are larger in mutant mice, they depress more rapidly than in hearing control mice.
Collapse
Affiliation(s)
- Samantha Wright
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin; and
| | - Youngdeok Hwang
- I.B.M. Thomas J. Watson Research Center, Yorktown Heights, New York
| | - Donata Oertel
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin; and
| |
Collapse
|
35
|
Robinson SW, Nugent ML, Dinsdale D, Steinert JR. Prion protein facilitates synaptic vesicle release by enhancing release probability. Hum Mol Genet 2014; 23:4581-96. [PMID: 24722203 PMCID: PMC4119408 DOI: 10.1093/hmg/ddu171] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The cellular prion protein (PrP(C)) has been implicated in several neurodegenerative diseases as a result of protein misfolding. In humans, prion disease occurs typically with a sporadic origin where uncharacterized mechanisms induce spontaneous PrP(C) misfolding leading to neurotoxic PrP-scrapie formation (PrP(SC)). The consequences of misfolded PrP(C) signalling are well characterized but little is known about the physiological roles of PrP(C) and its involvement in disease. Here we investigated wild-type PrP(C) signalling in synaptic function as well as the effects of a disease-relevant mutation within PrP(C) (proline-to-leucine mutation at codon 101). Expression of wild-type PrP(C) at the Drosophila neuromuscular junction leads to enhanced synaptic responses as detected in larger miniature synaptic currents which are caused by enlarged presynaptic vesicles. The expression of the mutated PrP(C) leads to reduction of both parameters compared with wild-type PrP(C). Wild-type PrP(C) enhances synaptic release probability and quantal content but reduces the size of the ready-releasable vesicle pool. Partially, these changes are not detectable following expression of the mutant PrP(C). A behavioural test revealed that expression of either protein caused an increase in locomotor activities consistent with enhanced synaptic release and stronger muscle contractions. Both proteins were sensitive to proteinase digestion. These data uncover new functions of wild-type PrP(C) at the synapse with a disease-relevant mutation in PrP(C) leading to diminished functional phenotypes. Thus, our data present essential new information possibly related to prion pathogenesis in which a functional synaptic role of PrP(C) is compromised due to its advanced conversion into PrP(SC) thereby creating a lack-of-function scenario.
Collapse
Affiliation(s)
- Susan W Robinson
- MRC Toxicology Unit, Hodgkin Building, Lancaster Road, Leicester LE1 9HN, UK
| | - Marie L Nugent
- MRC Toxicology Unit, Hodgkin Building, Lancaster Road, Leicester LE1 9HN, UK Department of Genetics, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - David Dinsdale
- MRC Toxicology Unit, Hodgkin Building, Lancaster Road, Leicester LE1 9HN, UK
| | - Joern R Steinert
- MRC Toxicology Unit, Hodgkin Building, Lancaster Road, Leicester LE1 9HN, UK
| |
Collapse
|
36
|
Kramer F, Griesemer D, Bakker D, Brill S, Franke J, Frotscher E, Friauf E. Inhibitory glycinergic neurotransmission in the mammalian auditory brainstem upon prolonged stimulation: short-term plasticity and synaptic reliability. Front Neural Circuits 2014; 8:14. [PMID: 24653676 PMCID: PMC3948056 DOI: 10.3389/fncir.2014.00014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 02/13/2014] [Indexed: 11/13/2022] Open
Abstract
Short-term plasticity plays a key role in synaptic transmission and has been extensively investigated for excitatory synapses. Much less is known about inhibitory synapses. Here we analyze the performance of glycinergic connections between the medial nucleus of the trapezoid body (MNTB) and the lateral superior olive (LSO) in the auditory brainstem, where high spike rates as well as fast and precise neurotransmission are hallmarks. Analysis was performed in acute mouse slices shortly after hearing onset (postnatal day (P)11) and 8 days later (P19). Stimulation was done at 37°C with 1–400 Hz for 40 s. Moreover, in a novel approach named marathon experiments, a very prolonged stimulation protocol was employed, comprising 10 trials of 1-min challenge and 1-min recovery periods at 50 and 1 Hz, respectively, thus lasting up to 20 min and amounting to >30,000 stimulus pulses. IPSC peak amplitudes displayed short-term depression (STD) and synaptic attenuation in a frequency-dependent manner. No facilitation was observed. STD in the MNTB-LSO connections was less pronounced than reported in the upstream calyx of Held-MNTB connections. At P11, the STD level and the failure rate were slightly lower within the ms-to-s range than at P19. During prolonged stimulation periods lasting 40 s, P19 connections sustained virtually failure-free transmission up to frequencies of 100 Hz, whereas P11 connections did so only up to 50 Hz. In marathon experiments, P11 synapses recuperated reproducibly from synaptic attenuation during all recovery periods, demonstrating a robust synaptic machinery at hearing onset. At 26°C, transmission was severely impaired and comprised abnormally high amplitudes after minutes of silence, indicative of imprecisely regulated vesicle pools. Our study takes a fresh look at synaptic plasticity and stability by extending conventional stimulus periods in the ms-to-s range to minutes. It also provides a framework for future analyses of synaptic plasticity.
Collapse
Affiliation(s)
- Florian Kramer
- Animal Physiology Group, Department of Biology, University of Kaiserslautern Kaiserslautern, Germany
| | - Désirée Griesemer
- Animal Physiology Group, Department of Biology, University of Kaiserslautern Kaiserslautern, Germany
| | - Dennis Bakker
- Animal Physiology Group, Department of Biology, University of Kaiserslautern Kaiserslautern, Germany
| | - Sina Brill
- Animal Physiology Group, Department of Biology, University of Kaiserslautern Kaiserslautern, Germany
| | - Jürgen Franke
- Chair for Applied Mathematical Statistics, Department of Mathematics, University of Kaiserslautern Kaiserslautern, Germany ; Center for Mathematical and Computational Modeling, University of Kaiserslautern Kaiserslautern, Germany
| | - Erik Frotscher
- Animal Physiology Group, Department of Biology, University of Kaiserslautern Kaiserslautern, Germany
| | - Eckhard Friauf
- Animal Physiology Group, Department of Biology, University of Kaiserslautern Kaiserslautern, Germany ; Center for Mathematical and Computational Modeling, University of Kaiserslautern Kaiserslautern, Germany
| |
Collapse
|
37
|
α2δ3 is essential for normal structure and function of auditory nerve synapses and is a novel candidate for auditory processing disorders. J Neurosci 2014; 34:434-45. [PMID: 24403143 DOI: 10.1523/jneurosci.3085-13.2014] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The auxiliary subunit α2δ3 modulates the expression and function of voltage-gated calcium channels. Here we show that α2δ3 mRNA is expressed in spiral ganglion neurons and auditory brainstem nuclei and that the protein is required for normal acoustic responses. Genetic deletion of α2δ3 led to impaired auditory processing, with reduced acoustic startle and distorted auditory brainstem responses. α2δ3(-/-) mice learned to discriminate pure tones, but they failed to discriminate temporally structured amplitude-modulated tones. Light and electron microscopy analyses revealed reduced levels of presynaptic Ca(2+) channels and smaller auditory nerve fiber terminals contacting cochlear nucleus bushy cells. Juxtacellular in vivo recordings of sound-evoked activity in α2δ3(-/-) mice demonstrated impaired transmission at these synapses. Together, our results identify a novel role for the α2δ3 auxiliary subunit in the structure and function of specific synapses in the mammalian auditory pathway and in auditory processing disorders.
Collapse
|
38
|
Grimsley CA, Sivaramakrishnan S. Postnatal developmental changes in the medial nucleus of the trapezoid body in a mouse model of auditory pathology. Neurosci Lett 2014; 559:152-7. [PMID: 24315975 DOI: 10.1016/j.neulet.2013.11.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 11/13/2013] [Accepted: 11/26/2013] [Indexed: 11/26/2022]
Abstract
Age-related hearing loss (AHL) is a multifactorial disorder characterized by a decline in peripheral and central auditory function. Here, we examined synaptic transmission in DBA/2 mice, which carry the AHL8 gene, at the identifiable glutamatergic synapse in the medial nucleus of the trapezoid body (MNTB), a nucleus in the superior olivary complex critical for acoustic timing. Mice exhibited raised auditory brainstem thresholds by P14, soon after hearing onset. Excitatory postsynaptic currents were prolonged; however, postsynaptic excitability was normal. By P18, high-frequency hearing loss was evident. Coincident with the onset of hearing loss, MNTB principal neurons displayed changes in intrinsic firing properties. These results suggest that changes in transmission in the superior olivary complex are associated with early onset hearing loss.
Collapse
Affiliation(s)
- Calum A Grimsley
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH 44272, United States
| | - Shobhana Sivaramakrishnan
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH 44272, United States.
| |
Collapse
|
39
|
Mendoza Schulz A, Jing Z, Sánchez Caro JM, Wetzel F, Dresbach T, Strenzke N, Wichmann C, Moser T. Bassoon-disruption slows vesicle replenishment and induces homeostatic plasticity at a CNS synapse. EMBO J 2014; 33:512-27. [PMID: 24442636 DOI: 10.1002/embj.201385887] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Endbulb of Held terminals of auditory nerve fibers (ANF) transmit auditory information at hundreds per second to bushy cells (BCs) in the anteroventral cochlear nucleus (AVCN). Here, we studied the structure and function of endbulb synapses in mice that lack the presynaptic scaffold bassoon and exhibit reduced ANF input into the AVCN. Endbulb terminals and active zones were normal in number and vesicle complement. Postsynaptic densities, quantal size and vesicular release probability were increased while vesicle replenishment and the standing pool of readily releasable vesicles were reduced. These opposing effects canceled each other out for the first evoked EPSC, which showed unaltered amplitude. We propose that ANF activity deprivation drives homeostatic plasticity in the AVCN involving synaptic upscaling and increased intrinsic BC excitability. In vivo recordings from individual mutant BCs demonstrated a slightly improved response at sound onset compared to ANF, likely reflecting the combined effects of ANF convergence and homeostatic plasticity. Further, we conclude that bassoon promotes vesicular replenishment and, consequently, a large standing pool of readily releasable synaptic vesicles at the endbulb synapse.
Collapse
Affiliation(s)
- Alejandro Mendoza Schulz
- InnerEarLab, Department of Otolaryngology, University Medical Center Göttingen, Göttingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Butler BE, Lomber SG. Functional and structural changes throughout the auditory system following congenital and early-onset deafness: implications for hearing restoration. Front Syst Neurosci 2013; 7:92. [PMID: 24324409 PMCID: PMC3840613 DOI: 10.3389/fnsys.2013.00092] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 11/03/2013] [Indexed: 11/23/2022] Open
Abstract
The absence of auditory input, particularly during development, causes widespread changes in the structure and function of the auditory system, extending from peripheral structures into auditory cortex. In humans, the consequences of these changes are far-reaching and often include detriments to language acquisition, and associated psychosocial issues. Much of what is currently known about the nature of deafness-related changes to auditory structures comes from studies of congenitally deaf or early-deafened animal models. Fortunately, the mammalian auditory system shows a high degree of preservation among species, allowing for generalization from these models to the human auditory system. This review begins with a comparison of common methods used to obtain deaf animal models, highlighting the specific advantages and anatomical consequences of each. Some consideration is also given to the effectiveness of methods used to measure hearing loss during and following deafening procedures. The structural and functional consequences of congenital and early-onset deafness have been examined across a variety of mammals. This review attempts to summarize these changes, which often involve alteration of hair cells and supporting cells in the cochleae, and anatomical and physiological changes that extend through subcortical structures and into cortex. The nature of these changes is discussed, and the impacts to neural processing are addressed. Finally, long-term changes in cortical structures are discussed, with a focus on the presence or absence of cross-modal plasticity. In addition to being of interest to our understanding of multisensory processing, these changes also have important implications for the use of assistive devices such as cochlear implants.
Collapse
Affiliation(s)
- Blake E. Butler
- Cerebral Systems Laboratory, Department of Physiology and Pharmacology, Brain and Mind Institute, University of Western OntarioLondon, ON, Canada
| | - Stephen G. Lomber
- Cerebral Systems Laboratory, Department of Physiology and Pharmacology and Department of Psychology, National Centre for Audiology, Brain and Mind Institute, University of Western OntarioLondon, ON, Canada
| |
Collapse
|
41
|
Xie R, Manis PB. Glycinergic synaptic transmission in the cochlear nucleus of mice with normal hearing and age-related hearing loss. J Neurophysiol 2013; 110:1848-59. [PMID: 23904491 DOI: 10.1152/jn.00151.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The principal inhibitory neurotransmitter in the mammalian cochlear nucleus (CN) is glycine. During age-related hearing loss (AHL), glycinergic inhibition becomes weaker in CN. However, it is unclear what aspects of glycinergic transmission are responsible for weaker inhibition with AHL. We examined glycinergic transmission onto bushy cells of the anteroventral CN in normal-hearing CBA/CaJ mice and in DBA/2J mice, a strain that exhibits an early onset AHL. Glycinergic synaptic transmission was examined in brain slices of mice at 10-15 postnatal days old, 20-35 days old, and at 6-7 mo old. Spontaneous inhibitory postsynaptic current (sIPSC) event frequency and amplitude were the same among all three ages in both strains of mice. However, the amplitudes of IPSCs evoked (eIPSC) from stimulating the dorsal CN were smaller, and the failure rate was higher, with increasing age due to decreased quantal content in both mouse strains, independent of hearing status. The coefficient of variation of the eIPSC amplitude also increased with age. The decay time constant (τ) of sIPSCs and eIPSCs were constant in CBA/CaJ mice at all ages, but were significantly slower in DBA/2J mice at postnatal days 20-35, following the onset of AHL, and not at earlier or later ages. Our results suggest that glycinergic inhibition at the synapses onto bushy cells becomes weaker and less reliable with age through changes in release. However, the hearing loss in DBA/2J mice is accompanied by a transiently enhanced inhibition, which could disrupt the balance of excitation and inhibition.
Collapse
Affiliation(s)
- Ruili Xie
- Department of Otolaryngology/Head and Neck Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and
| | | |
Collapse
|
42
|
Lontay B, Pál B, Serfőző Z, Kőszeghy Á, Szücs G, Rusznák Z, Erdődi F. Protein phosphatase-1M and Rho-kinase affect exocytosis from cortical synaptosomes and influence neurotransmission at a glutamatergic giant synapse of the rat auditory system. J Neurochem 2012; 123:84-99. [PMID: 22817114 DOI: 10.1111/j.1471-4159.2012.07882.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein phosphatase-1M (PP1M, myosin phosphatase) consists of a PP1 catalytic subunit (PP1c) and the myosin phosphatase target subunit-1 (MYPT1). RhoA-activated kinase (ROK) regulates PP1M via inhibitory phosphorylation of MYPT1. Using multidisciplinary approaches, we have studied the roles of PP1M and ROK in neurotransmission. Electron microscopy demonstrated the presence of MYPT1 and ROK in both pre- and post-synaptic terminals. Tautomycetin (TMC), a PP1-specific inhibitor, decreased the depolarization-induced exocytosis from cortical synaptosomes. trans-4-[(1R)-1-aminoethyl]-N-4-pyridinylcyclohexanecarboxamide dihydrochloride, a ROK-specific inhibitor, had the opposite effect. Mass spectrometry analysis identified several MYPT1-bound synaptosomal proteins, of which interactions of synapsin-I, syntaxin-1, calcineurin-A subunit, and Ca(2+) /calmodulin-dependent kinase II with MYPT1 were confirmed. In intact synaptosomes, TMC increased, whereas Y27632 decreased the phosphorylation levels of MYPT1(Thr696) , myosin-II light chain(Ser19) , synapsin-I(Ser9) , and syntaxin-1(Ser14) , indicating that PP1M and ROK influence their phosphorylation status. Confocal microscopy indicated that MYPT1 and ROK are present in the rat ventral cochlear nucleus both pre- and post-synaptically. Analysis of the neurotransmission in an auditory glutamatergic giant synapse demonstrated that PP1M and ROK affect neurotransmission via both pre- and post-synaptic mechanisms. Our data suggest that both PP1M and ROK influence synaptic transmission, but further studies are needed to give a full account of their mechanism of action.
Collapse
Affiliation(s)
- Beáta Lontay
- Department of Medical Chemistry and Cell Biology and Signaling Research Group of the Hungarian Academy of Sciences, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Synapses formed by one cell type onto another cell type tend to show characteristic short-term plasticity, which varies from facilitating to depressing depending on the particular system. Within a population of synapses, plasticity can also be variable, and it is unknown how this plasticity is determined on a cell-by-cell level. We have investigated this in the mouse cochlear nucleus, where auditory nerve (AN) fibers contact bushy cells (BCs) at synapses called "endbulbs of Held." Synapses formed by different AN fibers onto one BC had plasticity that was more similar than would be expected at random. Experiments using MK-801 indicated that this resulted in part from similarity in the presynaptic probability of release. The similarity was not present in immature synapses but emerged after the onset of hearing. In addition, the phenomenon occurred at excitatory synapses in the cerebellum. This indicates that postsynaptic cells coordinate the plasticity of their inputs, which suggests that plasticity is of fundamental importance to synaptic function.
Collapse
|
44
|
Schaette R, Kempter R. Computational models of neurophysiological correlates of tinnitus. Front Syst Neurosci 2012; 6:34. [PMID: 22586377 PMCID: PMC3347476 DOI: 10.3389/fnsys.2012.00034] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 04/17/2012] [Indexed: 11/13/2022] Open
Abstract
The understanding of tinnitus has progressed considerably in the past decade, but the details of the mechanisms that give rise to this phantom perception of sound without a corresponding acoustic stimulus have not yet been pinpointed. It is now clear that tinnitus is generated in the brain, not in the ear, and that it is correlated with pathologically altered spontaneous activity of neurons in the central auditory system. Both increased spontaneous firing rates and increased neuronal synchrony have been identified as putative neuronal correlates of phantom sounds in animal models, and both phenomena can be triggered by damage to the cochlea. Various mechanisms could underlie the generation of such aberrant activity. At the cellular level, decreased synaptic inhibition and increased neuronal excitability, which may be related to homeostatic plasticity, could lead to an over-amplification of natural spontaneous activity. At the network level, lateral inhibition could amplify differences in spontaneous activity, and structural changes such as reorganization of tonotopic maps could lead to self-sustained activity in recurrently connected neurons. However, it is difficult to disentangle the contributions of different mechanisms in experiments, especially since not all changes observed in animal models of tinnitus are necessarily related to tinnitus. Computational modeling presents an opportunity of evaluating these mechanisms and their relation to tinnitus. Here we review the computational models for the generation of neurophysiological correlates of tinnitus that have been proposed so far, and evaluate predictions and compare them to available data. We also assess the limits of their explanatory power, thus demonstrating where an understanding is still lacking and where further research may be needed. Identifying appropriate models is important for finding therapies, and we therefore, also summarize the implications of the models for approaches to treat tinnitus.
Collapse
|
45
|
Ma Y, Prince DA. Functional alterations in GABAergic fast-spiking interneurons in chronically injured epileptogenic neocortex. Neurobiol Dis 2012; 47:102-13. [PMID: 22484482 DOI: 10.1016/j.nbd.2012.03.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 02/15/2012] [Accepted: 03/21/2012] [Indexed: 11/29/2022] Open
Abstract
Progress toward developing effective prophylaxis and treatment of posttraumatic epilepsy depends on a detailed understanding of the basic underlying mechanisms. One important factor contributing to epileptogenesis is decreased efficacy of GABAergic inhibition. Here we tested the hypothesis that the output of neocortical fast-spiking (FS) interneurons onto postsynaptic targets would be decreased in the undercut (UC) model of chronic posttraumatic epileptogenesis. Using dual whole-cell recordings in layer IV barrel cortex, we found a marked increase in the failure rate and a very large reduction in the amplitude of unitary inhibitory postsynaptic currents (uIPSCs) from FS cells to excitatory regular spiking (RS) neurons and neighboring FS cells. Assessment of the paired pulse ratio and presumed quantal release showed that there was a significant, but relatively modest, decrease in synaptic release probability and a non-significant reduction in quantal size. A reduced density of boutons on axons of biocytin-filled UC FS cells, together with a higher coefficient of variation of uIPSC amplitude in RS cells, suggested that the number of functional synapses presynaptically formed by FS cells may be reduced. Given the marked reduction in synaptic strength, other defects in the presynaptic vesicle release machinery likely occur, as well.
Collapse
Affiliation(s)
- Yunyong Ma
- Dept. of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305-5122, USA
| | | |
Collapse
|
46
|
|
47
|
|
48
|
α7-Containing and non-α7-containing nicotinic receptors respond differently to spillover of acetylcholine. J Neurosci 2011; 31:14920-30. [PMID: 22016525 DOI: 10.1523/jneurosci.3400-11.2011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We explored whether nicotinic acetylcholine receptors (nAChRs) might participate in paracrine transmission by asking if they respond to spillover of ACh at a model synapse in the chick ciliary ganglion, where ACh activates diffusely distributed α7- and α3-containing nAChRs (α7-nAChRs and α3*-nAChRs). Elevating quantal content lengthened EPSC decay time and prolonged both the fast (α7-nAChR-mediated) and slow (α3*-nAChR-mediated) components of decay, even in the presence of acetylcholinesterase. Increasing quantal content also prolonged decay times of pharmacologically isolated α7-nAChR- and α3*-nAChR-EPSCs. The effect upon EPSC decay time of changing quantal content was 5-10 times more pronounced for α3*-nAChR- than α7-nAChR-mediated currents and operated over a considerably longer time window: ≈ 20 vs ≈ 2 ms. Control experiments rule out a presynaptic source for the effect. We suggest that α3*-nAChR currents are prolonged at higher quantal content because of ACh spillover and postsynaptic potentiation (Hartzell et al., 1975), while α7-nAChR currents are prolonged probably for other reasons, e.g., increased occupancy of long channel open states. α3*-nAChRs report more spillover when α7-nAChRs are competitively blocked than under native conditions; this could be explained if α7-nAChRs buffer ACh and regulate its availability to activate α3*-nAChRs. Our results suggest that non-α7-nAChRs such as α3*-nAChRs may be suitable for paracrine nicotinic signaling but that α7-nAChRs may not be suitable. Our results further suggest that α7-nAChRs may buffer ACh and regulate its bioavailability.
Collapse
|
49
|
Wang Y, O'Donohue H, Manis P. Short-term plasticity and auditory processing in the ventral cochlear nucleus of normal and hearing-impaired animals. Hear Res 2011; 279:131-9. [PMID: 21586317 PMCID: PMC3280686 DOI: 10.1016/j.heares.2011.04.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 04/23/2011] [Accepted: 04/28/2011] [Indexed: 11/19/2022]
Abstract
The dynamics of synaptic transmission between neurons plays a major role in neural information processing. In the cochlear nucleus, auditory nerve synapses have a relatively high release probability and show pronounced synaptic depression that, in conjunction with the variability of interspike intervals, shapes the information transmitted to the postsynaptic cells. Cellular mechanisms have been best analyzed at the endbulb synapses, revealing that the recent history of presynaptic activity plays a complex, non-linear, role in regulating release. Emerging evidence suggests that the dynamics of synaptic function differs according to the target neuron within the cochlear nucleus. One consequence of hearing loss is changes in evoked release at surviving auditory nerve synapses, and in some situations spontaneous release is greatly enhanced. In contrast, even with cochlear ablation, postsynaptic excitability is less affected. The existing evidence suggests that different modes of hearing loss can result in different dynamic patterns of synaptic transmission between the auditory nerve and postsynaptic neurons. These changes in dynamics in turn will affect the efficacy with which different kinds of information about the acoustic environment can be processed by the parallel pathways in the cochlear nucleus.
Collapse
Affiliation(s)
- Yong Wang
- Division of Otolaryngology and Neuroscience Program, 3C120 School of Medicine, 30 North, 1900 East, Salt Lake City, University of Utah, UT 84132, USA.
| | | | | |
Collapse
|
50
|
Nayagam BA, Muniak MA, Ryugo DK. The spiral ganglion: connecting the peripheral and central auditory systems. Hear Res 2011; 278:2-20. [PMID: 21530629 PMCID: PMC3152679 DOI: 10.1016/j.heares.2011.04.003] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 03/26/2011] [Accepted: 04/03/2011] [Indexed: 12/15/2022]
Abstract
In mammals, the initial bridge between the physical world of sound and perception of that sound is established by neurons of the spiral ganglion. The cell bodies of these neurons give rise to peripheral processes that contact acoustic receptors in the organ of Corti, and the central processes collect together to form the auditory nerve that projects into the brain. In order to better understand hearing at this initial stage, we need to know the following about spiral ganglion neurons: (1) their cell biology including cytoplasmic, cytoskeletal, and membrane properties, (2) their peripheral and central connections including synaptic structure; (3) the nature of their neural signaling; and (4) their capacity for plasticity and rehabilitation. In this report, we will update the progress on these topics and indicate important issues still awaiting resolution.
Collapse
Affiliation(s)
- Bryony A Nayagam
- Department of Otolaryngology, University of Melbourne, Melbourne, VIC Australia
| | - Michael A Muniak
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD USA
| | - David K Ryugo
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD USA
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, MD USA
- Garvan Institute, Darlinghurst, NSW Australia
| |
Collapse
|