1
|
Michelucci A, Catacuzzeno L. Piezo1, the new actor in cell volume regulation. Pflugers Arch 2024; 476:1023-1039. [PMID: 38581527 PMCID: PMC11166825 DOI: 10.1007/s00424-024-02951-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/29/2024] [Accepted: 03/20/2024] [Indexed: 04/08/2024]
Abstract
All animal cells control their volume through a complex set of mechanisms, both to counteract osmotic perturbations of the environment and to enable numerous vital biological processes, such as proliferation, apoptosis, and migration. The ability of cells to adjust their volume depends on the activity of ion channels and transporters which, by moving K+, Na+, and Cl- ions across the plasma membrane, generate the osmotic gradient that drives water in and out of the cell. In 2010, Patapoutian's group identified a small family of evolutionarily conserved, Ca2+-permeable mechanosensitive channels, Piezo1 and Piezo2, as essential components of the mechanically activated current that mediates mechanotransduction in vertebrates. Piezo1 is expressed in several tissues and its opening is promoted by a wide range of mechanical stimuli, including membrane stretch/deformation and osmotic stress. Piezo1-mediated Ca2+ influx is used by the cell to convert mechanical forces into cytosolic Ca2+ signals that control diverse cellular functions such as migration and cell death, both dependent on changes in cell volume and shape. The crucial role of Piezo1 in the regulation of cell volume was first demonstrated in erythrocytes, which need to reduce their volume to pass through narrow capillaries. In HEK293 cells, increased expression of Piezo1 was found to enhance the regulatory volume decrease (RVD), the process whereby the cell re-establishes its original volume after osmotic shock-induced swelling, and it does so through Ca2+-dependent modulation of the volume-regulated anion channels. More recently we reported that Piezo1 controls the RVD in glioblastoma cells via the modulation of Ca2+-activated K+ channels. To date, however, the mechanisms through which this mechanosensitive channel controls cell volume and maintains its homeostasis have been poorly investigated and are still far from being understood. The present review aims to provide a broad overview of the literature discussing the recent advances on this topic.
Collapse
Affiliation(s)
- A Michelucci
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123, Perugia, Italy.
| | - L Catacuzzeno
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123, Perugia, Italy.
| |
Collapse
|
2
|
Kudo W, Hashitani H. PTHrP attenuates spontaneous contractions in detrusor smooth muscle of the rat bladder by activating spontaneous transient outward potassium currents. Pflugers Arch 2024; 476:809-820. [PMID: 38421408 DOI: 10.1007/s00424-024-02931-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/21/2023] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Parathyroid hormone-related protein (PTHrP) released from detrusor smooth muscle (DSM) cells upon bladder distension attenuates spontaneous phasic contractions (SPCs) in DSM and associated afferent firing to facilitate urine storage. Here, we investigate the mechanisms underlying PTHrP-induced inhibition of SPCs, focusing on large-conductance Ca2+-activated K+ channels (BK channels) that play a central role in stabilizing DSM excitability. Perforated patch-clamp techniques were applied to DSM cells of the rat bladder dispersed using collagenase. Isometric tension changes were recorded from DSM strips, while intracellular Ca2+ dynamics were visualized using Cal520 AM -loaded DSM bundles. DSM cells developed spontaneous transient outward potassium currents (STOCs) arising from the opening of BK channels. PTHrP (10 nM) increased the frequency of STOCs without affecting their amplitude at a holding potential of - 30 mV but not - 40 mV. PTHrP enlarged depolarization-induced, BK-mediated outward currents at membrane potentials positive to + 20 mV in a manner sensitive to iberiotoxin (100 nM), the BK channel blocker. The PTHrP-induced increases in BK currents were also prevented by inhibitors of sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) (CPA 10 µM), L-type voltage-dependent Ca2+ channel (LVDCC) (nifedipine 3 µM) or adenylyl cyclase (SQ22536 100 µM). PTHrP had no effect on depolarization-induced LVDCC currents. PTHrP suppressed and slowed SPCs in an iberiotoxin (100 nM)-sensitive manner. PTHrP also reduced the number of Ca2+ spikes during each burst of spontaneous Ca2+ transients. In conclusion, PTHrP accelerates STOCs discharge presumably by facilitating SR Ca2+ release which prematurely terminates Ca2+ transient bursts resulting in the attenuation of SPCs.
Collapse
Affiliation(s)
- Wataru Kudo
- Department of Cell Physiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Hikaru Hashitani
- Department of Cell Physiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan.
| |
Collapse
|
3
|
Chen Y, Markov N, Gigon L, Hosseini A, Yousefi S, Stojkov D, Simon HU. The BK Channel Limits the Pro-Inflammatory Activity of Macrophages. Cells 2024; 13:322. [PMID: 38391935 PMCID: PMC10886595 DOI: 10.3390/cells13040322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
Macrophages play a crucial role in the innate immune response, serving as key effector cells in the defense against pathogens. Although the role of the large-conductance voltage and calcium-activated potassium channel, also known as the KCa1.1 or BK channel, in regulating neurotransmitter release and smooth muscle contraction is well known, its potential involvement in immune regulation remains unclear. We employed BK-knockout macrophages and noted that the absence of a BK channel promotes the polarization of macrophages towards a pro-inflammatory phenotype known as M1 macrophages. Specifically, the absence of the BK channel resulted in a significant increase in the secretion of the pro-inflammatory cytokine IL-6 and enhanced the activity of extracellular signal-regulated kinases 1 and 2 (Erk1/2 kinases), Ca2+/calmodulin-dependent protein kinase II (CaMKII), and the transcription factor ATF-1 within M1 macrophages. Additionally, the lack of the BK channel promoted the activation of the AIM2 inflammasome without affecting the activation of the NLRC4 and NLRP3 inflammasomes. To further investigate the role of the BK channel in regulating AIM2 inflammasome activation, we utilized BK channel inhibitors, such as paxilline and iberiotoxin, along with the BK channel activator NS-11021. Pharmacological inactivation of the BK channel increased, and its stimulation inhibited IL-1β production following AIM2 inflammasome activation in wild-type macrophages. Moreover, wild-type macrophages displayed increased calcium influx when activated with the AIM2 inflammasome, whereas BK-knockout macrophages did not due to the impaired extracellular calcium influx upon activation. Furthermore, under conditions of a calcium-free medium, IL-1β production following AIM2 inflammasome activation was increased in both wild-type and BK-knockout macrophages. This suggests that the BK channel is required for the influx of extracellular calcium in macrophages, thus limiting AIM2 inflammasome activation. In summary, our study reveals a regulatory role of the BK channel in macrophages under inflammatory conditions.
Collapse
Affiliation(s)
- Yihe Chen
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland
| | - Nikita Markov
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland
| | - Lea Gigon
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland
| | - Aref Hosseini
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland
| | - Shida Yousefi
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland
| | - Darko Stojkov
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland
- Institute of Biochemistry, Brandenburg Medical School, 16816 Neuruppin, Germany
| |
Collapse
|
4
|
Barrese V, Wehbe Z, Linden A, McDowell S, Forrester E, Povstyan O, McCloskey KD, Greenwood IA. Key role for Kv11.1 (ether-a-go-go related gene) channels in rat bladder contractility. Physiol Rep 2023; 11:e15583. [PMID: 36750122 PMCID: PMC9904964 DOI: 10.14814/phy2.15583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 06/01/2023] Open
Abstract
In addition, to their established role in cardiac myocytes and neurons, ion channels encoded by ether-a-go-go-related genes (ERG1-3 or kcnh2,3 and 6) (kcnh2) are functionally relevant in phasic smooth muscle. The aim of the study was to determine the expression and functional impact of ERG expression products in rat urinary bladder smooth muscle using quantitative polymerase chain reaction, immunocytochemistry, whole-cell patch-clamp and isometric tension recording. kcnh2 was expressed in rat bladder, whereas kcnh6 and kcnh3 expression were negligible. Immunofluorescence for the kcnh2 expression product Kv11.1 was detected in the membrane of isolated smooth muscle cells. Potassium currents with voltage-dependent characteristics consistent with Kv11.1 channels and sensitive to the specific blocker E4031 (1 μM) were recorded from isolated detrusor smooth muscles. Disabling Kv11.1 activity with specific blockers (E4031 and dofetilide, 0.2-20 μM) augmented spontaneous contractions to a greater extent than BKCa channel blockers, enhanced carbachol-driven activity, increased nerve stimulation-mediated contractions, and impaired β-adrenoceptor-mediated inhibitory responses. These data establish for the first time that Kv11.1 channels are key determinants of contractility in rat detrusor smooth muscle.
Collapse
Affiliation(s)
- Vincenzo Barrese
- Vascular Biology Research CentreMolecular and Clinical Sciences Research Institute, St George's University of LondonLondonUK
- Department of Neuroscience, Reproductive Sciences and DentistryUniversity of Naples Federico IINaplesItaly
| | - Zena Wehbe
- Vascular Biology Research CentreMolecular and Clinical Sciences Research Institute, St George's University of LondonLondonUK
| | - Alice Linden
- Vascular Biology Research CentreMolecular and Clinical Sciences Research Institute, St George's University of LondonLondonUK
| | - Sarah McDowell
- Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical SciencesQueen's University BelfastBelfastUK
| | - Elizabeth Forrester
- Vascular Biology Research CentreMolecular and Clinical Sciences Research Institute, St George's University of LondonLondonUK
| | | | - Karen D. McCloskey
- Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical SciencesQueen's University BelfastBelfastUK
| | - Iain A. Greenwood
- Vascular Biology Research CentreMolecular and Clinical Sciences Research Institute, St George's University of LondonLondonUK
| |
Collapse
|
5
|
Lee H, Koh BH, Peri LE, Woodward HJ, Perrino BA, Sanders KM, Koh SD. Role of detrusor PDGFRα + cells in mouse model of cyclophosphamide-induced detrusor overactivity. Sci Rep 2022; 12:5071. [PMID: 35332235 PMCID: PMC8948241 DOI: 10.1038/s41598-022-09155-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/14/2022] [Indexed: 11/28/2022] Open
Abstract
Cyclophosphamide (CYP)-induced cystitis is a rodent model that shares many features common to the cystitis occurring in patients, including detrusor overactivity (DO). Platelet-derived growth factor receptor alpha positive (PDGFRα+) cells have been proposed to regulate muscle excitability in murine bladders during filling. PDGFRα+ cells express small conductance Ca2+-activated K+ channels (predominantly SK3) that provide stabilization of membrane potential during filling. We hypothesized that down-regulation of the regulatory functions of PDGFRα+ cells and/or loss of PDGFRα+ cells generates the DO in CYP-treated mice. After CYP treatment, transcripts of Pdgfrα and Kcnn3 and PDGFRα and SK3 protein were reduced in detrusor muscle extracts. The distribution of PDGFRα+ cells was also reduced. Inflammatory markers were increased in CYP-treated detrusor muscles. An SK channel agonist, CyPPA, increased outward current and hyperpolarization in PDGFRα+ cells. This response was significantly depressed in PDGFRα+ cells from CYP-treated bladders. Contractile experiments and ex vivo cystometry showed increased spontaneous contractions and transient contractions, respectively in CYP-treated bladders with a reduction of apamin sensitivity, that could be attributable to the reduction in the SK conductance expressed by PDGFRα+ cells. In summary, PDGFRα+ cells were reduced and the SK3 conductance was downregulated in CYP-treated bladders. These changes are consistent with the development of DO after CYP treatment.
Collapse
Affiliation(s)
- Haeyeong Lee
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV, 89557, USA.
| | - Byoung H Koh
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV, 89557, USA
| | - Lauren E Peri
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV, 89557, USA
| | - Holly J Woodward
- The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - Brian A Perrino
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV, 89557, USA
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV, 89557, USA
| | - Sang Don Koh
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV, 89557, USA
| |
Collapse
|
6
|
Functional, electrophysiology, and molecular dynamics analysis of quercetin-induced contraction of rat vascular musculature. Eur J Pharmacol 2022; 918:174778. [DOI: 10.1016/j.ejphar.2022.174778] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/14/2022] [Accepted: 01/24/2022] [Indexed: 12/21/2022]
|
7
|
Malysz J, Petkov GV. Urinary bladder smooth muscle ion channels: expression, function, and regulation in health and disease. Am J Physiol Renal Physiol 2020; 319:F257-F283. [PMID: 32628539 PMCID: PMC7473901 DOI: 10.1152/ajprenal.00048.2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/21/2020] [Accepted: 06/28/2020] [Indexed: 12/17/2022] Open
Abstract
Urinary bladder smooth muscle (UBSM), also known as detrusor smooth muscle, forms the bladder wall and ultimately determines the two main attributes of the organ: urine storage and voiding. The two functions are facilitated by UBSM relaxation and contraction, respectively, which depend on UBSM excitability shaped by multiple ion channels. In this review, we summarize the current understanding of key ion channels establishing and regulating UBSM excitability and contractility. They include excitation-enhancing voltage-gated Ca2+ (Cav) and transient receptor potential channels, excitation-reducing K+ channels, and still poorly understood Cl- channels. Dynamic interplay among UBSM ion channels determines the overall level of Cav channel activity. The net Ca2+ influx via Cav channels increases global intracellular Ca2+ concentration, which subsequently triggers UBSM contractility. Here, for each ion channel type, we describe UBSM tissue/cell expression (mRNA and protein) profiles and their role in regulating excitability and contractility of UBSM in various animal species, including the mouse, rat, and guinea pig, and, most importantly, humans. The currently available data reveal certain interspecies differences, which complicate the translational value of published animal research results to humans. This review highlights recent developments, findings on genetic knockout models, pharmacological data, reports on UBSM ion channel dysfunction in animal bladder disease models, and the very limited human studies currently available. Among all gaps in present-day knowledge, the unknowns on expression and functional roles for ion channels determined directly in human UBSM tissues and cells under both normal and disease conditions remain key hurdles in the field.
Collapse
Affiliation(s)
- John Malysz
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Georgi V Petkov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
- Department of Urology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
8
|
Zheng J, Zhou H, Yang M, Song S, Dai Q, Ji G, Zhou Z. Reduced Ca 2+ spark activity contributes to detrusor overactivity of rats with partial bladder outlet obstruction. Aging (Albany NY) 2020; 12:4163-4177. [PMID: 32112553 PMCID: PMC7093189 DOI: 10.18632/aging.102855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 01/28/2020] [Indexed: 12/19/2022]
Abstract
We tested whether or not altered Ca2+ spark activity accounted for detrusor overactivity (DO) of Wistar rats after partial bladder outlet obstruction (PBOO). We constructed a DO model through PBOO and studied the Ca2+ spark activity of detrusor. By way of using confocal microscopy and the patch-clamp technique, Ca2+ sparks and spontaneous transient outward currents (STOCs) in detrusor myocytes were measured respectively. Our results indicated that Ca2+ spark activity and STOCs were significantly reduced in the DO detrusor myocytes compared to unafflicted control cells, and both of these had levels that were remarkably increased by applications of caffeine (10 μM), a RyR agonist, in DO myocytes. In addition, measures of detrusor contractions were also recorded by using freshly isolated detrusor strips. These results indicated that the spontaneous contraction of DO detrusor was significantly enhanced, and that the effect of caffeine (10 μM) upon detrusor contractions was reversed by applications of iberiotoxin (100 nM) which is a BK channel blocker. Western blotting (WB) analyses indicated that the levels of expression of ryanodine receptor type 2 (RyR2) and FK506 binding protein 12.6 (FKBP12.6) in bladder muscle were respectively decreased and increased in the samples from DO rats. Thus, we considered in the rat DO model wherein PBOO, the reduced Ca2+ spark activity in detrusor myocytes partly contributed to overactive detrusor contractions. The impaired Ca2+ spark activity may have resulted from decreased RyR2 expression and increased FKBP12.6 expression. Such novel findings in our research might help to provide means for better treatment outcomes for patients afflicted by bladder dysfunction.
Collapse
Affiliation(s)
- Ji Zheng
- Department of Urology, Urological Surgery Research Institute, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Hao Zhou
- Department of Urology, Urological Surgery Research Institute, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Mengjun Yang
- Department of Urology, Urological Surgery Research Institute, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Siji Song
- Department of Urology, Urological Surgery Research Institute, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Qiang Dai
- Department of Urology, Urological Surgery Research Institute, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Guangju Ji
- Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhansong Zhou
- Department of Urology, Urological Surgery Research Institute, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| |
Collapse
|
9
|
Navarro MA, Salari A, Lin JL, Cowan LM, Penington NJ, Milescu M, Milescu LS. Sodium channels implement a molecular leaky integrator that detects action potentials and regulates neuronal firing. eLife 2020; 9:54940. [PMID: 32101161 PMCID: PMC7043890 DOI: 10.7554/elife.54940] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/13/2020] [Indexed: 12/18/2022] Open
Abstract
Voltage-gated sodium channels play a critical role in cellular excitability, amplifying small membrane depolarizations into action potentials. Interactions with auxiliary subunits and other factors modify the intrinsic kinetic mechanism to result in new molecular and cellular functionality. We show here that sodium channels can implement a molecular leaky integrator, where the input signal is the membrane potential and the output is the occupancy of a long-term inactivated state. Through this mechanism, sodium channels effectively measure the frequency of action potentials and convert it into Na+ current availability. In turn, the Na+ current can control neuronal firing frequency in a negative feedback loop. Consequently, neurons become less sensitive to changes in excitatory input and maintain a lower firing rate. We present these ideas in the context of rat serotonergic raphe neurons, which fire spontaneously at low frequency and provide critical neuromodulation to many autonomous and cognitive brain functions.
Collapse
Affiliation(s)
- Marco A Navarro
- Division of Biological Sciences, University of Missouri, Columbia, United States
| | - Autoosa Salari
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Jenna L Lin
- Division of Biological Sciences, University of Missouri, Columbia, United States
| | - Luke M Cowan
- Division of Biological Sciences, University of Missouri, Columbia, United States
| | - Nicholas J Penington
- Department of Physiology and Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, United States
| | - Mirela Milescu
- Division of Biological Sciences, University of Missouri, Columbia, United States
| | - Lorin S Milescu
- Division of Biological Sciences, University of Missouri, Columbia, United States.,Department of Biology, University of Maryland, College Park, United States
| |
Collapse
|
10
|
Hayashi T, Hashitani H, Takeya M, Uemura KI, Nakamura KI, Igawa T. Properties of SK3 channel-expressing PDGFRα (+) cells in the rodent urinary bladder. Eur J Pharmacol 2019; 860:172552. [DOI: 10.1016/j.ejphar.2019.172552] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/05/2019] [Accepted: 07/15/2019] [Indexed: 11/27/2022]
|
11
|
Gupta S, Manchanda R. A computational model of large conductance voltage and calcium activated potassium channels: implications for calcium dynamics and electrophysiology in detrusor smooth muscle cells. J Comput Neurosci 2019; 46:233-256. [PMID: 31025235 DOI: 10.1007/s10827-019-00713-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 11/25/2022]
Abstract
The large conductance voltage and calcium activated potassium (BK) channels play a crucial role in regulating the excitability of detrusor smooth muscle, which lines the wall of the urinary bladder. These channels have been widely characterized in terms of their molecular structure, pharmacology and electrophysiology. They control the repolarising and hyperpolarising phases of the action potential, thereby regulating the firing frequency and contraction profiles of the smooth muscle. Several groups have reported varied profiles of BK currents and I-V curves under similar experimental conditions. However, no single computational model has been able to reconcile these apparent discrepancies. In view of the channels' physiological importance, it is imperative to understand their mechanistic underpinnings so that a realistic model can be created. This paper presents a computational model of the BK channel, based on the Hodgkin-Huxley formalism, constructed by utilising three activation processes - membrane potential, calcium inflow from voltage-gated calcium channels on the membrane and calcium released from the ryanodine receptors present on the sarcoplasmic reticulum. In our model, we attribute the discrepant profiles to the underlying cytosolic calcium received by the channel during its activation. The model enables us to make heuristic predictions regarding the nature of the sub-membrane calcium dynamics underlying the BK channel's activation. We have employed the model to reproduce various physiological characteristics of the channel and found the simulated responses to be in accordance with the experimental findings. Additionally, we have used the model to investigate the role of this channel in electrophysiological signals, such as the action potential and spontaneous transient hyperpolarisations. Furthermore, the clinical effects of BK channel openers, mallotoxin and NS19504, were simulated for the detrusor smooth muscle cells. Our findings support the proposed application of these drugs for amelioration of the condition of overactive bladder. We thus propose a physiologically realistic BK channel model which can be integrated with other biophysical mechanisms such as ion channels, pumps and exchangers to further elucidate its micro-domain interaction with the intracellular calcium environment.
Collapse
Affiliation(s)
- Suranjana Gupta
- Computational NeuroPhysiology Lab, Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Rohit Manchanda
- Computational NeuroPhysiology Lab, Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|
12
|
Kim HJ, La JH, Kim HM, Yang IS, Sung TS. Anti-diarrheal effect of Scutellaria baicalensis is associated with suppression of smooth muscle in the rat colon. Exp Ther Med 2019; 17:4748-4756. [PMID: 31105793 DOI: 10.3892/etm.2019.7469] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/19/2019] [Indexed: 12/13/2022] Open
Abstract
Scutellaria baicalensis (S. baicalensis) has been used to manage diarrhea, and its anti-inflammatory effects are responsible for anti-diarrheal effects. However, there are no data concerning its direct effect on colonic motility. Therefore, the effects of the major components of S. baicalensis (baicalin, baicalein and wogonin) on colonic motility were investigated. A segment of the distal colon of rats was placed in Krebs solution to monitor spontaneous giant contractions (GCs). Changes in GCs were recorded after applying baicalin, baicalein or wogonin. After pretreatment with Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME), 1H-(1,2,4)-oxadiazolo (4,2-a) quinoxalin-1-one (ODQ), tetradotoxin, w-conotoxin, apamin, and iberiotoxin, changes in GCs by wogonin were recorded and analyzed. The segment of the distal colon showed spontaneous GCs at a mean amplitude of 3.7±0.3 g with a frequency of 0.8±0.1/min. Baicalin, baicalein, and wogonin reduced both the amplitude and the frequency of GCs in a dose-dependent manner. Wogonin had the most potent inhibitory effect on GCs (IC50 was 14.6 µM in amplitude and 14.2 µM in frequency). Wogonin-induced GC reduction was not significantly affected by the inhibition of nitric oxide/cGMP pathways with L-NAME and ODQ. Blocking the enteric neurotransmission with tetradotoxin and ω-conotoxin was ineffective on the wogonin-induced reduction of GCs. Ca2+-activated K+ (KCa) channel blockers (apamin and iberiotoxin) significantly attenuated the inhibitory effects of wogonin on GCs (P<0.01). Wogonin was effective in inhibiting colonic motility, probably through the opening of KCa channels located in the smooth muscle apparatus. These findings suggest that wogonin may be a candidate drug for the management of dysmotility-related diarrhea.
Collapse
Affiliation(s)
- Hyun Ju Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Jun-Ho La
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Hee Man Kim
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea.,Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557-0357, USA
| | - Il-Suk Yang
- Department of Veterinary Physiology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Tae Sik Sung
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557-0357, USA
| |
Collapse
|
13
|
Tykocki NR, Heppner TJ, Dalsgaard T, Bonev AD, Nelson MT. The K V 7 channel activator retigabine suppresses mouse urinary bladder afferent nerve activity without affecting detrusor smooth muscle K + channel currents. J Physiol 2018; 597:935-950. [PMID: 30536555 DOI: 10.1113/jp277021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/06/2018] [Indexed: 01/20/2023] Open
Abstract
KEY POINTS KV 7 channels are a family of voltage-dependent K+ channels expressed in many cell types, which open in response to membrane depolarization to regulate cell excitability. Drugs that target KV 7 channels are used clinically to treat epilepsy. Interestingly, these drugs also cause urinary retention, but it was unclear how. In this study, we focused on two possible mechanisms by which retigabine could cause urinary retention: by decreasing smooth muscle excitability, or by decreasing sensory nerve outflow. Urinary bladder smooth muscle had no measurable KV 7 channel currents. However, the KV 7 channel agonist retigabine nearly abolished sensory nerve outflow from the urinary bladder during bladder filling. We conclude that KV 7 channel activation likely affects urinary bladder function by blocking afferent nerve outflow to the brain, which is key to sensing bladder fullness. ABSTRACT KV 7 channels are voltage-dependent K+ channels that open in response to membrane depolarization to regulate cell excitability. KV 7 activators, such as retigabine, were used to treat epilepsy but caused urinary retention. Using electrophysiological recordings from freshly isolated mouse urinary bladder smooth muscle (UBSM) cells, isometric contractility of bladder strips, and ex vivo measurements of bladder afferent activity, we explored the role of KV 7 channels as regulators of murine urinary bladder function. The KV 7 activator retigabine (10 μM) had no effect on voltage-dependent K+ currents or resting membrane potential of UBSM cells, suggesting that these cells lacked retigabine-sensitive KV 7 channels. The KV 7 inhibitor XE-991 (10 μM) inhibited UBSM K+ currents; the properties of these currents, however, were typical of KV 2 channels and not KV 7 channels. Retigabine inhibited voltage-dependent Ca2+ channel (VDCC) currents and reduced steady-state contractions to 60 mM KCl in bladder strips, suggesting that reduction in VDCC current was sufficient to directly affect UBSM function. To determine if retigabine altered ex vivo bladder sensory outflow, we measured afferent activity during simulated transient contractions (TCs) of the bladder wall. Simulated TCs caused bursts of afferent activity that were nearly abolished by retigabine. The effects of retigabine were blocked by co-incubation with XE-991, suggesting specific activation of KV 7 channels on afferent nerves. These results indicate that retigabine primarily affects urinary bladder function by inhibiting TC generation and afferent nerve activity, which are key to sensing bladder fullness. Any direct inhibition of UBSM contractility is likely to be from non-specific effects on VDCCs and KV 2 channels.
Collapse
Affiliation(s)
- Nathan R Tykocki
- Department of Pharmacology, University of Vermont, Burlington, VT, 05405, USA
| | - Thomas J Heppner
- Department of Pharmacology, University of Vermont, Burlington, VT, 05405, USA
| | | | - Adrian D Bonev
- Department of Pharmacology, University of Vermont, Burlington, VT, 05405, USA
| | - Mark T Nelson
- Department of Pharmacology, University of Vermont, Burlington, VT, 05405, USA.,Institute of Cardiovascular Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
14
|
Mahapatra C, Brain KL, Manchanda R. A biophysically constrained computational model of the action potential of mouse urinary bladder smooth muscle. PLoS One 2018; 13:e0200712. [PMID: 30048468 PMCID: PMC6061979 DOI: 10.1371/journal.pone.0200712] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 07/02/2018] [Indexed: 11/19/2022] Open
Abstract
Urinary incontinence is associated with enhanced spontaneous phasic contractions of the detrusor smooth muscle (DSM). Although a complete understanding of the etiology of these spontaneous contractions is not yet established, it is suggested that the spontaneously evoked action potentials (sAPs) in DSM cells initiate and modulate the contractions. In order to further our understanding of the ionic mechanisms underlying sAP generation, we present here a biophysically detailed computational model of a single DSM cell. First, we constructed mathematical models for nine ion channels found in DSM cells based on published experimental data: two voltage gated Ca2+ ion channels, an hyperpolarization-activated ion channel, two voltage-gated K+ ion channels, three Ca2+-activated K+ ion channels and a non-specific background leak ion channel. The ion channels' kinetics were characterized in terms of maximal conductances and differential equations based on voltage or calcium-dependent activation and inactivation. All ion channel models were validated by comparing the simulated currents and current-voltage relations with those reported in experimental work. Incorporating these channels, our DSM model is capable of reproducing experimentally recorded spike-type sAPs of varying configurations, ranging from sAPs displaying after-hyperpolarizations to sAPs displaying after-depolarizations. The contributions of the principal ion channels to spike generation and configuration were also investigated as a means of mimicking the effects of selected pharmacological agents on DSM cell excitability. Additionally, the features of propagation of an AP along a length of electrically continuous smooth muscle tissue were investigated. To date, a biophysically detailed computational model does not exist for DSM cells. Our model, constrained heavily by physiological data, provides a powerful tool to investigate the ionic mechanisms underlying the genesis of DSM electrical activity, which can further shed light on certain aspects of urinary bladder function and dysfunction.
Collapse
Affiliation(s)
- Chitaranjan Mahapatra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Keith L. Brain
- School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, England, United Kingdom
| | - Rohit Manchanda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| |
Collapse
|
15
|
Mader F, Müller S, Krause L, Springer A, Kernig K, Protzel C, Porath K, Rackow S, Wittstock T, Frank M, Hakenberg OW, Köhling R, Kirschstein T. Hyperpolarization-Activated Cyclic Nucleotide-Gated Non-selective (HCN) Ion Channels Regulate Human and Murine Urinary Bladder Contractility. Front Physiol 2018; 9:753. [PMID: 29971015 PMCID: PMC6018223 DOI: 10.3389/fphys.2018.00753] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/29/2018] [Indexed: 11/16/2022] Open
Abstract
Purpose: Hyperpolarization-activated cyclic nucleotide gated non-selective (HCN) channels have been demonstrated in the urinary bladder in various species. Since they play a major role in governing rhythmic activity in pacemaker cells like in the sinoatrial node, we explored the role of these channels in human and murine detrusor smooth muscle. Methods: In an organ bath, human and murine detrusor smooth muscle specimens were challenged with the HCN channel blocker ZD7288. In human tissue derived from macroscopically tumor-free cancer resections, the urothelium was removed. In addition, HCN1-deficient mice were used to identify the contribution of this particular isoform. Expression of HCN channels in the urinary bladder was analyzed using histological and ultrastructural analyses as well as quantitative reverse transcriptase polymerase chain reaction (RT-PCR). Results: We found that the HCN channel blocker ZD7288 (50 μM) both induced tonic contractions and increased phasic contraction amplitudes in human and murine detrusor specimens. While these responses were not sensitive to tetrodotoxin, they were significantly reduced by the gap junction inhibitor 18β-glycyrrhetic acid suggesting that HCN channels are located within the gap junction-interconnected smooth muscle cell network rather than on efferent nerve fibers. Immunohistochemistry suggested HCN channel expression on smooth muscle tissue, and immunoelectron microscopy confirmed the scattered presence of HCN2 on smooth muscle cell membranes. HCN channels seem to be down-regulated with aging, which is paralleled by an increasing effect of ZD7288 in aging detrusor tissue. Importantly, the anticonvulsant and HCN channel activator lamotrigine relaxed the detrusor which could be reversed by ZD7288. Conclusion: These findings demonstrate that HCN channels are functionally present and localized on smooth muscle cells of the urinary bladder. Given the age-dependent decline of these channels in humans, activation of HCN channels by compounds such as lamotrigine opens up the opportunity to combat detrusor hyperactivity in the elderly by drugs already approved for epilepsy.
Collapse
Affiliation(s)
- Felix Mader
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany
| | - Steffen Müller
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany
| | - Ludwig Krause
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany
| | - Armin Springer
- Department of Medical Biology, Electron Microscopy Center, University of Rostock, Rostock, Germany
| | - Karoline Kernig
- Department of Urology, University of Rostock, Rostock, Germany
| | - Chris Protzel
- Department of Urology, University of Rostock, Rostock, Germany
| | - Katrin Porath
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany
| | - Simone Rackow
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany
| | - Tristan Wittstock
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany
| | - Marcus Frank
- Department of Medical Biology, Electron Microscopy Center, University of Rostock, Rostock, Germany
| | | | - Rüdiger Köhling
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany
| | - Timo Kirschstein
- Oscar Langendorff Institute of Physiology, University of Rostock, Rostock, Germany
| |
Collapse
|
16
|
Blum-Johnston C, Thorpe RB, Wee C, Opsahl R, Romero M, Murray S, Brunelle A, Blood Q, Wilson R, Blood AB, Zhang L, Longo LD, Pearce WJ, Wilson SM. Long-term hypoxia uncouples Ca 2+ and eNOS in bradykinin-mediated pulmonary arterial relaxation. Am J Physiol Regul Integr Comp Physiol 2018. [PMID: 29513562 DOI: 10.1152/ajpregu.00311.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bradykinin-induced activation of the pulmonary endothelium triggers a rise in intracellular Ca2+ that activates nitric oxide (NO)-dependent vasorelaxation. Chronic hypoxia is commonly associated with increased pulmonary vascular tone, which can cause pulmonary hypertension in responsive individuals. In the present study, we tested the hypothesis that long-term high-altitude hypoxia (LTH) diminishes bradykinin-induced Ca2+ signals and inhibits endothelial nitric oxide synthase (eNOS), prostacyclin (PGI2), and large-conductance K+ (BKCa) channels in sheep, which are moderately responsive to LTH, resulting in decreased pulmonary arterial vasorelaxation. Pulmonary arteries were isolated from ewes kept near sea level (720 m) or at high altitude (3,801 m) for >100 days. Vessel force was measured with wire myography and endothelial intracellular Ca2+ with confocal microscopy. eNOS was inhibited with 100 μM NG-nitro-l-arginine methyl ester (l-NAME), PGI2 production was inhibited with 10 µM indomethacin that inhibits cyclooxygenase, and BKCa channels were blocked with 1 mM tetraethylammonium. Bradykinin-induced endothelial Ca2+ signals increased following LTH, but bradykinin relaxation decreased. Furthermore, some vessels contracted in response to bradykinin after LTH. l-NAME sensitivity decreased, suggesting that eNOS dysfunction played a role in uncoupling Ca2+ signals and bradykinin relaxation. The Ca2+ ionophore A-23187 (10 µM) elicited an enhanced Ca2+ response following LTH while relaxation was unchanged although l-NAME sensitivity increased. Additionally, BKCa function decreased during bradykinin relaxation following LTH. Western analysis showed that BKCa α-subunit expression was increased by LTH while that for the β1 subunit was unchanged. Overall, these results suggest that those even moderately responsive to LTH can have impaired endothelial function.
Collapse
Affiliation(s)
- Carla Blum-Johnston
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California.,Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine , Loma Linda, California
| | - Richard B Thorpe
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | - Chelsea Wee
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | - Raechel Opsahl
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | - Monica Romero
- Advanced Imaging and Microscopy Core, Loma Linda University School of Medicine , Loma Linda, California
| | - Samuel Murray
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | - Alexander Brunelle
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | - Quintin Blood
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | - Rachael Wilson
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | - Arlin B Blood
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | - Lawrence D Longo
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | - William J Pearce
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California
| | - Sean M Wilson
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine , Loma Linda, California.,Advanced Imaging and Microscopy Core, Loma Linda University School of Medicine , Loma Linda, California
| |
Collapse
|
17
|
Isogai A, Lee K, Mitsui R, Hashitani H. Functional coupling of TRPV4 channels and BK channels in regulating spontaneous contractions of the guinea pig urinary bladder. Pflugers Arch 2016; 468:1573-85. [DOI: 10.1007/s00424-016-1863-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/06/2016] [Accepted: 07/26/2016] [Indexed: 12/13/2022]
|
18
|
Effects of K(+) channel openers on spontaneous action potentials in detrusor smooth muscle of the guinea-pig urinary bladder. Eur J Pharmacol 2016; 789:179-186. [PMID: 27455901 DOI: 10.1016/j.ejphar.2016.07.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/22/2016] [Accepted: 07/22/2016] [Indexed: 12/18/2022]
Abstract
The modulation of spontaneous excitability in detrusor smooth muscle (DSM) upon the pharmacological activation of different populations of K(+) channels was investigated. Effects of distinct K(+) channel openers on spontaneous action potentials in DSM of the guinea-pig bladder were examined using intracellular microelectrode techniques. NS1619 (10μM), a large conductance Ca(2+)-activated K(+) (BK) channel opener, transiently increased action potential frequency and then prevented their generation without hyperpolarizing the membrane in a manner sensitive to iberiotoxin (IbTX, 100nM). A higher concentration of NS1619 (30μM) hyperpolarized the membrane and abolished action potential firing. NS309 (10μM) and SKA31 (100μM), small conductance Ca(2+)-activated K(+) (SK) channel openers, dramatically increased the duration of the after-hyperpolarization and then abolished action potential firing in an apamin (100nM)-sensitive manner. Flupirtine (10μM), a Kv7 channel opener, inhibited action potential firing without hyperpolarizing the membrane in a manner sensitive to XE991 (10μM), a Kv7 channel blocker. BRL37344 (10μM), a β3-adrenceptor agonist, or rolipram (10nM), a phosphodiesterase 4 inhibitor, also inhibited action potential firing. A higher concentration of rolipram (100nM) hyperpolarized the DSM and abolished the action potentials. IbTX (100nM) prevented the rolipram-induced blockade of action potentials but not the hyperpolarization. BK and Kv7 channels appear to predominantly contribute to the stabilization of DSM excitability. Spare SK channels could be pharmacologically activated to suppress DSM excitability. BK channels appear to be involved in the cyclic AMP-induced inhibition of action potentials but not the membrane hyperpolarization.
Collapse
|
19
|
Rosenberg J, Byrtus M, Stengl M. Original Research: Combined model of bladder detrusor smooth muscle and interstitial cells. Exp Biol Med (Maywood) 2016; 241:1853-64. [PMID: 27328937 DOI: 10.1177/1535370216655402] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 05/26/2016] [Indexed: 11/15/2022] Open
Abstract
Although patients with lower urinary tract symptoms constitute a large and still growing population, understanding of bladder detrusor muscle physiology remains limited. Understanding the interactions between the detrusor smooth muscle cells and other bladder cell types (e.g. interstitial cells, IC) that may significantly contribute to coordinating and modulating detrusor contractions represents a considerable challenge. Computer modeling could help to elucidate some properties that are difficult to address experimentally; therefore, we developed in silico models of detrusor smooth muscle cell and interstitial cells, coupled through gap junctions. The models include all of the major ion conductances and transporters described in smooth muscle cell and interstitial cells in the literature. The model of normal detrusor muscle (smooth muscle cell and interstitial cells coupled through gap junctions) completely reproduced the experimental results obtained with detrusor strips in the presence of several pharmacological interventions (ryanodine, caffeine, nimodipine), whereas the model of smooth muscle cell alone (without interstitial cells) failed to reproduce the experimental results. Next, a model of overactive bladder, a highly prevalent clinical condition in both men and women with increasing incidence at older ages, was produced by modifying several processes as reported previously: a reduction of Ca(2+)-release through ryanodine receptors and a reduction of Ca(2+)-dependent K(+)-conductance with augmented gap junctional coupling. This model was also able to reproduce the pharmacological modulation of overactive bladder. In conclusion, a model of bladder detrusor muscle was developed that reproduced experimental results obtained in both normal and overactive bladder preparations. The results indicate that the non-smooth muscle cells of the detrusor (interstitial cells) contribute significantly to the contractile behavior of bladder detrusor muscle and should not be neglected. The model suggests that reduced Ca(2+)-release through ryanodine receptors and Ca(2+)-dependent K(+)-conductance together with augmented gap junctional coupling might play a major role in overactive bladder pathogenesis.
Collapse
Affiliation(s)
- Josef Rosenberg
- New Technologies Research Center, University of West Bohemia, Pilsen 30614, Czech Republic
| | - Miroslav Byrtus
- Department of Mechanics, University of West Bohemia, Pilsen 30614, Czech Republic
| | - Milan Stengl
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen 32300, Czech Republic Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen 32300, Czech Republic
| |
Collapse
|
20
|
Parajuli SP, Zheng YM, Levin R, Wang YX. Big-conductance Ca 2+-activated K + channels in physiological and pathophysiological urinary bladder smooth muscle cells. Channels (Austin) 2016; 10:355-364. [PMID: 27101440 DOI: 10.1080/19336950.2016.1180488] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Contraction and relaxation of urinary bladder smooth muscle cells (UBSMCs) represent the important physiological functions of the bladder. Contractile responses in UBSMCs are regulated by a number of ion channels including big-conductance Ca2+- activated K+ (BK) channels. Great progress has been made in studies of BK channels in UBSMCs. The intent of this review is to summarize recent exciting findings with respect to the functional interactions of BK channels with muscarinic receptors, ryanodine receptors (RyRs) and inositol triphosphate receptors (IP3Rs) as well as their functional importance under normal and pathophysiological conditions. BK channels are highly expressed in UBSMCs. Activation of muscarinic M3 receptors inhibits the BK channel activity, facilitates opening of voltage-dependent Ca2+ (CaV) channels, and thereby enhances excitability and contractility of UBSMCs. Signaling molecules and regulatory mechanisms involving RyRs and IP3Rs have a significant effect on functions of BK channels and thereby regulate cellular responses in UBSMCs under normal and pathophysiological conditions including overactive bladders. Moreover, BK channels may represent a novel target for the treatment of bladder dysfunctions.
Collapse
Affiliation(s)
- Shankar P Parajuli
- a Center for Cardiovascular Sciences, Albany Medical College , Albany , NY , USA
| | - Yun-Min Zheng
- a Center for Cardiovascular Sciences, Albany Medical College , Albany , NY , USA
| | - Robert Levin
- b Stratton VA Medical Center , Albany , NY , USA
| | - Yong-Xiao Wang
- a Center for Cardiovascular Sciences, Albany Medical College , Albany , NY , USA
| |
Collapse
|
21
|
Zheng J, Zhai K, Chen Y, Zhang X, Miao L, Wei B, Ji G. Nitric oxide mediates stretch-induced Ca2+ oscillation in smooth muscle. J Cell Sci 2016; 129:2430-7. [DOI: 10.1242/jcs.180638] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 03/23/2016] [Indexed: 11/20/2022] Open
Abstract
The stretching of smooth muscle tissue modulates contraction via augmentation of Ca2+ transients, but the mechanism underlying stretch-induced Ca2+ transients is still unknown. We found that mechanical stretching and maintenance of mouse urinary bladder smooth muscle strips and single myocytes at the initial length of 30% and 18%, respectively, resulted in Ca2+ oscillations. Experiments indicated that mechanical stretching remarkably increases the production of nitric oxide (NO) as well as the amplitude and duration of muscle contraction. Stretch-induced Ca2+ oscillations and contractility increases were completely abolished by NO inhibitor L-NAME or eNOS gene inactivation. Moreover, exposure of eNOS knockout myocytes to exogenous NO donor induced Ca2+ oscillations. The stretch-induced Ca2+ oscillations were greatly inhibited by selective IP3R inhibitor xestospongin C and partially inhibited by ryanodine. Moreover, the stretch-induced Ca2+ oscillations were also suppressed by LY294002, but not by the soluble guanylyl cyclase (sGC) inhibitor ODQ. These results suggest that myocytes stretching and maintenance at a certain length resulted in Ca2+ oscillations that is NO dependent and sGC/cGMP independent and results from the activation of PI(3)K in smooth muscle.
Collapse
Affiliation(s)
- Ji Zheng
- Urological Surgery Research Institute, Southwest Hospital, Third Military Medical University, Gao Tanyan Rd. 30, Chongqing 400038, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Rd, Beijing 100101, China
| | - Kui Zhai
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Rd, Beijing 100101, China
| | - Yingxiao Chen
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Rd, Beijing 100101, China
| | - Xu Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Rd, Beijing 100101, China
| | - Lin Miao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Rd, Beijing 100101, China
| | - Bin Wei
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, United States
| | - Guangju Ji
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Rd, Beijing 100101, China
| |
Collapse
|
22
|
Calcium-Activated Potassium Channels: Potential Target for Cardiovascular Diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 104:233-261. [PMID: 27038376 DOI: 10.1016/bs.apcsb.2015.11.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Ca(2+)-activated K(+) channels (KCa) are classified into three subtypes: big conductance (BKCa), intermediate conductance (IKCa), and small conductance (SKCa) KCa channels. The three types of KCa channels have distinct physiological or pathological functions in cardiovascular system. BKCa channels are mainly expressed in vascular smooth muscle cells (VSMCs) and inner mitochondrial membrane of cardiomyocytes, activation of BKCa channels in these locations results in vasodilation and cardioprotection against cardiac ischemia. IKCa channels are expressed in VSMCs, endothelial cells, and cardiac fibroblasts and involved in vascular smooth muscle proliferation, migration, vessel dilation, and cardiac fibrosis. SKCa channels are widely expressed in nervous and cardiovascular system, and activation of SKCa channels mainly contributes membrane hyperpolarization. In this chapter, we summarize the physiological and pathological roles of the three types of KCa channels in cardiovascular system and put forward the possibility of KCa channels as potential target for cardiovascular diseases.
Collapse
|
23
|
Kochenov АV, Poddubnaya EP, Makedonsky IA, Korogod SМ. Biophysical Processes in a Urinary Bladder Detrusor Smooth Muscle Cell during Rehabilitation Electrostimulation: a Simulation Study. NEUROPHYSIOLOGY+ 2015. [DOI: 10.1007/s11062-015-9518-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Fernandes VS, Xin W, Petkov GV. Novel mechanism of hydrogen sulfide-induced guinea pig urinary bladder smooth muscle contraction: role of BK channels and cholinergic neurotransmission. Am J Physiol Cell Physiol 2015; 309:C107-16. [PMID: 25948731 DOI: 10.1152/ajpcell.00021.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 05/02/2015] [Indexed: 12/13/2022]
Abstract
Hydrogen sulfide (H2S) is a key signaling molecule regulating important physiological processes, including smooth muscle function. However, the mechanisms underlying H2S-induced detrusor smooth muscle (DSM) contractions are not well understood. This study investigates the cellular and tissue mechanisms by which H2S regulates DSM contractility, excitatory neurotransmission, and large-conductance voltage- and Ca(2+)-activated K(+) (BK) channels in freshly isolated guinea pig DSM. We used a multidisciplinary experimental approach including isometric DSM tension recordings, colorimetric ACh measurement, Ca(2+) imaging, and patch-clamp electrophysiology. In isolated DSM strips, the novel slow release H2S donor, P-(4-methoxyphenyl)-p-4-morpholinylphosphinodithioic acid morpholine salt (GYY4137), significantly increased the spontaneous phasic and nerve-evoked DSM contractions. The blockade of neuronal voltage-gated Na(+) channels or muscarinic ACh receptors with tetrodotoxin or atropine, respectively, reduced the stimulatory effect of GYY4137 on DSM contractility. GYY4137 increased ACh release from bladder nerves, which was inhibited upon blockade of L-type voltage-gated Ca(2+) channels with nifedipine. Furthermore, GYY4137 increased the amplitude of the Ca(2+) transients and basal Ca(2+) levels in isolated DSM strips. GYY4137 reduced the DSM relaxation induced by the BK channel opener, NS11021. In freshly isolated DSM cells, GYY4137 decreased the amplitude and frequency of transient BK currents recorded in a perforated whole cell configuration and reduced the single BK channel open probability measured in excised inside-out patches. GYY4137 inhibited spontaneous transient hyperpolarizations and depolarized the DSM cell membrane potential. Our results reveal the novel findings that H2S increases spontaneous phasic and nerve-evoked DSM contractions by activating ACh release from bladder nerves in combination with a direct inhibition of DSM BK channels.
Collapse
Affiliation(s)
- Vítor S Fernandes
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina
| | - Wenkuan Xin
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina
| | - Georgi V Petkov
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
25
|
Bentzen BH, Olesen SP, Rønn LCB, Grunnet M. BK channel activators and their therapeutic perspectives. Front Physiol 2014; 5:389. [PMID: 25346695 PMCID: PMC4191079 DOI: 10.3389/fphys.2014.00389] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/19/2014] [Indexed: 01/05/2023] Open
Abstract
The large conductance calcium- and voltage-activated K+ channel (KCa1.1, BK, MaxiK) is ubiquitously expressed in the body, and holds the ability to integrate changes in intracellular calcium and membrane potential. This makes the BK channel an important negative feedback system linking increases in intracellular calcium to outward hyperpolarizing potassium currents. Consequently, the channel has many important physiological roles including regulation of smooth muscle tone, neurotransmitter release and neuronal excitability. Additionally, cardioprotective roles have been revealed in recent years. After a short introduction to the structure, function and regulation of BK channels, we review the small organic molecules activating BK channels and how these tool compounds have helped delineate the roles of BK channels in health and disease.
Collapse
Affiliation(s)
- Bo H Bentzen
- Department of Biomedical Sciences, Faculty of Health Sciences, Danish Arrhythmia Research Centre, University of Copenhagen Copenhagen, Denmark ; Acesion Pharma Copenhagen, Denmark
| | - Søren-Peter Olesen
- Department of Biomedical Sciences, Faculty of Health Sciences, Danish Arrhythmia Research Centre, University of Copenhagen Copenhagen, Denmark
| | | | - Morten Grunnet
- Acesion Pharma Copenhagen, Denmark ; H. Lundbeck A/S Copenhagen, Denmark
| |
Collapse
|
26
|
Anderson UA, Carson C, Johnston L, Joshi S, Gurney AM, McCloskey KD. Functional expression of KCNQ (Kv7) channels in guinea pig bladder smooth muscle and their contribution to spontaneous activity. Br J Pharmacol 2014; 169:1290-304. [PMID: 23586426 PMCID: PMC3746117 DOI: 10.1111/bph.12210] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 03/15/2013] [Accepted: 03/26/2013] [Indexed: 12/30/2022] Open
Abstract
Background and Purpose The aim of the study was to determine whether KCNQ channels are functionally expressed in bladder smooth muscle cells (SMC) and to investigate their physiological significance in bladder contractility. Experimental Approach KCNQ channels were examined at the genetic, protein, cellular and tissue level in guinea pig bladder smooth muscle using RT-PCR, immunofluorescence, patch-clamp electrophysiology, calcium imaging, detrusor strip myography, and a panel of KCNQ activators and inhibitors. Key Results KCNQ subtypes 1–5 are expressed in bladder detrusor smooth muscle. Detrusor strips typically displayed TTX-insensitive myogenic spontaneous contractions that were increased in amplitude by the KCNQ channel inhibitors XE991, linopirdine or chromanol 293B. Contractility was inhibited by the KCNQ channel activators flupirtine or meclofenamic acid (MFA). The frequency of Ca2+-oscillations in SMC contained within bladder tissue sheets was increased by XE991. Outward currents in dispersed bladder SMC, recorded under conditions where BK and KATP currents were minimal, were significantly reduced by XE991, linopirdine, or chromanol, and enhanced by flupirtine or MFA. XE991 depolarized the cell membrane and could evoke transient depolarizations in quiescent cells. Flupirtine (20 μM) hyperpolarized the cell membrane with a simultaneous cessation of any spontaneous electrical activity. Conclusions and Implications These novel findings reveal the role of KCNQ currents in the regulation of the resting membrane potential of detrusor SMC and their important physiological function in the control of spontaneous contractility in the guinea pig bladder.
Collapse
Affiliation(s)
- U A Anderson
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | | | | | | | | | | |
Collapse
|
27
|
Petkov GV. Central role of the BK channel in urinary bladder smooth muscle physiology and pathophysiology. Am J Physiol Regul Integr Comp Physiol 2014; 307:R571-84. [PMID: 24990859 DOI: 10.1152/ajpregu.00142.2014] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The physiological functions of the urinary bladder are to store and periodically expel urine. These tasks are facilitated by the contraction and relaxation of the urinary bladder smooth muscle (UBSM), also known as detrusor smooth muscle, which comprises the bladder wall. The large-conductance voltage- and Ca(2+)-activated K(+) (BK, BKCa, MaxiK, Slo1, or KCa1.1) channel is highly expressed in UBSM and is arguably the most important physiologically relevant K(+) channel that regulates UBSM function. Its significance arises from the fact that the BK channel is the only K(+) channel that is activated by increases in both voltage and intracellular Ca(2+). The BK channels control UBSM excitability and contractility by maintaining the resting membrane potential and shaping the repolarization phase of the spontaneous action potentials that determine UBSM spontaneous rhythmic contractility. In UBSM, these channels have complex regulatory mechanisms involving integrated intracellular Ca(2+) signals, protein kinases, phosphodiesterases, and close functional interactions with muscarinic and β-adrenergic receptors. BK channel dysfunction is implicated in some forms of bladder pathologies, such as detrusor overactivity, and related overactive bladder. This review article summarizes the current state of knowledge of the functional role of UBSM BK channels under normal and pathophysiological conditions and provides new insight toward the BK channels as targets for pharmacological or genetic control of UBSM function. Modulation of UBSM BK channels can occur by directly or indirectly targeting their regulatory mechanisms, which has the potential to provide novel therapeutic approaches for bladder dysfunction, such as overactive bladder and detrusor underactivity.
Collapse
Affiliation(s)
- Georgi V Petkov
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
28
|
Parajuli SP, Provence A, Petkov GV. Prostaglandin E2 excitatory effects on guinea pig urinary bladder smooth muscle: a novel regulatory mechanism mediated by large-conductance voltage- and Ca2+-activated K+ channels. Eur J Pharmacol 2014; 738:179-85. [PMID: 24886877 DOI: 10.1016/j.ejphar.2014.05.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/21/2014] [Accepted: 05/23/2014] [Indexed: 02/08/2023]
Abstract
Prostaglandin E2 (PGE2) is an essential signaling molecule involved in the regulation of detrusor smooth muscle (DSM) function. However, the underlying regulatory mechanism by which PGE2 augments DSM cell excitability and contractility is not well understood. Here, we investigated whether PGE2 inhibits the large conductance voltage- and Ca(2+)-activated K(+) (BK) channels in guinea pig DSM, thereby increasing DSM excitability and contractility. We used a multidisciplinary experimental approach including amphotericin-B perforated patch-clamp electrophysiology and live-cell Ca(2+) imaging in native freshly-isolated DSM cells, isometric tension recordings of intact DSM strips, and pharmacological tools to investigate BK channel regulation by PGE2 in guinea pig DSM. PGE2 increased the spontaneous phasic contractions of isolated DSM strips in a concentration-dependent manner (10 nM-10 µM). BK channel inhibition with paxilline (1 µM) attenuated the PGE2-induced DSM phasic contractions, suggesting that BK channels are involved in the mechanism of PGE2-induced DSM contractions. PGE2 (10 µM) increased the intracellular Ca(2+) levels in freshly-isolated DSM cells. PGE2 (10 µM) also caused an inhibition of the amplitude and frequency of spontaneous transient BK currents in DSM cells. Moreover, PGE2 (10 µM) did not affect the amplitude of whole cell steady-state BK currents in DSM cells. Our findings provide strong experimental evidence that PGE2 leads to an inhibition of the spontaneous transient BK currents, elevation of intracellular Ca(2+) levels in freshly-isolated DSM cells, and augmentation of DSM phasic contractions. Thus, we have revealed a novel mechanism that BK channels mediate PGE2-induced contractions in guinea pig DSM.
Collapse
Affiliation(s)
- Shankar P Parajuli
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Coker Life Sciences Building, Room 609D, 715 Sumter St, Columbia, SC 29208, United States
| | - Aaron Provence
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Coker Life Sciences Building, Room 609D, 715 Sumter St, Columbia, SC 29208, United States
| | - Georgi V Petkov
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Coker Life Sciences Building, Room 609D, 715 Sumter St, Columbia, SC 29208, United States.
| |
Collapse
|
29
|
Parajuli SP, Hristov KL, Cheng Q, Malysz J, Rovner ES, Petkov GV. Functional link between muscarinic receptors and large-conductance Ca2+ -activated K+ channels in freshly isolated human detrusor smooth muscle cells. Pflugers Arch 2014; 467:665-75. [PMID: 24867682 DOI: 10.1007/s00424-014-1537-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 04/25/2014] [Accepted: 05/13/2014] [Indexed: 01/25/2023]
Abstract
Activation of muscarinic acetylcholine receptors (mAChRs) constitutes the primary mechanism for enhancing excitability and contractility of human detrusor smooth muscle (DSM). Since the large-conductance Ca(2+)-activated K(+) (KCa1.1) channels are key regulators of human DSM function, we investigated whether mAChR activation increases human DSM excitability by inhibiting KCa1.1 channels. We used the mAChR agonist, carbachol, to determine the changes in KCa1.1 channel activity upon mAChR activation in freshly isolated human DSM cells obtained from open bladder surgeries using the perforated whole cell and single KCa1.1 channel patch-clamp recordings. Human DSM cells were collected from 29 patients (23 males and 6 females, average age of 65.9 ± 1.5 years). Carbachol inhibited the amplitude and frequency of KCa1.1 channel-mediated spontaneous transient outward currents and spontaneous transient hyperpolarizations, which are triggered by the release of Ca(2+) from ryanodine receptors. Carbachol also caused membrane potential depolarization, which was not observed in the presence of iberiotoxin, a KCa1.1 channel inhibitor, indicating the critical role of the KCa1.1 channels. The potential direct carbachol effects on KCa1.1 channels were examined under conditions of removing the major cellular Ca(2+) sources for KCa1.1 channel activation with pharmacological inhibitors (thapsigargin, ryanodine, and nifedipine). In the presence of these inhibitors, carbachol did not affect the single KCa1.1 channel open probability and mean KCa1.1 channel conductance (cell-attached configuration) or depolarization-induced whole cell steady-state KCa1.1 currents. The data support the concept that mAChR activation triggers indirect functional KCa1.1 channel inhibition mediated by intracellular Ca(2+), thus increasing the excitability in human DSM cells.
Collapse
Affiliation(s)
- Shankar P Parajuli
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Coker Life Sciences Building, Room 609D, 715 Sumter St, Columbia, SC, 29208, USA
| | | | | | | | | | | |
Collapse
|
30
|
Parajuli SP, Hristov KL, Soder RP, Kellett WF, Petkov GV. NS309 decreases rat detrusor smooth muscle membrane potential and phasic contractions by activating SK3 channels. Br J Pharmacol 2013; 168:1611-25. [PMID: 23145946 DOI: 10.1111/bph.12049] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 08/30/2012] [Accepted: 10/25/2012] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Overactive bladder (OAB) is often associated with abnormally increased detrusor smooth muscle (DSM) contractions. We used NS309, a selective and potent opener of the small or intermediate conductance Ca(2+) -activated K(+) (SK or IK, respectively) channels, to evaluate how SK/IK channel activation modulates DSM function. EXPERIMENTAL APPROACH We employed single-cell RT-PCR, immunocytochemistry, whole cell patch-clamp in freshly isolated rat DSM cells and isometric tension recordings of isolated DSM strips to explore how the pharmacological activation of SK/IK channels with NS309 modulates DSM function. KEY RESULTS We detected SK3 but not SK1, SK2 or IK channels expression at both mRNA and protein levels by RT-PCR and immunocytochemistry in DSM single cells. NS309 (10 μM) significantly increased the whole cell SK currents and hyperpolarized DSM cell resting membrane potential. The NS309 hyperpolarizing effect was blocked by apamin, a selective SK channel inhibitor. NS309 inhibited the spontaneous phasic contraction amplitude, force, frequency, duration and tone of isolated DSM strips in a concentration-dependent manner. The inhibitory effect of NS309 on spontaneous phasic contractions was blocked by apamin but not by TRAM-34, indicating no functional role of the IK channels in rat DSM. NS309 also significantly inhibited the pharmacologically and electrical field stimulation-induced DSM contractions. CONCLUSIONS AND IMPLICATIONS Our data reveal that SK3 channel is the main SK/IK subtype in rat DSM. Pharmacological activation of SK3 channels with NS309 decreases rat DSM cell excitability and contractility, suggesting that SK3 channels might be potential therapeutic targets to control OAB associated with detrusor overactivity.
Collapse
Affiliation(s)
- Shankar P Parajuli
- Department of Pharmaceutical & Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | | | |
Collapse
|
31
|
Zhong LR, Estes S, Artinian L, Rehder V. Nitric oxide regulates neuronal activity via calcium-activated potassium channels. PLoS One 2013; 8:e78727. [PMID: 24236040 PMCID: PMC3827272 DOI: 10.1371/journal.pone.0078727] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 09/22/2013] [Indexed: 12/13/2022] Open
Abstract
Nitric oxide (NO) is an unconventional membrane-permeable messenger molecule that has been shown to play various roles in the nervous system. How NO modulates ion channels to affect neuronal functions is not well understood. In gastropods, NO has been implicated in regulating the feeding motor program. The buccal motoneuron, B19, of the freshwater pond snail Helisoma trivolvis is active during the hyper-retraction phase of the feeding motor program and is located in the vicinity of NO-producing neurons in the buccal ganglion. Here, we asked whether B19 neurons might serve as direct targets of NO signaling. Previous work established NO as a key regulator of growth cone motility and neuronal excitability in another buccal neuron involved in feeding, the B5 neuron. This raised the question whether NO might modulate the electrical activity and neuronal excitability of B19 neurons as well, and if so whether NO acted on the same or a different set of ion channels in both neurons. To study specific responses of NO on B19 neurons and to eliminate indirect effects contributed by other cells, the majority of experiments were performed on single cultured B19 neurons. Addition of NO donors caused a prolonged depolarization of the membrane potential and an increase in neuronal excitability. The effects of NO could mainly be attributed to the inhibition of two types of calcium-activated potassium channels, apamin-sensitive and iberiotoxin-sensitive potassium channels. NO was found to also cause a depolarization in B19 neurons in situ, but only after NO synthase activity in buccal ganglia had been blocked. The results suggest that NO acts as a critical modulator of neuronal excitability in B19 neurons, and that calcium-activated potassium channels may serve as a common target of NO in neurons.
Collapse
Affiliation(s)
- Lei Ray Zhong
- Biology Department, Georgia State University, Atlanta, Georgia, United States of America
| | - Stephen Estes
- Biology Department, Georgia State University, Atlanta, Georgia, United States of America
| | - Liana Artinian
- Biology Department, Georgia State University, Atlanta, Georgia, United States of America
| | - Vincent Rehder
- Biology Department, Georgia State University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
32
|
Malysz J, Afeli SAY, Provence A, Petkov GV. Ethanol-mediated relaxation of guinea pig urinary bladder smooth muscle: involvement of BK and L-type Ca2+ channels. Am J Physiol Cell Physiol 2013; 306:C45-58. [PMID: 24153429 DOI: 10.1152/ajpcell.00047.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mechanisms underlying ethanol (EtOH)-induced detrusor smooth muscle (DSM) relaxation and increased urinary bladder capacity remain unknown. We investigated whether the large conductance Ca(2+)-activated K(+) (BK) channels or L-type voltage-dependent Ca(2+) channels (VDCCs), major regulators of DSM excitability and contractility, are targets for EtOH by patch-clamp electrophysiology (conventional and perforated whole cell and excised patch single channel) and isometric tension recordings using guinea pig DSM cells and isolated tissue strips, respectively. EtOH at 0.3% vol/vol (~50 mM) enhanced whole cell BK currents at +30 mV and above, determined by the selective BK channel blocker paxilline. In excised patches recorded at +40 mV and ~300 nM intracellular Ca(2+) concentration ([Ca(2+)]), EtOH (0.1-0.3%) affected single BK channels (mean conductance ~210 pS and blocked by paxilline) by increasing the open channel probability, number of open channel events, and open dwell-time constants. The amplitude of single BK channel currents and unitary conductance were not altered by EtOH. Conversely, at ~10 μM but not ~2 μM intracellular [Ca(2+)], EtOH (0.3%) decreased the single BK channel activity. EtOH (0.3%) affected transient BK currents (TBKCs) by either increasing frequency or decreasing amplitude, depending on the basal level of TBKC frequency. In isolated DSM strips, EtOH (0.1-1%) reduced the amplitude and muscle force of spontaneous phasic contractions. The EtOH-induced DSM relaxation, except at 1%, was attenuated by paxilline. EtOH (1%) inhibited L-type VDCC currents in DSM cells. In summary, we reveal the involvement of BK channels and L-type VDCCs in mediating EtOH-induced urinary bladder relaxation accommodating alcohol-induced diuresis.
Collapse
Affiliation(s)
- John Malysz
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina
| | | | | | | |
Collapse
|
33
|
Iozzi D, Schubert R, Kalenchuk VU, Neri A, Sgaragli G, Fusi F, Saponara S. Quercetin relaxes rat tail main artery partly via a PKG-mediated stimulation of KCa 1.1 channels. Acta Physiol (Oxf) 2013; 208:329-39. [PMID: 23432816 DOI: 10.1111/apha.12083] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 01/05/2013] [Accepted: 02/08/2013] [Indexed: 01/08/2023]
Abstract
AIM Protein kinases, activated by vasodilator substances, affect vascular function by regulating large conductance Ca(2+) -activated K(+) (KCa 1.1) channels. Thus, the aim of the present investigation was to address the hypothesis that quercetin-induced vasorelaxation is caused by a PKG-mediated stimulation of KCa 1.1 currents. METHODS Single freshly isolated myocytes and endothelium-denuded rings of the rat tail main artery were employed for electrophysiological and contractility measurements respectively. RESULTS Quercetin relaxed vessels and increased KCa 1.1 currents in a concentration-dependent manner: both effects were antagonized by the specific KCa 1.1 channel blocker iberiotoxin. Stimulation of KCa 1.1 currents was fully reversible upon drug washout, markedly reduced by Rp-8-Br-PET-cGMPs, a PKG-inhibitor, but not affected by catalase. Quercetin shifted by 34.3 mV the voltage dependence of KCa 1.1 channel activation towards more negative membrane potentials without affecting its slope. Under conditions of tight functional coupling between sarcoplasmic reticulum Ca(2+) release sites and KCa 1.1 channels, quercetin decreased both the frequency and the amplitude of KCa 1.1 transient currents in a ryanodine-like manner. CONCLUSION The natural flavonoid quercetin relaxes the rat tail main artery partly via a PKG-mediated stimulation of smooth muscle KC a 1.1 channels.
Collapse
Affiliation(s)
- D. Iozzi
- Dipartimento di Scienze della Vita; Università degli Studi di Siena; Siena; Italy
| | - R. Schubert
- Research Division Cardiovascular Physiology; Centre for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim; University Heidelberg; Mannheim; Germany
| | | | - A. Neri
- Dipartimento di Scienze della Vita; Università degli Studi di Siena; Siena; Italy
| | - G. Sgaragli
- Dipartimento di Scienze della Vita; Università degli Studi di Siena; Siena; Italy
| | - F. Fusi
- Dipartimento di Scienze della Vita; Università degli Studi di Siena; Siena; Italy
| | - S. Saponara
- Dipartimento di Scienze della Vita; Università degli Studi di Siena; Siena; Italy
| |
Collapse
|
34
|
Neurogenic detrusor overactivity is associated with decreased expression and function of the large conductance voltage- and Ca(2+)-activated K(+) channels. PLoS One 2013; 8:e68052. [PMID: 23861849 PMCID: PMC3702577 DOI: 10.1371/journal.pone.0068052] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 05/24/2013] [Indexed: 11/23/2022] Open
Abstract
Patients suffering from a variety of neurological diseases such as spinal cord injury, Parkinson’s disease, and multiple sclerosis often develop neurogenic detrusor overactivity (NDO), which currently lacks a universally effective therapy. Here, we tested the hypothesis that NDO is associated with changes in detrusor smooth muscle (DSM) large conductance Ca2+-activated K+ (BK) channel expression and function. DSM tissue samples from 33 patients were obtained during open bladder surgeries. NDO patients were clinically characterized preoperatively with pressure-flow urodynamics demonstrating detrusor overactivity, in the setting of a clinically relevant neurological condition. Control patients did not have overactive bladder and did not have a clinically relevant neurological disease. We conducted quantitative polymerase chain reactions (qPCR), perforated patch-clamp electrophysiology on freshly-isolated DSM cells, and functional studies on DSM contractility. qPCR experiments revealed that DSM samples from NDO patients showed decreased BK channel mRNA expression in comparison to controls. Patch-clamp experiments demonstrated reduced whole cell and transient BK currents (TBKCs) in freshly-isolated DSM cells from NDO patients. Functional studies on DSM contractility showed that spontaneous phasic contractions had a decreased sensitivity to iberiotoxin, a selective BK channel inhibitor, in DSM strips isolated from NDO patients. These results reveal the novel finding that NDO is associated with decreased DSM BK channel expression and function leading to increased DSM excitability and contractility. BK channel openers or BK channel gene transfer could be an alternative strategy to control NDO. Future clinical trials are needed to evaluate the value of BK channel opening drugs or gene therapies for NDO treatment and to identify any possible adverse effects.
Collapse
|
35
|
Parajuli SP, Petkov GV. Activation of muscarinic M3 receptors inhibits large-conductance voltage- and Ca2+-activated K+ channels in rat urinary bladder smooth muscle cells. Am J Physiol Cell Physiol 2013; 305:C207-14. [PMID: 23703523 DOI: 10.1152/ajpcell.00113.2013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Large conductance voltage- and Ca(2+)-activated K(+) (BK) channels are key regulators of detrusor smooth muscle (DSM) contraction and relaxation during urine voiding and storage. Here, we explored whether BK channels are regulated by muscarinic receptors (M-Rs) in native freshly isolated rat DSM cells under physiological conditions using the perforated whole cell patch-clamp technique and pharmacological inhibitors. M-R activation with carbachol (1 μM) initially evoked large transient outward BK currents, followed by inhibition of the spontaneous transient outward BK currents (STBKCs) in DSM cells. Carbachol (1 μM) also inhibited the amplitude and frequency of spontaneous transient hyperpolarizations (STHs) and depolarized the DSM cell membrane potential. Selective inhibition of the muscarinic M3 receptors (M3-Rs) with 4-diphenylacetoxy-N-methylpiperidine (4-DAMP; 0.1 μM), but not muscarinic M2 receptors with methoctramine (1 μM), blocked the carbachol inhibitory effects on STBKCs. Furthermore, blocking the inositol 1,4,5-triphosphate (IP3) receptors with xestospongin-C (1 μM) inhibited the carbachol-induced large transient outward BK currents without affecting carbachol inhibitory effects on STBKCs. Upon pharmacological inhibition of all known cellular sources of Ca(2+) for BK channel activation, carbachol (1 μM) did not affect the voltage-step-induced steady-state BK currents, suggesting that the muscarinic effects in DSM cells are mediated by mobilization of intracellular Ca(2+). In conclusion, our findings provide strong evidence that activation of M3-Rs leads to inhibition of the STBKCs, STHs, and depolarization of DSM cells. Collectively, the data suggest the existence of functional interactions between BK channels and M3-Rs at a cellular level in DSM.
Collapse
Affiliation(s)
- Shankar P Parajuli
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, USA
| | | |
Collapse
|
36
|
Afeli SAY, Petkov GV. Functional BK channels facilitate the β3-adrenoceptor agonist-mediated relaxation of nerve-evoked contractions in rat urinary bladder smooth muscle isolated strips. Eur J Pharmacol 2013; 711:50-6. [PMID: 23643998 DOI: 10.1016/j.ejphar.2013.04.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 04/17/2013] [Accepted: 04/18/2013] [Indexed: 10/26/2022]
Abstract
The large-conductance voltage- and Ca(2+)-activated K(+) (BK) channel is a major regulator of detrusor smooth muscle (DSM) contractility thus facilitating urinary bladder function. Recent findings suggest that activation of β3-adrenoceptors causes DSM relaxation. However, it is unknown whether the β3-adrenoceptor-mediated DSM relaxation is BK channel-dependent during nerve-evoked contractions. To test this hypothesis, we induced nerve-evoked contractions in rat DSM isolated strips by using a tissue bath system equipped with platinum electrodes for electrical field stimulation (EFS). (±)-(R(*),R(*))-[4-[2-[[2-(3-chlorophenyl)-2-hydroxyethyl]amino]propyl]phenoxy] acetic acid sodium hydrate (BRL37344), a β3-adrenoceptor agonist, significantly decreased the amplitude and muscle force of the 20 Hz EFS-induced DSM contractions in a concentration-dependent manner. The BRL37344 inhibitory effect was significantly antagonized by 1-(2-ethylphenoxy)-3-[[(1S)-1,2,3,4-tetrahydro-1-naphthalenyl]amino]-(2S)-2-propanol hydrochloride (SR59230A), a β3-adrenoceptor antagonist. We further isolated the cholinergic from the purinergic component of the 0.5-50 Hz EFS-induced DSM contractions by using selective inhibitors, atropine as well as suramin and α,β-methylene-ATP. We found that BRL37344 inhibited both the purinergic and cholinergic components of the nerve-evoked contractions in rat DSM isolated strips. The pharmacological blockade of the BK channels with iberiotoxin, a selective BK channel inhibitor, increased the amplitude and muscle force of the 20 Hz EFS-induced contractions in rat DSM isolated strips. In the presence of iberiotoxin, there was a significant reduction in the BRL37344-induced inhibition of the 20 Hz EFS-induced contractions in rat DSM isolated strips. These latter findings suggest that BK channels play a critical role in the β3-adrenoceptor-mediated inhibition of rat DSM nerve-evoked contractions.
Collapse
Affiliation(s)
- Serge A Y Afeli
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | | |
Collapse
|
37
|
Lee H, Koh BH, Peri LE, Sanders KM, Koh SD. Functional expression of SK channels in murine detrusor PDGFR+ cells. J Physiol 2012; 591:503-13. [PMID: 23148317 DOI: 10.1113/jphysiol.2012.241505] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We sought to characterize molecular expression and ionic conductances in a novel population of interstitial cells (PDGFRα(+) cells) in murine bladder to determine how these cells might participate in regulation of detrusor excitability. PDGFRα(+) cells and smooth muscle cells (SMCs) were isolated from detrusor muscles of PDGFRα(+)/eGFP and smMHC/Cre/eGFP mice and sorted by FACS. PDGFRα(+) cells were highly enriched in Pdgfra (12 fold vs. unsorted cell) and minimally positive for Mhc (SMC marker), Kit (ICC marker) and Pgp9.5 (neuronal marker). SK3 was dominantly expressed in PDGFRα(+) cells in comparison to SMCs. αSlo (BK marker) was more highly expressed in SMCs. SK3 protein was observed in PDGFRα(+) cells by immunohistochemistry but could not be resolved in SMCs. Depolarization evoked voltage-dependent Ca(2+) currents in SMCs, but inward current conductances were not activated in PDGFRα(+) cells under the same conditions. PDGFRα(+) cells displayed spontaneous transient outward currents (STOCs) at potentials positive to -60 mV that were inhibited by apamin. SK channel modulators, CyPPA and SKA-31, induced significant hyperpolarization of PDGFRα(+) cells and activated SK currents under voltage clamp. Similar responses were not resolved in SMCs at physiological potentials. Single channel measurements confirmed the presence of functional SK3 channels (i.e. single channel conductance of 10 pS and sensitivity to intracellular Ca(2+)) in PDGFRα(+) cells. The apamin-sensitive stabilizing factor regulating detrusor excitability is likely to be due to the expression of SK3 channels in PDGFRα(+) cells because SK agonists failed to elicit resolvable currents and hyperpolarization in SMCs at physiological potentials.
Collapse
Affiliation(s)
- Haeyeong Lee
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | | | | | | | | |
Collapse
|
38
|
Hu XQ, Zhang L. Function and regulation of large conductance Ca(2+)-activated K+ channel in vascular smooth muscle cells. Drug Discov Today 2012; 17:974-87. [PMID: 22521666 PMCID: PMC3414640 DOI: 10.1016/j.drudis.2012.04.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 03/06/2012] [Accepted: 04/05/2012] [Indexed: 12/23/2022]
Abstract
Large conductance Ca(2+)-activated K(+) (BK(Ca)) channels are abundantly expressed in vascular smooth muscle cells. Activation of BK(Ca) channels leads to hyperpolarization of cell membrane, which in turn counteracts vasoconstriction. Therefore, BK(Ca) channels have an important role in regulation of vascular tone and blood pressure. The activity of BK(Ca) channels is subject to modulation by various factors. Furthermore, the function of BK(Ca) channels are altered in both physiological and pathophysiological conditions, such as pregnancy, hypertension and diabetes, which has dramatic impacts on vascular tone and hemodynamics. Consequently, compounds and genetic manipulation that alter activity and expression of the channel might be of therapeutic interest.
Collapse
Affiliation(s)
- Xiang-Qun Hu
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | | |
Collapse
|
39
|
Afeli SAY, Rovner ES, Petkov GV. SK but not IK channels regulate human detrusor smooth muscle spontaneous and nerve-evoked contractions. Am J Physiol Renal Physiol 2012; 303:F559-68. [PMID: 22592639 DOI: 10.1152/ajprenal.00615.2011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Animal studies suggest that the small (SK) and intermediate (IK) conductance Ca(2+)-activated K(+) channels may contribute to detrusor smooth muscle (DSM) excitability and contractility. However, the ability of SK and IK channels to control DSM spontaneous phasic and nerve-evoked contractions in human DSM remains unclear. We first investigated SK and IK channels molecular expression in native human DSM and further assessed their functional role using isometric DSM tension recordings and SK/IK channel-selective inhibitors. Quantitative PCR experiments revealed that SK3 channel mRNA expression in isolated DSM single cells was ∼12- to 44-fold higher than SK1, SK2, and IK channels. RT-PCR studies at the single-cell level detected mRNA messages for SK3 channels but not SK1, SK2, and IK channels. Western blot and immunohistochemistry analysis further confirmed protein expression for the SK3 channel and lack of detectable protein expression for IK channel in whole DSM tissue. Apamin (1 μM), a selective SK channel inhibitor, significantly increased the spontaneous phasic contraction amplitude, muscle force integral, phasic contraction duration, and muscle tone of human DSM isolated strips. Apamin (1 μM) also increased the amplitude of human DSM electrical field stimulation (EFS)-induced contractions. However, TRAM-34 (1 μM), a selective IK channel inhibitor, had no effect on the spontaneous phasic and EFS-induced DSM contractions suggesting a lack of IK channel functional role in human DSM. In summary, our molecular and functional studies revealed that the SK, particularly the SK3 subtype, but not IK channels are expressed and regulate the spontaneous and nerve-evoked contractions in human DSM.
Collapse
Affiliation(s)
- Serge A Y Afeli
- Dept. of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, Univ. of South Carolina, Columbia, SC 29208, USA
| | | | | |
Collapse
|
40
|
Amobi NIB, Guillebaud J, Smith ICH. Perspective on the role of P2X-purinoceptor activation in human vas deferens contractility. Exp Physiol 2012; 97:583-602. [PMID: 22227201 DOI: 10.1113/expphysiol.2011.063206] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The contractile actions of α,β-methylene ATP (α,β-meATP) and ATP and the effects of K(+) channel blockers in longitudinal and circular muscles of human vas deferens were investigated with a view to clarifying the functional importance of P2X(1)-purinoceptor activation and K(+) channels in modulating contractility of the tissues. The results provide an experiment-based perspective for resolving differing reports on purinergic activation of the tissues and uncertain roles of large-conductance Ca(2+)-activated K(+) (BK(Ca)) and voltage-gated delayed rectifier K(+) (K(V)) channels. α,β-Methylene ATP (3-100 μm) evoked suramin-sensitive contractions of longitudinal muscle but rarely of circular muscle. ATP (0.1-3 mm) less reliably activated only longitudinal muscle contractions. These were enhanced by ARL 67156 (100 μm), but a different ectonucleotidase inhibitor, POM 1, was ineffective. Both muscle types were unresponsive to ADP-βS (100 μm), a P2Y-purinoceptor agonist. Longitudinal muscle contractions in response to α,β-meATP were enhanced by FPL 64176 (1 μm), an L-type Ca(2+) agonist, TEA (1 mm), a non-specific K(+) channel blocker, 4-aminopyridine (0.3 mm), a selective blocker of K(V) channels, and iberiotoxin (0.1 μm), a selective blocker of BK(Ca) channels. Quiescent circular muscles responded to α,β-meATP reliably in the presence of FPL 64176 or iberiotoxin. Apamin (0.1 μm), a selective blocker of small conductance Ca(2+)-activated K(+) (SK(Ca)) channels had no effect in both muscle types. Y-27632 (1-10 μm) reduced longitudinal muscle contractions in response to α,β-meATP, suggesting involvement of Rho-kinase-dependent contractile mechanisms. The results indicate that P2X(1)-purinoceptor stimulation elicits excitatory effects that: (a) lead to longitudinal muscle contraction and secondary activation of 4-aminopyridine-sensitive (K(V)) and iberiotoxin-sensitive (BK(Ca)) K(+) channels; and (b) are subcontractile in circular muscle due to ancillary activation of BK(Ca) channels. The novel finding of differential action by P2X(1)-purinoceptor agonists in the muscle types has functional implication in terms of the purinergic contribution to overall contractile function of human vas deferens. The modulatory effects of K(V) and BK(Ca) channels following P2X(1)-purinoceptor activation may be pivotal in providing the crucial physiological mechanism that ensures temporal co-ordination of longitudinal and circular muscle contractility.
Collapse
|
41
|
Parajuli SP, Soder RP, Hristov KL, Petkov GV. Pharmacological activation of small conductance calcium-activated potassium channels with naphtho[1,2-d]thiazol-2-ylamine decreases guinea pig detrusor smooth muscle excitability and contractility. J Pharmacol Exp Ther 2012; 340:114-23. [PMID: 22001258 PMCID: PMC3251021 DOI: 10.1124/jpet.111.186213] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 10/13/2011] [Indexed: 02/05/2023] Open
Abstract
Small conductance Ca²⁺-activated K⁺ (SK) and intermediate conductance Ca(2+)-activated K⁺ (IK) channels are thought to be involved in detrusor smooth muscle (DSM) excitability and contractility. Using naphtho[1,2-d]thiazol-2-ylamine (SKA-31), a novel and highly specific SK/IK channel activator, we investigated whether pharmacological activation of SK/IK channels reduced guinea pig DSM excitability and contractility. We detected the expression of all known isoforms of SK (SK1-SK3) and IK channels at mRNA and protein levels in DSM by single-cell reverse transcription-polymerase chain reaction and Western blot. Using the perforated patch-clamp technique on freshly isolated DSM cells, we observed that SKA-31 (10 μM) increased SK currents, which were blocked by apamin (1 μM), a selective SK channel inhibitor. In current-clamp mode, SKA-31 (10 μM) hyperpolarized the cell resting membrane potential, which was blocked by apamin (1 μM) but not by 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34) (1 μM), a selective IK channel inhibitor. SKA-31 (10 nM-10 μM) significantly inhibited the spontaneous phasic contraction amplitude, frequency, duration, and muscle force in DSM isolated strips. The SKA-31 inhibitory effects on DSM contractility were blocked by apamin (1 μM) but not by TRAM-34 (1 μM), which did not per se significantly affect DSM spontaneous contractility. SK channel activation with SKA-31 reduced contractions evoked by electrical field stimulation. SKA-31 effects were reversible upon washout. In conclusion, SK channels, but not IK channels, mediate SKA-31 effects in guinea pig DSM. Pharmacological activation of SK channels reduces DSM excitability and contractility and therefore may provide a novel therapeutic approach for controlling bladder dysfunction.
Collapse
Affiliation(s)
- Shankar P Parajuli
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | |
Collapse
|
42
|
Petkov GV. Role of potassium ion channels in detrusor smooth muscle function and dysfunction. Nat Rev Urol 2011; 9:30-40. [PMID: 22158596 DOI: 10.1038/nrurol.2011.194] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Contraction and relaxation of the detrusor smooth muscle (DSM), which makes up the wall of the urinary bladder, facilitates the storage and voiding of urine. Several families of K(+) channels, including voltage-gated K(+) (K(V)) channels, Ca(2+)-activated K(+) (K(Ca)) channels, inward-rectifying ATP-sensitive K(+) (K(ir), K(ATP)) channels, and two-pore-domain K(+) (K(2P)) channels, are expressed and functional in DSM. They control DSM excitability and contractility by maintaining the resting membrane potential and shaping the action potentials that determine the phasic nature of contractility in this tissue. Defects in DSM K(+) channel proteins or in the molecules involved in their regulatory pathways may underlie certain forms of bladder dysfunction, such as overactive bladder. K(+) channels represent an opportunity for novel pharmacological manipulation and therapeutic intervention in human DSM. Modulation of DSM K(+) channels directly or indirectly by targeting their regulatory mechanisms has the potential to control urinary bladder function. This Review summarizes our current state of knowledge of the functional role of K(+) channels in DSM in health and disease, with special emphasis on current advancements in the field.
Collapse
Affiliation(s)
- Georgi V Petkov
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Coker Life Sciences Building, Room 609D, 715 Sumter Street, Columbia, SC 29208, USA.
| |
Collapse
|
43
|
Sancar F, Touroutine D, Gao S, Oh HJ, Gendrel M, Bessereau JL, Kim H, Zhen M, Richmond JE. The dystrophin-associated protein complex maintains muscle excitability by regulating Ca(2+)-dependent K(+) (BK) channel localization. J Biol Chem 2011; 286:33501-10. [PMID: 21795674 PMCID: PMC3190934 DOI: 10.1074/jbc.m111.227678] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 07/07/2011] [Indexed: 11/06/2022] Open
Abstract
The dystrophin-associated protein complex (DAPC) consists of several transmembrane and intracellular scaffolding elements that have been implicated in maintaining the structure and morphology of the vertebrate neuromuscular junction (NMJ). Genetic linkage analysis has identified loss-of-function mutations in DAPC genes that give rise to degenerative muscular dystrophies. Although much is known about the involvement of the DAPC in maintaining muscle integrity, less is known about the precise contribution of the DAPC in cell signaling events. To better characterize the functional role of the DAPC at the NMJ, we used electrophysiology, immunohistochemistry, and fluorescent labeling to directly assess cholinergic synaptic transmission, ion channel localization, and muscle excitability in loss-of-function (lf) mutants of Caenorhabditis elegans DAPC homologues. We found that all DAPC mutants consistently display mislocalization of the Ca(2+)-gated K(+) channel, SLO-1, in muscle cells, while ionotropic acetylcholine receptor (AChR) expression and localization at the NMJ remained unaltered. Synaptic cholinergic signaling was also not significantly impacted across DAPC(lf) mutants. Consistent with these findings and the postsynaptic mislocalization of SLO-1, we observed an increase in muscle excitability downstream of cholinergic signaling. Based on our results, we conclude that the DAPC is not involved in regulating AChR architecture at the NMJ, but rather functions to control muscle excitability, in an activity-dependent manner, through the proper localization of SLO-1 channels.
Collapse
Affiliation(s)
- Feyza Sancar
- From the Department of Biological Sciences, University of Illinois-Chicago, Chicago, Illinois 60607
| | - Denis Touroutine
- the Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Shangbang Gao
- the Samuel Lunenfeld Research Institute, University of Toronto, Toronto, Ontario M5G 1X5, Canada
| | - Hyun J. Oh
- the Department of Cell Biology and Anatomy, Rosalind Franklin University of Science and Medicine, North Chicago, Illinois 60064
| | - Marie Gendrel
- the Biology Department, Institut de Biologie de l'Ecole Normale Superieure, F-75005 Paris, France
| | - Jean-Louis Bessereau
- the Biology Department, Institut de Biologie de l'Ecole Normale Superieure, F-75005 Paris, France
- the Inserm, Unite 1024, F-75005 Paris, France, and
- the Centre National de la Recherche Scientifique, Unit e Mixte de Recherche 8197, F-75005 Paris, France
| | - Hongkyun Kim
- the Department of Cell Biology and Anatomy, Rosalind Franklin University of Science and Medicine, North Chicago, Illinois 60064
| | - Mei Zhen
- the Samuel Lunenfeld Research Institute, University of Toronto, Toronto, Ontario M5G 1X5, Canada
| | - Janet E. Richmond
- From the Department of Biological Sciences, University of Illinois-Chicago, Chicago, Illinois 60607
| |
Collapse
|
44
|
Hill-Eubanks DC, Werner ME, Heppner TJ, Nelson MT. Calcium signaling in smooth muscle. Cold Spring Harb Perspect Biol 2011; 3:a004549. [PMID: 21709182 DOI: 10.1101/cshperspect.a004549] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Changes in intracellular Ca(2+) are central to the function of smooth muscle, which lines the walls of all hollow organs. These changes take a variety of forms, from sustained, cell-wide increases to temporally varying, localized changes. The nature of the Ca(2+) signal is a reflection of the source of Ca(2+) (extracellular or intracellular) and the molecular entity responsible for generating it. Depending on the specific channel involved and the detection technology employed, extracellular Ca(2+) entry may be detected optically as graded elevations in intracellular Ca(2+), junctional Ca(2+) transients, Ca(2+) flashes, or Ca(2+) sparklets, whereas release of Ca(2+) from intracellular stores may manifest as Ca(2+) sparks, Ca(2+) puffs, or Ca(2+) waves. These diverse Ca(2+) signals collectively regulate a variety of functions. Some functions, such as contractility, are unique to smooth muscle; others are common to other excitable cells (e.g., modulation of membrane potential) and nonexcitable cells (e.g., regulation of gene expression).
Collapse
Affiliation(s)
- David C Hill-Eubanks
- Department of Pharmacology, College of Medicine, University of Vermont, Burlington, Vermont 05405, USA
| | | | | | | |
Collapse
|
45
|
Heppner TJ, Layne JJ, Pearson JM, Sarkissian H, Nelson MT. Unique properties of muscularis mucosae smooth muscle in guinea pig urinary bladder. Am J Physiol Regul Integr Comp Physiol 2011; 301:R351-62. [PMID: 21632849 PMCID: PMC3154705 DOI: 10.1152/ajpregu.00656.2010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 05/27/2011] [Indexed: 11/22/2022]
Abstract
The muscularis mucosae, a type of smooth muscle located between the urothelium and the urinary bladder detrusor, has been described, although its properties and role in bladder function have not been characterized. Here, using mucosal tissue strips isolated from guinea pig urinary bladders, we identified spontaneous phasic contractions (SPCs) that appear to originate in the muscularis mucosae. This smooth muscle layer exhibited Ca(2+) waves and flashes, but localized Ca(2+) events (Ca(2+) sparks, purinergic receptor-mediated transients) were not detected. Ca(2+) flashes, often in bursts, occurred with a frequency (∼5.7/min) similar to that of SPCs (∼4/min), suggesting that SPCs are triggered by bursts of Ca(2+) flashes. The force generated by a single mucosal SPC represented the maximal force of the strip, whereas a single detrusor SPC was ∼3% of maximal force of the detrusor strip. Electrical field stimulation (0.5-50 Hz) evoked force transients in isolated detrusor and mucosal strips. Inhibition of cholinergic receptors significantly decreased force in detrusor and mucosal strips (at higher frequencies). Concurrent inhibition of purinergic and cholinergic receptors nearly abolished evoked responses in detrusor and mucosae. Mucosal SPCs were unaffected by blocking small-conductance Ca(2+)-activated K(+) (SK) channels with apamin and were unchanged by blocking large-conductance Ca(2+)-activated K(+) (BK) channels with iberiotoxin (IbTX), indicating that SK and BK channels play a much smaller role in regulating muscularis mucosae SPCs than they do in regulating detrusor SPCs. Consistent with this, BK channel current density in myocytes from muscularis mucosae was ∼20% of that in detrusor myocytes. These findings indicate that the muscularis mucosae in guinea pig represents a second smooth muscle compartment that is physiologically and pharmacologically distinct from the detrusor and may contribute to the overall contractile properties of the urinary bladder.
Collapse
Affiliation(s)
- Thomas J Heppner
- Department of Pharmacology, University of Vermont, Burlington, Vermont 05405, USA.
| | | | | | | | | |
Collapse
|
46
|
Hidayat Santoso AG, Liang W. Bladder contractility is mediated by different K+ channels in the urothelium and detrusor smooth muscle. J Pharmacol Sci 2011; 115:127-134. [PMID: 21258177 DOI: 10.1254/jphs.10162fp] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 11/03/2010] [Indexed: 10/18/2022] Open
Abstract
The roles played by K(+) channels in the urothelium (UE) and detrusor smooth muscle (DSM) in regulating agonist-induced bladder contraction is not known at present. Thus, the effects in carbachol (CCh)-induced contraction in UE-intact (+UE) and UE-denuded (-UE) rat detrusor strips pretreated with K(+)-channel blockers were investigated here. The K(+)-channel blockers used were 4-aminopyridine (4-AP), glibenclamide (Glib), iberiotoxin (IbTx), charybdotoxin (ChTx), and apamin. In the absence of K(+)-channel blockers, control CCh-induced contractions were more potent in -UE than +UE strips. Treatment with IbTx and apamin resulted in more potent CCh-induced contractions in +UE strips. In -UE strips, CCh potency was increased by ChTx and Glib, but decreased by 4-AP. Different K(+) channels in the UE and DSM were thus involved in regulating bladder contractions. Contractile mediatory function of these channels, specific to the UE or DSM, may be potential drug targets in the management of bladder disorders.
Collapse
|
47
|
Nielsen JS, Rode F, Rahbek M, Andersson KE, Rønn LC, Bouchelouche K, Nordling J, Bouchelouche P. Effect of the SK/IK channel modulator 4,5-dichloro-1,3-diethyl-1,3-dihydro-benzoimidazol-2-one (NS4591) on contractile force in rat, pig and human detrusor smooth muscle. BJU Int 2011; 108:771-7. [PMID: 21223472 DOI: 10.1111/j.1464-410x.2010.10019.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVE • To investigate the importance of small (SK)- and intermediate (IK)-conductance Ca2(+) -activated K(+) channels on bladder function, by studying the effects of 4,5-dichloro-1,3-diethyl-1,3-dihydro-benzoimidazol-2-one (NS4591), a new modulator of SK/IK channels, on contractions induced by electrical field stimulation (EFS) and carbachol in rat, pig and human detrusor. PATIENTS AND METHODS • Detrusor biopsies were obtained from rats, pigs and male patients undergoing cystectomy because of bladder cancer. • Force was recorded using myographs. • Intracellular free Ca(2+) was measured in myocytes using microfluorimetry. RESULTS • In rat bladder rings subjected to EFS, cumulative addition of NS4591 (0.1-30 µM) decreased force by 82 ± 2.9% (n = 6).This effect was reduced by 64 ± 5.2% in the presence of 0.3 µM apamin, a specific inhibitor of SK channels. Apamin increased the force evoked by EFS significantly: force was increased by 14.2 ± 3.4% (n = 5) and 10.1 ± 2.6% (n = 7) in pig and human detrusor strips, respectively (P = 0.04 and P = 0.02). • The cumulative addition of NS4591 (0.3-30 µM) significantly reduced the amplitude of carbachol-induced rhythmic oscillations by 62.0 ± 12.0% (n = 12) and the minimum force between oscillations by 30 ± 5% (n = 9) in pig detrusor strips (P < 0.005). In the presence of 10 µM NS4591, carbachol (1 µM) induced rhythmic contractions with an amplitude and normalized mean power frequency (nmeanPF) of 8.4 ± 5.1% and 0.11 ± 0.06 mN root mean square (rms) Hz (n = 12), respectively, vs. 21 ± 3.4% and 0.17 ± 0.04 mN rms Hz in control strips (n = 13). Apamin induced 6- and 11-fold increases in amplitude and nmeanPF vs. 1.3- and 2-fold increases in control strips. • In human detrusor strips (n = 15), the cumulative addition of NS4591 (1-30 µM) significantly reduced the amplitude by 69 ± 11%, the nmeanPF by 78 ± 6% and the minimum force between carbachol-induced oscillations by 59 ± 5% (P < 0.008). The addition of apamin (0.3 µM) before application of 1 µM carbachol abolished the effects of NS4591 on amplitude and partially abolished its effect on nmeanPF by 41 ± 7%, vs. a 78 ± 6% reduction in the absence of apamin (n = 8). • In spontaneously active detrusor preparations, NS4591 reduced or abolished contractions. • Furthermore, NS4591 (10 µM) decreased the carbachol-induced increase in the fura-2 ratio by 43 ± 3% compared with control (n = 12) (P < 0.03). CONCLUSIONS • The SK/IK channel modulator NS4591 inhibits EFS- and carbachol-induced contractions in rat, pig and human detrusor muscle. • NS4591 may have therapeutic potential for treatment of detrusor overactivity.
Collapse
|
48
|
Berkefeld H, Fakler B, Schulte U. Ca2+-activated K+ channels: from protein complexes to function. Physiol Rev 2010; 90:1437-59. [PMID: 20959620 DOI: 10.1152/physrev.00049.2009] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Molecular research on ion channels has demonstrated that many of these integral membrane proteins associate with partner proteins, often versatile in their function, or even assemble into stable macromolecular complexes that ensure specificity and proper rate of the channel-mediated signal transduction. Calcium-activated potassium (K(Ca)) channels that link excitability and intracellular calcium concentration are responsible for a wide variety of cellular processes ranging from regulation of smooth muscle tone to modulation of neurotransmission and control of neuronal firing pattern. Most of these functions are brought about by interaction of the channels' pore-forming subunits with distinct partner proteins. In this review we summarize recent insights into protein complexes associated with K(Ca) channels as revealed by proteomic research and discuss the results available on structure and function of these complexes and on the underlying protein-protein interactions. Finally, the results are related to their significance for the function of K(Ca) channels under cellular conditions.
Collapse
Affiliation(s)
- Henrike Berkefeld
- Institute of Physiology II, University of Freiburg, and Centre for Biological Signalling Studies (Bioss),Freiburg, Germany.
| | | | | |
Collapse
|
49
|
Fry C, Meng E, Young J. The physiological function of lower urinary tract smooth muscle. Auton Neurosci 2010; 154:3-13. [DOI: 10.1016/j.autneu.2009.10.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2009] [Revised: 10/25/2009] [Accepted: 10/27/2009] [Indexed: 11/15/2022]
|
50
|
Kita M, Yunoki T, Takimoto K, Miyazato M, Kita K, de Groat WC, Kakizaki H, Yoshimura N. Effects of bladder outlet obstruction on properties of Ca2+-activated K+ channels in rat bladder. Am J Physiol Regul Integr Comp Physiol 2010; 298:R1310-9. [PMID: 20200132 DOI: 10.1152/ajpregu.00523.2009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this study, we investigated the effects of bladder outlet obstruction (BOO) on the expression and function of large conductance (BK) and small conductance (SK) Ca(2+)-activated K(+) channels in detrusor smooth muscle. The bladder from adult female Sprague-Dawley rats with 6-wk BOO were used. The mRNA expression of the BK channel alpha-subunit, beta1-, beta2-, and beta4-subunits and SK1, SK2, and SK3 channels were investigated using real-time RT-PCR. All subunits except for the BK-beta2, SK2, and SK3 channels were predominantly expressed in the detrusor smooth muscle rather than in the mucosa. The mRNA expression of the BK channel alpha-subunit was not significantly changed in obstructed bladders. However, the expression of the BK channel beta1-subunit and the SK3 channel was remarkably increased in obstructed bladders. On the other hand, the expression of the BK channel beta4-subunit was decreased as the severity of BOO-induced bladder overactivity progressed. In detrusor smooth muscle strips from obstructed bladders, blockade of BK channels by iberiotoxin (IbTx) or charybdotoxin (CTx) and blockade of SK channels by apamin increased the amplitude of spontaneous contractions. These blockers also increased the contractility and affinity of these strips for carbachol during cumulative applications. The facilitatory effects elicited by these K(+) channel blockers were larger in the strips from obstructed bladders compared with control bladders. These results suggest that long-term exposure to BOO for 6 wk enhances the function of both BK and SK types of Ca(2+)-activated K(+) channels in the detrusor smooth muscle to induce an inhibition of bladder contractility, which might be a compensatory mechanism to reduce BOO-induced bladder overactivity.
Collapse
Affiliation(s)
- Masafumi Kita
- Department of Urology, University of Pittsburgh School of Medicine, 3471 Fifth Ave., Pittsburgh, PA 15213, USA.
| | | | | | | | | | | | | | | |
Collapse
|