1
|
Steffen TL, Stafford JD, Bocke CR, Samson WK, Yosten GLC. The anorexigenic peptide nesfatin-1 dampens the B cell response to receptor-mediated stimulation through inhibition of NF-κB signaling. Am J Physiol Regul Integr Comp Physiol 2025; 328:R601-R610. [PMID: 40135734 DOI: 10.1152/ajpregu.00233.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/15/2024] [Accepted: 03/17/2025] [Indexed: 03/27/2025]
Abstract
Nesfatin-1, a posttranslational product of the protein encoded by the nucleobindin 2 gene (NUCB2), was functionally identified as an appetite regulatory molecule in rat hypothalamic nuclei. In the years following the discovery, those findings have been corroborated and expanded upon, and we now know that nesfatin-1 is expressed throughout peripheral tissues and exerts physiological effects beyond feeding control. Literature indicates that adipose tissue is one of the peripheral sources of NUCB2/nesfatin-1, and in this setting, it has anti-inflammatory effects that have recently been implicated in regulating chronic inflammation associated with diet-induced obesity. Currently, there are gaps in our understanding of what cell types within the adipose tissue compartment respond to nesfatin-1, in addition to the cellular mechanism(s) of this peptide. In this study, we sought to determine a mechanism by which this peptide might directly interact with the immune system starting with a human B cell line, Raji. We show that nesfatin-1 inhibits lipopolysaccharide (LPS) and B cell receptor (BCR) dual stimulation-mediated B cell growth, stimulation-induced cell death, and secretion of inflammatory mediators. Specifically, there was a reduced fold-change in B cell growth during stimulation which is paired with a reduction in the formation of apoptotic (annexin V+) cells. In addition, nesfatin-1 significantly reduced IgM secretion and modestly reduced TNFα secretion by stimulated B cells. The anti-inflammatory effects of nesfatin-1 overall are likely due to attenuation of NF-κB signaling, via inhibition of IκB degradation, in stimulated B cells.NEW & NOTEWORTHY This study establishes an interaction of nesfatin-1 and a human B cell line, Raji. Nesfatin-1 was shown to limit the B cell response to receptor-mediated stimulation, an action that has potential implications within the immune system and the development of chronic inflammation associated with the obese state. This study, along with previously published works, highlights a need for further research on nesfatin-1's interactions with adipocytes and immune cells.
Collapse
Affiliation(s)
- Tara L Steffen
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri, United States
| | - Joshua D Stafford
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri, United States
| | - Colleen R Bocke
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri, United States
| | - Willis K Samson
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri, United States
| | - Gina L C Yosten
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri, United States
| |
Collapse
|
2
|
Esbjörnsson M, Norman B, Persson M, Saini A, Bülow J, Jansson E. Enhanced interleukin-6 in human adipose tissue vein after sprint exercise: Results from a pilot study. Clin Physiol Funct Imaging 2024; 44:171-178. [PMID: 37899535 DOI: 10.1111/cpf.12863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 10/31/2023]
Abstract
BACKGROUND Low-volume sprint exercise is likely to reduce body fat. Interleukin (IL-6) may mediate this by increasing adipose tissue (AT) lipolysis. Therefore, the exchange of AT IL-6 and glycerol, a marker of lipolysis, was examined in 10 healthy subjects performing three 30-s all-out sprints. METHODS Blood samples were obtained from brachial artery (a) and a superficial subcutaneous vein (v) on the anterior abdominal wall up to 9 min after the last sprint and analysed for IL-6 and glycerol. RESULTS Arterial IL-6 increased 2-fold from rest to last sprint. AT venous IL-6 increased 15-fold from 0.4 ± 0.4 at rest to 7.0 ± 4 pg × mL-1 (p < 0.0001) and AT v-a difference increased 45-fold from 0.12 ± 0.3 to 6.0 ± 5 pg x mL-1 (p < 0.0001) 9 min after last sprint. Arterial glycerol increased 2.5-fold from rest to 9 min postsprint 1 (p < 0.0001) and was maintained during the exercise period. AT venous and v-a difference of glycerol increased 2-fold from rest to 9 min postsprint 1 (p < 0.0001 and p = 0.01, respectively), decreased until 18 min postsprint 2 (p < 0.001 and p < 0.0001), and then increased again until 9 min after last sprint (both p < 0.01). CONCLUSIONS The concurrent increase in venous IL-6 and glycerol in AT after last sprint is consistent with an IL-6 induced lipolysis in AT. Glycerol data also indicated an initial increase in lipolysis after sprint 1 that was unrelated to IL-6. Increased IL-6 in adipose tissue may, therefore, complement other sprint exercise-induced lipolytic agents.
Collapse
Affiliation(s)
- Mona Esbjörnsson
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, Huddinge, Sweden
- Department of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Barbara Norman
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, Huddinge, Sweden
| | - Moa Persson
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, Huddinge, Sweden
| | - Amarjit Saini
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, Huddinge, Sweden
| | - Jens Bülow
- Division of Clinical Physiology, Bispebjerg Hospital, Copenhagen, Denmark
| | - Eva Jansson
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, Huddinge, Sweden
- Department of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
3
|
Lynch CE, Brandt AR, Vincenty CS, Robbins E, Skiles C, Minchev K, Chambers TL, Belangee A, Trappe TA, Trappe SW. Adipose biopsy techniques for studies in human exercise physiology. Am J Physiol Regul Integr Comp Physiol 2024; 326:R220-R229. [PMID: 38223939 DOI: 10.1152/ajpregu.00266.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/16/2024]
Abstract
Adipose biopsy techniques are relatively undefined for exercise physiology research in individuals at or near normal weight. The purpose of this study was to compare the influence of two adipose biopsy techniques on tissue quality through measurements of adipocyte cell size, as well as mRNA and protein levels of select pro- and anti-inflammatory cytokines and adipokines. Thirteen participants (9 M, 4 W; 28 ± 4 yr; 27 ± 3 kg·m-2; V̇o2max: 3.3 ± 0.7 L·min-1) underwent subcutaneous adipose biopsies on either side of the umbilicus (incision: ∼8 cm lateral, sampling area: ∼5 cm lateral) using 1) a 6-mm Bergström biopsy needle and 2) a mini-liposuction approach with a 4-mm Mercedes biopsy needle that used prebiopsy tumescent delivery (∼30 mL 0.9% NaCl solution) into the sampling area (i.e., 'wet' technique). Tissue obtained was processed identically for analysis and both techniques returned high-quality tissue for histology (similar % intact adipocytes), mRNA (RNA integrity numbers >7.0), and protein. Adipocyte size was similar (P > 0.05) between both techniques (Bergström: 6,116 ± 1,652 μm2, 554-23,522 µm2; Mercedes: 6,517 ± 952 μm2, 926-21,969 µm2). There were also no differences (P > 0.05) between the two techniques for the measured cytokines (pro- and anti-inflammatory) and adipokines at the mRNA and protein levels. Adipocyte size was positively correlated with body mass index and body fat percentage, and negatively correlated with V̇o2max (P < 0.05). These results suggest both adipose biopsy techniques used in the current investigation are appropriate for histological, transcriptional, and translational level measurements in exercise physiology studies of nonobese women and men.NEW & NOTEWORTHY This study provides investigators with useful information related to adipose biopsy sampling approaches that can be used when planning studies that use measurements of adipose histology, as well as measurements at the mRNA and protein level. Adipose periumbilical sampling with the Bergström biopsy needle and the Mercedes wet mini-liposuction technique are both appropriate options for studies in exercise physiology and in nonobese individuals.
Collapse
Affiliation(s)
- Colleen E Lynch
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Anna R Brandt
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Caroline S Vincenty
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Ethan Robbins
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Chad Skiles
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Kiril Minchev
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Toby L Chambers
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Alicia Belangee
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Todd A Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| | - Scott W Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana, United States
| |
Collapse
|
4
|
Alanteet A, Attia H, Alfayez M, Mahmood A, Alsaleh K, Alsanea S. Liraglutide attenuates obese-associated breast cancer cell proliferation via inhibiting PI3K/Akt/mTOR signaling pathway. Saudi Pharm J 2024; 32:101923. [PMID: 38223522 PMCID: PMC10784703 DOI: 10.1016/j.jsps.2023.101923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/13/2023] [Indexed: 01/16/2024] Open
Abstract
This study aims to explore the anti-proliferative, pro-apoptotic, and anti-migration activities of liraglutide (LGT) in MCF-7 breast cancer (BC) cells in subjects with obesity, particularly its effects on the PI3K/Akt/mTOR/AMPK pathway. The role of AMPK/SIRT-1, an essential regulator of adipokine production, in the effect of LGT on the production of adipose-derived adipokine was also assessed. MCF-7 cells were incubated in conditioned medium (CM) generated from adipose-derived stem cells (ADSCs) of obese subjects. MCF-7 cells were then treated with LGT for 72 h. Anti-proliferative, pro-apoptotic, and anti-migration activities were investigated using alamarBlue, annexin V stain, and scratch assay, respectively. Protein levels of phosphorylated PI3K, p-Akt, p-mTOR, and p-AMPK were investigated using immunoblotting. Levels of adipokines in ADSCs were determined using RT-PCR before and after transfection of ADSCs using the specific small interference RNA sequences for AMPK and SIRT-1. LGT evoked anti-proliferative, apoptotic, and potential anti-migratory properties on MCF-7 cells incubated in CM from obese ADSCs and significantly mitigated the activity of the PI3K/Akt/mTOR survival pathway-but not AMPK-in MCF-7 cells. Furthermore, the anti-proliferative effects afforded by LGT were similar to those mediated by LY294002 (PI3K inhibitor) and rapamycin (mTOR inhibitor). Our results reveal that transfection of AMPK/SIRT-1 genes did not affect the beneficial role of LGT in the expression of adipokines in ADSCs. In conclusion, LGT elicits anti-proliferative, apoptotic, and anti-migratory effects on BC cells in obese conditions by suppressing the activity of survival pathways; however, this effect is independent of the AMPK/SIRT1 pathway in ADSCs or AMPK in BC cells.
Collapse
Affiliation(s)
- Alaa Alanteet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hala Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Musaed Alfayez
- Anatomy Department, Stem Cell Unit, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| | - Amer Mahmood
- Anatomy Department, Stem Cell Unit, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid Alsaleh
- College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sary Alsanea
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
5
|
Rassouli A, Shihmani B, Mehrzad J, Shokrpoor S. The immunomodulatory effect of minocycline on gene expression of inflammation related cytokines in lipopolysaccharide-treated human peripheral blood mononuclear cells. Anim Biotechnol 2023; 34:2159-2165. [PMID: 35622407 DOI: 10.1080/10495398.2022.2077743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
To evaluate the immunomodulatory effect of minocycline, the present study was carried out on the gene expression of toll-like receptor type-4 (TLR4) and some pro-inflammatory (IL-1β, IL-6) and anti-inflammatory cytokines (IL-10) associated with lipopolysaccharide (LPS) -induced inflammation in human peripheral blood mononuclear cells (PBMCs). The PBMCs were collected and then 5.4 × 106 PBMCs/mL were used in eight groups as follows: control group (only media), LPS group (only LPS), methylprednisolone (Pred) group (LPS plus Pred), meloxicam (Melo) group (LPS plus Melo), three minocycline groups [M1, M5 and M25] (LPS plus 1, 5, and 25 µg/mL minocycline, respectively) and minocycline control (MC) group (5 µg/mL minocycline). After incubation for 24 h, the PBMCs were subjected to quantitative PCR assays. Gene expression levels of TLR4 were not changed in any groups. The IL-1β levels were increased in the LPS group but the increases were much more intense in the other groups except Pred group. Compared with control group, IL-6 levels increased significantly in Melo, M1 and M25 groups. Significant increases of IL-10 levels were also observed in Melo, M25 and MC groups. It can be concluded that minocycline had dual pro- and anti-inflammatory activities with potential clinical immunomodulatory effects.
Collapse
Affiliation(s)
- Ali Rassouli
- Pharmacology Division, Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Basim Shihmani
- Department of Comparative Biosciences, University of Tehran, Tehran, Iran
| | - Jalil Mehrzad
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Sara Shokrpoor
- Department of Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
6
|
Zouei N, Dalimi A, Pirestani M, Ghaffarifar F. Assessment of tissue levels of miR-146a and proinflammatory cytokines in experimental cerebral toxoplasmosis following atovaquone and clindamycin treatment: An in vivo study. Microb Pathog 2023; 184:106340. [PMID: 37683834 DOI: 10.1016/j.micpath.2023.106340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/27/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
BACKGROUND Despite recent advances for treating cerebral toxoplasmosis (CT), monitoring the parasite burden and treatment response is still challenging. miRNAs are small non-coding RNAs with regulatory functions that can be used in diagnosis and treatment monitoring. We investigated the changes in miR-146a, BAG-1 gene, IL-6, and IL-10 tissue levels in the brain of BALB/c mice with chronic CT caused by the PRU strain of T. gondii following anti-parasitic and antibiotic treatment. METHOD Fifty-three 6-to 8-week-old BALB/c mice were infected using intraperitoneal inoculation of cerebral cysts of T. gondii PRU strain and then divided into five groups as follows: group 1 included mice treated with 100 mg/kg/d Atovaquone (AT), group 2 included mice treated with 400 mg/kg/d clindamycin (CL), group 3 included mice treated with combination therapy (AT + CL), group 4 included infected untreated mice as a positive control (PC), and; group 5 included uninfected untreated mice as negative control (NC). After the completion of the treatment course, tissue level of mir-146a, miR-155, BAG-1 gene, IL-6, and IL-10 was investigated with real-time polymerase chain reaction. The IL-6/IL-10 ratio was calculated as an indicator of immune response. Moreover, brain cyst numbers were counted on autopsy samples. RESULTS miR-146a, IL-6, IL-10, and BAG-1 genes were expressed in PC, but not in the NC group; miR-146a, IL-6, IL-10, and BAG-1 gene expression were significantly lower in AT, CL, and AT + CL compared with PC. MiR-146a and BAG-1 levels in AT and CL were not different statistically, however, they both had lower levels compared to AT + CL (P < 0.01). There was no difference in the expression of IL-6 and IL-10 between treatment groups. BAG-1 expression was significantly lower in AT, than in CL and AT + CL (P < 0.0089 and < 0.002, respectively). The PC group showed a higher ratio of IL-6/IL-10, although this increase was not statistically significant. It is noteworthy that the treatment with AT reduced this ratio; in the inter-group comparison, this ratio showed a decrease in the AT and AT + CL compared to the PC. The number of brain tissue cysts was significantly lower in AT, CL, and AT + CL, than in PC (p < 0.0001). AT had significantly lower brain cysts than CL and AT + CL (P < 0.0001). CONCLUSION It seems that the factors studied in the current research (microRNA and cytokines) are a suitable index for evaluating the response to antiparasitic and antibiotic treatment. However, more studies should be conducted in the future to confirm our findings.
Collapse
Affiliation(s)
- Nima Zouei
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Abdolhossein Dalimi
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Majid Pirestani
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Ghaffarifar
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
7
|
DİKMEN N, ÖZKAN H, ÇİMEN F, ÇAMDEVİREN B, AY E, AMBARCIOĞLU P, DURAN N, YAKIN A. Dose-dependent effects of simvastatin, atorvastatin and rosuvastatin on apoptosis and inflammation pathways on cancerous lung cells. ANKARA ÜNIVERSITESI VETERINER FAKÜLTESI DERGISI 2023; 70:141-148. [DOI: 10.33988/auvfd.938418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
The aim of study was to investigate the anti-proliferative and inflammatory effects of atorvastatin, rosuvastatin, and simvastatin in lung cancer. The effects of statins were investigated in Vero, BEAS-2B, and A549 cell lines. In addition to expressions of BAX, BCL-2, TNFα, IL-10, IL-6, protein levels of TNFα, IL-10, IL-6 were determined. Cell viability and MDA were also measured. While the cell numbers in groups with low doses of statins were found to be approximately 1x106/mL, proliferation was inhibited at higher rates containing high doses. Simvastatin, rosuvastatin, and high dose atorvastatin upregulated the BAX, while high dose of atorvastatin and both doses of rosuvastatin caused downregulation in BCL-2. All statin groups had higher MDA. Simvastatin and high dose rosuvastatin upregulated TNFα. While low dose simvastatin and atorvastatin and high dose atorvastatin and rosuvastatin upregulated IL-10, IL-6 was upregulated with a low dose of rosuvastatin. TNFα was higher in simvastatin and rosuvastatin groups. IL-10 was highest in rosuvastatin groups. Atorvastatin groups had lower IL-6. Although cell numbers have been reduced by all statins, rosuvastatin is more effective on studied genes.
Collapse
|
8
|
Dogan S, Kimyon G, Ozkan H, Kacmaz F, Camdeviren B, Karaaslan I. TNF-alpha, IL-6, IL-10 and fatty acids in rheumatoid arthritis patients receiving cDMARD and bDMARD therapy. Clin Rheumatol 2022; 41:2341-2349. [PMID: 35467309 DOI: 10.1007/s10067-022-06180-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/07/2022] [Accepted: 04/13/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVE The present study aimed to examine the effects of cDMARD and bDMARD therapy on both gene expressions and protein levels of TNF-α, IL-6, IL-10 and fatty acid levels in patients with RA. METHOD Plasma TNF-α, IL-6, and IL-10 levels were examined by the ELISA method, while TNF-α, IL-6, and IL-10 gene expression levels were examined by RT-qPCR, and fatty acid levels were examined by GC/MS. RESULTS IL-10 gene expression levels significantly increased in RA patients receiving cDMARD treatment compared to those of the control group. Also, eicosadienoic acid, myristoleic acid and capric acid levels were significantly lower in the patient groups compared to those in the control group. CONCLUSION The drugs used in the treatment of RA had no effect on the fatty acid levels whereas had effects on the mRNA and protein levels of the target cytokines.
Collapse
Affiliation(s)
- Serdar Dogan
- Department of Biochemistry, Faculty of Medicine, Hatay Mustafa Kemal University, Antakya, Hatay, 31060, Turkey.
| | - Gezmis Kimyon
- Department of Rheumatology, Faculty of Medicine, Hatay Mustafa Kemal University, Antakya, Hatay, 31060, Turkey
| | - Huseyin Ozkan
- Department of Genetics, Faculty of Veterinary Medicine, Hatay Mustafa Kemal University, Antakya, Hatay, 31060, Turkey
| | - Filiz Kacmaz
- Department of Molecular Biochemistry and Genetics, Health Science Institute, Hatay Mustafa Kemal University, Antakya, Hatay, 31060, Turkey
| | - Baran Camdeviren
- Department of Molecular Biochemistry and Genetics, Health Science Institute, Hatay Mustafa Kemal University, Antakya, Hatay, 31060, Turkey
| | - Irem Karaaslan
- Research and Application Center for Technology and Research and Development, Hatay Mustafa Kemal University, Antakya, Hatay, 31060, Turkey
| |
Collapse
|
9
|
Aljaloud KS, Hughes AR, Galloway SDR. Impact of Physical Activity on Adiposity and Risk Markers for Cardiovascular and Metabolic Disease. Am J Mens Health 2022; 16:15579883221092289. [PMID: 35466785 PMCID: PMC9036347 DOI: 10.1177/15579883221092289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The main aim of the present study was to investigate the impact of physical activity (PA) on adiposity and for cardiovascular and metabolic disease risk markers (CMDRMs). In total, 55 adults (33 lean [L] and 22 overweight/obesity [O/O]) visited the laboratory on two occasions. During the first session, body composition and anthropometric measurements were taken as well as resting blood pressure (BP). Free-living PA intensity was monitored using an ActiGraph accelerometer, which the participants wore for a period of 6 days. During the second visit, blood samples for the analysis of disease risk markers were obtained from the participants in the morning after overnight fasting (≥10 hr). There was no significant difference between groups in the percentage of time spent in PA levels (54.5% ± 1.2% and 54.9% ± 2.1% for L and O/O, respectively). Although, the O/O group was within recommended PA level, they had higher leptin, insulin, homeostatic model assessment of insulin resistance (HOMA-IR), and high-sensitivity C-reactive protein (hsCRP) levels than the L group (all p < .01). The O/O group had higher levels of triglycerides, low-density lipoprotein (LDL), and very low-density lipoprotein (VLDL) and lower levels of high-density lipoprotein (HDL; all p < .01). Interestingly, vigorous activity was positively correlated with HDL (r = .30, p < .05) and negatively with LDL (r = -.26, p = .05) levels and the arachidonic acid to eicosapentaenoic acid (ARA/EPA) ratio (r = -.30, p < .05). Only the O/O group had elevated CMDRMs. However, vigorous activity may improve health-related blood lipids such as HDL, LDL, and ARA/EPA ratio. Regardless of body composition status, low active participants were more likely to have higher level of leptin and hsCRP. Further exploration of the beneficial effects of vigorous exercise on adiposity and CMDRMs is warranted.
Collapse
Affiliation(s)
- Khalid S Aljaloud
- Department of Exercise Physiology, King Saud University, Riyadh, Saudi Arabia
| | - Adrienne R Hughes
- Physical Activity for Health Group, School of Psychological Sciences and Health, University of Strathclyde, Glasgow, UK
| | - Stuart D R Galloway
- Physiology, Exercise, and Nutrition Research Group, Faculty of Health Sciences and Sport, University of Stirling, Stirling, UK
| |
Collapse
|
10
|
Sabaratnam R, Wojtaszewski JFP, Højlund K. Factors mediating exercise-induced organ crosstalk. Acta Physiol (Oxf) 2022; 234:e13766. [PMID: 34981891 DOI: 10.1111/apha.13766] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 10/11/2021] [Accepted: 01/01/2022] [Indexed: 12/21/2022]
Abstract
Exercise activates a plethora of metabolic and signalling pathways in skeletal muscle and other organs causing numerous systemic beneficial metabolic effects. Thus, regular exercise may ameliorate and prevent the development of several chronic metabolic diseases. Skeletal muscle is recognized as an important endocrine organ regulating systemic adaptations to exercise. Skeletal muscle may mediate crosstalk with other organs through the release of exercise-induced cytokines, peptides and proteins, termed myokines, into the circulation. Importantly, other tissues such as the liver and adipose tissue may also release cytokines and peptides in response to exercise. Hence, exercise-released molecules are collectively called exerkines. Moreover, extracellular vesicles (EVs), in the form of exosomes or microvesicles, may carry some of the signals involved in tissue crosstalk. This review focuses on the role of factors potentially mediating crosstalk between muscle and other tissues in response to exercise.
Collapse
Affiliation(s)
- Rugivan Sabaratnam
- Steno Diabetes Center Odense Odense University Hospital Odense C Denmark
- Section of Molecular Diabetes & Metabolism, Department of Clinical Research & Department of Molecular Medicine University of Southern Denmark Odense C Denmark
| | - Jørgen F. P. Wojtaszewski
- Section of Molecular Physiology Department of Nutrition, Exercise and Sports University of Copenhagen Copenhagen Denmark
| | - Kurt Højlund
- Steno Diabetes Center Odense Odense University Hospital Odense C Denmark
- Section of Molecular Diabetes & Metabolism, Department of Clinical Research & Department of Molecular Medicine University of Southern Denmark Odense C Denmark
| |
Collapse
|
11
|
Stroh AM, Lynch CE, Lester BE, Minchev K, Chambers TL, Montenegro CF, Chavez Martinez C, Fountain WA, Trappe TA, Trappe SW. Human adipose and skeletal muscle tissue DNA, RNA, and protein content. J Appl Physiol (1985) 2021; 131:1370-1379. [PMID: 34435508 DOI: 10.1152/japplphysiol.00343.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The purpose of this project was to provide a profile of DNA, RNA, and protein content in adipose tissue, which is relatively understudied in humans, to gain more insight into the amount of tissue that may be required for various analyses. Skeletal muscle tissue was also investigated to provide a direct comparison into potential differences between these two highly metabolically active tissues. Basal adipose and skeletal muscle tissue samples were obtained from 10 (7 M, 3 W) recreationally active participants [25 ± 1 yr; 84 ± 3 kg, maximal oxygen consumption (V̇o2max): 3.5 ± 0.2 L/min, body fat: 29 ± 2%]. DNA, RNA, and protein were extracted and subsequently analyzed for quantity and quality. DNA content of adipose and skeletal muscle tissue was 52 ± 14 and 189 ± 44 ng DNA·mg tissue-1, respectively (P < 0.05). RNA content of adipose and skeletal muscle tissue was 46 ± 14 and 537 ± 72 ng RNA·mg tissue-1, respectively (P < 0.05). Protein content of adipose and skeletal muscle tissue was 4 ± 1 and 177 ± 10 µg protein·mg tissue-1, respectively (P < 0.05). In summary, human adipose had 28% of the DNA, 9% of the RNA, and 2% of the protein found in skeletal muscle per mg of tissue. This information should be useful across a wide range of human clinical investigation designs and various laboratory analyses.NEW & NOTEWORTHY This investigation studied DNA, RNA, and protein contents of adipose and skeletal muscle tissues from young active individuals. A series of optimization steps were investigated to aid in determining the optimal approach to extract high-yield and high-quality biomolecules. These findings contribute to the knowledge gap in adipose tissue requirements for molecular biology assays, which is of increasing importance due to the growing interest in adipose tissue research involving human exercise physiology research.
Collapse
Affiliation(s)
- Andrew M Stroh
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - Colleen E Lynch
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - Bridget E Lester
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - Kiril Minchev
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - Toby L Chambers
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | | | | | | | - Todd A Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| | - Scott W Trappe
- Human Performance Laboratory, Ball State University, Muncie, Indiana
| |
Collapse
|
12
|
Blocking endogenous IL-6 impairs mobilization of free fatty acids during rest and exercise in lean and obese men. CELL REPORTS MEDICINE 2021; 2:100396. [PMID: 34622233 PMCID: PMC8484687 DOI: 10.1016/j.xcrm.2021.100396] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/03/2021] [Accepted: 08/17/2021] [Indexed: 12/26/2022]
Abstract
Lack of interleukin-6 (IL-6) leads to expansion of adipose tissue mass in rodents and humans. The exact underlying mechanisms have not been identified. In this placebo-controlled, non-randomized, participant-blinded crossover study, we use the IL-6 receptor antibody tocilizumab to investigate the role of endogenous IL-6 in regulating systemic energy metabolism at rest and during exercise and recovery in lean and obese men using tracer dilution methodology. Tocilizumab reduces fatty acid appearance in the circulation under all conditions in lean and obese individuals, whereas lipolysis (the rate of glycerol appearance into the circulation) is mostly unaffected. The fact that fatty acid oxidation is unaffected by IL-6 receptor blockade suggests increased re-esterification of fatty acids. Glucose kinetics are unaffected. We find that blocking endogenous IL-6 signaling with tocilizumab impairs fat mobilization, which may contribute to expansion of adipose tissue mass and, thus, affect the health of individuals undergoing anti-IL-6 therapy (Clinicaltrials.gov: NCT03967691).
Collapse
|
13
|
Darwish NM, Elnahas YM, AlQahtany FS. Diabetes induced renal complications by leukocyte activation of nuclear factor κ-B and its regulated genes expression. Saudi J Biol Sci 2021; 28:541-549. [PMID: 33424337 PMCID: PMC7783672 DOI: 10.1016/j.sjbs.2020.10.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 01/08/2023] Open
Abstract
Type 2 diabetes mellitus (T2D) is a metabolic disorder characterized by inappropriate insulin function. Despite wide progress in genome studies, defects in gene expression for diabetes prognosis still incompletely identified. Prolonged hyperglycemia activates NF-κB, which is a main player in vascular dysfunctions of diabetes. Activated NF-κB, triggers expression of various genes that promote inflammation and cell adhesion process. Alteration of pro-inflammatory and profibrotic gene expression contribute to the irreversible functional and structural changes in the kidney resulting in diabetic nephropathy (DN). To identify the effect of some important NF-κB related genes on mediation of DN progression, we divided our candidate genes on the basis of their function exerted in bloodstream into three categories (Proinflammatory; NF-κB, IL-1B, IL-6, TNF-α and VEGF); (Profibrotic; FN, ICAM-1, VCAM-1) and (Proliferative; MAPK-1 and EGF). We analyzed their expression profile in leukocytes of patients and explored their correlation to diabetic kidney injury features. Our data revealed the overexpression of both proinflammatory and profibrotic genes in DN group when compared to T2D group and were associated positively with each other in DN group indicating their possible role in DN progression. In DN patients, increased expression of proinflammatory genes correlated positively with glycemic control and inflammatory markers indicating their role in DN progression. Our data revealed that the persistent activation NF-κB and its related genes observed in hyperglycemia might contribute to DN progression and might be a good diagnostic and therapeutic target for DN progression. Large-scale studies are needed to evaluate the potential of these molecules to serve as disease biomarkers.
Collapse
Key Words
- 2hPPBG, 2 h post prandial blood glucose.
- ACR, albumin creatinine ratio
- BMI, body mass index.
- DBP, Diastolic blood pressure.
- DN, diabetic nephropathy.
- FBS, fasting blood glucose.
- FN
- HDL, High density lipoprotein-cholesterol.
- HbA1c, Glycosylated hemoglobin.
- ICAM-1
- IL-1β
- IL-6
- LDL, Low density lipoprotein-cholesterol.
- M, male, F, female.
- NF-κB
- S.Cr, serum creatinine.
- SBP, Systolic blood pressure.
- T2D, type 2 diabetes mellitus without nephropathy.
- TC, total cholesterol.
- TGs, Triglyceride.
- TNF-α
- VCAM-1
- VEGF
- VLDL, Very low-density lipoprotein.
- e-GFR, estimated glomerular filtration rate.
Collapse
Affiliation(s)
- Noura M. Darwish
- Department of Biochemistry, Faculty of Science, Ain Shams University, 11566, Egypt
- Ministry of Health Laboratories, Tanta, Egypt
| | - Yousif M. Elnahas
- Department of Surgery, College of Medicine, King Saud University, Medical City, Riyadh 24251, Saudi Arabia
| | - Fatmah S. AlQahtany
- Department of Pathology, Hematopathology Unit, College of Medicine, King Saud University, Medical City, King Saud University, Riyadh 24251, Saudi Arabia
| |
Collapse
|
14
|
Mangino G, Iuliano M, Carlomagno S, Bernardini N, Rosa P, Chiantore MV, Skroza N, Calogero A, Potenza C, Romeo G. Interleukin-17A affects extracellular vesicles release and cargo in human keratinocytes. Exp Dermatol 2020; 28:1066-1073. [PMID: 31373041 DOI: 10.1111/exd.14015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/09/2019] [Accepted: 07/25/2019] [Indexed: 12/14/2022]
Abstract
Psoriasis is a chronic inflammatory systemic disease caused by deregulation of the interleukin-23/-17 axis that allows the activation of Th17 lymphocytes and the reprogramming of keratinocytes proliferative response, thereby inducing the secretion of cyto-/chemokines and antimicrobial peptides. Beside cell-to-cell contacts and release of cytokines, hormones and second messengers, cells communicate each other through the release of extracellular vesicles containing DNA, RNA, microRNAs and proteins. It has been reported the alteration of extracellular vesicles trafficking in several diseases, but there is scarce evidence of the involvement of extracellular vesicles trafficking in the pathogenesis of psoriasis. The main goal of the study was to characterize the release, the cargo content and the capacity to transfer bioactive molecules of extracellular vesicles produced by keratinocytes following recombinant IL-17A treatment if compared to untreated keratinocytes. A combined approach of standard ultracentrifugation, RNA isolation and real-time RT-PCR techniques was used to characterize extracellular vesicles cargo. Flow cytometry was used to quantitatively and qualitatively analyse extracellular vesicles and to evaluate cell-to-cell extracellular vesicles transfer. We report that the treatment of human keratinocytes with IL-17A significantly modifies the extracellular vesicles cargo and release. Vesicles from IL-17A-treated cells display a specific pattern of mRNA which is undid by IL-17A neutralization. Extracellular vesicles are taken up by acceptor cells irrespective of their content but only those derived from IL-17A-treated cells enable recipient cells to express psoriasis-associated mRNA. The results imply a role of extracellular vesicles in amplifying the pro-inflammatory cascade induced in keratinocyte by pro-psoriatic cytokines.
Collapse
Affiliation(s)
- Giorgio Mangino
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Marco Iuliano
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Silvia Carlomagno
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Nicoletta Bernardini
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy.,Dermatology Unit "Daniele Innocenzi", Fiorini Hospital, Terracina, Italy
| | - Paolo Rosa
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | | | - Nevena Skroza
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy.,Dermatology Unit "Daniele Innocenzi", Fiorini Hospital, Terracina, Italy
| | - Antonella Calogero
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy.,Istituto Chirurgico Ortopedico Traumatologico, ICOT, Latina, Italy
| | - Concetta Potenza
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy.,Dermatology Unit "Daniele Innocenzi", Fiorini Hospital, Terracina, Italy
| | - Giovanna Romeo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy.,Institute of Molecular Biology and Pathology, Consiglio Nazionale delle Ricerche, Rome, Italy
| |
Collapse
|
15
|
Biochemical adaptations in white adipose tissue following aerobic exercise: from mitochondrial biogenesis to browning. Biochem J 2020; 477:1061-1081. [PMID: 32187350 DOI: 10.1042/bcj20190466] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/24/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023]
Abstract
Our understanding of white adipose tissue (WAT) biochemistry has evolved over the last few decades and it is now clear that WAT is not simply a site of energy storage, but rather a pliable endocrine organ demonstrating dynamic responsiveness to the effects of aerobic exercise. Similar to its established effects in skeletal muscle, aerobic exercise induces many biochemical adaptations in WAT including mitochondrial biogenesis and browning. While past research has focused on the regulation of these biochemical processes, there has been renewed interest as of late given the potential of harnessing WAT mitochondrial biogenesis and browning to treat obesity and type II diabetes. Unfortunately, despite increasing evidence that innumerable factors, both exercise induced and pharmacological, can elicit these biochemical adaptations in WAT, the underlying mechanisms remain poorly defined. Here, we begin with a historical account of our understanding of WAT exercise biochemistry before presenting detailed evidence in favour of an up-to-date model by which aerobic exercise induces mitochondrial biogenesis and browning in WAT. Specifically, we discuss how aerobic exercise induces increases in WAT lipolysis and re-esterification and how this could be a trigger that activates the cellular energy sensor 5' AMP-activated protein kinase to mediate the induction of mitochondrial biogenesis and browning via the transcriptional co-activator peroxisome proliferator-activated receptor gamma co-activator-1 alpha. While this review primarily focuses on mechanistic results from rodent studies special attention is given to the translation of these results, or lack thereof, to human physiology.
Collapse
|
16
|
Hall ECR, Murgatroyd C, Stebbings GK, Cunniffe B, Harle L, Salter M, Ramadass A, Westra JW, Hunter E, Akoulitchev A, Williams AG. The Prospective Study of Epigenetic Regulatory Profiles in Sport and Exercise Monitored Through Chromosome Conformation Signatures. Genes (Basel) 2020; 11:E905. [PMID: 32784689 PMCID: PMC7464522 DOI: 10.3390/genes11080905] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 01/09/2023] Open
Abstract
The integration of genetic and environmental factors that regulate the gene expression patterns associated with exercise adaptation is mediated by epigenetic mechanisms. The organisation of the human genome within three-dimensional space, known as chromosome conformation, has recently been shown as a dynamic epigenetic regulator of gene expression, facilitating the interaction of distal genomic regions due to tight and regulated packaging of chromosomes in the cell nucleus. Technological advances in the study of chromosome conformation mean a new class of biomarker-the chromosome conformation signature (CCS)-can identify chromosomal interactions across several genomic loci as a collective marker of an epigenomic state. Investigative use of CCSs in biological and medical research shows promise in identifying the likelihood that a disease state is present or absent, as well as an ability to prospectively stratify individuals according to their likely response to medical intervention. The association of CCSs with gene expression patterns suggests that there are likely to be CCSs that respond, or regulate the response, to exercise and related stimuli. The present review provides a contextual background to CCS research and a theoretical framework discussing the potential uses of this novel epigenomic biomarker within sport and exercise science and medicine.
Collapse
Affiliation(s)
- Elliott C. R. Hall
- Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK; (G.K.S.); (A.G.W.)
| | | | - Georgina K. Stebbings
- Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK; (G.K.S.); (A.G.W.)
| | - Brian Cunniffe
- English Institute of Sport, Nottingham NG12 2LU, UK;
- Institute of Sport, Exercise and Health, University College London, London W1T 7HA, UK
| | - Lee Harle
- Holos Life Sciences, Oxford OX1 3HA, UK;
| | - Matthew Salter
- Oxford BioDynamics, Oxford OX4 2JZ, UK; (M.S.); (A.R.); (J.W.W.); (E.H.); (A.A.)
| | - Aroul Ramadass
- Oxford BioDynamics, Oxford OX4 2JZ, UK; (M.S.); (A.R.); (J.W.W.); (E.H.); (A.A.)
| | - Jurjen W. Westra
- Oxford BioDynamics, Oxford OX4 2JZ, UK; (M.S.); (A.R.); (J.W.W.); (E.H.); (A.A.)
| | - Ewan Hunter
- Oxford BioDynamics, Oxford OX4 2JZ, UK; (M.S.); (A.R.); (J.W.W.); (E.H.); (A.A.)
| | | | - Alun G. Williams
- Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK; (G.K.S.); (A.G.W.)
- Institute of Sport, Exercise and Health, University College London, London W1T 7HA, UK
| |
Collapse
|
17
|
Severinsen MCK, Schéele C, Pedersen BK. Exercise and browning of white adipose tissue - a translational perspective. Curr Opin Pharmacol 2020; 52:18-24. [PMID: 32480032 DOI: 10.1016/j.coph.2020.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/16/2020] [Accepted: 04/19/2020] [Indexed: 12/26/2022]
Abstract
Browning of white adipose tissue is a cold-induced phenomenon in rodents, constituted by the differentiation of a subset of thermogenic adipocytes among existing white adipocytes. Emerging evidence in the literature points at additional factors and environmental conditions stimulating browning in rodents, including physical exercise training. Exercise engages sympathetic activation which during cold activation promotes proliferation and differentiation of brown preadipocytes. Exercise also stimulates the release of multiple growth factors and cytokines. Importantly, there are clear discrepancies between human and rodents with regard to thermogenic capacity and browning potential. Here we provide a translational perspective on exercise-induced browning and review recent findings on the role of myokines and hepatokines in this process.
Collapse
Affiliation(s)
- Mai Charlotte Krogh Severinsen
- Centre of Inflammation and Metabolism/Centre for Physical Activity Research (CIM/CFAS), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Camilla Schéele
- Centre of Inflammation and Metabolism/Centre for Physical Activity Research (CIM/CFAS), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; The Novo Nordisk Foundation Center for Basic Metabolic Research, Copenhagen University Hospital, 2200 Copenhagen, Denmark
| | - Bente Klarlund Pedersen
- Centre of Inflammation and Metabolism/Centre for Physical Activity Research (CIM/CFAS), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
18
|
Suzuki K, Tominaga T, Ruhee RT, Ma S. Characterization and Modulation of Systemic Inflammatory Response to Exhaustive Exercise in Relation to Oxidative Stress. Antioxidants (Basel) 2020; 9:antiox9050401. [PMID: 32397304 PMCID: PMC7278761 DOI: 10.3390/antiox9050401] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 12/11/2022] Open
Abstract
Exhaustive exercise induces systemic inflammatory responses, which are associated with exercise-induced tissue/organ damage, but the sources and triggers are not fully understood. Herein, the basics of inflammatory mediator cytokines and research findings on the effects of exercise on systemic inflammation are introduced. Subsequently, the association between inflammatory responses and tissue damage is examined in exercised and overloaded skeletal muscle and other internal organs. Furthermore, an overview of the interactions between oxidative stress and inflammatory mediator cytokines is provided. Particularly, the transcriptional regulation of redox signaling and pro-inflammatory cytokines is described, as the activation of the master regulatory factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is involved directly or indirectly in controlling pro-inflammatory genes and antioxidant enzymes expression, whilst nuclear factor-kappa B (NF-κB) regulates the pro-inflammatory gene expression. Additionally, preventive countermeasures against the pathogenesis along with the possibility of interventions such as direct and indirect antioxidants and anti-inflammatory agents are described. The aim of this review is to give an overview of studies on the systematic inflammatory responses to exercise, including our own group as well as others. Moreover, the challenges and future directions in understanding the role of exercise and functional foods in relation to inflammation and oxidative stress are discussed.
Collapse
Affiliation(s)
- Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa 359-1192, Japan
- Correspondence: (K.S.); (S.M.); Tel.: +81-4-2947-6898 (K.S.); +81-4-2947-6753 (S.M.)
| | - Takaki Tominaga
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan; (T.T.); (R.T.R.)
| | - Ruheea Taskin Ruhee
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan; (T.T.); (R.T.R.)
| | - Sihui Ma
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa 359-1192, Japan
- Correspondence: (K.S.); (S.M.); Tel.: +81-4-2947-6898 (K.S.); +81-4-2947-6753 (S.M.)
| |
Collapse
|
19
|
Glucose Ingestion Inhibits Endurance Exercise-Induced IL-6 Producing Macrophage Infiltration in Mice Muscle. Nutrients 2019; 11:nu11071496. [PMID: 31262006 PMCID: PMC6682949 DOI: 10.3390/nu11071496] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 02/06/2023] Open
Abstract
Background: Carbohydrate (CHO) supplementation during exercise attenuates exercise-induced increases in plasma Interleukin (IL)-6 concentration. However, the effects of CHO supplementation on muscle IL-6 production during endurance exercise is controversial. The purpose of this study was to investigate the effects of CHO supplementation on muscle IL-6 production during endurance exercise with a special focus on the IL-6 producing cells. Methods: C57BL/6J mice were divided into three groups—sedentary with water ingestion group as the control (Con; n = 10), exercise with water ingestion group (Ex; n = 10), and exercise with 6% glucose ingestion group (Ex + glucose; n = 10). The Ex and Ex + glucose groups completed 3 h of treadmill running (24 m/min, 7% incline) and were sacrificed immediately after exercise. Results: The exercise-induced increases of plasma IL-6 concentration and gastrocnemius IL-6 gene expression were attenuated by glucose ingestion. However, the increases of soleus IL-6 gene expression and gastrocnemius and soleus IL-6 protein expression were not attenuated by glucose ingestion. Furthermore, we observed that macrophages that infiltrated muscle produce IL-6 and glucose ingestion attenuated the infiltration of IL-6-producing macrophages. Conclusion: This study revealed that infiltrating macrophages may be one type of IL-6-producing cells during endurance exercise, and the infiltration of these cells in muscle was attenuated by glucose ingestion. However, the effects of glucose ingestion on muscle IL-6 production were limited.
Collapse
|
20
|
Nieman DC, Wentz LM. The compelling link between physical activity and the body's defense system. JOURNAL OF SPORT AND HEALTH SCIENCE 2019; 8:201-217. [PMID: 31193280 PMCID: PMC6523821 DOI: 10.1016/j.jshs.2018.09.009] [Citation(s) in RCA: 683] [Impact Index Per Article: 113.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/26/2018] [Accepted: 09/25/2018] [Indexed: 05/05/2023]
Abstract
This review summarizes research discoveries within 4 areas of exercise immunology that have received the most attention from investigators: (1) acute and chronic effects of exercise on the immune system, (2) clinical benefits of the exercise-immune relationship, (3) nutritional influences on the immune response to exercise, and (4) the effect of exercise on immunosenescence. These scientific discoveries can be organized into distinctive time periods: 1900-1979, which focused on exercise-induced changes in basic immune cell counts and function; 1980-1989, during which seminal papers were published with evidence that heavy exertion was associated with transient immune dysfunction, elevated inflammatory biomarkers, and increased risk of upper respiratory tract infections; 1990-2009, when additional focus areas were added to the field of exercise immunology including the interactive effect of nutrition, effects on the aging immune system, and inflammatory cytokines; and 2010 to the present, when technological advances in mass spectrometry allowed system biology approaches (i.e., metabolomics, proteomics, lipidomics, and microbiome characterization) to be applied to exercise immunology studies. The future of exercise immunology will take advantage of these technologies to provide new insights on the interactions between exercise, nutrition, and immune function, with application down to the personalized level. Additionally, these methodologies will improve mechanistic understanding of how exercise-induced immune perturbations reduce the risk of common chronic diseases.
Collapse
Affiliation(s)
- David C. Nieman
- Human Performance Laboratory, Appalachian State University, North Carolina Research Campus, Kannapolis, NC 28081, USA
- Corresponding author.
| | - Laurel M. Wentz
- Department of Nutrition and Health Care Management, Appalachian State University, Boone, NC 28608, USA
| |
Collapse
|
21
|
Cytokine responses to repeated, prolonged walking in lean versus overweight/obese individuals. J Sci Med Sport 2019; 22:196-200. [DOI: 10.1016/j.jsams.2018.07.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/20/2018] [Accepted: 07/24/2018] [Indexed: 12/20/2022]
|
22
|
Rengasamy M, McClain L, Gandhi P, Segreti AM, Brent D, Peters D, Pan L. Associations of plasma interleukin-6 with plasma and cerebrospinal fluid monoamine biosynthetic pathway metabolites in treatment-resistant depression. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.npbr.2018.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
23
|
Dumas SN, Guo CA, Kim JK, Friedline RH, Ntambi JM. Interleukin-6 derived from cutaneous deficiency of stearoyl-CoA desaturase- 1 may mediate metabolic organ crosstalk among skin, adipose tissue and liver. Biochem Biophys Res Commun 2018; 508:87-91. [PMID: 30470572 DOI: 10.1016/j.bbrc.2018.11.083] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/13/2018] [Indexed: 01/17/2023]
Abstract
Stearoyl-CoA desaturase 1 (SCD1), a lipogenic enzyme that adds a double bond at the delta 9 position of stearate (C18: 0) and palmitate (C16: 0), has been proven to be important in the development of obesity. Mice with skin-specific deficiency of SCD1 (SKO) display increased whole-body energy expenditure, which is protective against adiposity from a high-fat diet because it improves glucose clearance, insulin sensitivity, and hepatic steatosis. Of note, these mice also display elevated levels of the "pro-inflammatory" plasma interleukin-6 (IL-6). In whole skin of SKO mice, IL-6 mRNA levels are increased, and protein expression is evident in hair follicle cells and in keratinocytes. Recently, the well-known role of IL-6 in causing white adipose tissue lipolysis has been linked to indirectly activating the gluconeogenic enzyme pyruvate carboxylase 1 in the liver, thereby increasing hepatic glucose production. In this study, we suggest that skin-derived IL-6 leads to white adipose tissue lipolysis, which contributes to the lean phenotype of SKO mice without the incidence of meta-inflammation that is associated with IL-6 signaling.
Collapse
Affiliation(s)
- Sabrina N Dumas
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Chang-An Guo
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jason K Kim
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA; Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Massachusetts Medical School, USA
| | - Randall H Friedline
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA; Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Massachusetts Medical School, USA
| | - James M Ntambi
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
24
|
Fabre O, Ingerslev LR, Garde C, Donkin I, Simar D, Barrès R. Exercise training alters the genomic response to acute exercise in human adipose tissue. Epigenomics 2018; 10:1033-1050. [PMID: 29671347 PMCID: PMC6190185 DOI: 10.2217/epi-2018-0039] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Aim: To determine the genomic mechanisms by which adipose tissue responds to acute and chronic exercise. Methods: We profiled the transcriptomic and epigenetic response to acute exercise in human adipose tissue collected before and after endurance training. Results: Although acute exercises were performed at same relative intensities, the magnitude of transcriptomic changes after acute exercise was reduced by endurance training. DNA methylation remodeling induced by acute exercise was more prominent in trained versus untrained state. We found an overlap between gene expression and DNA methylation changes after acute exercise for 32 genes pre-training and six post-training, notably at adipocyte-specific genes. Conclusion: Training status differentially affects the epigenetic and transcriptomic response to acute exercise in human adipose tissue.
Collapse
Affiliation(s)
- Odile Fabre
- Integrative Physiology, The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health & Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars R Ingerslev
- Integrative Physiology, The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health & Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian Garde
- Integrative Physiology, The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health & Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ida Donkin
- Integrative Physiology, The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health & Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - David Simar
- Mechanisms of Disease & Translational Research, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Romain Barrès
- Integrative Physiology, The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health & Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
25
|
Simon JP, Evan Prince S. Aqueous leaves extract of Madhuca longifolia attenuate diclofenac-induced hepatotoxicity: Impact on oxidative stress, inflammation, and cytokines. J Cell Biochem 2018; 119:6125-6135. [PMID: 29574991 DOI: 10.1002/jcb.26812] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 02/23/2018] [Indexed: 12/17/2022]
Abstract
Diclofenac is a Non-Steroidal Anti-inflammatory drug which is used as an analgesic. It is known to cause heptotoxicity on over dose and long term usage. Madhuca longifolia is an evergreen tree found widely in India that is known to have several ethnomedical uses. The aim of our study is to evaluate the beneficial effect of the aqueous leaf extract of M. longifolia against diclofenac-induced toxicity. Rats were dived into five groups of six rats each. Group-I was normal control. Group-II was administered with diclofenac (50 mg/kg. b.w./day, i.p) on 4th and 5th day. Group-III rats were treated with aqueous leaf extract of M. longifolia (500 mg/kg b.w./day, oral) for 5 consecutive days and diclofenac (50 mg/kg. b.w./day, i.p) was given on 4th and 5th day. Silymarin (25 mg/kg. b.w./day, oral) was used as standard drug which was given to the rats of group-IV along with diclofenac on 4th and 5th day. Aqueous leaf extract of M. longifolia (500 mg/kg b.w./day, oral) alone was administered in group-V. After the study period, the rats were evaluated for liver enzyme markers, antioxidant parameters, histopathological changes, and cytokines levels. The hepatic proinflammatory mediator cytokines like TNF-α, IL-6, and IL-1β were evaluated through ELISA. The protein expression of Caspase-3, COX-2, and NF-κB were analysed through Western blotting techniques. Aqueous leaves extract of M. longifolia was able to normalize the changes caused by diclofenac. Current study indicatesthe protective effect of the aqueous leaves extract of M. longifolia against diclofenac-induced toxicity.
Collapse
|
26
|
Chen YC, Travers RL, Walhin JP, Gonzalez JT, Koumanov F, Betts JA, Thompson D. Feeding influences adipose tissue responses to exercise in overweight men. Am J Physiol Endocrinol Metab 2017; 313:E84-E93. [PMID: 28292758 DOI: 10.1152/ajpendo.00006.2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/22/2017] [Accepted: 03/09/2017] [Indexed: 01/04/2023]
Abstract
Feeding profoundly affects metabolic responses to exercise in various tissues, but the effect of feeding status on human adipose tissue responses to exercise has never been studied. Ten healthy overweight men aged 26 ± 5 yr (mean ± SD) with a waist circumference of 105 ± 10 cm walked at 60% of maximum oxygen uptake under either fasted or fed conditions in a randomized, counterbalanced design. Feeding comprised 648 ± 115 kcal 2 h before exercise. Blood samples were collected at regular intervals to examine changes in metabolic parameters and adipokine concentrations. Adipose tissue samples were obtained at baseline and 1 h after exercise to examine changes in adipose tissue mRNA expression and secretion of selected adipokines ex vivo. Adipose tissue mRNA expression of pyruvate dehydrogenase kinase isozyme 4 (PDK4), adipose triglyceride lipase, hormone-sensitive lipase (HSL), fatty acid translocase/CD36, glucose transporter type 4 (GLUT4), and insulin receptor substrate 2 (IRS2) in response to exercise were lower in fed compared with fasted conditions (all P ≤ 0.05). Postexercise adipose IRS2 protein was affected by feeding (P ≤ 0.05), but Akt2, AMPK, IRS1, GLUT4, PDK4, and HSL protein levels were not different. Feeding status did not impact serum and ex vivo adipose secretion of IL-6, leptin, or adiponectin in response to exercise. This is the first study to show that feeding before acute exercise affects postexercise adipose tissue gene expression, and we propose that feeding is likely to blunt long-term adipose tissue adaptation to regular exercise.
Collapse
Affiliation(s)
- Yung-Chih Chen
- Department for Health, University of Bath, Bath, United Kingdom
| | | | | | | | | | - James A Betts
- Department for Health, University of Bath, Bath, United Kingdom
| | - Dylan Thompson
- Department for Health, University of Bath, Bath, United Kingdom
| |
Collapse
|
27
|
Hennigar SR, McClung JP, Pasiakos SM. Nutritional interventions and the IL-6 response to exercise. FASEB J 2017; 31:3719-3728. [PMID: 28507168 DOI: 10.1096/fj.201700080r] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/24/2017] [Indexed: 01/24/2023]
Abstract
IL-6 is a pleiotropic cytokine with a wide range of biologic effects. In response to prolonged exercise, IL-6 is synthesized by contracting skeletal muscle and released into circulation. Circulating IL-6 is thought to maintain energy status during exercise by acting as an energy sensor for contracting muscle and stimulating glucose production. If tissue damage occurs, immune cells infiltrate and secrete cytokines, including IL-6, to repair skeletal muscle damage. With adequate rest and nutrition, the IL-6 response to exercise is attenuated as skeletal muscle adapts to training. However, sustained elevations in IL-6 due to repeated bouts of unaccustomed activities or prolonged exercise with limited rest may result in untoward physiologic effects, such as accelerated muscle proteolysis and diminished nutrient absorption, and may impair normal adaptive responses to training. Recent intervention studies have explored the role of mixed meals or carbohydrate, protein, ω-3 fatty acid, or antioxidant supplementation in mitigating exercise-induced increases in IL-6. Emerging evidence suggests that sufficient energy intake before exercise is an important factor in attenuating exercise-induced IL-6 by maintaining muscle glycogen. We detail various nutritional interventions that may affect the IL-6 response to exercise in healthy human adults and provide recommendations for future research exploring the role of IL-6 in the adaptive response to exercise.-Hennigar, S. R., McClung, J. P., Pasiakos, S. M. Nutritional interventions and the IL-6 response to exercise.
Collapse
Affiliation(s)
- Stephen R Hennigar
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine (USARIEM), Natick, Massachusetts, USA; .,Oak Ridge Institute for Science and Education, Belcamp, Maryland, USA
| | - James P McClung
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine (USARIEM), Natick, Massachusetts, USA
| | - Stefan M Pasiakos
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine (USARIEM), Natick, Massachusetts, USA
| |
Collapse
|
28
|
Nieman DC, Sha W, Pappan KL. IL-6 Linkage to Exercise-Induced Shifts in Lipid-Related Metabolites: A Metabolomics-Based Analysis. J Proteome Res 2017; 16:970-977. [PMID: 27996272 DOI: 10.1021/acs.jproteome.6b00892] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Metabolomics profiling and bioinformatics technologies were used to determine the relationship between exercise-induced increases in IL-6 and lipid-related metabolites. Twenty-four male runners (age 36.5 ± 1.8 y) ran on treadmills to exhaustion (2.26 ± 0.01 h, 24.9 ± 1.3 km, 69.7 ± 1.9% VO2max). Vastus lateralis muscle biopsy and blood samples were collected before and immediately after running and showed a 33.7 ± 4.2% decrease in muscle glycogen, 39.0 ± 8.8-, 2.4 ± 0.3-, and 1.4 ± 0.1-fold increases in plasma IL-6, IL-8, and MCP-1, respectively, and 95.0 ± 18.9 and 158 ± 20.6% increases in cortisol and epinephrine, respectively (all, P < 0.001). The metabolomics analysis revealed changes in 209 metabolites, especially long- and medium-chain fatty acids, fatty acid oxidation products (dicarboxylate and monohydroxy fatty acids, acylcarnitines), and ketone bodies. OPLS-DA modeling supported a strong separation in pre- and post-exercise samples (R2Y = 0.964, Q2Y = 0.902). OPLSR analysis failed to produce a viable model for the relationship between IL-6 and all lipid-related metabolites (R2Y = 0.76, Q2Y = -0.0748). Multiple structure equation models were evaluated based on IL-6, with the best-fit pathway model showing a linkage of exercise time to IL-6, then carnitine, and 13-methylmyristic acid (a marker for adipose tissue lipolysis) and sebacate. These metabolomics-based data indicate that the increase in plasma IL-6 after long endurance running has a minor relationship to increases in lipid-related metabolites.
Collapse
Affiliation(s)
- David C Nieman
- Human Performance Laboratory, Appalachian State University , North Carolina Research Campus, Kannapolis, North Carolina 28081, United States
| | - Wei Sha
- Bioinformatics Services Division, University of North Carolina at Charlotte , North Carolina Research Campus, Kannapolis, North Carolina 28081, United States
| | - Kirk L Pappan
- Metabolon, Inc. , Durham, North Carolina 27713, United States
| |
Collapse
|
29
|
Nieman DC, Zwetsloot KA, Lomiwes DD, Meaney MP, Hurst RD. Muscle Glycogen Depletion Following 75-km of Cycling Is Not Linked to Increased Muscle IL-6, IL-8, and MCP-1 mRNA Expression and Protein Content. Front Physiol 2016; 7:431. [PMID: 27729872 PMCID: PMC5037214 DOI: 10.3389/fphys.2016.00431] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 09/09/2016] [Indexed: 01/09/2023] Open
Abstract
The cytokine response to heavy exertion varies widely for unknown reasons, and this study evaluated the relative importance of glycogen depletion, muscle damage, and stress hormone changes on blood and muscle cytokine measures. Cyclists (N = 20) participated in a 75-km cycling time trial (168 ± 26.0 min), with blood and vastus lateralis muscle samples collected before and after. Muscle glycogen decreased 77.2 ± 17.4%, muscle IL-6, IL-8, and MCP-1 mRNA increased 18.5 ± 2.8−, 45.3 ± 7.8−, and 8.25 ± 1.75-fold, and muscle IL-6, IL-8, and MCP-1 protein increased 70.5 ± 14.1%, 347 ± 68.1%, and 148 ± 21.3%, respectively (all, P < 0.001). Serum myoglobin and cortisol increased 32.1 ± 3.3 to 242 ± 48.3 mg/mL, and 295 ± 27.6 to 784 ± 63.5 nmol/L, respectively (both P < 0.001). Plasma IL-6, IL-8, and MCP-1 increased 0.42 ± 0.07 to 18.5 ± 3.8, 4.07 ± 0.37 to 17.0 ± 1.8, and 96.5 ± 3.7 to 240 ± 21.6 pg/mL, respectively (all P < 0.001). Increases in muscle IL-6, IL-8, and MCP-1 mRNA were unrelated to any of the outcome measures. Muscle glycogen depletion was related to change in plasma IL-6 (r = 0.462, P = 0.040), with change in myoglobin related to plasma IL-8 (r = 0.582, P = 0.007) and plasma MCP-1 (r = 0.457, P = 0.043), and muscle MCP-1 protein (r = 0.588, P = 0.017); cortisol was related to plasma IL-8 (r = 0.613, P = 0.004), muscle IL-8 protein (r = 0.681, P = 0.004), and plasma MCP-1 (r = 0.442, P = 0.050). In summary, this study showed that muscle IL-6, IL-8, and MCP-1 mRNA expression after 75-km cycling was unrelated to glycogen depletion and muscle damage, with change in muscle glycogen related to plasma IL-6, and changes in serum myoglobin and cortisol related to the chemotactic cytokines IL-8 and MCP-1.
Collapse
Affiliation(s)
- David C Nieman
- Appalachian State University, North Carolina Research Campus Kannapolis, NC, USA
| | - Kevin A Zwetsloot
- Appalachian State University, North Carolina Research Campus Kannapolis, NC, USA
| | - Dominic D Lomiwes
- The New Zealand Institute for Plant and Food Research Ltd. Palmerston North, New Zealand
| | - Mary P Meaney
- Appalachian State University, North Carolina Research Campus Kannapolis, NC, USA
| | - Roger D Hurst
- The New Zealand Institute for Plant and Food Research Ltd. Palmerston North, New Zealand
| |
Collapse
|
30
|
Flynn MG, McFarlin BK, Markofski MM. The Anti-Inflammatory Actions of Exercise Training. Am J Lifestyle Med 2016; 1:220-235. [PMID: 25431545 DOI: 10.1177/1559827607300283] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The list of diseases with a known inflammatory etiology is growing. Cardiovascular disease, osteoporosis, diabetes, geriatric cachexia, and Alzheimer's disease have all been shown to be linked to or exacerbated by aberrantly regulated inflammatory processes. Nevertheless, there is mounting evidence that those who are physically active, or who become physically active, have a reduction in biomarkers associated with chronic inflammation. There was strong early consensus that exercise-induced reductions in inflammation were explained by body mass index or body fatness, but recent studies provide support for the contention that exercise has body fat-independent anti-inflammatory effects. With few exceptions, the anti-inflammatory effects of exercise appear to occur regardless of age or the presence of chronic diseases. What remains unclear are the mechanisms by which exercise training induces these anti-inflammatory effects, but there are several intriguing possibilities, including release of endogenous products, such as heat shock proteins; selective reduction of visceral adipose tissue mass or reducing infiltration of adipocytes by macrophages; shift in immune cell phenotype; cross-tolerizing effects; or exercise-induced shifts in accessory proteins of toll-like receptor signaling. However, future research endeavors are likely to uncover additional potential mechanisms, and it could be some time before functional mechanisms are made clear. In summary, the potential anti-inflammatory influences of exercise training may provide a low-cost, readily available, and effective treatment for low-grade systemic inflammation and could contribute significantly to the positive effects of exercise training on chronic disease.
Collapse
Affiliation(s)
- Michael G Flynn
- Wastl Human Performance Lab, Department of Health and Kinesiology, Purdue University West Lafayette, Indiana (MGF, MMM) and the Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, Texas (BKM)
| | - Brian K McFarlin
- Wastl Human Performance Lab, Department of Health and Kinesiology, Purdue University West Lafayette, Indiana (MGF, MMM) and the Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, Texas (BKM)
| | - Melissa M Markofski
- Wastl Human Performance Lab, Department of Health and Kinesiology, Purdue University West Lafayette, Indiana (MGF, MMM) and the Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, Texas (BKM)
| |
Collapse
|
31
|
Castellani L, Perry CGR, Macpherson REK, Root-McCaig J, Huber JS, Arkell AM, Simpson JA, Wright DC. Exercise-mediated IL-6 signaling occurs independent of inflammation and is amplified by training in mouse adipose tissue. J Appl Physiol (1985) 2015; 119:1347-54. [PMID: 26472868 DOI: 10.1152/japplphysiol.00551.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/05/2015] [Indexed: 01/24/2023] Open
Abstract
The purpose of this investigation was to determine whether exercise-induced increases in adipose tissue interleukin 6 (IL-6) signaling occurred as part of a larger proinflammatory response to exercise and whether the induction of IL-6 signaling with acute exercise was altered in trained mice in parallel with changes in the IL-6 receptor complex. Sedentary and trained C57BL/6J mice were challenged with an acute bout of exercise. Adipose tissue and plasma were collected immediately and 4 h afterward and analyzed for changes in indices of IL-6 signaling, circulating IL-6, markers of adipose tissue inflammation, and expression/content of IL-6 receptor and glycoprotein 130 (gp130). In untrained mice, IL-6 mRNA increased immediately after exercise, and increases in indices of IL-6 signaling were increased 4 h after exercise in epididymal, but not inguinal adipose tissue. This occurred independent of increases in plasma IL-6 and alterations in markers of inflammation. When compared with untrained mice, in trained mice, acute exercise induced the expression of gp130 and IL-6 receptor alpha (IL-6Rα), and training increased the protein content of these. Acute exercise induced the expression, and training increased the protein content, of glycoprotein 130 and IL-6Rα and was associated with a more rapid increase in markers of IL-6 signaling in epididymal adipose tissue from trained compared with untrained mice. The ability of exogenous IL-6 to increase phosphorylation of STAT3 was similar between groups. Our findings demonstrate that acute exercise increases IL-6 signaling in a depot-dependent manner, likely through an autocrine/paracrine mechanism. This response is initiated more rapidly after exercise in trained mice, potentially as a result of increases in IL-6Rα and gp130.
Collapse
Affiliation(s)
- Laura Castellani
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada; and
| | - Christopher G R Perry
- Faculty of Health, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - Rebecca E K Macpherson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada; and
| | - Jared Root-McCaig
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada; and
| | - Jason S Huber
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada; and
| | - Alicia M Arkell
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada; and
| | - Jeremy A Simpson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada; and
| | - David C Wright
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada; and
| |
Collapse
|
32
|
Gholamnezhad Z, Boskabady MH, Hosseini M. Effect of Nigella sativa on immune response in treadmill exercised rat. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:437. [PMID: 25380621 PMCID: PMC4236497 DOI: 10.1186/1472-6882-14-437] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 10/29/2014] [Indexed: 01/23/2023]
Abstract
BACKGROUND In the present study the effect of Nigella sativa (N. sativa) ethanolic extract on cytokine profile in control, moderate and overtrained heavy exercised rat was examined. METHODS Male Wistar rats were randomly divided into control sedentary (C), moderate trained (MT), (V = 20 m/min, 30 min/day, 6 days a week, for 8 weeks), overtrained (OT) (V = 25 m/min, 60 min/day, 6 days a week, for 11 weeks), control sedentary + N. sativa (NC), moderate trained + N. sativa (NM) and overtrained + N. sativa (NO). Immediately and 24 h after the last bout of exercise blood samples were obtained. The serum concentrations of TNFα, IL-6, IL-10, IL-4 and IFNγ were measured by ELISA method. RESULTS Immediately after exercise the following findings were observed; IL-6, IL-10 and TNFα concentration increased in OT and NC groups but Just IL-6 in MT groups compared with control (P< 0.05-P< 0.001). Serum level of IL-4 decreased in MT and NC (P< 0.05-P< 0.001) but IFNγ increased (P< 0.05) just in MT group vs control. In addition, circulatory levels of TNFα, IL-6, IL-10 and IL-4 were higher in OT and NM groups but the IFNγ concentration was lower in the OT group than the MT group (P< 0.05-P< 0.01). The IFN-γ/IL4 ratio was significantly increased in MT and NC (P< 0.05-P< 0.01) while it decreased in OT group. There were not statistical differences in TNFα, IL-6, and IFNγ levels between different time intervals after exercise in all groups. CONCLUSIONS Chronic administration of N. sativa may change pro and anti-inflammatory cytokines profiles. Also it may act as a balancing factor on Th1/Th2 lymphocytes in different exercise loads and act as an inhibitory factor on Th2 phenotype in control animals.
Collapse
Affiliation(s)
- Zahra Gholamnezhad
- />Pharmacological Research Center of Medicinal Plants and Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- />Neurogenic Inflammation Research Center and Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- />Neurocognitive Research Centre, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
33
|
Foka P, Dimitriadis A, Kyratzopoulou E, Giannimaras DA, Sarno S, Simos G, Georgopoulou U, Mamalaki A. A complex signaling network involving protein kinase CK2 is required for hepatitis C virus core protein-mediated modulation of the iron-regulatory hepcidin gene expression. Cell Mol Life Sci 2014; 71:4243-58. [PMID: 24718935 PMCID: PMC11114079 DOI: 10.1007/s00018-014-1621-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 02/25/2014] [Accepted: 03/24/2014] [Indexed: 12/18/2022]
Abstract
Hepatitis C virus (HCV) infection is associated with hepatic iron overload and elevated serum iron that correlate to poor antiviral responses. Hepcidin (HAMP), a 25-aa cysteine-rich liver-specific peptide, controls iron homeostasis. Its expression is up-regulated in inflammation and iron excess. HCV-mediated hepcidin regulation remains controversial. Chronic HCV patients possess relatively low hepcidin levels; however, elevated HAMP mRNA has been reported in HCV core transgenic mice and HCV replicon-expressing cells. We investigated the effect of HCV core protein on HAMP gene expression and delineated the complex interplay of molecular mechanisms involved. HCV core protein up-regulated HAMP promoter activity, mRNA, and secreted protein levels. Enhanced promoter activity was abolished by co-transfections of core with HAMP promoter constructs containing mutated/deleted BMP and STAT binding sites. Dominant negative constructs, pharmacological inhibitors, and silencing experiments against STAT3 and SMAD4 confirmed the participation of both pathways in HAMP gene regulation by core protein. STAT3 and SMAD4 expression levels were found increased in the presence of HCV core, which orchestrated SMAD4 translocation into the nucleus and STAT3 phosphorylation. To further understand the mechanisms governing the core effect, the role of the JAK/STAT-activating kinase CK2 was investigated. A CK2-dominant negative construct, a CK2-specific inhibitor, and RNAi interference abrogated the core-induced increase on HAMP promoter activity, mRNA, and protein levels, while CK2 acted in synergy with core to significantly enhance HAMP gene expression. Therefore, HCV core up-regulates HAMP gene transcription via a complex signaling network that requires both SMAD/BMP and STAT3 pathways and CK2 involvement.
Collapse
Affiliation(s)
- Pelagia Foka
- Laboratory of Molecular Biology and Immunobiotechnology, Department of Biochemistry, Hellenic Pasteur Institute, Athens, Greece
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, Athens, Greece
| | - Alexios Dimitriadis
- Laboratory of Molecular Biology and Immunobiotechnology, Department of Biochemistry, Hellenic Pasteur Institute, Athens, Greece
| | - Eleni Kyratzopoulou
- Laboratory of Molecular Biology and Immunobiotechnology, Department of Biochemistry, Hellenic Pasteur Institute, Athens, Greece
| | - Dionysios A. Giannimaras
- Laboratory of Molecular Biology and Immunobiotechnology, Department of Biochemistry, Hellenic Pasteur Institute, Athens, Greece
| | - Stefania Sarno
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - George Simos
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Urania Georgopoulou
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, Athens, Greece
| | - Avgi Mamalaki
- Laboratory of Molecular Biology and Immunobiotechnology, Department of Biochemistry, Hellenic Pasteur Institute, Athens, Greece
| |
Collapse
|
34
|
Gao Y, Wang C, Pan T, Luo L. Impact of metformin treatment and swimming exercise on visfatin levels in high-fat-induced obesity rats. ACTA ACUST UNITED AC 2014; 58:42-7. [PMID: 24728163 DOI: 10.1590/0004-2730000002840] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 10/24/2013] [Indexed: 01/05/2023]
Abstract
Objective : Visfatin is a recently discovered adipocytokine that contributes to glucose and obesity-related conditions. Until now, its responses to the insulin-sensitizing agent metformin and to exercise are largely unknown. We aim to investigate the impact of metformin treatment and/or swimming exercise on serum visfatin and visfatin levels in subcutaneous adipose tissue (SAT), peri-renal adipose tissue (PAT) and skeletal muscle (SM) of high-fat-induced obesity rats. Materials and methods : Sprague-Dawley rats were fed a normal diet or a high-fat diet for 16 weeks to develop obesity model. The high-fat-induced obesity model rats were then randomized to metformin (MET), swimming exercise (SWI), or adjunctive therapy of metformin and swimming exercise (MAS), besides high-fat obesity control group and a normal control group, all with 10 rats per group. Zoometric and glycemic parameters, lipid profile, and serum visfatin levels were assessed at baseline and after 6 weeks of therapy. Visfatin levels in SAT, PAT and SM were determined by Western Blot. Results : Metformin and swimming exercise improved lipid profile, and increased insulin sensitivity and body weight reduction were observed. Both metformin and swimming exercise down-regulated visfatin levels in SAT and PAT, while the adjunctive therapy conferred greater benefits, but no changes of visfatin levels were observed in SM. Conclusion : Our results indicate that visfatin down-regulation in SAT and PAT may be one of the mechanisms by which metformin and swimming exercise inhibit obesity.
Collapse
Affiliation(s)
- Ya Gao
- The Second Hospital of An Hui Medical University, China
| | - Changjiang Wang
- The First Affiliated Hospital of An Hui Medical University, China
| | - Tianrong Pan
- The Second Hospital of An Hui Medical University, China
| | - Li Luo
- The First Affiliated Hospital of An Hui Medical University, China
| |
Collapse
|
35
|
Gholamnezhad Z, Boskabady MH, Hosseini M, Sankian M, Khajavi Rad A. Evaluation of immune response after moderate and overtraining exercise in wistar rat. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2014; 17:1-8. [PMID: 24592300 PMCID: PMC3938879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 09/14/2013] [Indexed: 12/03/2022]
Abstract
OBJECTIVE(S) The effect of prolonged overtraining on cytokine kinetics was compared with moderate exercise in the present study. MATERIALS AND METHODS Male Wistar rats were randomly divided into control sedentary (C), moderate trained (MT), (V=20 m/min, 30 min/day for 6 days a week, 8 weeks), overtrained (OT) (V=25 m/min, 60min/day for 6 days a week, 11 weeks) and recovered overtrained (OR) (OT plus 2 weeks recovery) groups, (n=6 for each group). Immediately, 24 hr and 2 weeks (in OR) after last bout of exercise blood samples were obtained. The plasma concentrations of TNFα, IL-6, IL-10, IL-4 and IFN were measured by ELISA method. RESULTS Immediately after last bout of exercise the following findings were observed; IL-6, IL-10 and TNFα concentrations increased in OT and OR groups compared with control (P<0.05-P<0.001). Serum level of IL-4 decreased (P<0.01) but IFN increased (P<0.05) in MT group vs. control. In addition, circulatory levels of TNFα, IL-6, IL-10 and IL-4 were higher but the IFN concentrations were lower in OT and OR groups than MT group (P<0.05-P<0.01). The IFN-γ/IL4 ratio was significantly increased in MT (P<0.01) while it decreased in OT group. There were not statistical differences in TNFα, IL-6, and IFN levels between different time intervals after exercise in MT, OT and OR groups. CONCLUSION These data confirm a positive effect of moderate exercise on immune function and a decrease in susceptibility to viral infection by inducing Th1 cytokine profile shift. However, prolonged and overtraining exercise causes numerous changes in immunity that possibly reflects physiological stress and immune suppression.
Collapse
Affiliation(s)
- Zahra Gholamnezhad
- Neurogenic Inflammation Research Centre and Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Neurogenic Inflammation Research Centre and Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Neurocognitive Research Centre, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Sankian
- Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Khajavi Rad
- Neurogenic Inflammation Research Centre and Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
36
|
You T, Arsenis NC, Disanzo BL, Lamonte MJ. Effects of exercise training on chronic inflammation in obesity : current evidence and potential mechanisms. Sports Med 2013; 43:243-56. [PMID: 23494259 DOI: 10.1007/s40279-013-0023-3] [Citation(s) in RCA: 198] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chronic, systemic inflammation is an independent risk factor for several major clinical diseases. In obesity, circulating levels of inflammatory markers are elevated, possibly due to increased production of pro-inflammatory cytokines from several tissues/cells, including macrophages within adipose tissue, vascular endothelial cells and peripheral blood mononuclear cells. Recent evidence supports that adipose tissue hypoxia may be an important mechanism through which enlarged adipose tissue elicits local tissue inflammation and further contributes to systemic inflammation. Current evidence supports that exercise training, such as aerobic and resistance exercise, reduces chronic inflammation, especially in obese individuals with high levels of inflammatory biomarkers undergoing a longer-term intervention. Several studies have reported that this effect is independent of the exercise-induced weight loss. There are several mechanisms through which exercise training reduces chronic inflammation, including its effect on muscle tissue to generate muscle-derived, anti-inflammatory 'myokine', its effect on adipose tissue to improve hypoxia and reduce local adipose tissue inflammation, its effect on endothelial cells to reduce leukocyte adhesion and cytokine production systemically, and its effect on the immune system to lower the number of pro-inflammatory cells and reduce pro-inflammatory cytokine production per cell. Of these potential mechanisms, the effect of exercise training on adipose tissue oxygenation is worth further investigation, as it is very likely that exercise training stimulates adipose tissue angiogenesis and increases blood flow, thereby reducing hypoxia and the associated chronic inflammation in adipose tissue of obese individuals.
Collapse
Affiliation(s)
- Tongjian You
- Department of Exercise and Health Sciences, College of Nursing and Health Sciences, University of Massachusetts Boston, Boston, MA 02125, USA.
| | | | | | | |
Collapse
|
37
|
Impact of a moderate-intensity walking program on cardiometabolic risk markers in overweight to obese women. Menopause 2013; 20:185-93. [DOI: 10.1097/gme.0b013e31826f7ebf] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
38
|
Thompson D, Karpe F, Lafontan M, Frayn K. Physical activity and exercise in the regulation of human adipose tissue physiology. Physiol Rev 2012; 92:157-91. [PMID: 22298655 DOI: 10.1152/physrev.00012.2011] [Citation(s) in RCA: 230] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Physical activity and exercise are key components of energy expenditure and therefore of energy balance. Changes in energy balance alter fat mass. It is therefore reasonable to ask: What are the links between physical activity and adipose tissue function? There are many complexities. Physical activity is a multifaceted behavior of which exercise is just one component. Physical activity influences adipose tissue both acutely and in the longer term. A single bout of exercise stimulates adipose tissue blood flow and fat mobilization, resulting in delivery of fatty acids to skeletal muscles at a rate well-matched to metabolic requirements, except perhaps in vigorous intensity exercise. The stimuli include adrenergic and other circulating factors. There is a period following an exercise bout when fatty acids are directed away from adipose tissue to other tissues such as skeletal muscle, reducing dietary fat storage in adipose. With chronic exercise (training), there are changes in adipose tissue physiology, particularly an enhanced fat mobilization during acute exercise. It is difficult, however, to distinguish chronic "structural" changes from those associated with the last exercise bout. In addition, it is difficult to distinguish between the effects of training per se and negative energy balance. Epidemiological observations support the idea that physically active people have relatively low fat mass, and intervention studies tend to show that exercise training reduces fat mass. A much-discussed effect of exercise versus calorie restriction in preferentially reducing visceral fat is not borne out by meta-analyses. We conclude that, in addition to the regulation of fat mass, physical activity may contribute to metabolic health through beneficial dynamic changes within adipose tissue in response to each activity bout.
Collapse
|
39
|
Manabe Y, Miyatake S, Takagi M. Myokines: Do they really exist? JOURNAL OF PHYSICAL FITNESS AND SPORTS MEDICINE 2012. [DOI: 10.7600/jpfsm.1.51] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
You Z, Ge D, Liu S, Zhang Q, Borowsky AD, Melamed J. Interleukin-17 Induces Expression of Chemokines and Cytokines in Prostatic Epithelial Cells but Does Not Stimulate Cell Growth In Vitro. INTERNATIONAL JOURNAL OF MEDICAL AND BIOLOGICAL FRONTIERS 2012; 18:629-644. [PMID: 25284972 PMCID: PMC4180499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
BACKGROUND Interleukin-17 (IL-17A) expression is increased in prostate cancer. This study investigated the expression of IL-17A receptor C (IL-17RC) in prostatic intraepithelial neoplasia (PIN) lesions and the effects of IL-17A on prostatic epithelial cells in in-vitro studies. METHODS IL-17RC expression in human and rodent prostate tissues was detected by immunohistochemistry. Quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR) and Western blot analyses were used to determine mRNA and protein expression in human and mouse prostatic epithelial cell lines. RESULTS IL-17RC protein was increased in human and rodent PIN lesions, compared to the normal human and rodent prostatic epithelium. IL-17A treatment activated the Nuclear Factor-κB (NF-κB) and/or Extracellular signal-Regulated Kinase (ERK) pathways in human PIN and LNCaP cell lines as well as mouse prostate cancer cell line TRAMP-C1. IL-17A treatment did not affect cell growth of the cell lines studied. However, IL-17A induced expression of CXCL1, CXCL2, CCL2, CCL5, and IL-6 in human and mouse prostatic epithelial cell lines. When the full-length IL-17RC was over-expressed in human PIN and LNCaP cell lines, activation of NF-κB and/or ERK pathways and expression of CXCL1, CXCL2, and CCL5 chemokines were significantly enhanced upon IL-17A treatment. CONCLUSION These findings suggest that the prostatic epithelial cells in PIN lesions may respond to IL-17A stimuli with augmented synthesis of chemokines, due to increased IL-17RC expression.
Collapse
Affiliation(s)
- Zongbing You
- Department of Structural & Cellular Biology, Department of Orthopaedic Surgery, Tulane Cancer Center, Louisiana Cancer Research Consortium, Tulane Center for Stem Cell Research and Regenerative Medicine, Tulane Center for Aging, Tulane University School of Medicine, New Orleans, Louisiana 70112
| | - Dongxia Ge
- Department of Structural & Cellular Biology, Department of Orthopaedic Surgery, Tulane Cancer Center, Louisiana Cancer Research Consortium, Tulane Center for Stem Cell Research and Regenerative Medicine, Tulane Center for Aging, Tulane University School of Medicine, New Orleans, Louisiana 70112
| | - Sen Liu
- Department of Structural & Cellular Biology, Department of Orthopaedic Surgery, Tulane Cancer Center, Louisiana Cancer Research Consortium, Tulane Center for Stem Cell Research and Regenerative Medicine, Tulane Center for Aging, Tulane University School of Medicine, New Orleans, Louisiana 70112
| | - Qiuyang Zhang
- Department of Structural & Cellular Biology, Department of Orthopaedic Surgery, Tulane Cancer Center, Louisiana Cancer Research Consortium, Tulane Center for Stem Cell Research and Regenerative Medicine, Tulane Center for Aging, Tulane University School of Medicine, New Orleans, Louisiana 70112
| | - Alexander D. Borowsky
- Department of Pathology & Laboratory Medicine and Center for Comparative Medicine, University of California Davis, Davis, California 95616
| | - Jonathan Melamed
- Department of Pathology, New York University School of Medicine, New York, New York 10016
| |
Collapse
|
41
|
Zhao J, Tian Y, Xu J, Liu D, Wang X, Zhao B. Endurance exercise is a leptin signaling mimetic in hypothalamus of Wistar rats. Lipids Health Dis 2011; 10:225. [PMID: 22136466 PMCID: PMC3248031 DOI: 10.1186/1476-511x-10-225] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 12/02/2011] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Endurance exercise is known to promote a substantial effect on the energy balance in rats and humans. However, little is known about the exact mechanisms for the appetite-suppressive effects of endurance exercise. We hypothesized that endurance training might activate signaling cascades in the hypothalamus known to be involved in leptin signaling. METHODS 16 male Wistar rats were randomly assigned to two groups: sedentary (n = 8) and exercise groups (n = 8). Animals in the exercise group started treadmill running at 30 m/min, 0% grade, for 1 min/bout. Running time was gradually increased by 2 min/bout every day. The training plan was one bout per day during initial two weeks, and two bouts per day during 3rd-9th week. At the end of nine-week experiment, blood was analyzed for low-density lipoprotein cholesterol (LDL-C), triglyceride (TG), total cholesterol (TC), free fatty acid (FFA), interleukin (IL)-6, and leptin in both groups. Activations of janus kinase 2-signaling transducer and activator of transcription 3 (JAK2-STAT3), protein kinase B (Akt), extracellular regulated kninase (ERKs), and suppressor of cytokine signaling 3 (SOCS3) in hypothalamus were measured in the end of nine weeks of exercise protocol. RESULTS Nine-week endurance exercise induced lower concentrations of LDL-C, TG, TC, FFA, and leptin in rats (P < 0.05 or P < 0.01). Nine-week endurance exercise significantly increased the circulating IL-6 concentration compared with sedentary group (239.6 ± 37.2 pg/ml vs. 151.8 ± 31.5 pg/ml, P < 0.01). Exercise rats showed significant increases in JAK2, STAT3, Akt, ERKs, and SOCS3 phosphorylations compared with sedentary rats (P < 0.01). CONCLUSION The data suggest that endurance exercise is a leptin signaling mimetic in hypothalamus of Wistar rats.
Collapse
Affiliation(s)
- Jiexiu Zhao
- Sport Biological Center, China Institute of Sport Science, Beijing 100061, PR China
| | | | | | | | | | | |
Collapse
|
42
|
Little JP, Safdar A, Benton CR, Wright DC. Skeletal muscle and beyond: the role of exercise as a mediator of systemic mitochondrial biogenesis. Appl Physiol Nutr Metab 2011; 36:598-607. [DOI: 10.1139/h11-076] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been known for more than 4 decades that exercise causes increases in skeletal muscle mitochondrial enzyme content and activity (i.e., mitochondrial biogenesis). Increasing evidence now suggests that exercise can induce mitochondrial biogenesis in a wide range of tissues not normally associated with the metabolic demands of exercise. Perturbations in mitochondrial content and (or) function have been linked to a wide variety of diseases, in multiple tissues, and exercise may serve as a potent approach by which to prevent and (or) treat these pathologies. In this context, the purpose of this review is to highlight the effects of exercise, and the underlying mechanisms therein, on the induction of mitochondrial biogenesis in skeletal muscle, adipose tissue, liver, brain, and kidney.
Collapse
Affiliation(s)
- Jonathan P. Little
- Department of Biology, I.K. Barber School of Arts and Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Adeel Safdar
- Departments of Kinesiology, Pediatrics and Medicine, McMaster University, Hamilton, ON, Canada
| | - Carley R. Benton
- Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milano, Italy
| | - David C. Wright
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
43
|
HIV-1 Nef induces proinflammatory state in macrophages through its acidic cluster domain: involvement of TNF alpha receptor associated factor 2. PLoS One 2011; 6:e22982. [PMID: 21886773 PMCID: PMC3160284 DOI: 10.1371/journal.pone.0022982] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Accepted: 07/11/2011] [Indexed: 01/06/2023] Open
Abstract
Background HIV-1 Nef is a virulence factor that plays multiple roles during HIV replication. Recently, it has been described that Nef intersects the CD40 signalling in macrophages, leading to modification in the pattern of secreted factors that appear able to recruit, activate and render T lymphocytes susceptible to HIV infection. The engagement of CD40 by CD40L induces the activation of different signalling cascades that require the recruitment of specific tumor necrosis factor receptor-associated factors (i.e. TRAFs). We hypothesized that TRAFs might be involved in the rapid activation of NF-κB, MAPKs and IRF-3 that were previously described in Nef-treated macrophages to induce the synthesis and secretion of proinflammatory cytokines, chemokines and IFNβ to activate STAT1, -2 and -3. Methodology/Principal Findings Searching for possible TRAF binding sites on Nef, we found a TRAF2 consensus binding site in the AQEEEE sequence encompassing the conserved four-glutamate acidic cluster. Here we show that all the signalling effects we observed in Nef treated macrophages depend on the integrity of the acidic cluster. In addition, Nef was able to interact in vitro with TRAF2, but not TRAF6, and this interaction involved the acidic cluster. Finally silencing experiments in THP-1 monocytic cells indicate that both TRAF2 and, surprisingly, TRAF6 are required for the Nef-induced tyrosine phosphorylation of STAT1 and STAT2. Conclusions Results reported here revealed TRAF2 as a new possible cellular interactor of Nef and highlighted that in monocytes/macrophages this viral protein is able to manipulate both the TRAF/NF-κB and TRAF/IRF-3 signalling axes, thereby inducing the synthesis of proinflammatory cytokines and chemokines as well as IFNβ.
Collapse
|
44
|
Cashion AK, Umberger RA, Goodwin SB, Sutter TR. Collection and storage of human blood and adipose for genomic analysis of clinical samples. Res Nurs Health 2011; 34:408-18. [PMID: 21812005 DOI: 10.1002/nur.20448] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2011] [Indexed: 11/08/2022]
Abstract
In this methods article, we describe collection and storage of clinically acquired blood and adipose samples for transcript analysis in an ongoing study exploring obesity in renal transplant recipients. Total ribonucleic acid (RNA) was isolated from whole blood using the LeukoLOCK™ Total RNA Isolation System (n = 4), and comparisons between fresh and frozen samples were made. Abdominal subcutaneous adipose samples (n = 4) were obtained during kidney transplantation, flash frozen, and stored at -80°C. Adipose RNA was extracted using either the STAT-60 method modified for lipids or Trizol plus RNeasy extraction. Affymetrix HG-U133 plus 2.0 arrays and Affymetrix Human Gene 1.0 ST arrays were used for both blood and adipose transcriptome analysis. Purity, quality, and quantity of RNA were high with comparable results using both array platforms.
Collapse
Affiliation(s)
- Ann K Cashion
- College of Nursing, University of Tennessee Health Science Center, 920 Madison, Suite 507 N, Memphis, TN 38163, USA
| | | | | | | |
Collapse
|
45
|
|
46
|
Lubkowska A, Szyguła Z, Chlubek D, Banfi G. The effect of prolonged whole-body cryostimulation treatment with different amounts of sessions on chosen pro- and anti-inflammatory cytokines levels in healthy men. Scand J Clin Lab Invest 2011; 71:419-25. [PMID: 21574854 DOI: 10.3109/00365513.2011.580859] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cryotherapy is used in the early treatment of acute injuries (sprains, strains, fractures) yet only a few papers discuss the possible influence of whole-body cryostimulation on inflammation mechanisms or immunology. It is postulated that cold exposure can have an immunostimulating effect related to enhanced noradrenaline response and can be connected with paracrine effects. The aim of this study was to examine the effect of different sequences of whole-body cryostimulations on the level of pro- and anti-inflammatory cytokines in healthy individuals. The research involved 45 healthy men divided into three groups. The groups were subjected to 5, 10 or 20, 3-minute long whole-body cryostimulations each day at -130°C. Blood was collected for analysis before the stimulations, after completion of the whole series, and 2 weeks after completion of the series, for the examination of any long-term effect. The analysis of results showed that in response to cryostimulation, the level of ani-inflammatory cytokines IL-6 and IL-10 increased while Il-1α cytokine level decreased. It seems that the most advantageous sequence was the series of 20 cryostimulations due to the longest lasting effects of stimulation after the completion of the whole series of treatments.
Collapse
Affiliation(s)
- Anna Lubkowska
- Department of Physiology, Faculty of Natural Sciences, Szczecin University, Szczecin, Poland.
| | | | | | | |
Collapse
|
47
|
Abstract
In the past, the role of physical activity as a life-style modulating factor has been considered as that of a tool to balance energy intake. Although it is important to avoid obesity, physical inactivity should be discussed in a much broader context. There is accumulating epidemiological evidence that a physically active life plays an independent role in the protection against type 2 diabetes, cardiovascular diseases, cancer, dementia and even depression. For most of the last century, researchers sought a link between muscle contraction and humoral changes in the form of an 'exercise factor', which could be released from skeletal muscle during contraction and mediate some of the exercise-induced metabolic changes in other organs such as the liver and the adipose tissue. We have suggested that cytokines or other peptides that are produced, expressed and released by muscle fibres and exert autocrine, paracrine or endocrine effects should be classified as 'myokines'. Given that skeletal muscle is the largest organ in the human body, our discovery that contracting skeletal muscle secretes proteins sets a novel paradigm: skeletal muscle is an endocrine organ producing and releasing myokines, which work in a hormone-like fashion, exerting specific endocrine effects on other organs. Other myokines work via paracrine mechanisms, exerting local effects on signalling pathways involved in muscle metabolism. It has been suggested that myokines may contribute to exercise-induced protection against several chronic diseases.
Collapse
Affiliation(s)
- Bente Klarlund Pedersen
- Centre of Inflammation and Metabolism, Rigshospitalet-Section 7641, Blegdamsvej 9, DK-2100, Copenhagen, Denmark.
| |
Collapse
|
48
|
Jürimäe J, Mäestu J, Jürimäe T, Mangus B, von Duvillard SP. Peripheral signals of energy homeostasis as possible markers of training stress in athletes: a review. Metabolism 2011; 60:335-50. [PMID: 20304442 DOI: 10.1016/j.metabol.2010.02.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2009] [Revised: 01/24/2010] [Accepted: 02/09/2010] [Indexed: 11/26/2022]
Abstract
The importance of physical exercise in regulating energy balance and ultimately body mass is widely recognized. There have been several investigative efforts in describing the regulation of the energy homeostasis. Important in this regulatory system is the existence of several peripheral signals that communicate the status of body energy stores to the hypothalamus including leptin, adiponectin, ghrelin, interleukin-6, interleukin-1β, and tumor necrosis factor-α--different cytokines and other peptides that affect energy homeostasis. In certain circumstances, all these peripheral signals may be used to reveal the condition of the athlete as the result of several months of prolonged exercise training. These hormone and cytokine concentrations characterize a physical stress condition in which different hormone and cytokine responses are apparently linked to changes in physical performance. The possibility to use these peripheral signals as markers of training stress (and possible overreaching/overtraining) in elite athletes should be considered. These measured hormone and cytokine levels could also be used to characterize the physical stress of single exercise session, as the hormone and cytokine response to exercise may actually be a response to the concurrent energy deficit. In summary, different peripheral signals of energy homeostasis may be sensitive to changes in specific training stress and may be useful for predicting the onset of possible overreaching/overtraining in athletes.
Collapse
Affiliation(s)
- Jaak Jürimäe
- Institute of Sport Pedagogy and Coaching Sciences, Center for Behavioral and Health Sciences, University of Tartu, Tartu, Estonia
| | | | | | | | | |
Collapse
|
49
|
Popko K, Gorska E, Demkow U. Influence of interleukin-6 and G174C polymorphism in IL-6 gene on obesity and energy balance. Eur J Med Res 2011; 15 Suppl 2:123-7. [PMID: 21147639 PMCID: PMC4360272 DOI: 10.1186/2047-783x-15-s2-123] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Obesity is a multifactor disease with a very complicated etiology. Genetic factors play an important role in the development of primary obesity. They may be responsible for up to 40% of causes leading to obesity. There are a great number of genes affecting food intake and energy expenditure. Serious consequences accompanying obesity, e.g., type 2 diabetes and lipid abnormalities may be caused by increased level of proinflammatory cytokines, such as IL-1, IL-6, and TNF. It is possible that polymorphisms located in cytokine genes affect the level of protein expression. It is known that IL-6 plays a role in lipid metabolism and energy expenditure. The polymorphism found in point 174 (G174C) of a promoter region of IL-6 gene affects the level of interleukin-6 expression and, consequently, may lead to obesity and correlated conditions.
Collapse
Affiliation(s)
- Katarzyna Popko
- Department of Laboratory Diagnostics, Warsaw Medical University, Warsaw, Poland.
| | | | | |
Collapse
|
50
|
Rossi SJ, Buford TW, McMillan J, Kovacs MS, Marshall AE. Nutritional Strategies and Immune Function. Strength Cond J 2010. [DOI: 10.1519/ssc.0b013e3181fc5155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|