1
|
Zhang S, Xia J, He W, Zou Y, Liu W, Li L, Huang Z, Li Q, Qi Z, Liu W. From energy metabolism to mood regulation: The rise of lactate as a therapeutic target. J Adv Res 2025:S2090-1232(25)00262-0. [PMID: 40262720 DOI: 10.1016/j.jare.2025.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/28/2025] [Accepted: 04/13/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Disruption of cerebral energy metabolism is increasingly recognized as a key factor in the pathophysiology of mood disorders. Lactate, beyond its role as a metabolic byproduct, is now understood to be a critical player in brain energy homeostasis and a modulator of neuronal function. Recent advances in understanding lactate shuttling between astrocytes and neurons have opened new avenues for exploring its multifaceted roles in mood regulation. Exercise, known to modulate brain lactate levels, further underscores the potential of lactate as a therapeutic target in mood disorders. AIM OF REVIEW This review delves into the alterations in cerebral lactate associated with mood disorders, emphasizing their implications for brain energy dynamics and signaling pathways. Additionally, we discuss the therapeutic potential of lactate in mood disorders, particularly through its capacity to remodel cerebral function. We conclude by assessing the promise of exercise-induced lactate production as a novel strategy for mood disorder treatment. KEY SCIENTIFIC CONCEPTS OF THE REVIEW Alterations in brain lactate may contribute to the pathogenesis of mood disorders. In several studies, lactate is not only a substrate for brain energy metabolism, but also a molecule that triggers signaling cascades. Specifically, lactate is involved in the regulation of neurogenesis, neuroplasticity, endothelial cell function, and microglia lysosomal acidification, therefore improving mood disorders. Meanwhile, exercise as a low-risk intervention strategy can improve mood disorders through lactate regulation. Thus, the evidence from this review supports that lactate could be a potential therapeutic target for mood disorder, contributing to a deeper understanding of mood disorder pathogenesis and intervention.
Collapse
Affiliation(s)
- Sen Zhang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China; College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Jie Xia
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China; Department of Physical Education, Shanghai Jiao Tong University, Shanghai, China
| | - Wenke He
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China; College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Yong Zou
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China; College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Wenbin Liu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China; School of Physical Education, Shanxi University, Taiyuan, China
| | - Lingxia Li
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China; College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Zhuochun Huang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China; College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Qing Li
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China; College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Zhengtang Qi
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China; College of Physical Education and Health, East China Normal University, Shanghai, China.
| | - Weina Liu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China; College of Physical Education and Health, East China Normal University, Shanghai, China.
| |
Collapse
|
2
|
Walls AB, Andersen JV, Waagepetersen HS, Bak LK. Fueling Brain Inhibition: Integrating GABAergic Neurotransmission and Energy Metabolism. Neurochem Res 2025; 50:136. [PMID: 40189668 DOI: 10.1007/s11064-025-04384-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/24/2025] [Accepted: 03/24/2025] [Indexed: 04/26/2025]
Abstract
Despite decades of research in brain energy metabolism and to what extent different cell types utilize distinct substrates for their energy metabolism, this topic remains a vibrant area of neuroscience research. In this review, we focus on the substrates utilized by the inhibitory GABAergic neurons, which has been less explored than glutamatergic neurons. First, we discuss how GABAergic neurons may utilize both glucose, lactate, or ketone bodies under different functional conditions, and provide some preliminary data suggesting that unlike glutamatergic neurons, GABAergic neurons work well when substrate supply is restricted to lactate. We end by discussing the role of GABAergic neuron energy metabolism in pathologies where failure of inhibitory function play a central role, namely epilepsy, hepatic encephalopathy, and Alzheimer's disease.
Collapse
Affiliation(s)
- Anne B Walls
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Capital Region Hospital Pharmacy, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Jens V Andersen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | | - Lasse K Bak
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
- Department of Clinical Biochemistry, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark.
- Translational Research Center (TRACE), Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark.
| |
Collapse
|
3
|
Brown JL, Raeder R, Troyanos C, Dyer KS. Psychological Assessment and Intervention at the Boston Marathon. Sports Med 2024; 54:2979-2991. [PMID: 39352666 DOI: 10.1007/s40279-024-02116-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2024] [Indexed: 12/01/2024]
Abstract
The Boston Marathon is a highly regarded event in the running world, not just for its prestige and challenging course, but also for its implementation of a psychology team to support runners. The 2013 Boston Marathon bombings underscored the essential role that mental health support plays at this event, prompting the development and expansion of its innovative care model. This review critically outlines, evaluates, and analyzes the approach and effectiveness of the psychological care model provided to runners on race day as part of the Boston Marathon medical team, including the standard of care, how it functions, and best practices for other marathons. The implications for this review contribute to the increasing trend of providing psychological care in marathon and other athletic settings, and to provide a framework for standardizing assessment and intervention procedures for both elite and novice runners.
Collapse
Affiliation(s)
- Jeffrey L Brown
- Department of Psychiatry, Harvard Medical School, Boston, USA.
- Department of Psychology, McLean Hospital, Belmont, USA.
- Boston Marathon, Boston Athletic Association, Boston, USA.
| | - Robert Raeder
- Department of Psychology, University of Cambridge, Cambridge, UK
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, USA
| | - Chris Troyanos
- Boston Marathon, Boston Athletic Association, Boston, USA
| | - K Sophia Dyer
- Boston Marathon, Boston Athletic Association, Boston, USA
- Department of Emergency Medicine, Chobanian & Avedisian School of Medicine, Boston University, Boston, USA
| |
Collapse
|
4
|
Caldwell HG, Hoiland RL, Bain AR, Howe CA, Carr JMJR, Gibbons TD, Durrer CG, Tymko MM, Stacey BS, Bailey DM, Sekhon MS, MacLeod DB, Ainslie PN. Evidence for direct CO 2 -mediated alterations in cerebral oxidative metabolism in humans. Acta Physiol (Oxf) 2024; 240:e14197. [PMID: 38958262 DOI: 10.1111/apha.14197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024]
Abstract
AIM How the cerebral metabolic rates of oxygen and glucose utilization (CMRO2 and CMRGlc, respectively) are affected by alterations in arterial PCO2 (PaCO2) is equivocal and therefore was the primary question of this study. METHODS This retrospective analysis involved pooled data from four separate studies, involving 41 healthy adults (35 males/6 females). Participants completed stepwise steady-state alterations in PaCO2 ranging between 30 and 60 mmHg. The CMRO2 and CMRGlc were assessed via the Fick approach (CBF × arterial-internal jugular venous difference of oxygen or glucose content, respectively) utilizing duplex ultrasound of the internal carotid artery and vertebral artery to calculate cerebral blood flow (CBF). RESULTS The CMRO2 was altered by 0.5 mL × min-1 (95% CI: -0.6 to -0.3) per mmHg change in PaCO2 (p < 0.001) which corresponded to a 9.8% (95% CI: -13.2 to -6.5) change in CMRO2 with a 9 mmHg change in PaCO2 (inclusive of hypo- and hypercapnia). The CMRGlc was reduced by 7.7% (95% CI: -15.4 to -0.08, p = 0.045; i.e., reduction in net glucose uptake) and the oxidative glucose index (ratio of oxygen to glucose uptake) was reduced by 5.6% (95% CI: -11.2 to 0.06, p = 0.049) with a + 9 mmHg increase in PaCO2. CONCLUSION Collectively, the CMRO2 is altered by approximately 1% per mmHg change in PaCO2. Further, glucose is incompletely oxidized during hypercapnia, indicating reductions in CMRO2 are either met by compensatory increases in nonoxidative glucose metabolism or explained by a reduction in total energy production.
Collapse
Affiliation(s)
- Hannah G Caldwell
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Ryan L Hoiland
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
- Department of Anesthesiology, Pharmacology and Therapeutics, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- Collaborative Entity for REsearching Brain Ischemia (CEREBRI), University of British Columbia, Vancouver, British Columbia, Canada
| | - Anthony R Bain
- Department of Kinesiology, Faculty of Human Kinetics, University of Windsor, Windsor, Ontario, Canada
| | - Connor A Howe
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Jay M J R Carr
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Travis D Gibbons
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Cody G Durrer
- Centre for Physical Activity Research, Rigshospitalet, Copenhagen, Denmark
| | - Michael M Tymko
- Division of Critical Care Medicine, Department of Medicine, Faculty of Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
- Human Cerebrovascular Physiology Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, Ontario, Canada
| | - Benjamin S Stacey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Mypinder S Sekhon
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- Collaborative Entity for REsearching Brain Ischemia (CEREBRI), University of British Columbia, Vancouver, British Columbia, Canada
- Division of Critical Care Medicine, Department of Medicine, Faculty of Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - David B MacLeod
- Human Pharmacology and Physiology Lab, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| |
Collapse
|
5
|
Dienel GA, Rothman DL. In vivo calibration of genetically encoded metabolite biosensors must account for metabolite metabolism during calibration and cellular volume. J Neurochem 2024; 168:506-532. [PMID: 36726217 DOI: 10.1111/jnc.15775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/21/2023] [Accepted: 01/28/2023] [Indexed: 02/03/2023]
Abstract
Isotopic assays of brain glucose utilization rates have been used for more than four decades to establish relationships between energetics, functional activity, and neurotransmitter cycling. Limitations of these methods include the relatively long time (1-60 min) for the determination of labeled metabolite levels and the lack of cellular resolution. Identification and quantification of fuels for neurons and astrocytes that support activation and higher brain functions are a major, unresolved issues. Glycolysis is preferentially up-regulated during activation even though oxygen level and supply are adequate, causing lactate concentrations to quickly rise during alerting, sensory processing, cognitive tasks, and memory consolidation. However, the fate of lactate (rapid release from brain or cell-cell shuttling coupled with local oxidation) is long disputed. Genetically encoded biosensors can determine intracellular metabolite concentrations and report real-time lactate level responses to sensory, behavioral, and biochemical challenges at the cellular level. Kinetics and time courses of cellular lactate concentration changes are informative, but accurate biosensor calibration is required for quantitative comparisons of lactate levels in astrocytes and neurons. An in vivo calibration procedure for the Laconic lactate biosensor involves intracellular lactate depletion by intravenous pyruvate-mediated trans-acceleration of lactate efflux followed by sensor saturation by intravenous infusion of high doses of lactate plus ammonium chloride. In the present paper, the validity of this procedure is questioned because rapid lactate-pyruvate interconversion in blood, preferential neuronal oxidation of both monocarboxylates, on-going glycolytic metabolism, and cellular volumes were not taken into account. Calibration pitfalls for the Laconic lactate biosensor also apply to other metabolite biosensors that are standardized in vivo by infusion of substrates that can be metabolized in peripheral tissues. We discuss how technical shortcomings negate the conclusion that Laconic sensor calibrations support the existence of an in vivo astrocyte-neuron lactate concentration gradient linked to lactate shuttling from astrocytes to neurons to fuel neuronal activity.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Douglas L Rothman
- Magnetic Resonance Research Center and Departments of Radiology and Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
6
|
Dienel GA, Schousboe A, McKenna MC, Rothman DL. A tribute to Leif Hertz: The historical context of his pioneering studies of the roles of astrocytes in brain energy metabolism, neurotransmission, cognitive functions, and pharmacology identifies important, unresolved topics for future studies. J Neurochem 2024; 168:461-495. [PMID: 36928655 DOI: 10.1111/jnc.15812] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
Leif Hertz, M.D., D.Sc. (honōris causā) (1930-2018), was one of the original and noteworthy participants in the International Conference on Brain Energy Metabolism (ICBEM) series since its inception in 1993. The biennial ICBEM conferences are organized by neuroscientists interested in energetics and metabolism underlying neural functions; they have had a high impact on conceptual and experimental advances in these fields and on promoting collaborative interactions among neuroscientists. Leif made major contributions to ICBEM discussions and understanding of metabolic and signaling characteristics of astrocytes and their roles in brain function. His studies ranged from uptake of K+ from extracellular fluid and its stimulation of astrocytic respiration, identification, and regulation of enzymes specifically or preferentially expressed in astrocytes in the glutamate-glutamine cycle of excitatory neurotransmission, a requirement for astrocytic glycogenolysis for fueling K+ uptake, involvement of glycogen in memory consolidation in the chick, and pharmacology of astrocytes. This tribute to Leif Hertz highlights his major discoveries, the high impact of his work on astrocyte-neuron interactions, and his unparalleled influence on understanding the cellular basis of brain energy metabolism. His work over six decades has helped integrate the roles of astrocytes into neurotransmission where oxidative and glycogenolytic metabolism during neurotransmitter glutamate turnover are key aspects of astrocytic energetics. Leif recognized that brain astrocytic metabolism is greatly underestimated unless the volume fraction of astrocytes is taken into account. Adjustment for pathway rates expressed per gram tissue for volume fraction indicates that astrocytes have much higher oxidative rates than neurons and astrocytic glycogen concentrations and glycogenolytic rates during sensory stimulation in vivo are similar to those in resting and exercising muscle, respectively. These novel insights are typical of Leif's astute contributions to the energy metabolism field, and his publications have identified unresolved topics that provide the neuroscience community with challenges and opportunities for future research.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA
- Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico, 87131, USA
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Mary C McKenna
- Department of Pediatrics and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, 21201, USA
| | - Douglas L Rothman
- Department of Radiology, Magnetic Resonance Research Center (MRRC), Yale University, New Haven, Connecticut, 06520, USA
| |
Collapse
|
7
|
Kann O. Lactate as a supplemental fuel for synaptic transmission and neuronal network oscillations: Potentials and limitations. J Neurochem 2024; 168:608-631. [PMID: 37309602 DOI: 10.1111/jnc.15867] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 06/14/2023]
Abstract
Lactate shuttled from the blood circulation, astrocytes, oligodendrocytes or even activated microglia (resident macrophages) to neurons has been hypothesized to represent a major source of pyruvate compared to what is normally produced endogenously by neuronal glucose metabolism. However, the role of lactate oxidation in fueling neuronal signaling associated with complex cortex function, such as perception, motor activity, and memory formation, is widely unclear. This issue has been experimentally addressed using electrophysiology in hippocampal slice preparations (ex vivo) that permit the induction of different neural network activation states by electrical stimulation, optogenetic tools or receptor ligand application. Collectively, these studies suggest that lactate in the absence of glucose (lactate only) impairs gamma (30-70 Hz) and theta-gamma oscillations, which feature high energy demand revealed by the cerebral metabolic rate of oxygen (CMRO2, set to 100%). The impairment comprises oscillation attenuation or moderate neural bursts (excitation-inhibition imbalance). The bursting is suppressed by elevating the glucose fraction in energy substrate supply. By contrast, lactate can retain certain electric stimulus-induced neural population responses and intermittent sharp wave-ripple activity that features lower energy expenditure (CMRO2 of about 65%). Lactate utilization increases the oxygen consumption by about 9% during sharp wave-ripples reflecting enhanced adenosine-5'-triphosphate (ATP) synthesis by oxidative phosphorylation in mitochondria. Moreover, lactate attenuates neurotransmission in glutamatergic pyramidal cells and fast-spiking, γ-aminobutyric acid (GABA)ergic interneurons by reducing neurotransmitter release from presynaptic terminals. By contrast, the generation and propagation of action potentials in the axon is regular. In conclusion, lactate is less effective than glucose and potentially detrimental during neural network rhythms featuring high energetic costs, likely through the lack of some obligatory ATP synthesis by aerobic glycolysis at excitatory and inhibitory synapses. High lactate/glucose ratios might contribute to central fatigue, cognitive impairment, and epileptic seizures partially seen, for instance, during exhaustive physical exercise, hypoglycemia and neuroinflammation.
Collapse
Affiliation(s)
- Oliver Kann
- Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
- Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
8
|
DiNuzzo M, Dienel GA, Behar KL, Petroff OA, Benveniste H, Hyder F, Giove F, Michaeli S, Mangia S, Herculano-Houzel S, Rothman DL. Neurovascular coupling is optimized to compensate for the increase in proton production from nonoxidative glycolysis and glycogenolysis during brain activation and maintain homeostasis of pH, pCO 2, and pO 2. J Neurochem 2024; 168:632-662. [PMID: 37150946 PMCID: PMC10628336 DOI: 10.1111/jnc.15839] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 04/22/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
During transient brain activation cerebral blood flow (CBF) increases substantially more than cerebral metabolic rate of oxygen consumption (CMRO2) resulting in blood hyperoxygenation, the basis of BOLD-fMRI contrast. Explanations for the high CBF versus CMRO2 slope, termed neurovascular coupling (NVC) constant, focused on maintenance of tissue oxygenation to support mitochondrial ATP production. However, paradoxically the brain has a 3-fold lower oxygen extraction fraction (OEF) than other organs with high energy requirements, like heart and muscle during exercise. Here, we hypothesize that the NVC constant and the capillary oxygen mass transfer coefficient (which in combination determine OEF) are co-regulated during activation to maintain simultaneous homeostasis of pH and partial pressure of CO2 and O2 (pCO2 and pO2). To test our hypothesis, we developed an arteriovenous flux balance model for calculating blood and brain pH, pCO2, and pO2 as a function of baseline OEF (OEF0), CBF, CMRO2, and proton production by nonoxidative metabolism coupled to ATP hydrolysis. Our model was validated against published brain arteriovenous difference studies and then used to calculate pH, pCO2, and pO2 in activated human cortex from published calibrated fMRI and PET measurements. In agreement with our hypothesis, calculated pH, pCO2, and pO2 remained close to constant independently of CMRO2 in correspondence to experimental measurements of NVC and OEF0. We also found that the optimum values of the NVC constant and OEF0 that ensure simultaneous homeostasis of pH, pCO2, and pO2 were remarkably similar to their experimental values. Thus, the high NVC constant is overall determined by proton removal by CBF due to increases in nonoxidative glycolysis and glycogenolysis. These findings resolve the paradox of the brain's high CBF yet low OEF during activation, and may contribute to explaining the vulnerability of brain function to reductions in blood flow and capillary density with aging and neurovascular disease.
Collapse
Affiliation(s)
| | - Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205 USA
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM, 87131 USA
| | - Kevin L Behar
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511 USA
| | - Ognen A Petroff
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511 USA
| | - Helene Benveniste
- Department of Anesthesiology, Yale University, New Haven, CT, 06520 USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520 USA
| | - Fahmeed Hyder
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520 USA
- Department of Radiology, Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, 06520 USA
| | - Federico Giove
- Centro Ricerche Enrico Fermi, Rome, RM, 00184 Italy
- Fondazione Santa Lucia IRCCS, Rome, RM, 00179 Italy
| | - Shalom Michaeli
- Department of Radiology, Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, 55455 USA
| | - Silvia Mangia
- Department of Radiology, Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, 55455 USA
| | - Suzana Herculano-Houzel
- Department of Psychology, Vanderbilt University, Nashville, TN
- Department of Biological Sciences, Vanderbilt University, Nashville, TN
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN
| | - Douglas L Rothman
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520 USA
- Department of Radiology, Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, 06520 USA
| |
Collapse
|
9
|
Palmer JA, Whitaker AA, Payne AM, Bartsch BL, Reisman DS, Boyne PE, Billinger SA. Aerobic Exercise Improves Cortical Inhibitory Function After Stroke: A Preliminary Investigation. J Neurol Phys Ther 2024; 48:83-93. [PMID: 37436187 PMCID: PMC10776819 DOI: 10.1097/npt.0000000000000453] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
BACKGROUND AND PURPOSE Aerobic exercise can elicit positive effects on neuroplasticity and cognitive executive function but is poorly understood after stroke. We tested the effect of 4 weeks of aerobic exercise training on inhibitory and facilitatory elements of cognitive executive function and electroencephalography markers of cortical inhibition and facilitation. We investigated relationships between stimulus-evoked cortical responses, blood lactate levels during training, and aerobic fitness postintervention. METHODS Twelve individuals with chronic (>6 months) stroke completed an aerobic exercise intervention (40 minutes, 3×/wk). Electroencephalography and motor response times were assessed during congruent (response facilitation) and incongruent (response inhibition) stimuli of a Flanker task. Aerobic fitness capacity was assessed as o2peak during a treadmill test pre- and postintervention. Blood lactate was assessed acutely (<1 minute) after exercise each week. Cortical inhibition (N2) and facilitation (frontal P3) were quantified as peak amplitudes and latencies of stimulus-evoked electroencephalographic activity over the frontal cortical region. RESULTS Following exercise training, the response inhibition speed increased while response facilitation remained unchanged. A relationship between earlier cortical N2 response and faster response inhibition emerged postintervention. Individuals who produced higher lactate during exercise training achieved faster response inhibition and tended to show earlier cortical N2 responses postintervention. There were no associations between o2peak and metrics of behavioral or neurophysiologic function. DISCUSSION AND CONCLUSIONS These preliminary findings provide novel evidence for selective benefits of aerobic exercise on inhibitory control during the initial 4-week period after initiation of exercise training and implicate a potential therapeutic effect of lactate on poststroke inhibitory control.
Collapse
Affiliation(s)
- Jacqueline A Palmer
- Department of Neurology (J.A.P., S.A.B.), School of Medicine, University of Kansas Medical Center, Kansas City; University of Kansas Alzheimer's Disease Research Center (J.A.P., S.A.B.), Fairway; Department of Physical Therapy, Rehabilitation Science, and Athletic Training (A.A.W., B.L.B.), University of Kansas Medical Center, Kansas City; Department of Psychology (A.M.P.), College of Arts and Sciences, Florida State University, Tallahassee; Department of Physical Therapy (D.S.R.), College of Health Sciences, University of Delaware, Newark; and Department of Rehabilitation, Exercise and Nutrition Sciences (P.E.B.), College of Allied Health Sciences, University of Cincinnati, Cincinnati, Ohio
| | | | | | | | | | | | | |
Collapse
|
10
|
Zhang L, Zheng J, Liu SY, Hou LL, Zhang B, Tian SW. Acute Administration of Lactate Exerts Antidepressant-like Effect Through cAMP-dependent Protein Synthesis. Neuroscience 2024; 542:11-20. [PMID: 38336096 DOI: 10.1016/j.neuroscience.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/16/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Lactate acts as an important metabolic substrate and signalling molecule modulating neural activities in the brain, and recent preclinical and clinical studies have revealed its antidepressant effect after acute or chronic peripheral administration. However, the neural mechanism underlying the antidepressant effect of lactate, in particular when lactate is acutely administered remains largely unknown. In the current study, we focused on forced swimming test (FST) to elucidate the neural mechanisms through which acute intracerebroventricular (ICV) infusion of lactate exerts antidepressant-like effect. A total of 238 male Sprague Dawley rats were used as experimental subjects. Results showed lactate produced antidepressant-like effect, as indicated by reduced immobility, in a dose- and time-dependent manner. Moreover, the antidepressant-like effect of lactate was dependent of new protein synthesis but not new gene expression, lactate's metabolic effect or hydroxy-carboxylic acid receptor 1 (HCAR1) activation. Furthermore, lactate rapidly promoted dephosphorylation of eukaryotic elongation factor 2 (eEF2) and increased brain-derived neurotrophic factor (BDNF) protein synthesis in the hippocampus in a cyclic adenosine monophosphate (cAMP)-dependent manner. Finally, inhibition of cAMP production blocked the antidepressant-like effect of lactate. These findings suggest that acute administration of lactate exerts antidepressant-like effect through cAMP-dependent protein synthesis.
Collapse
Affiliation(s)
- Liang Zhang
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin, Guangxi 541199, China; Department of Anesthesiology, National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, Guangdong 518112, China; Department of Anesthesiology, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Jing Zheng
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Shi-Yan Liu
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Li-Li Hou
- Department of Anesthesiology, Nanhua Affiliated Hospital, University of South China, Hengyang, Hunan 421001, China
| | - Bo Zhang
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin, Guangxi 541199, China
| | - Shao-Wen Tian
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin, Guangxi 541199, China.
| |
Collapse
|
11
|
Ryberg M, Boraxbekk CJ, Kjaer M, Demnitz N. Effects of acute physical activity on brain metabolites as measured by magnetic resonance spectroscopy ( 1H-MRS) in humans: A systematic review. Heliyon 2023; 9:e20534. [PMID: 37818016 PMCID: PMC10560775 DOI: 10.1016/j.heliyon.2023.e20534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023] Open
Abstract
Physical activity (PA) promotes brain health in a variety of domains including cognition, mood, and neuroplasticity. At the neurochemical level, the mechanisms underlying these effects in the brain are not fully understood. With proton Magnetic Resonance Spectroscopy (1H-MRS), it is possible to non-invasively quantify metabolite concentrations, enabling studies to obtain measures of exercise-induced neurochemical changes. This systematic review aimed to examine the existing literature on acute effects of PA on brain metabolites as measured by 1H-MRS. Four databases (Cochrane Central Register of Controlled Trials, PubMed, Embase, and PsycINFO) were searched, identifying 2965 studies, of which 9 met the inclusion criteria. Across studies, Gamma-AminoButyric Acid (GABA) and lactate tended to increase after exercise, while no significant changes in choline were reported. For glutamine/glutamate (Glx), studies were inconclusive. Conclusions were limited by the lack of consensus on 1H-MRS data processing and exercise protocols. To reduce inter-study differences, future studies are recommended to (1): apply a standardized exercise index (2), consider the onset time of MRS scans, and (3) follow standardized MRS quantification methods.
Collapse
Affiliation(s)
- Mathias Ryberg
- Institute of Sports Medicine Copenhagen (ISMC), Copenhagen University Hospital – Bispebjerg and Frederiksberg, Bispebjerg Bakke 23, 2400 Copenhagen NV, Denmark
| | - Carl-Johan Boraxbekk
- Institute of Sports Medicine Copenhagen (ISMC), Copenhagen University Hospital – Bispebjerg and Frederiksberg, Bispebjerg Bakke 23, 2400 Copenhagen NV, Denmark
- Danish Research Center for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital – Amager and Hvidovre, Kettegård Allé 30, 2650 Hvidovre, Denmark
- Department of Neurology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Kjaer
- Institute of Sports Medicine Copenhagen (ISMC), Copenhagen University Hospital – Bispebjerg and Frederiksberg, Bispebjerg Bakke 23, 2400 Copenhagen NV, Denmark
- Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Healthy Aging, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Naiara Demnitz
- Danish Research Center for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital – Amager and Hvidovre, Kettegård Allé 30, 2650 Hvidovre, Denmark
| |
Collapse
|
12
|
Theriault JE, Shaffer C, Dienel GA, Sander CY, Hooker JM, Dickerson BC, Barrett LF, Quigley KS. A functional account of stimulation-based aerobic glycolysis and its role in interpreting BOLD signal intensity increases in neuroimaging experiments. Neurosci Biobehav Rev 2023; 153:105373. [PMID: 37634556 PMCID: PMC10591873 DOI: 10.1016/j.neubiorev.2023.105373] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/28/2023] [Accepted: 08/23/2023] [Indexed: 08/29/2023]
Abstract
In aerobic glycolysis, oxygen is abundant, and yet cells metabolize glucose without using it, decreasing their ATP per glucose yield by 15-fold. During task-based stimulation, aerobic glycolysis occurs in localized brain regions, presenting a puzzle: why produce ATP inefficiently when, all else being equal, evolution should favor the efficient use of metabolic resources? The answer is that all else is not equal. We propose that a tradeoff exists between efficient ATP production and the efficiency with which ATP is spent to transmit information. Aerobic glycolysis, despite yielding little ATP per glucose, may support neuronal signaling in thin (< 0.5 µm), information-efficient axons. We call this the efficiency tradeoff hypothesis. This tradeoff has potential implications for interpretations of task-related BOLD "activation" observed in fMRI. We hypothesize that BOLD "activation" may index local increases in aerobic glycolysis, which support signaling in thin axons carrying "bottom-up" information, or "prediction error"-i.e., the BIAPEM (BOLD increases approximate prediction error metabolism) hypothesis. Finally, we explore implications of our hypotheses for human brain evolution, social behavior, and mental disorders.
Collapse
Affiliation(s)
- Jordan E Theriault
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
| | - Clare Shaffer
- Northeastern University, Department of Psychology, Boston, MA, USA
| | - Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, USA
| | - Christin Y Sander
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Jacob M Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Bradford C Dickerson
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA; Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Lisa Feldman Barrett
- Northeastern University, Department of Psychology, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Karen S Quigley
- Northeastern University, Department of Psychology, Boston, MA, USA; VA Bedford Healthcare System, Bedford, MA, USA
| |
Collapse
|
13
|
Li R, Yang Y, Wang H, Zhang T, Duan F, Wu K, Yang S, Xu K, Jiang X, Sun X. Lactate and Lactylation in the Brain: Current Progress and Perspectives. Cell Mol Neurobiol 2023; 43:2541-2555. [PMID: 36928470 PMCID: PMC11410153 DOI: 10.1007/s10571-023-01335-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/04/2023] [Indexed: 03/18/2023]
Abstract
As the final product of glycolysis, lactate features not only as an energy substrate, a metabolite, and a signaling molecule in a variety of diseases-such as cancer, inflammation, and sepsis-but also as a regulator of protein lactylation; this is a newly proposed epigenetic modification that is considered to be crucial for energy metabolism and signaling in brain tissues under both physiological and pathological conditions. In this review, evidence on lactylation from studies on lactate metabolism and disease has been summarized, revealing the function of lactate and its receptors in the regulation of brain function and summarizing the levels of lactylation expression in various brain diseases. Finally, the function of lactate and lactylation in the brain and the potential mechanisms of intervention in brain diseases are presented and discussed, providing optimal perspectives for future research on the role of lactylation in the brain.
Collapse
Affiliation(s)
- Ruobing Li
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 8615-0040, China
| | - Yi Yang
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 8615-0040, China
| | - Haoyu Wang
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 8615-0040, China
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 26 Heping Road, Xiangfang District, Harbin, 8615-0040, China
| | - Tingting Zhang
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 8615-0040, China
| | - Fangfang Duan
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 8615-0040, China
| | - Kaidi Wu
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 8615-0040, China
| | - Siyu Yang
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 8615-0040, China
| | - Ke Xu
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 8615-0040, China
| | - Xicheng Jiang
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 8615-0040, China.
| | - Xiaowei Sun
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin, 8615-0040, China.
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 26 Heping Road, Xiangfang District, Harbin, 8615-0040, China.
| |
Collapse
|
14
|
Barbosa IR, da Cunha G, Luft C, Rübensam G, Freitas RDS, Greggio S, Venturin G, de Oliveira JR, da Costa JC, Campos MM. Fructose supplementation shifts rat brain metabolism in experimental migraine. Brain Res Bull 2023:110694. [PMID: 37353036 DOI: 10.1016/j.brainresbull.2023.110694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/28/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
AIMS We have previously demonstrated that fructose supplementation (FS), given in a scheme used for inducing metabolic syndrome (MS), elicited pain relief in the nitroglycerin (NTG)-elicited rat migraine model. Herein, we evaluated whether FS could reestablish the impaired metabolic pathways in NTG-injected rats. MAIN METHODS Male Wistar rats (N=40) were divided into two groups for receiving 10-% FS or tap water. After 45 days, they were subdivided into NTG-injected (10mg/kg; 15 days) or controls. After the fourth NTG injection, 18F-fluorodeoxyglucose ([18F] FDG) micro-PET scanning was accomplished. The day after, euthanasia was performed, and blood was collected for glycemia and LDH analysis. The levels of energy molecules, TBARS, PGC-1α, and MCTS1 were evaluated in the brain cortices. The activated satellite glial cells (SGC) were assessed in the trigeminal ganglion (TG). KEY FINDINGS There were no variations of glycemia or LDH serum levels. NTG-injected rats showed a significant increase in glucose uptake in the hypothalamus (HT) vs. NTG-free rats. The FS-NTG group showed increased metabolism in the superior colliculus (SC) vs. the NTG group. Moreover, the glucose uptake was amplified in the inferior colliculus (IC) of the FS-NTG vs. FS group. The cortical inosine levels were significantly higher in FS-NTG rats vs. NTG or FS groups, with no changes in TBARS or MCTS1 levels, despite a minor decrease of PGC1-α contents in the FS+NTG group. Finally, there was a significant increase of activated SGC around TG in the FS-NTG rats. SIGNIFICANCE We provide novel evidence linking nutrition and metabolism with migraine.
Collapse
Affiliation(s)
- Isadora R Barbosa
- PUCRS, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Porto Alegre/RS, Brasil; PUCRS, Curso de Graduação em Odontologia, Escola de Ciências da Saúde e da Vida, Porto Alegre/RS, Brasil
| | - Gabriela da Cunha
- PUCRS, Curso de Graduação em Odontologia, Escola de Ciências da Saúde e da Vida, Porto Alegre/RS, Brasil; PUCRS, Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Porto Alegre/RS, Brasil
| | - Carolina Luft
- PUCRS, Laboratório de Pesquisa em Biofísica Celular e Inflamação, Escola de Ciências da Saúde e da Vida Porto Alegre, Brazil
| | - Gabriel Rübensam
- PUCRS, Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Porto Alegre/RS, Brasil
| | - Raquel D S Freitas
- PUCRS, Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Porto Alegre/RS, Brasil; PUCRS, Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Ciências da Saúde e da Vida, Porto Alegre/RS, Brasil
| | - Samuel Greggio
- PUCRS, Curso de Graduação em Biomedicina, Escola de Ciências da Saúde e da Vida, Porto Alegre/RS, Brasil
| | - Gianina Venturin
- PUCRS, Centro de Pesquisa Pré-clínica, Instituto do Cérebro (BraIns), Porto Alegre/RS, Brazil
| | - Jarbas R de Oliveira
- PUCRS, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Porto Alegre/RS, Brasil; PUCRS, Laboratório de Pesquisa em Biofísica Celular e Inflamação, Escola de Ciências da Saúde e da Vida Porto Alegre, Brazil; PUCRS, Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Ciências da Saúde e da Vida, Porto Alegre/RS, Brasil
| | - Jaderson C da Costa
- PUCRS, Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Ciências da Saúde e da Vida, Porto Alegre/RS, Brasil; PUCRS, Centro de Pesquisa Pré-clínica, Instituto do Cérebro (BraIns), Porto Alegre/RS, Brazil; PUCRS, Laboratório de Neurociências e Eletrofisiologia, Porto Alegre/RS, Brasil
| | - Maria M Campos
- PUCRS, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Porto Alegre/RS, Brasil; PUCRS, Curso de Graduação em Odontologia, Escola de Ciências da Saúde e da Vida, Porto Alegre/RS, Brasil; PUCRS, Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Porto Alegre/RS, Brasil; PUCRS, Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Ciências da Saúde e da Vida, Porto Alegre/RS, Brasil.
| |
Collapse
|
15
|
Cauli B, Dusart I, Li D. Lactate as a determinant of neuronal excitability, neuroenergetics and beyond. Neurobiol Dis 2023:106207. [PMID: 37331530 DOI: 10.1016/j.nbd.2023.106207] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023] Open
Abstract
Over the last decades, lactate has emerged as important energy substrate for the brain fueling of neurons. A growing body of evidence now indicates that it is also a signaling molecule modulating neuronal excitability and activity as well as brain functions. In this review, we will briefly summarize how different cell types produce and release lactate. We will further describe different signaling mechanisms allowing lactate to fine-tune neuronal excitability and activity, and will finally discuss how these mechanisms could cooperate to modulate neuroenergetics and higher order brain functions both in physiological and pathological conditions.
Collapse
Affiliation(s)
- Bruno Cauli
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS), 9 quai Saint Bernard, 75005 Paris, France.
| | - Isabelle Dusart
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS), 9 quai Saint Bernard, 75005 Paris, France
| | - Dongdong Li
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS-IBPS), 9 quai Saint Bernard, 75005 Paris, France
| |
Collapse
|
16
|
Kane DA, Foo ACY, Noftall EB, Brebner K, Marangoni DG. Lactate shuttling as an allostatic means of thermoregulation in the brain. Front Neurosci 2023; 17:1144639. [PMID: 37250407 PMCID: PMC10217782 DOI: 10.3389/fnins.2023.1144639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/18/2023] [Indexed: 05/31/2023] Open
Abstract
Lactate, the redox-balanced end product of glycolysis, travels within and between cells to fulfill an array of physiologic functions. While evidence for the centrality of this lactate shuttling in mammalian metabolism continues to mount, its application to physical bioenergetics remains underexplored. Lactate represents a metabolic "cul-de-sac," as it can only re-enter metabolism by first being converted back to pyruvate by lactate dehydrogenase (LDH). Given the differential distribution of lactate producing/consuming tissues during metabolic stresses (e.g., exercise), we hypothesize that lactate shuttling vis-à-vis the exchange of extracellular lactate between tissues serves a thermoregulatory function, i.e., an allostatic strategy to mitigate the consequences of elevated metabolic heat. To explore this idea, the rates of heat and respiratory oxygen consumption in saponin-permeabilized rat cortical brain samples fed lactate or pyruvate were measured. Heat and respiratory oxygen consumption rates, and calorespirometric ratios were lower during lactate vs. pyruvate-linked respiration. These results support the hypothesis of allostatic thermoregulation in the brain with lactate.
Collapse
Affiliation(s)
- Daniel A. Kane
- Department of Human Kinetics, St. Francis Xavier University, Antigonish, NS, Canada
| | - Alexander C. Y. Foo
- Department of Chemistry, St. Francis Xavier University, Antigonish, NS, Canada
| | - Erin B. Noftall
- Department of Human Kinetics, St. Francis Xavier University, Antigonish, NS, Canada
| | - Karen Brebner
- Department of Psychology, St. Francis Xavier University, Antigonish, NS, Canada
| | | |
Collapse
|
17
|
Wang YR, Lefebvre G, Picard M, Lamoureux-Andrichuk A, Ferland MC, Therrien-Blanchet JM, Boré A, Tremblay J, Descoteaux M, Champoux F, Théoret H. Physiological, Anatomical and Metabolic Correlates of Aerobic Fitness in Human Primary Motor Cortex: A Multimodal Study. Neuroscience 2023; 517:70-83. [PMID: 36921757 DOI: 10.1016/j.neuroscience.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/29/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023]
Abstract
Physical activity (PA) has been shown to benefit various cognitive functions and promote neuroplasticity. Whereas the effects of PA on brain anatomy and function have been well documented in older individuals, data are scarce in young adults. Whether high levels of cardiorespiratory fitness (CRF) achieved through regular PA are associated with significant structural and functional changes in this age group remains largely unknown. In the present study, twenty young adults that engaged in at least 8 hours per week of aerobic exercise during the last 5 years were compared to twenty sedentary controls on measures of cortical excitability, white matter microstructure, cortical thickness and metabolite concentration. All measures were taken in the left primary motor cortex and CRF was assessed with VO2max. Transcranial magnetic stimulation (TMS) revealed higher corticospinal excitability in high- compared to low-fit individuals reflected by greater input/output curve amplitude and slope. No group differences were found for other TMS (short-interval intracortical inhibition and intracortical facilitation), diffusion MRI (fractional anisotropy and apparent fiber density), structural MRI (cortical thickness) and magnetic resonance spectroscopy (NAA, GABA, Glx) measures. Taken together, the present data suggest that brain changes associated with increased CRF are relatively limited, at least in primary motor cortex, in contrast to what has been observed in older adults.
Collapse
Affiliation(s)
- Yi Ran Wang
- Département de psychologie, Université de Montréal, Montréal, Québec, Canada; Centre de recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada
| | - Geneviève Lefebvre
- Département de psychologie, Université de Montréal, Montréal, Québec, Canada
| | - Maude Picard
- Département de psychologie, Université de Montréal, Montréal, Québec, Canada
| | | | | | | | - Arnaud Boré
- Sherbrooke Connectivity Imaging Lab, Université de Sherbrooke, Sherbrooke, Canada
| | - Jonathan Tremblay
- École de kinésiologie et des sciences de l'activité physique, Université de Montréal, Montréal, Québec, Canada
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Lab, Université de Sherbrooke, Sherbrooke, Canada
| | - François Champoux
- École d'Orthophonie et d'Audiologie, Université de Montréal, Montréal, QC, Canada
| | - Hugo Théoret
- Département de psychologie, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
18
|
Boere K, Lloyd K, Binsted G, Krigolson OE. Exercising is good for the brain but exercising outside is potentially better. Sci Rep 2023; 13:1140. [PMID: 36670116 PMCID: PMC9859790 DOI: 10.1038/s41598-022-26093-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 12/09/2022] [Indexed: 01/22/2023] Open
Abstract
It is well known that exercise increases cognitive function. However, the environment in which the exercise is performed may be just as important as the exercise itself. Time spent in natural outdoor environments has been found to lead to increases in cognition similar to those resulting from acute exercise. Therefore, the benefits of both exercise and nature exposure suggest an additive impact on brain function when both factors are combined. This raises the question: what is the interaction between acute exercise and environment on cognition? We answered this question using electroencephalography to probe cognitive function using the oddball task before and after brief indoor and outdoor walks on 30 participants (average 21 years old, 95% CI [20, 22]). Our results demonstrate improved performance and an increase in the amplitude of the P300, an event-related neural response commonly associated with attention and working memory, following a 15-min walk outside; a result not seen following a 15-min walk inside. Importantly, this finding indicates that the environment may play a more substantial role in increasing cognitive function such as attention than exercise, at least in terms of acute exercise (i.e., a brief walk). With the world's growing urbanization and the associated increase in sedentary time indoors, a deeper understanding of how these factors interact and influence cognition may be critical to combat adverse health effects.
Collapse
Affiliation(s)
- Katherine Boere
- Theoretical and Applied Neuroscience Laboratory, University of Victoria, STN CSC, PO Box 1700, Victoria, BC, V8W 2Y2, Canada.
| | - Kelsey Lloyd
- Theoretical and Applied Neuroscience Laboratory, University of Victoria, STN CSC, PO Box 1700, Victoria, BC, V8W 2Y2, Canada
| | - Gordon Binsted
- Faculty of Health, York University, 4700 Keele St, Toronto, ON, M3J 1P3, Canada
| | - Olave E Krigolson
- Theoretical and Applied Neuroscience Laboratory, University of Victoria, STN CSC, PO Box 1700, Victoria, BC, V8W 2Y2, Canada
| |
Collapse
|
19
|
Xue X, Liu B, Hu J, Bian X, Lou S. The potential mechanisms of lactate in mediating exercise-enhanced cognitive function: a dual role as an energy supply substrate and a signaling molecule. Nutr Metab (Lond) 2022; 19:52. [PMID: 35907984 PMCID: PMC9338682 DOI: 10.1186/s12986-022-00687-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 07/18/2022] [Indexed: 11/12/2022] Open
Abstract
Lactate has previously been considered a metabolic waste and is mainly involved in exercise-induced fatigue. However, recent studies have found that lactate may be a mediator of the beneficial effects of exercise on brain health. Lactate plays a dual role as an energy supply substrate and a signaling molecule in this process. On the one hand, astrocytes can uptake circulating glucose or degrade glycogen for glycolysis to produce lactate, which is released into the extracellular space. Neurons can uptake extracellular lactate as an important supplement to their energy metabolism substrates, to meet the demand for large amounts of energy when synaptic activity is enhanced. Thus, synaptic activity and energy transfer show tight metabolic coupling. On the other hand, lactate acts as a signaling molecule to activate downstream signaling transduction pathways by specific receptors, inducing the expression of immediate early genes and cerebral angiogenesis. Moderate to high-intensity exercise not only increases lactate production and accumulation in muscle and blood but also promotes the uptake of skeletal muscle-derived lactate by the brain and enhances aerobic glycolysis to increase brain-derived lactate production. Furthermore, exercise regulates the expression or activity of transporters and enzymes involved in the astrocyte-neuron lactate shuttle to maintain the efficiency of this process; exercise also activates lactate receptor HCAR1, thus affecting brain plasticity. Rethinking the role of lactate in cognitive function and the regulatory effect of exercise is the main focus and highlights of the review. This may enrich the theoretical basis of lactate-related to promote brain health during exercise, and provide new perspectives for promoting a healthy aging strategy.
Collapse
Affiliation(s)
- Xiangli Xue
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China.,Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Beibei Liu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China.,Department of Clinical Medicine, Weifang Medical College, Weifang, 261053, Shandong, China
| | - Jingyun Hu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China
| | - Xuepeng Bian
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China
| | - Shujie Lou
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China. .,Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, 200438, China.
| |
Collapse
|
20
|
Caldwell HG, Hoiland RL, Smith KJ, Brassard P, Bain AR, Tymko MM, Howe CA, Carr JMJR, Stacey BS, Bailey DM, Drapeau A, Sekhon MS, MacLeod DB, Ainslie PN. Trans-cerebral HCO 3- and PCO 2 exchange during acute respiratory acidosis and exercise-induced metabolic acidosis in humans. J Cereb Blood Flow Metab 2022; 42:559-571. [PMID: 34904461 PMCID: PMC8943603 DOI: 10.1177/0271678x211065924] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/03/2021] [Accepted: 11/11/2021] [Indexed: 01/06/2023]
Abstract
This study investigated trans-cerebral internal jugular venous-arterial bicarbonate ([HCO3-]) and carbon dioxide tension (PCO2) exchange utilizing two separate interventions to induce acidosis: 1) acute respiratory acidosis via elevations in arterial PCO2 (PaCO2) (n = 39); and 2) metabolic acidosis via incremental cycling exercise to exhaustion (n = 24). During respiratory acidosis, arterial [HCO3-] increased by 0.15 ± 0.05 mmol ⋅ l-1 per mmHg elevation in PaCO2 across a wide physiological range (35 to 60 mmHg PaCO2; P < 0.001). The narrowing of the venous-arterial [HCO3-] and PCO2 differences with respiratory acidosis were both related to the hypercapnia-induced elevations in cerebral blood flow (CBF) (both P < 0.001; subset n = 27); thus, trans-cerebral [HCO3-] exchange (CBF × venous-arterial [HCO3-] difference) was reduced indicating a shift from net release toward net uptake of [HCO3-] (P = 0.004). Arterial [HCO3-] was reduced by -0.48 ± 0.15 mmol ⋅ l-1 per nmol ⋅ l-1 increase in arterial [H+] with exercise-induced acidosis (P < 0.001). There was no relationship between the venous-arterial [HCO3-] difference and arterial [H+] with exercise-induced acidosis or CBF; therefore, trans-cerebral [HCO3-] exchange was unaltered throughout exercise when indexed against arterial [H+] or pH (P = 0.933 and P = 0.896, respectively). These results indicate that increases and decreases in systemic [HCO3-] - during acute respiratory/exercise-induced metabolic acidosis, respectively - differentially affect cerebrovascular acid-base balance (via trans-cerebral [HCO3-] exchange).
Collapse
Affiliation(s)
- Hannah G Caldwell
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Ryan L Hoiland
- Department of Anesthesiology, Pharmacology and Therapeutics, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Kurt J Smith
- Department of Exercise Science, Physical and Health Education, Faculty of Education, University of Victoria, Victoria, British Columbia, Canada
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada
- Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, QC, Canada
| | - Anthony R Bain
- Faculty of Human Kinetics, Department of Kinesiology, University of Windsor, Windsor, ON, Canada
| | - Michael M Tymko
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport and Recreation, University of Alberta, Edmonton, AB, Canada
| | - Connor A Howe
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Jay MJR Carr
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Benjamin S Stacey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Audrey Drapeau
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada
- Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, QC, Canada
| | - Mypinder S Sekhon
- Division of Critical Care Medicine, Department of Medicine, Vancouver General Hospital, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada
| | - David B MacLeod
- Human Pharmacology and Physiology Lab, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| |
Collapse
|
21
|
Jacob N, So I, Sharma B, Marzolini S, Tartaglia MC, Green R. Effects of high-intensity interval training on blood lactate levels and cognition in healthy adults: protocol for systematic review and network meta-analyses. Syst Rev 2022; 11:31. [PMID: 35183245 PMCID: PMC8858554 DOI: 10.1186/s13643-021-01874-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 12/17/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND High-intensity interval training (HIIT) has shown to confer cognitive benefits in healthy adults, via a mechanism purportedly driven by the exercise metabolite lactate. However, our understanding of the exercise parameters (e.g., work interval duration, session volume, work-to-rest ratio) that evoke a peak blood lactate response in healthy adults is limited. Moreover, evidence relating HIIT-induced blood lactate and cognitive performance has yet to be reviewed and analyzed. The primary objective of this systematic review is to use network meta-analyses to compare the relative impact of different HIIT work-interval durations, session volumes, and work-to-rest ratios on post-exercise blood lactate response in healthy adults. The secondary objective is to determine the relationship between HIIT-induced blood lactate and acute post-HIIT cognitive performance. METHODS A systematic review is being conducted to identify studies measuring blood lactate response following one session of HIIT in healthy adults. The search was carried out in (1) MEDLINE, (2) EMBASE, (3) Cochrane Central Register of Controlled Trials, (4) Sport Discus, and (5) Cumulative Index to Nursing and Allied Health Literature Plus with Full Text (CINAHL+). After abstract and full-text screening, two reviewers will independently extract data on key outcomes variables and complete risk of bias assessment using the Cochrane Risk of Bias Tool and the Risk of Bias in Non-Randomized Studies of Interventions tool. Network meta-analyses will be used to generate estimates of the comparative effectiveness of blood lactate on cognitive outcomes using corresponding rankings for each work-interval duration, session volume, and work-to-rest ratio category. Where applicable, meta-regressions analyses will be performed to test the relationship between changes in the blood lactate and changes in cognitive performance. Analyses will be conducted using MetaInsight Software. DISCUSSION This study will provide evidence on how to structure a HIIT protocol to elicit peak blood lactate response in healthy adults and will increase our understanding of the relationship between HIIT-induced blood lactate response and associated cognitive benefits. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42020204400.
Collapse
Affiliation(s)
- Nithin Jacob
- KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario Canada
| | - Isis So
- KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario Canada
| | - Bhanu Sharma
- KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario Canada
- Department of Medical Sciences, McMaster University, Toronto, Ontario Canada
| | - Susan Marzolini
- KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario Canada
| | - Maria Carmela Tartaglia
- Institute of Medical Science, University of Toronto, Toronto, Ontario Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Kembril Research Institute, Toronto Western-University Health Network, Toronto, Ontario Canada
| | - Robin Green
- KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario Canada
- Department of Psychiatry, Division of Neurosciences and Clinical Translation, University of Toronto, Toronto, Ontario Canada
| |
Collapse
|
22
|
Attentive Processes and Blood Lactate in the Sambo. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031113. [PMID: 35162138 PMCID: PMC8834330 DOI: 10.3390/ijerph19031113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Sambo is a martial art and combat sport that originated in the Soviet Union. There are two main stiles, Sport Sambo and Combat Sambo which resembles modern mixed martial arts. Very little literature is available about physiological aspects of Sambo and, in particular, on the possible effects on cognitive domains. The purpose of the present research was to determine if there is a correlation between a blood lactate increase and the intensity and/or selectivity of attentions. METHODS Sixteen male athletes practicing Sambo for at least 5 years participated voluntarily in the study. Each athlete had to sustain, with an interval of one week, both a Sport Sambo match and a Combat Sambo match, each lasting 5 min. Blood lactate levels as well as attentive capacities were evaluated at three different times: at rest, i.e., 5 min before the start of the session (pre), at end of the session and 15 min after its conclusion. Reaction time protocol was used to evaluate the intensity of attention, whereas divided attention was assessed for analyzing the selectivity of attention together with errors and omissions. RESULTS Concerning Sport Sambo, blood lactate was 1.66 mmol/L (±0.55 SD) before the session, reached a mean value of 3.40 mmol/L (±0.45 SD) at the end of the session (end) and returned to values similar to initial ones (a mean value of 1.98 mmol/L (±0.37 SD) after 15 min (15-end). None of the attentive parameters examined, showed statistically significant differences. Conversely, for Combat Sambo, it was found a significant increase in blood lactate levels that went from 1.66 mmol/L (±0.55 SD) before the session (pre), to 4.76 mmol/L (±0.60 SD) at the end (end) and then back to values similar to those observed before the session 15 min after its conclusion (15-end), i.e., 1.97 mmol/L (±0.37 SD); however, after a Combat Sambo session increases in blood lactate were associated with significant worsening of attentional mechanisms. CONCLUSIONS In conclusion, in all the participants, the worsening of attentional mechanisms was observed only after the Combat Sambo session in which blood lactate values exceeded 4 mmol/L. This figure, also known as the Onset of Blood Lactate Accumulation (OBLA), is commonly used to determine the anaerobic threshold.
Collapse
|
23
|
Aerobic Glycolysis: A DeOxymoron of (Neuro)Biology. Metabolites 2022; 12:metabo12010072. [PMID: 35050194 PMCID: PMC8780167 DOI: 10.3390/metabo12010072] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 11/17/2022] Open
Abstract
The term ‘aerobic glycolysis’ has been in use ever since Warburg conducted his research on cancer cells’ proliferation and discovered that cells use glycolysis to produce adenosine triphosphate (ATP) rather than the more efficient oxidative phosphorylation (oxphos) pathway, despite an abundance of oxygen. When measurements of glucose and oxygen utilization by activated neural tissue indicated that glucose was consumed without an accompanied oxygen consumption, the investigators who performed those measurements also termed their discovery ‘aerobic glycolysis’. Red blood cells do not contain mitochondria and, therefore, produce their energy needs via glycolysis alone. Other processes within the central nervous system (CNS) and additional organs and tissues (heart, muscle, and so on), such as ion pumps, are also known to utilize glycolysis only for the production of ATP necessary to support their function. Unfortunately, the phenomenon of ‘aerobic glycolysis’ is an enigma wherever it is encountered, thus several hypotheses have been produced in attempts to explain it; that is, whether it occurs in cancer cells, in activated neural tissue, or during postprandial or exercise metabolism. Here, it is argued that, where the phenomenon in neural tissue is concerned, the prefix ‘aerobic’ in the term ‘aerobic glycolysis’ should be removed. Data collected over the past three decades indicate that L-lactate, the end product of the glycolytic pathway, plays an essential role in brain energy metabolism, justifying the elimination of the prefix ‘aerobic’. Similar justification is probably appropriate for other tissues as well.
Collapse
|
24
|
Siebenmann C, Sorensen H, Bonne TC, Zaar M, Aachmann-Andersen NJ, Nordsborg NB, Nielsen HB, Secher NH, Lundby C, Rasmussen P. Cerebral lactate uptake during exercise is driven by the increased arterial lactate concentration. J Appl Physiol (1985) 2021; 131:1824-1830. [PMID: 34734784 DOI: 10.1152/japplphysiol.00505.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exercise facilitates cerebral lactate uptake, likely by increasing arterial lactate concentration and hence the diffusion gradient across the blood brain barrier. However, non-specific β-adrenergic blockade by propranolol has previously reduced the arterio-jugular venous lactate difference (AVLac) during exercise, suggesting β-adrenergic control of cerebral lactate uptake. Alternatively, we hypothesize that propranolol reduces cerebral lactate uptake by decreasing arterial lactate concentration. To test that hypothesis, we evaluated cerebral lactate uptake taking changes in arterial concentration into account. Nine healthy males performed incremental cycling exercise to exhaustion with and without intravenous propranolol (18.7 ± 1.9 mg). Lactate concentration was determined in arterial and internal jugular venous blood at the end of each workload. To take changes in arterial lactate into account we calculated the fractional extraction (FELac) defined as AVLac divided by the arterial lactate concentration. Arterial lactate concentration was reduced by propranolol at any workload (p<0.05), reaching 14 ± 3 and 11 ± 3 mmol l-1 during maximal exercise without and with propranolol, respectively. While AVLac and FELac increased during exercise (both p<0.05), they were both unaffected by propranolol at any workload (p=0.68 and p=0.26) or for any given arterial lactate concentration (p=0.78 and p=0.22). These findings support that, while propranolol may reduce cerebral lactate uptake, this effect reflects the propranolol-induced reduction in arterial lactate concentration and not inhibition of a β-adrenergic mechanism within the brain. We hence conclude that cerebral lactate uptake during exercise is directly driven by the increasing arterial concentration with work rate.
Collapse
Affiliation(s)
- Christoph Siebenmann
- Zurich Center for Integrative Human Physiology (ZIHP), Institute of Physiology, University of Zurich, Zurich, Switzerland.,Institute of Mountain Emergency Medicine, EURAC Research, Bolzano, Italy
| | - Henrik Sorensen
- Department of Anaesthesia, The Copenhagen Muscle Research Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Christian Bonne
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Morten Zaar
- Department of Anaesthesia, The Copenhagen Muscle Research Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | - Niels Henry Secher
- Department of Anaesthesia, The Copenhagen Muscle Research Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Carsten Lundby
- Zurich Center for Integrative Human Physiology (ZIHP), Institute of Physiology, University of Zurich, Zurich, Switzerland.,Innland Norway University of Applied Sciences, Lillehammer, Norway
| | - Peter Rasmussen
- Zurich Center for Integrative Human Physiology (ZIHP), Institute of Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
25
|
Virathone L, Nguyen BN, Dobson F, Carter OL, McKendrick AM. Exercise alone impacts short-term adult visual neuroplasticity in a monocular deprivation paradigm. J Vis 2021; 21:12. [PMID: 34668930 PMCID: PMC8543434 DOI: 10.1167/jov.21.11.12] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Adult homeostatic visual plasticity can be induced by short-term patching, heralded by a shift in ocular dominance in favor of the deprived eye after monocular occlusion. The potential to boost visual neuroplasticity with environmental enrichment such as exercise has also been explored; however, the results are inconsistent, with some studies finding no additive effect of exercise. Studies to date have only considered the effect of patching alone or in combination with exercise. Whether exercise alone affects typical outcome measures of experimental estimates of short-term visual neuroplasticity is unknown. We therefore measured binocular rivalry in 20 healthy young adults (20–34 years old) at baseline and after three 2-hour interventions: patching (of the dominant eye) only, patching with exercise, and exercise only. Consistent with previous work, the patching interventions produced a shift in ocular dominance toward the deprived (dominant) eye. Mild- to moderate-intensity exercise in the absence of patching had several effects on binocular rivalry metrics, including a reduction in the dominant eye percept. The proportion of mixed percept and the time to first switch (onset rivalry) did not change from baseline across all interventions. Thus, we demonstrate that exercise alone can impact binocular rivalry outcomes measures. We did not observe a synergistic effect between patching and exercise in our data.
Collapse
Affiliation(s)
- Lucas Virathone
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, Australia.,
| | - Bao N Nguyen
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, Australia.,
| | - Fiona Dobson
- Department of Physiotherapy, The University of Melbourne, Parkville, Victoria, Australia.,
| | - Olivia L Carter
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, Victoria, Australia.,
| | - Allison M McKendrick
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, Australia.,
| |
Collapse
|
26
|
Rationale and methods to characterize the acute exercise response in aging and Alzheimer's Disease: the AEROBIC pilot study. Contemp Clin Trials 2021; 107:106457. [PMID: 34051350 DOI: 10.1016/j.cct.2021.106457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 11/20/2022]
Abstract
There is evidence that exercise benefits the brain, but the mechanisms for this benefit are unclear. The chronic benefits of exercise are likely a product of discreet, acute responses in exercise-related blood biomarkers and brain metabolism. This acute exercise response has not been compared in aging and Alzheimer's Disease (AD). It is known that acute exercise elicits a powerful peripheral response in young individuals, and exercise-related biomarkers such as glucose and lactate readily penetrate the brain. How this changes with aging and neurodegenerative disease is less clear. It is critical to characterize and understand the acute effects of exercise, including different exercise intensities, in terms of the peripheral metabolic response and relationship with brain metabolism. This will help determine potential mechanisms for brain benefits of exercise and better inform the design of future clinical trials. The primary goal of the AEROBIC study is to characterize the acute exercise response of brain glucose metabolism and exercise-related blood biomarkers. We will measure how cerebral metabolism is affected by an acute bout of moderate and higher intensity exercise and characterize the extent to which this differs between cognitively healthy older adults and individuals with AD. Related to this primary goal, we will quantify the peripheral biomarker response to moderate and higher intensity exercise and how this relates to brain metabolic change in both groups.
Collapse
|
27
|
Oberste M, Sharma S, Bloch W, Zimmer P. Acute Exercise-Induced Set Shifting Benefits in Healthy Adults and Its Moderators: A Systematic Review and Meta-Analysis. Front Psychol 2021; 12:528352. [PMID: 33584460 PMCID: PMC7879782 DOI: 10.3389/fpsyg.2021.528352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 01/04/2021] [Indexed: 12/16/2022] Open
Abstract
Background: Positive effects of acute exercise on cognitive performances in general inspired research that investigated the effects of acute exercise on specific cognitive subdomains. Many existing studies examined beneficial effects of acute exercise on subsequent set shifting performance in healthy adults. Set shifting, a subdomain of executive function, is the ability to switch between different cognitive sets. The results of existing studies are inconsistent. Therefore, a meta-analysis was conducted that pooled available effect sizes. Additionally, moderator analyses were carried out to identify covariates that determine the magnitude of exercise-induced set shifting benefits. Methods: Medline, PsycINFO, and SPORTDiscus were searched for eligible studies. Hedges' g corrected standardized mean difference values were used for analyses. Random-effects weights were applied to pool effects. Potential moderation of the effect of acute exercise on subsequent set shifting performance by exercise intensity, type of exercise, participants' age, and type of control group were examined. Results: Twenty-two studies (N = 1,900) were included into analysis. All aggregated effect sizes ranged from small to moderate. Overall, a small significant beneficial effect was revealed (g = −0.32, 95 % CI −0.45 to −0.18). Heterogeneity of included effect sizes was moderate and significant (T2 = 0.0715, I2 = 46.4%, (p < 0.0016). Moderator analyses revealed a larger average effect in older adults than for studies examining younger adults (−0.42 vs. −0.29). Light exercise (−0.51) led to larger effects than moderate (−0.24) or vigorous exercise (−0.29). Studies testing acute exercise against active control groups showed a noticeably smaller average effect (−0.13) than studies that used passive (−0.38) or cognitive engaging control groups (−0.34). Interestingly, application of resistance or aerobic exercise led to no different average effect sizes (−0.30 vs. −0.32). However, none of the tested covariates reached statistical significance. Conclusion: Acute exercise improves subsequent set shifting performance. However, effect sizes are small, making the relevance for everyday life questionable. The results indicate that older adults benefit more from acute exercise than younger adults do. Light intensity exercise seems most effective while the type of exercise does not seem to influence the magnitude of effects. Research designs with active control groups show the smallest average effect, raising concerns about placebo effects. PROSPERO registration number: CRD42019138799
Collapse
Affiliation(s)
- Max Oberste
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Sophia Sharma
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Philipp Zimmer
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, Technical University Dortmund, Dortmund, Germany
| |
Collapse
|
28
|
Powell CL, Davidson AR, Brown AM. Universal Glia to Neurone Lactate Transfer in the Nervous System: Physiological Functions and Pathological Consequences. BIOSENSORS-BASEL 2020; 10:bios10110183. [PMID: 33228235 PMCID: PMC7699491 DOI: 10.3390/bios10110183] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022]
Abstract
Whilst it is universally accepted that the energy support of the brain is glucose, the form in which the glucose is taken up by neurones is the topic of intense debate. In the last few decades, the concept of lactate shuttling between glial elements and neural elements has emerged in which the glial cells glycolytically metabolise glucose/glycogen to lactate, which is shuttled to the neural elements via the extracellular fluid. The process occurs during periods of compromised glucose availability where glycogen stored in astrocytes provides lactate to the neurones, and is an integral part of the formation of learning and memory where the energy intensive process of learning requires neuronal lactate uptake provided by astrocytes. More recently sleep, myelination and motor end plate integrity have been shown to involve lactate shuttling. The sequential aspect of lactate production in the astrocyte followed by transport to the neurones is vulnerable to interruption and it is reported that such disparate pathological conditions as Alzheimer's disease, amyotrophic lateral sclerosis, depression and schizophrenia show disrupted lactate signalling between glial cells and neurones.
Collapse
Affiliation(s)
- Carolyn L. Powell
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; (C.L.P.); (A.R.D.)
| | - Anna R. Davidson
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; (C.L.P.); (A.R.D.)
| | - Angus M. Brown
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; (C.L.P.); (A.R.D.)
- Department of Neurology, University of Washington, Seattle, WA 98105, USA
- Correspondence:
| |
Collapse
|
29
|
Exercise Intensity Does not Modulate the Effect of Acute Exercise on Learning a Complex Whole-Body Task. Neuroscience 2020; 426:115-128. [DOI: 10.1016/j.neuroscience.2019.11.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 11/14/2019] [Accepted: 12/17/2019] [Indexed: 11/22/2022]
|
30
|
Wang J, Cui Y, Yu Z, Wang W, Cheng X, Ji W, Guo S, Zhou Q, Wu N, Chen Y, Chen Y, Song X, Jiang H, Wang Y, Lan Y, Zhou B, Mao L, Li J, Yang H, Guo W, Yang X. Brain Endothelial Cells Maintain Lactate Homeostasis and Control Adult Hippocampal Neurogenesis. Cell Stem Cell 2019; 25:754-767.e9. [DOI: 10.1016/j.stem.2019.09.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 02/24/2019] [Accepted: 09/26/2019] [Indexed: 12/29/2022]
|
31
|
Oberste M, Javelle F, Sharma S, Joisten N, Walzik D, Bloch W, Zimmer P. Effects and Moderators of Acute Aerobic Exercise on Subsequent Interference Control: A Systematic Review and Meta-Analysis. Front Psychol 2019; 10:2616. [PMID: 31824387 PMCID: PMC6881262 DOI: 10.3389/fpsyg.2019.02616] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 11/05/2019] [Indexed: 12/19/2022] Open
Abstract
Background: Acute aerobic exercise leads to positive physiological adaptations within the central nervous system. These findings inspired research on potential cognitive benefits following acute aerobic exercise. The effects of acute aerobic exercise on subsequent cognitive performance, by far, have been the most researched for interference control, a subcomponent of executive function. The results of primary studies on the effects of acute aerobic exercise on subsequent interference control performance are inconsistent. Therefore, we used meta-analytic methods to pool available effect sizes, and to identify covariates that determine the magnitude of exercise-induced interference control benefits. Methods: Medline, PsycINFO, and SPORTDiscus were searched for eligible records. Hedges' g corrected standardized mean difference values (SMDs) were used for analyses. Random-effects weights were used to pool effect sizes. Moderator analyses were conducted using meta-regressions and subgroups analyses. Covariates that were here tested for moderation included parameters of the applied exercise regimen (exercise intensity and exercise duration), characteristics of examined participants (age and fitness), and methodological features of existing research (type of control group, familiarization with test procedure, type of test variable, delay between exercise cessation, and testing). Results: Fifty studies, with data from 2,366 participants, were included in qualitative and quantitative synthesis. A small, significant beneficial effect of acute aerobic exercise on time-dependent measures of interference control was revealed (k = 49, Hedges' g = -0.26, 95%CI: -34 to -0.18). Effect sizes from time-dependent measures of interference control varied widely and heterogeneity reached statistical significance (T 2 = 0.0557, I 2 = 28.8%). Moderator analyses revealed that higher exercise intensities (vigorous intensity and high-intensity interval training), also participants at younger or older age, and participants who are familiar with the testing procedure prior to the experiment, benefitted most from acute aerobic exercise. However, noticeable heterogeneity remained unexplained within specific subgroups (high-intensity interval training, preadolescent children, and active and supervised control group). Conclusion: Acute aerobic exercise improves subsequent interference control performance. However, the covariates exercise intensity, participants' age, and familiarization with testing procedure determine the magnitude of that effect. Methodological features were not found to influence the magnitude of effects. This dismisses some doubts that exercise induced benefits for interference control performance are scientific artifacts. The fact that large heterogeneity remained unexplained in some subgroups indicates the need for further research on covariates within these subgroups. It should be noted that effect sizes for all analyses were small.
Collapse
Affiliation(s)
- Max Oberste
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Florian Javelle
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Sophia Sharma
- Medical Faculty, University of Cologne, Cologne, Germany
| | - Niklas Joisten
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - David Walzik
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Philipp Zimmer
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
- Department of Exercise and Health, Institute of Sports Science, Leibniz University Hannover, Hanover, Germany
| |
Collapse
|
32
|
Wiegers EC, Rooijackers HM, Tack CJ, Philips BW, Heerschap A, van der Graaf M, de Galan BE. Effect of lactate administration on brain lactate levels during hypoglycemia in patients with type 1 diabetes. J Cereb Blood Flow Metab 2019; 39:1974-1982. [PMID: 29749805 PMCID: PMC6775588 DOI: 10.1177/0271678x18775884] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Administration of lactate during hypoglycemia suppresses symptoms and counterregulatory responses, as seen in patients with type 1 diabetes and impaired awareness of hypoglycemia (IAH), presumably because lactate can substitute for glucose as a brain fuel. Here, we examined whether lactate administration, in a dose sufficient to impair awareness of hypoglycemia, affects brain lactate levels in patients with normal awareness of hypoglycemia (NAH). Patients with NAH (n = 6) underwent two euglycemic-hypoglycemic clamps (2.8 mmol/L), once with sodium lactate infusion (NAH w|lac) and once with saline infusion (NAH w|placebo). Results were compared to those obtained during lactate administration in patients with IAH (n = 7) (IAH w|lac). Brain lactate levels were determined continuously with J-difference editing 1H-MRS. During lactate infusion, symptom and adrenaline responses to hypoglycemia were considerably suppressed in NAH. Infusion of lactate increased brain lactate levels modestly, but comparably, in both groups (mean increase in NAH w|lac: 0.12 ± 0.05 µmol/g and in IAH w|lac: 0.06 ± 0.04 µmol/g). The modest increase in brain lactate may suggest that the excess of lactate is immediately metabolized by the brain, which in turn may explain the suppressive effects of lactate on awareness of hypoglycemia observed in patients with NAH.
Collapse
Affiliation(s)
- Evita C Wiegers
- Department of Radiology and Nuclear Medicine, Radboud university medical center, Nijmegen, The Netherlands
| | - Hanne M Rooijackers
- Department of Internal Medicine, Radboud university medical center, Nijmegen, The Netherlands
| | - Cees J Tack
- Department of Internal Medicine, Radboud university medical center, Nijmegen, The Netherlands
| | - Bart Wj Philips
- Department of Radiology and Nuclear Medicine, Radboud university medical center, Nijmegen, The Netherlands
| | - Arend Heerschap
- Department of Radiology and Nuclear Medicine, Radboud university medical center, Nijmegen, The Netherlands
| | - Marinette van der Graaf
- Department of Radiology and Nuclear Medicine, Radboud university medical center, Nijmegen, The Netherlands.,Department of Pediatrics, Radboud university medical center, Nijmegen, The Netherlands
| | - Bastiaan E de Galan
- Department of Internal Medicine, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
33
|
Coco M, Di Corrado D, Ramaci T, Di Nuovo S, Perciavalle V, Puglisi A, Cavallari P, Bellomo M, Buscemi A. Role of lactic acid on cognitive functions. PHYSICIAN SPORTSMED 2019; 47:329-335. [PMID: 30615538 DOI: 10.1080/00913847.2018.1557025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Objectives: The aim of this research was to establish cognitive changes in relation to blood lactate levels obtained during slow performance of a regimen of exercise sessions. Methods: A total of 15 male professional bodybuilders participated in the study; CrossFit® professionals performed the Workout 15.5, Week 5 Open 2015 consisting of 27-21-15-9 repetitions for time of Row (calories) and Thrusters, with 1-min recovery. Blood lactate, blood glucose, reaction time (RT), execution time of a dual cognitive task, number of errors, and number of omissions were measured at rest, at conclusion of the session, and after recovery for 15 min. Results: The bodybuilders had slightly elevated basal lactate levels than in untrained individuals. The bodybuilders showed significantly increased lactacidemia and decreased RT after completing the training session. Need to define what onset of blood lactate accumulation (OBLA) means. Conclusion: We conclude that bodybuilding fitness regimens lead to an increase in basal lactate levels to 3.16 mmol/L and that acute training sessions can improve attentional performance in relation to lactacidemia, suggesting pro-cognitive effects of a workout.
Collapse
Affiliation(s)
- Marinella Coco
- Department of Biomedical a Biotechnological Sciences, University of Catania , Catania , Italy
| | | | - Tiziana Ramaci
- Department of Sport Sciences, Kore University , Enna , Italy
| | - Santo Di Nuovo
- Department of Educational Sciences, University of Catania , Catania, Italy
| | - Vincenzo Perciavalle
- Department of Biomedical a Biotechnological Sciences, University of Catania , Catania , Italy
| | - Angela Puglisi
- Department of Biomedical a Biotechnological Sciences and Department of Educational Sciences, University of Catania , Catania, Italy
| | - Paolo Cavallari
- Department of Pathophysiology and Transplantation, Human Physiology Section, University of Milan , Milan , Italy
| | - Maria Bellomo
- Department of Sport Sciences, Kore University , Enna , Italy
| | - Andrea Buscemi
- Horus Social Cooperative, Ragusa and Department of Research, Center Studies of Osteopathy , Catania , Italy
| |
Collapse
|
34
|
Rahmati M, Kazemi A. Various exercise intensities differentially regulate GAP-43 and CAP-1 expression in the rat hippocampus. Gene 2019; 692:185-194. [PMID: 30682386 DOI: 10.1016/j.gene.2019.01.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/20/2018] [Accepted: 01/13/2019] [Indexed: 02/07/2023]
Abstract
Exercise intensity is known to affect neuroplasticity. Although corticosterone and lactate levels have been linked to neuroplasticity, the effect of different endurance exercise intensity-dependent production of these biochemicals on the behaviour of hippocampal growth cone markers remains incompletely explored. Here, we investigated the effects of three different endurance treadmill training episodes for six weeks on GAP-43 and CAP-1 expression in the hippocampus of adult male Wistar rats. Our findings showed that mild exercise intensity (MEI) with a lactate production slightly higher than the lactate threshold (LT) is the optimal form of physical activity for elevating GAP-43 without changing CAP-1 expression. It was further observed that high exercise intensity (HEI) with the highest level of corticosterone and lactate production, reduced GAP-43 expression, yet increased CAP-1 expression in the hippocampus. Like HEI, we further identified similar expression patterns for these markers in low exercise intensity (LEI) with blood lactate production below LT and corticosterone level similar to MEI. The findings suggested that in high-intensity exercise, the negative pattern of hippocampal neuroplasticity depends on both corticosterone and lactate levels, whereas in low-intensity exercise, the most important factor determining this negative pattern is the lactate level. Generally, MEI with a lactate production of slightly higher than LT is the most optimal intensity for improving hippocampal neuroplasticity.
Collapse
Affiliation(s)
- Masoud Rahmati
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khorramabad, Iran.
| | - Abdolreza Kazemi
- Department of Physical Education and Sports Sciences, Faculty of Literature and Human Sciences, Vali E Asr University of Rafsanjan, Rafsanjan, Iran
| |
Collapse
|
35
|
The Lactate Receptor HCAR1 Modulates Neuronal Network Activity through the Activation of G α and G βγ Subunits. J Neurosci 2019; 39:4422-4433. [PMID: 30926749 DOI: 10.1523/jneurosci.2092-18.2019] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 12/28/2022] Open
Abstract
The discovery of a G-protein-coupled receptor for lactate named hydroxycarboxylic acid receptor 1 (HCAR1) in neurons has pointed to additional nonmetabolic effects of lactate for regulating neuronal network activity. In this study, we characterized the intracellular pathways engaged by HCAR1 activation, using mouse primary cortical neurons from wild-type (WT) and HCAR1 knock-out (KO) mice from both sexes. Using whole-cell patch clamp, we found that the activation of HCAR1 with 3-chloro-5-hydroxybenzoic acid (3Cl-HBA) decreased miniature EPSC frequency, increased paired-pulse ratio, decreased firing frequency, and modulated membrane intrinsic properties. Using fast calcium imaging, we show that HCAR1 agonists 3,5-dihydroxybenzoic acid, 3Cl-HBA, and lactate decreased by 40% spontaneous calcium spiking activity of primary cortical neurons from WT but not from HCAR1 KO mice. Notably, in neurons lacking HCAR1, the basal activity was increased compared with WT. HCAR1 mediates its effect in neurons through a Giα-protein. We observed that the adenylyl cyclase-cAMP-protein kinase A axis is involved in HCAR1 downmodulation of neuronal activity. We found that HCAR1 interacts with adenosine A1, GABAB, and α2A-adrenergic receptors, through a mechanism involving both its Giα and Giβγ subunits, resulting in a complex modulation of neuronal network activity. We conclude that HCAR1 activation in neurons causes a downmodulation of neuronal activity through presynaptic mechanisms and by reducing neuronal excitability. HCAR1 activation engages both Giα and Giβγ intracellular pathways to functionally interact with other Gi-coupled receptors for the fine tuning of neuronal activity.SIGNIFICANCE STATEMENT Expression of the lactate receptor hydroxycarboxylic acid receptor 1 (HCAR1) was recently described in neurons. Here, we describe the physiological role of this G-protein-coupled receptor (GPCR) and its activation in neurons, providing information on its expression and mechanism of action. We dissected out the intracellular pathway through which HCAR1 activation tunes down neuronal network activity. For the first time, we provide evidence for the functional cross talk of HCAR1 with other GPCRs, such as GABAB, adenosine A1- and α2A-adrenergic receptors. These results set HCAR1 as a new player for the regulation of neuronal network activity acting in concert with other established receptors. Thus, HCAR1 represents a novel therapeutic target for pathologies characterized by network hyperexcitability dysfunction, such as epilepsy.
Collapse
|
36
|
Brown AM, Rich LR, Ransom BR. Metabolism of Glycogen in Brain White Matter. ADVANCES IN NEUROBIOLOGY 2019; 23:187-207. [PMID: 31667810 DOI: 10.1007/978-3-030-27480-1_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Brain glycogen is a specialized energy buffer, rather than a conventional reserve. In the rodent optic nerve, a central white matter tract, it is located in astrocytes, where it is converted to lactate, which is then shuttled intercellularly from the astrocyte to the axon. This basic pathway was elucidated from non-physiological experiments in which the nerve was deprived of exogenous glucose. However, this shuttling also occurs under physiological conditions, when tissue energy demand is increased above baseline levels in the presence of normoglycemic concentrations of glucose. The signaling mechanism by which axons alert astrocytes to their increased energy requirement is likely to be elevated interstitial K+, the inevitable consequence of increased neuronal activity.
Collapse
Affiliation(s)
- Angus M Brown
- School of Life Sciences, University of Nottingham, Nottingham, UK. .,Department of Neurology, University on Washington, Seattle, WA, USA.
| | - Laura R Rich
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Bruce R Ransom
- School of Life Sciences, University of Nottingham, Nottingham, UK.,Department of Neurology, University on Washington, Seattle, WA, USA
| |
Collapse
|
37
|
Al-Khawaga S, AlRayahi J, Khan F, Saraswathi S, Hasnah R, Haris B, Mohammed I, Abdelalim EM, Hussain K. A SLC16A1 Mutation in an Infant With Ketoacidosis and Neuroimaging Assessment: Expanding the Clinical Spectrum of MCT1 Deficiency. Front Pediatr 2019; 7:299. [PMID: 31380330 PMCID: PMC6657212 DOI: 10.3389/fped.2019.00299] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 07/04/2019] [Indexed: 01/01/2023] Open
Abstract
The solute carrier family 16 member 1 (SLC16A1) gene encodes for monocarboxylate transporter 1 (MCT1) that mediates the movement of monocarboxylates, such as lactate and pyruvate across cell membranes. Inactivating recessive homozygous or heterozygous mutations in the SLC16A1 gene were described in patients with recurrent ketoacidosis and hypoglycemia, a potentially lethal condition. In the brain where MCT1 is highly localized around axons and oligodendrocytes, glucose is the most crucial energy substrate while lactate is an alternative substrate. MCT1 mutation or reduced expression leads to neuronal loss due to axonal degeneration in an animal model. Herein, we describe a 28 months old female patient who presented with the first hypoglycemic attack associated with ketoacidosis starting at the age of 3 days old. Whole exome sequencing (WES) performed at 6 months of age revealed a c.218delG mutation in exon 3 in the SLC16A1 gene. The variant is expected to result in loss of normal MCT1 function. Our patient is amongst the youngest presenting with MCT1 deficiency. A detailed neuroimaging assessment performed at 18 months of age revealed a complex white and gray matter disease, with heterotopia. The threshold of blood glucose to circumvent neurological sequelae cannot be set because it is patient-specific, nevertheless, neurodevelopmental follow up is recommended in this patient. Further functional studies will be required to understand the role of the MCT1 in key tissues such as the central nervous system (CNS), liver, muscle and ketone body metabolism. Our case suggests possible neurological sequelae that could be associated with MCT1 deficiency, an observation that could facilitate the initiation of appropriate neurodevelopmental follow up in such patients.
Collapse
Affiliation(s)
- Sara Al-Khawaga
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Education City, Doha, Qatar.,Division of Endocrinology, Department of Pediatric Medicine, Sidra Medicine, Doha, Qatar.,Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Jehan AlRayahi
- Division of Neuroradiology, Diagnostic Imaging, Sidra Medicine, Doha, Qatar
| | - Faiyaz Khan
- Division of Endocrinology, Department of Pediatric Medicine, Sidra Medicine, Doha, Qatar
| | - Saras Saraswathi
- Division of Endocrinology, Department of Pediatric Medicine, Sidra Medicine, Doha, Qatar
| | - Reem Hasnah
- Division of Endocrinology, Department of Pediatric Medicine, Sidra Medicine, Doha, Qatar
| | - Basma Haris
- Division of Endocrinology, Department of Pediatric Medicine, Sidra Medicine, Doha, Qatar
| | - Idris Mohammed
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Education City, Doha, Qatar.,Division of Endocrinology, Department of Pediatric Medicine, Sidra Medicine, Doha, Qatar
| | - Essam M Abdelalim
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Education City, Doha, Qatar.,Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Khalid Hussain
- Division of Endocrinology, Department of Pediatric Medicine, Sidra Medicine, Doha, Qatar
| |
Collapse
|
38
|
Steib S, Wanner P, Adler W, Winkler J, Klucken J, Pfeifer K. A Single Bout of Aerobic Exercise Improves Motor Skill Consolidation in Parkinson's Disease. Front Aging Neurosci 2018; 10:328. [PMID: 30405397 PMCID: PMC6204491 DOI: 10.3389/fnagi.2018.00328] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 09/28/2018] [Indexed: 11/29/2022] Open
Abstract
Background: Motor learning is impaired in Parkinson’s disease (PD), with patients demonstrating deficits in skill acquisition (online learning) and consolidation (offline learning) compared to healthy adults of similar age. Recent studies in young adults suggest that single bouts of aerobic exercise (AEX), performed in close temporal proximity to practicing a new motor task, may facilitate motor skill learning. Thus, we aimed at investigating the effects of a single bout of aerobic cycling on online and offline learning in PD patients. Methods: 17 PD patients (Hoehn and Yahr 1 – 2.5, age: 64.4 ± 6.2) participated in this crossover study. Immediately prior to practicing a novel balance task, patients either performed 30 min of (i) moderate intensity (60–70% VO2max) aerobic cycling, or (ii) seated rest (order counterbalanced). The task required patients to stabilize a balance platform (stabilometer) in a horizontal position for 30 s. For each experimental condition, patients performed 15 acquisition trials, followed by a retention test 24 h later. We calculated time in balance (platform within ± 5° from horizontal) for each trial, and analyzed within- and between-subjects differences in skill acquisition (online learning) and skill retention (offline learning) using mixed repeated-measures ANOVA. Results: We found that the exercise bout had no effect on performance level or online gains during acquisition, despite affecting the time course of skill improvements (larger initial and reduced late skill gains). Aerobic cycling significantly improved offline learning, as reflected by larger 24-h skill retention compared to the rest condition. Conclusion: Our results suggest that a single bout of moderate-intensity AEX is effective in improving motor skill consolidation in PD patients. Thus, acute exercise may represent an effective strategy to enhance motor memory formation in this population. More work is necessary to understand the underlying mechanisms, the optimal scheduling of exercise, and the applicability to other motor tasks. Further, the potential for patients in later disease stages need to be investigated. The study was a priori registered at ClinicalTrials.gov (NCT03245216).
Collapse
Affiliation(s)
- Simon Steib
- Department of Sport Science and Sport, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Philipp Wanner
- Department of Sport Science and Sport, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Werner Adler
- Department of Medical Informatics, Biometry and Epidemiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Jürgen Winkler
- Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Jochen Klucken
- Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Klaus Pfeifer
- Department of Sport Science and Sport, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
39
|
Hladky SB, Barrand MA. Elimination of substances from the brain parenchyma: efflux via perivascular pathways and via the blood-brain barrier. Fluids Barriers CNS 2018; 15:30. [PMID: 30340614 PMCID: PMC6194691 DOI: 10.1186/s12987-018-0113-6] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/30/2018] [Indexed: 02/06/2023] Open
Abstract
This review considers efflux of substances from brain parenchyma quantified as values of clearances (CL, stated in µL g-1 min-1). Total clearance of a substance is the sum of clearance values for all available routes including perivascular pathways and the blood-brain barrier. Perivascular efflux contributes to the clearance of all water-soluble substances. Substances leaving via the perivascular routes may enter cerebrospinal fluid (CSF) or lymph. These routes are also involved in entry to the parenchyma from CSF. However, evidence demonstrating net fluid flow inwards along arteries and then outwards along veins (the glymphatic hypothesis) is still lacking. CLperivascular, that via perivascular routes, has been measured by following the fate of exogenously applied labelled tracer amounts of sucrose, inulin or serum albumin, which are not metabolized or eliminated across the blood-brain barrier. With these substances values of total CL ≅ 1 have been measured. Substances that are eliminated at least partly by other routes, i.e. across the blood-brain barrier, have higher total CL values. Substances crossing the blood-brain barrier may do so by passive, non-specific means with CLblood-brain barrier values ranging from < 0.01 for inulin to > 1000 for water and CO2. CLblood-brain barrier values for many small solutes are predictable from their oil/water partition and molecular weight. Transporters specific for glucose, lactate and many polar substrates facilitate efflux across the blood-brain barrier producing CLblood-brain barrier values > 50. The principal route for movement of Na+ and Cl- ions across the blood-brain barrier is probably paracellular through tight junctions between the brain endothelial cells producing CLblood-brain barrier values ~ 1. There are large fluxes of amino acids into and out of the brain across the blood-brain barrier but only small net fluxes have been observed suggesting substantial reuse of essential amino acids and α-ketoacids within the brain. Amyloid-β efflux, which is measurably faster than efflux of inulin, is primarily across the blood-brain barrier. Amyloid-β also leaves the brain parenchyma via perivascular efflux and this may be important as the route by which amyloid-β reaches arterial walls resulting in cerebral amyloid angiopathy.
Collapse
Affiliation(s)
- Stephen B. Hladky
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD UK
| | - Margery A. Barrand
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD UK
| |
Collapse
|
40
|
Schurr A. Glycolysis Paradigm Shift Dictates a Reevaluation of Glucose and Oxygen Metabolic Rates of Activated Neural Tissue. Front Neurosci 2018; 12:700. [PMID: 30364172 PMCID: PMC6192285 DOI: 10.3389/fnins.2018.00700] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/18/2018] [Indexed: 01/31/2023] Open
Abstract
In 1988 two seminal studies were published, both instigating controversy. One concluded that “the energy needs of activated neural tissue are minimal, being fulfilled via the glycolytic pathway alone,” a conclusion based on the observation that neural activation increased glucose consumption, which was not accompanied by a corresponding increase in oxygen consumption (Fox et al., 1988). The second demonstrated that neural tissue function can be supported exclusively by lactate as the energy substrate (Schurr et al., 1988). While both studies continue to have their supporters and detractors, the present review attempts to clarify the issues responsible for the persistence of the controversies they have provoked and offer a possible rationalization. The concept that lactate rather than pyruvate, is the glycolytic end-product, both aerobically and anaerobically, and thus the real mitochondrial oxidative substrate, has gained a greater acceptance over the years. The idea of glycolysis as the sole ATP supplier for neural activation (glucose → lactate + 2ATP) continues to be controversial. Lactate oxidative utilization by activated neural tissue could explain the mismatch between glucose and oxygen consumption and resolve the existing disagreements among users of imaging methods to measure the metabolic rates of the two energy metabolic substrates. The postulate that the energy necessary for active neural tissue is supplied by glycolysis alone stems from the original aerobic glycolysis paradigm. Accordingly, glucose consumption is accompanied by oxygen consumption at 1–6 ratio. Since Fox et al. (1988) observed only a minimal if non-existent oxygen consumption compared to glucose consumption, their conclusion make sense. Nevertheless, considering (a) the shift in the paradigm of glycolysis (glucose → lactate; lactate + O2 + mitochondria → pyruvate → TCA cycle → CO2 + H2O + 17ATP); (b) that one mole of lactate oxidation requires only 50% of the amount of oxygen necessary for the oxidation of one mole of glucose; and (c) that lactate, as a mitochondrial substrate, is over eight times more efficient at ATP production than glucose as a glycolytic substrate, suggest that future studies of cerebral metabolic rates of activated neural tissue should include along with the measurements of CMRO2 and CMRglucose the measurement of CMRlactate.
Collapse
Affiliation(s)
- Avital Schurr
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Louisville, Louisville, KY, United States
| |
Collapse
|
41
|
Wang D, Wang X. GLT-1 mediates exercise-induced fatigue through modulation of glutamate and lactate in rats. Neuropathology 2018; 38:237-246. [DOI: 10.1111/neup.12465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/26/2018] [Accepted: 02/26/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Dongmei Wang
- Physical Education and Sports College; Beijing Normal University; Beijing China
- College of Sports Medicine and Rehabilitation; Taishan Medical University; Tai’an China
| | - Xingtong Wang
- College of Sports Medicine and Rehabilitation; Taishan Medical University; Tai’an China
| |
Collapse
|
42
|
Ferguson BS, Rogatzki MJ, Goodwin ML, Kane DA, Rightmire Z, Gladden LB. Lactate metabolism: historical context, prior misinterpretations, and current understanding. Eur J Appl Physiol 2018; 118:691-728. [PMID: 29322250 DOI: 10.1007/s00421-017-3795-6] [Citation(s) in RCA: 245] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 12/22/2017] [Indexed: 02/07/2023]
Abstract
Lactate (La-) has long been at the center of controversy in research, clinical, and athletic settings. Since its discovery in 1780, La- has often been erroneously viewed as simply a hypoxic waste product with multiple deleterious effects. Not until the 1980s, with the introduction of the cell-to-cell lactate shuttle did a paradigm shift in our understanding of the role of La- in metabolism begin. The evidence for La- as a major player in the coordination of whole-body metabolism has since grown rapidly. La- is a readily combusted fuel that is shuttled throughout the body, and it is a potent signal for angiogenesis irrespective of oxygen tension. Despite this, many fundamental discoveries about La- are still working their way into mainstream research, clinical care, and practice. The purpose of this review is to synthesize current understanding of La- metabolism via an appraisal of its robust experimental history, particularly in exercise physiology. That La- production increases during dysoxia is beyond debate, but this condition is the exception rather than the rule. Fluctuations in blood [La-] in health and disease are not typically due to low oxygen tension, a principle first demonstrated with exercise and now understood to varying degrees across disciplines. From its role in coordinating whole-body metabolism as a fuel to its role as a signaling molecule in tumors, the study of La- metabolism continues to expand and holds potential for multiple clinical applications. This review highlights La-'s central role in metabolism and amplifies our understanding of past research.
Collapse
Affiliation(s)
- Brian S Ferguson
- College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Matthew J Rogatzki
- Department of Health and Exercise Science, Appalachian State University, Boone, NC, USA
| | - Matthew L Goodwin
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA.,Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Daniel A Kane
- Department of Human Kinetics, St. Francis Xavier University, Antigonish, Canada
| | - Zachary Rightmire
- School of Kinesiology, Auburn University, 301 Wire Road, Auburn, AL, 36849, USA
| | - L Bruce Gladden
- School of Kinesiology, Auburn University, 301 Wire Road, Auburn, AL, 36849, USA.
| |
Collapse
|
43
|
Coxon JP, Cash RFH, Hendrikse JJ, Rogasch NC, Stavrinos E, Suo C, Yücel M. GABA concentration in sensorimotor cortex following high-intensity exercise and relationship to lactate levels. J Physiol 2017; 596:691-702. [PMID: 29159914 DOI: 10.1113/jp274660] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 11/06/2017] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS Magnetic resonance spectroscopy was conducted before and after high-intensity interval exercise. Sensorimotor cortex GABA concentration increased by 20%. The increase was positively correlated with the increase in blood lactate. There was no change in dorsolateral prefrontal cortex. There were no changes in the glutamate-glutamine-glutathione peak. ABSTRACT High-intensity exercise increases the concentration of circulating lactate. Cortical uptake of blood borne lactate increases during and after exercise; however, the potential relationship with changes in the concentration of neurometabolites remains unclear. Although changes in neurometabolite concentration have previously been demonstrated in primary visual cortex after exercise, it remains unknown whether these changes extend to regions such as the sensorimotor cortex (SM) or executive regions such as the dorsolateral prefrontal cortex (DLPFC). In the present study, we explored the acute after-effects of high-intensity interval training (HIIT) on the concentration of gamma-Aminobutyric acid (GABA) and the combined glutamate-glutamine-glutathione (Glx) spectral peak in the SM and DLPFC, as well as the relationship with blood lactate levels. Following HIIT, there was a robust increase in GABA concentration in the SM, as evident across the majority of participants. This change was not observed in the DLPFC. Furthermore, the increase in SM GABA was positively correlated with an increase in blood lactate. There were no changes in Glx concentration in either region. The observed increase in SM GABA concentration implies functional relevance, whereas the correlation with lactate levels may relate to the metabolic fate of exercise-derived lactate that crosses the blood-brain barrier.
Collapse
Affiliation(s)
- James P Coxon
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences (MICCN), Monash University, Clayton, VIC, Australia
| | - Robin F H Cash
- Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School and The Alfred, Melbourne, VIC, Australia
| | - Joshua J Hendrikse
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences (MICCN), Monash University, Clayton, VIC, Australia
| | - Nigel C Rogasch
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences (MICCN), Monash University, Clayton, VIC, Australia
| | - Ellen Stavrinos
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences (MICCN), Monash University, Clayton, VIC, Australia
| | - Chao Suo
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences (MICCN), Monash University, Clayton, VIC, Australia
| | - Murat Yücel
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences (MICCN), Monash University, Clayton, VIC, Australia
| |
Collapse
|
44
|
Wiegers EC, Rooijackers HM, Tack CJ, Groenewoud HJMM, Heerschap A, de Galan BE, van der Graaf M. Effect of Exercise-Induced Lactate Elevation on Brain Lactate Levels During Hypoglycemia in Patients With Type 1 Diabetes and Impaired Awareness of Hypoglycemia. Diabetes 2017; 66:3105-3110. [PMID: 28935628 DOI: 10.2337/db17-0794] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/15/2017] [Indexed: 11/13/2022]
Abstract
Since altered brain lactate handling has been implicated in the development of impaired awareness of hypoglycemia (IAH) in type 1 diabetes, the capacity to transport lactate into the brain during hypoglycemia may be relevant in its pathogenesis. High-intensity interval training (HIIT) increases plasma lactate levels. We compared the effect of HIIT-induced hyperlacticacidemia on brain lactate during hypoglycemia between 1) patients with type 1 diabetes and IAH, 2) patients with type 1 diabetes and normal awareness of hypoglycemia, and 3) healthy participants without diabetes (n = 6 per group). All participants underwent a hypoglycemic (2.8 mmol/L) clamp after performing a bout of HIIT on a cycle ergometer. Before HIIT (baseline) and during hypoglycemia, brain lactate levels were determined continuously with J-difference-editing 1H-MRS, and time curves were analyzed using nonlinear mixed-effects modeling. At the beginning of hypoglycemia (after HIIT), brain lactate levels were elevated in all groups but most pronounced in patients with IAH. During hypoglycemia, brain lactate decreased ∼30% below baseline in patients with IAH but returned to baseline levels and remained there in the other two groups. Our results support the concept of enhanced lactate transport as well as increased lactate oxidation in patients with type 1 diabetes and IAH.
Collapse
Affiliation(s)
- Evita C Wiegers
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Hanne M Rooijackers
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Cees J Tack
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Hans J M M Groenewoud
- Department for Health Evidence, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Arend Heerschap
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Bastiaan E de Galan
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marinette van der Graaf
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Pediatrics, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
45
|
Li S, Wang X, Yang J, Lei H, Wang X, Xiang Y. Metabolic profile of visual cortex in diabetic rats measured with in vivo proton MRS. NMR IN BIOMEDICINE 2017; 30:e3783. [PMID: 28915340 DOI: 10.1002/nbm.3783] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 07/09/2017] [Accepted: 07/10/2017] [Indexed: 06/07/2023]
Abstract
The purpose of the present study was to characterize the metabolic profile of the visual cortex in streptozotocin-induced Type 1 diabetic rats by means of in vivo proton MRS. Several metabolite concentration ratios in the visual cortex were calculated. In addition, postmortem histologic analyses for retinal ganglion cell (RGC) loss, optic nerve injury and visual cortex alterations were monitored. The results showed that diabetes induced several changes in visual cortex metabolites, such as reduced N-acetylaspartate, glutamate, γ-aminobutyric acid, taurine and choline-containing compound levels. Nevertheless, myo-inositol levels increased significantly as compared with controls. Remarkable RGC loss and optic nerve degeneration were observed by morphological analysis. Moreover, the results showed significant neuronal loss and glial activation in the visual cortex. These findings indicated that, besides vascular abnormalities, neuronal loss and degeneration in the visual pathway were induced due to disrupted glucose homeostasis in diabetes. Metabolic or functional abnormalities were induced in cerebral neurons of the visual cortex by diabetes.
Collapse
Affiliation(s)
- Shuang Li
- Department of Ophthalmology, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Xinghua Wang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Junjie Yang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hao Lei
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xuxia Wang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yi Xiang
- Department of Ophthalmology, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| |
Collapse
|
46
|
Smith KJ, Ainslie PN. Regulation of cerebral blood flow and metabolism during exercise. Exp Physiol 2017; 102:1356-1371. [PMID: 28786150 DOI: 10.1113/ep086249] [Citation(s) in RCA: 203] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 07/31/2017] [Indexed: 12/18/2022]
Abstract
NEW FINDINGS What is the topic of this review? The manuscript collectively combines the experimental observations from >100 publications focusing on the regulation of cerebral blood flow and metabolism during exercise from 1945 to the present day. What advances does it highlight? This article highlights the importance of traditional and historical assessments of cerebral blood flow and metabolism during exercise, as well as traditional and new insights into the complex factors involved in the integrative regulation of brain blood flow and metabolism during exercise. The overarching theme is the importance of quantifying cerebral blood flow and metabolism during exercise using techniques that consider multiple volumetric cerebral haemodynamics (i.e. velocity, diameter, shear and flow). Cerebral function in humans is crucially dependent upon continuous oxygen delivery, metabolic nutrients and active regulation of cerebral blood flow (CBF). As a consequence, cerebrovascular function is precisely titrated by multiple physiological mechanisms, characterized by complex integration, synergism and protective redundancy. At rest, adequate CBF is regulated through reflexive responses in the following order of regulatory importance: fluctuating arterial blood gases (in particularly, partial pressure of carbon dioxide), cerebral metabolism, arterial blood pressure, neurogenic activity and cardiac output. Unfortunately, the magnitude that these integrative and synergistic relationships contribute to governing the CBF during exercise remains unclear. Despite some evidence indicating that CBF regulation during exercise is dependent on the changes of blood pressure, neurogenic activity and cardiac output, their role as a primary governor of the CBF response to exercise remains controversial. In contrast, the balance between the partial pressure of carbon dioxide and cerebral metabolism continues to gain empirical support as the primary contributor to the intensity-dependent changes in CBF observed during submaximal, moderate and maximal exercise. The goal of this review is to summarize the fundamental physiology and mechanisms involved in regulation of CBF and metabolism during exercise. The clinical implications of a better understanding of CBF during exercise and new research directions are also outlined.
Collapse
Affiliation(s)
- Kurt J Smith
- Cardiovascular Research Group, School of Sports Science, Exercise and Health, University of Western Australia, Crawley, WA, Australia.,Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| |
Collapse
|
47
|
Rooijackers HM, Wiegers EC, van der Graaf M, Thijssen DH, Kessels RPC, Tack CJ, de Galan BE. A Single Bout of High-Intensity Interval Training Reduces Awareness of Subsequent Hypoglycemia in Patients With Type 1 Diabetes. Diabetes 2017; 66:1990-1998. [PMID: 28420673 DOI: 10.2337/db16-1535] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/11/2017] [Indexed: 11/13/2022]
Abstract
High-intensity interval training (HIIT) has gained increasing popularity in patients with diabetes. HIIT acutely increases plasma lactate levels. This may be important, since the administration of lactate during hypoglycemia suppresses symptoms and counterregulation while preserving cognitive function. We tested the hypothesis that, in the short term, HIIT reduces awareness of hypoglycemia and attenuates hypoglycemia-induced cognitive dysfunction. In a randomized crossover trial, patients with type 1 diabetes and normal awareness of hypoglycemia (NAH), patients with impaired awareness of hypoglycemia (IAH), and healthy participants (n = 10 per group) underwent a hyperinsulinemic-hypoglycemic (2.6 mmol/L) clamp, either after a HIIT session or after seated rest. Compared with rest, HIIT reduced symptoms of hypoglycemia in patients with NAH but not in healthy participants or patients with IAH. HIIT attenuated hypoglycemia-induced cognitive dysfunction, which was mainly driven by changes in the NAH subgroup. HIIT suppressed cortisol and growth hormone responses, but not catecholamine responses to hypoglycemia. The present findings demonstrate that a single HIIT session rapidly reduces awareness of subsequent hypoglycemia in patients with type 1 diabetes and NAH, but does not in patients with IAH, and attenuates hypoglycemia-induced cognitive dysfunction. The role of exercise-induced lactate in mediating these effects, potentially serving as an alternative fuel for the brain, should be further explored.
Collapse
Affiliation(s)
- Hanne M Rooijackers
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Evita C Wiegers
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marinette van der Graaf
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Pediatrics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Dick H Thijssen
- Department of Physiology, Radboud University Medical Center, Nijmegen, the Netherlands
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, U.K
| | - Roy P C Kessels
- Department of Medical Psychology, Radboud University Medical Center, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Cees J Tack
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Bastiaan E de Galan
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
48
|
Basso JC, Suzuki WA. The Effects of Acute Exercise on Mood, Cognition, Neurophysiology, and Neurochemical Pathways: A Review. Brain Plast 2017; 2:127-152. [PMID: 29765853 PMCID: PMC5928534 DOI: 10.3233/bpl-160040] [Citation(s) in RCA: 444] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A significant body of work has investigated the effects of acute exercise, defined as a single bout of physical activity, on mood and cognitive functions in humans. Several excellent recent reviews have summarized these findings; however, the neurobiological basis of these results has received less attention. In this review, we will first briefly summarize the cognitive and behavioral changes that occur with acute exercise in humans. We will then review the results from both human and animal model studies documenting the wide range of neurophysiological and neurochemical alterations that occur after a single bout of exercise. Finally, we will discuss the strengths, weaknesses, and missing elements in the current literature, as well as offer an acute exercise standardization protocol and provide possible goals for future research.
Collapse
Affiliation(s)
- Julia C. Basso
- Center for Neural Science, New York University, New York, NY, USA
| | - Wendy A. Suzuki
- Center for Neural Science, New York University, New York, NY, USA
| |
Collapse
|
49
|
Waitt AE, Reed L, Ransom BR, Brown AM. Emerging Roles for Glycogen in the CNS. Front Mol Neurosci 2017; 10:73. [PMID: 28360839 PMCID: PMC5352909 DOI: 10.3389/fnmol.2017.00073] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/03/2017] [Indexed: 11/20/2022] Open
Abstract
The ability of glycogen, the depot into which excess glucose is stored in mammals, to act as a source of rapidly available energy substrate, has been exploited by several organs for both general and local advantage. The liver, expressing the highest concentration of glycogen maintains systemic normoglycemia ensuring the brain receives a supply of glucose in excess of demand. However the brain also contains glycogen, although its role is more specialized. Brain glycogen is located exclusively in astrocytes in the adult, with the exception of pathological conditions, thus in order to benefit neurons, and energy conduit (lactate) is trafficked inter-cellularly. Such a complex scheme requires cell type specific expression of a variety of metabolic enzymes and transporters. Glycogen supports neural elements during withdrawal of glucose, but once the limited buffer of glycogen is exhausted neural function fails and irreversible injury ensues. Under physiological conditions glycogen acts to provide supplemental substrates when ambient glucose is unable to support function during increased energy demand. Glycogen also supports learning and memory where it provides lactate to neurons during the conditioning phase of in vitro long-term potentiation (LTP), an experimental correlate of learning. Inhibiting the breakdown of glycogen or intercellular transport of lactate in in vivo rat models inhibits the retention of memory. Our current understanding of the importance of brain glycogen is expanding to encompass roles that are fundamental to higher brain function.
Collapse
Affiliation(s)
- Alice E. Waitt
- School of Life Sciences, University of NottinghamNottingham, UK
| | - Liam Reed
- School of Life Sciences, University of NottinghamNottingham, UK
| | - Bruce R. Ransom
- Department of Neurology, University of WashingtonSeattle, WA, USA
| | - Angus M. Brown
- School of Life Sciences, University of NottinghamNottingham, UK
- Department of Neurology, University of WashingtonSeattle, WA, USA
| |
Collapse
|
50
|
Oberste M, Bloch W, Hübner ST, Zimmer P. Do Reported Effects of Acute Aerobic Exercise on Subsequent Higher Cognitive Performances Remain if Tested against an Instructed Self-Myofascial Release Training Control Group? A Randomized Controlled Trial. PLoS One 2016; 11:e0167818. [PMID: 27930706 PMCID: PMC5145178 DOI: 10.1371/journal.pone.0167818] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 11/21/2016] [Indexed: 11/23/2022] Open
Abstract
A substantial body of evidence suggests positive effects of acute aerobic exercise (AAE) on subsequent higher cognitive functions in healthy young adults. These effects are widely understood as a result of the ongoing physiological adaptation processes induced by the preceding AAE. However, designs of published studies do not control for placebo, Hawthorne and subject expectancy effects. Therefore, these studies do not, at a high degree of validity, allow attributing effects of AEE on subsequent cognitive performance to exercise induced physical arousal. In the present study, we applied a randomized controlled blinded experiment to provide robust evidence for a physiological basis of exercise induced cognitive facilitation. Beyond that, the dose response relationship between AAE`s intensity and subsequent cognitive performances as well as a potentially mediating role of peripheral lactate in AAE induced cognitive facilitation was investigated. The 121 healthy young subjects who participated in this study were assigned randomly into 3 exercise groups and a self-myofascial release training control group. Exercise groups comprised a low, moderate and high intensity condition in which participants cycled on an ergometer at a heart rate corresponding to 45–50%, 65–70% and 85–90% of their individual maximum heart rate, respectively, for 35 minutes. Participants assigned to the control group completed a 35 minute instructed self-massage intervention using a foam roll. Before and after treatment, participants completed computer based versions of the Stroop task and the Trail Making Test as well as a free recall task. None of the applied exercise regimes exerted a significant effect on participants`performance at any of the applied cognitive testing procedure if compared to self-myofascial release training control group. Post hoc power analyses revealed no effect in the population of f = .2 or larger at a risk of type II error (β) ≤.183 for all measured variables. Our results, therefore, indicate that AAE induced cognitive facilitation is not (exclusively) based on physiological effects. Even if there is a substantial contribution of physiological adaptations to AAE in reported AAE induced cognitive facilitation, in this study, peripheral lactate could not be confirmed as such a factor. Peripheral lactate concentrations and cognitive testing performances after exercise showed rather small empirical and no significant associations. Our results suggest that other psychosocial aspects like expectations and social attention play an important role in AAE induced cognitive facilitation.
Collapse
Affiliation(s)
- Max Oberste
- Department for molecular and cellular sports medicine, German Sports University Cologne, Am Sportpark Müngersdorf 6, Cologne, Germany
| | - Wilhelm Bloch
- Department for molecular and cellular sports medicine, German Sports University Cologne, Am Sportpark Müngersdorf 6, Cologne, Germany
| | - Sven T. Hübner
- Department for molecular and cellular sports medicine, German Sports University Cologne, Am Sportpark Müngersdorf 6, Cologne, Germany
| | - Philipp Zimmer
- Department for molecular and cellular sports medicine, German Sports University Cologne, Am Sportpark Müngersdorf 6, Cologne, Germany
- National Center for Tumor Diseases (NCT) and German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg, Germany
- * E-mail:
| |
Collapse
|