1
|
Bavis RW, Lee DI, Kinnally AC, Buxton PE. Recovery of ventilatory and metabolic responses to hypoxia in neonatal rats after chronic hypoxia. Respir Physiol Neurobiol 2024; 329:104317. [PMID: 39187051 PMCID: PMC11385746 DOI: 10.1016/j.resp.2024.104317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/16/2024] [Indexed: 08/28/2024]
Abstract
Chronic hypoxia (CH) during postnatal development attenuates the hypoxic ventilatory response (HVR) in mammals, but there are conflicting reports on whether this plasticity is permanent or reversible. This study tested the hypothesis that CH-induced respiratory plasticity is reversible in neonatal rats and investigated whether the initial plasticity or recovery differs between sexes. Rat pups were exposed to 3 d of normobaric CH (12 % O2) beginning shortly after birth. Ventilation and metabolic CO2 production were then measured in normoxia and during an acute hypoxic challenge (12 % O2) immediately following CH and after 1, 4-5, and 7 d in room air. CH pups hyperventilated when returned to normoxia immediately following CH, but normoxic ventilation was similar to age-matched control rats within 7 d after return to room air. The early phase of the HVR (minute 1) was only blunted immediately following the CH exposure, while the late phase of the HVR (minute 15) remained blunted after 1 and 4-5 d in room air; recovery appeared complete by 7 d. However, when normalized to CO2 production, the late phase of the hypoxic response recovered within only 1 d. The initial blunting of the HVR and subsequent recovery were similar in female and male rats. Carotid body responses to hypoxia (in vitro) were also normal in CH pups after approximately one week in room air. Collectively, these data indicate that ventilatory and metabolic responses to hypoxia recover rapidly in both female and male neonatal rats once normoxia is restored following CH.
Collapse
Affiliation(s)
- Ryan W Bavis
- Department of Biology, Bates College, Lewiston, ME 04240, USA.
| | - Darya I Lee
- Department of Biology, Bates College, Lewiston, ME 04240, USA
| | | | - Payton E Buxton
- Department of Biology, Bates College, Lewiston, ME 04240, USA
| |
Collapse
|
2
|
Freislich Z, Stoecklin B, Hemy N, Pillow JJ, Hall GL, Wilson AC, Simpson SJ. The ventilatory response to hypoxia is blunted in some preterm infants during the second year of life. Front Pediatr 2022; 10:974643. [PMID: 36389388 PMCID: PMC9661422 DOI: 10.3389/fped.2022.974643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Preterm birth and subsequent neonatal ventilatory treatment disrupts development of the hypoxic ventilatory response (HVR). An attenuated HVR has been identified in preterm neonates, however it is unknown whether the attenuation persists into the second year of life. We investigated the HVR at 12-15 months corrected postnatal age and assessed predictors of a blunted HVR in those born very preterm (<32 weeks gestation). METHODS HVR was measured in infants born very preterm. Hypoxia was induced with a three-step reduction in their fraction of inspired oxygen (FIO2) from 0.21 to 0.14. Respiratory frequency (f), tidal volume (V T), minute ventilation (V E), inspiratory time (t I), expiratory time (t E), V T/t I, tI/t TOT, V T/t TOT, area under the low-volume loop and peak tidal expiratory flow (PTEF) were measured at the first and third minute of each FIO2. The change in respiratory variables over time was assessed using a repeated measures ANOVA with Greenhouse-Geisser correction. A blunted HVR was defined as a <10% rise in V E, from normoxia. The relationship between neonatal factors and the magnitude of HVR was assessed using Spearman correlation. RESULTS Thirty nine infants born very preterm demonstrated a mean (SD) HVR of 11.4 (10.1)% (increase in V E) in response to decreasing FIO2 from 0.21 to 0.14. However, 17 infants (44%) failed to increase V E by ≥10% (range -14% to 9%) and were considered to have a blunted response to hypoxia. Males had a smaller HVR than females [ΔV E (-9.1%; -15.4, -2.8; p = 0.007)]. CONCLUSION Infants surviving very preterm birth have an attenuated ventilatory response to hypoxia that persists into the second year of life, especially in males.
Collapse
Affiliation(s)
- Zoe Freislich
- Wal-yan Respiratory Centre, Telethon Kids Institute, Perth, Australia
| | - Benjamin Stoecklin
- Department of Neonatology, University Children's Hospital Basel UKBB, Basel, Switzerland.,School of Human Sciences, The University of Western Australia, Perth, Australia
| | - Naomi Hemy
- Wal-yan Respiratory Centre, Telethon Kids Institute, Perth, Australia
| | - J Jane Pillow
- Wal-yan Respiratory Centre, Telethon Kids Institute, Perth, Australia.,School of Human Sciences, The University of Western Australia, Perth, Australia
| | - Graham L Hall
- Wal-yan Respiratory Centre, Telethon Kids Institute, Perth, Australia.,Curtin School of Allied Health, Curtin University, Perth, Australia
| | - Andrew C Wilson
- Wal-yan Respiratory Centre, Telethon Kids Institute, Perth, Australia.,Curtin School of Allied Health, Curtin University, Perth, Australia.,Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Perth, Australia
| | - Shannon J Simpson
- Wal-yan Respiratory Centre, Telethon Kids Institute, Perth, Australia.,Curtin School of Allied Health, Curtin University, Perth, Australia
| |
Collapse
|
3
|
Abstract
The development of the control of breathing begins in utero and continues postnatally. Fetal breathing movements are needed for establishing connectivity between the lungs and central mechanisms controlling breathing. Maturation of the control of breathing, including the increase of hypoxia chemosensitivity, continues postnatally. Insufficient oxygenation, or hypoxia, is a major stressor that can manifest for different reasons in the fetus and neonate. Though the fetus and neonate have different hypoxia sensing mechanisms and respond differently to acute hypoxia, both responses prevent deviations to respiratory and other developmental processes. Intermittent and chronic hypoxia pose much greater threats to the normal developmental respiratory processes. Gestational intermittent hypoxia, due to maternal sleep-disordered breathing and sleep apnea, increases eupneic breathing and decreases the hypoxic ventilatory response associated with impaired gasping and autoresuscitation postnatally. Chronic fetal hypoxia, due to biologic or environmental (i.e. high-altitude) factors, is implicated in fetal growth restriction and preterm birth causing a decrease in the postnatal hypoxic ventilatory responses with increases in irregular eupneic breathing. Mechanisms driving these changes include delayed chemoreceptor development, catecholaminergic activity, abnormal myelination, increased astrocyte proliferation in the dorsal respiratory group, among others. Long-term high-altitude residents demonstrate favorable adaptations to chronic hypoxia as do their offspring. Neonatal intermittent hypoxia is common among preterm infants due to immature respiratory systems and thus, display a reduced drive to breathe and apneas due to insufficient hypoxic sensitivity. However, ongoing intermittent hypoxia can enhance hypoxic sensitivity causing ventilatory overshoots followed by apnea; the number of apneas is positively correlated with degree of hypoxic sensitivity in preterm infants. Chronic neonatal hypoxia may arise from fetal complications like maternal smoking or from postnatal cardiovascular problems, causing blunting of the hypoxic ventilatory responses throughout at least adolescence due to attenuation of carotid body fibers responses to hypoxia with potential roles of brainstem serotonin, microglia, and inflammation, though these effects depend on the age in which chronic hypoxia initiates. Fetal and neonatal intermittent and chronic hypoxia are implicated in preterm birth and complicate the respiratory system through their direct effects on hypoxia sensing mechanisms and interruptions to the normal developmental processes. Thus, precise regulation of oxygen homeostasis is crucial for normal development of the respiratory control network. © 2021 American Physiological Society. Compr Physiol 11:1653-1677, 2021.
Collapse
Affiliation(s)
- Gary C. Mouradian
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Satyan Lakshminrusimha
- Department of Pediatrics, UC Davis Children’s Hospital, UC Davis Health, UC Davis, Davis, California, USA
| | - Girija G. Konduri
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Children’s Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
4
|
Ventilatory and carotid body responses to acute hypoxia in rats exposed to chronic hypoxia during the first and second postnatal weeks. Respir Physiol Neurobiol 2020; 275:103400. [PMID: 32006667 DOI: 10.1016/j.resp.2020.103400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/20/2019] [Accepted: 01/27/2020] [Indexed: 01/24/2023]
Abstract
Chronic hypoxia (CH) during postnatal development causes a blunted hypoxic ventilatory response (HVR) in neonatal mammals. The magnitude of the HVR generally increases with age, so CH could blunt the HVR by delaying this process. Accordingly, we predicted that CH would have different effects on the respiratory control of neonatal rats if initiated at birth versus initiated later in postnatal development (i.e., after the HVR has had time to mature). Rats had blunted ventilatory and carotid body responses to hypoxia whether CH (12 % O2) occurred for the first postnatal week (P0 to P7) or second postnatal week (P7 to P14). However, if initiated at P0, CH also caused the HVR to retain the "biphasic" shape characteristic of newborn mammals; CH during the second postnatal week did not result in a biphasic HVR. CH from birth delayed the transition from a biphasic HVR to a sustained HVR until at least P9-11, but the HVR attained a sustained (albeit blunted) phenotype by P13-15. Since delayed maturation of the HVR did not completely explain the blunted HVR, we tested the alternative hypothesis that the blunted HVR was caused by an inflammatory response to CH. Daily administration of the anti-inflammatory drug ibuprofen (4 mg kg-1, i.p.) did not alter the effects of CH on the HVR. Collectively, these data suggest that CH blunts the HVR in neonatal rats by impairing carotid body responses to hypoxia and by delaying (but not preventing) postnatal maturation of the biphasic HVR. The mechanisms underlying this plasticity require further investigation.
Collapse
|
5
|
Dylag AM, Raffay TM. Rodent models of respiratory control and respiratory system development-Clinical significance. Respir Physiol Neurobiol 2019; 268:103249. [PMID: 31315068 DOI: 10.1016/j.resp.2019.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/24/2019] [Accepted: 06/29/2019] [Indexed: 01/13/2023]
Abstract
The newborn infant's respiratory system must rapidly adapt to extra-uterine life. Neonatal rat and mouse models have been used to investigate early development of respiratory control and reactivity in both health and disease. This review highlights several rodent models of control of breathing and respiratory system development (including pulmonary function), discusses their translational strengths and limitations, and underscores the importance of creating clinically relevant models applicable to the human infant.
Collapse
Affiliation(s)
- Andrew M Dylag
- Division of Neonatology, Golisano Children's Hospital, Department of Pediatrics, University of Rochester, Rochester, NY, United States
| | - Thomas M Raffay
- Division of Neonatology, Rainbow Babies & Children's Hospital, Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States.
| |
Collapse
|
6
|
Hocker AD, Beyeler SA, Gardner AN, Johnson SM, Watters JJ, Huxtable AG. One bout of neonatal inflammation impairs adult respiratory motor plasticity in male and female rats. eLife 2019; 8:45399. [PMID: 30900989 PMCID: PMC6464604 DOI: 10.7554/elife.45399] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/21/2019] [Indexed: 11/13/2022] Open
Abstract
Neonatal inflammation is common and has lasting consequences for adult health. We investigated the lasting effects of a single bout of neonatal inflammation on adult respiratory control in the form of respiratory motor plasticity induced by acute intermittent hypoxia, which likely compensates and stabilizes breathing during injury or disease and has significant therapeutic potential. Lipopolysaccharide-induced inflammation at postnatal day four induced lasting impairments in two distinct pathways to adult respiratory plasticity in male and female rats. Despite a lack of adult pro-inflammatory gene expression or alterations in glial morphology, one mechanistic pathway to plasticity was restored by acute, adult anti-inflammatory treatment, suggesting ongoing inflammatory signaling after neonatal inflammation. An alternative pathway to plasticity was not restored by anti-inflammatory treatment, but was evoked by exogenous adenosine receptor agonism, suggesting upstream impairment, likely astrocytic-dependent. Thus, the respiratory control network is vulnerable to early-life inflammation, limiting respiratory compensation to adult disease or injury.
Collapse
Affiliation(s)
- Austin D Hocker
- Department of Human Physiology, University of Oregon, Eugene, United States
| | - Sarah A Beyeler
- Department of Human Physiology, University of Oregon, Eugene, United States
| | - Alyssa N Gardner
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, United States
| | - Stephen M Johnson
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, United States
| | - Jyoti J Watters
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, United States
| | | |
Collapse
|
7
|
González-Castillo C, Muñoz-Ortiz E, Guzmán-Brambila C, Rojas-Mayorquín AE, Beltran-Parrazal L, Ortuño-Sahagún D, Morgado-Valle C. Differential Expression of Ion Channels in Adult and Neonatal Rat Ventral Respiratory Column. J Mol Neurosci 2017; 64:51-61. [DOI: 10.1007/s12031-017-1001-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/10/2017] [Indexed: 12/14/2022]
|
8
|
Developmental plasticity in the neural control of breathing. Exp Neurol 2017; 287:176-191. [DOI: 10.1016/j.expneurol.2016.05.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/13/2016] [Accepted: 05/26/2016] [Indexed: 12/14/2022]
|
9
|
McDonald FB, Dempsey EM, O'Halloran KD. Early Life Exposure to Chronic Intermittent Hypoxia Primes Increased Susceptibility to Hypoxia-Induced Weakness in Rat Sternohyoid Muscle during Adulthood. Front Physiol 2016; 7:69. [PMID: 26973537 PMCID: PMC4777899 DOI: 10.3389/fphys.2016.00069] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/12/2016] [Indexed: 12/30/2022] Open
Abstract
Intermittent hypoxia is a feature of apnea of prematurity (AOP), chronic lung disease, and sleep apnea. Despite the clinical relevance, the long-term effects of hypoxic exposure in early life on respiratory control are not well defined. We recently reported that exposure to chronic intermittent hypoxia (CIH) during postnatal development (pCIH) causes upper airway muscle weakness in both sexes, which persists for several weeks. We sought to examine if there are persistent sex-dependent effects of pCIH on respiratory muscle function into adulthood and/or increased susceptibility to re-exposure to CIH in adulthood in animals previously exposed to CIH during postnatal development. We hypothesized that pCIH would cause long-lasting muscle impairment and increased susceptibility to subsequent hypoxia. Within 24 h of delivery, pups and their respective dams were exposed to CIH: 90 s of hypoxia reaching 5% O2 at nadir; once every 5 min, 8 h per day for 3 weeks. Sham groups were exposed to normoxia in parallel. Three groups were studied: sham; pCIH; and pCIH combined with adult CIH (p+aCIH), where a subset of the pCIH-exposed pups were re-exposed to the same CIH paradigm beginning at 13 weeks. Following gas exposures, sternohyoid and diaphragm muscle isometric contractile and endurance properties were examined ex vivo. There was no apparent lasting effect of pCIH on respiratory muscle function in adults. However, in both males and females, re-exposure to CIH in adulthood in pCIH-exposed animals caused sternohyoid (but not diaphragm) weakness. Exposure to this paradigm of CIH in adulthood alone had no effect on muscle function. Persistent susceptibility in pCIH-exposed airway dilator muscle to subsequent hypoxic insult may have implications for the control of airway patency in adult humans exposed to intermittent hypoxic stress during early life.
Collapse
Affiliation(s)
- Fiona B McDonald
- Health Sciences Centre, School of Medicine and Medical Science, University College Dublin Dublin, Ireland
| | - Eugene M Dempsey
- Department of Paediatrics and Child Health, Cork University Maternity Hospital and the Irish Centre for Fetal and Neonatal Translational Research, University College Cork Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, University College Cork Cork, Ireland
| |
Collapse
|
10
|
McDonald FB, Williams R, Sheehan D, O'Halloran KD. Early life exposure to chronic intermittent hypoxia causes upper airway dilator muscle weakness, which persists into young adulthood. Exp Physiol 2015; 100:947-66. [PMID: 26096367 DOI: 10.1113/ep085003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 05/07/2015] [Accepted: 06/02/2015] [Indexed: 12/31/2022]
Abstract
NEW FINDINGS What is the central question of this study? Chronic intermittent hypoxia (CIH) is a dominant feature of respiratory control disorders, which are common. We sought to examine the effects of exposure to CIH during neonatal development on respiratory muscle form and function in male and female rats. What is the main finding and its importance? Exposure to CIH during neonatal development caused sternohyoid muscle weakness in both sexes; an effect that persisted into young adult life upon return to normoxia. Upper airway dilator muscle dysfunction in vivo could predispose to airway collapse, leading to impaired respiratory homeostasis. Chronic intermittent hypoxia (CIH) is a feature of sleep-disordered breathing, which is very common. Exposure to CIH is associated with aberrant plasticity in the respiratory control system including the final effector organs, the striated muscles of breathing. We reasoned that developmental age and sex are key factors determining the functional response of respiratory muscle to CIH. We tested the hypothesis that exposure to CIH causes persistent impairment of sternohyoid muscle function due to oxidative stress and that males are more susceptible to CIH-induced muscle impairment than females. Wistar rat litters (with respective dams) were exposed to intermittent hypoxia for 12 cycles per hour, 8 h per day for 3 weeks from the first day of life [postnatal day (P) 0]. Sham experiments were run in parallel. Half of each litter was studied on P22; the other half was returned to normoxia and studied on P42. Functional properties of the sternohyoid muscle were determined ex vivo. Exposure to CIH significantly decreased sternohyoid muscle force in both sexes; an effect that persisted into young adult life. Chronic intermittent hypoxia had no effect on sternohyoid muscle endurance. Chronic intermittent hypoxia did not affect sternohyoid myosin fibre type, succinate dehydrogenase or glycerol-3-phosphate dehydrogenase activities, or protein free thiol and carbonyl content. Muscles exposed to CIH had smaller cross-sectional areas, consistent with the observation of muscle weakness. In human infants with disordered breathing, CIH-induced upper airway dilator muscle weakness could increase the propensity for airway narrowing or collapse, which could serve to perpetuate impaired respiratory homeostasis.
Collapse
Affiliation(s)
- Fiona B McDonald
- School of Medicine and Medical Science, Health Sciences Centre, University College Dublin, Dublin, Ireland
| | - Robert Williams
- Department of Physiology, School of Medicine, University College Cork, Cork, Ireland
| | - David Sheehan
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Ken D O'Halloran
- School of Medicine and Medical Science, Health Sciences Centre, University College Dublin, Dublin, Ireland.,Department of Physiology, School of Medicine, University College Cork, Cork, Ireland
| |
Collapse
|
11
|
Ivy CM, Scott GR. Control of breathing and the circulation in high-altitude mammals and birds. Comp Biochem Physiol A Mol Integr Physiol 2014; 186:66-74. [PMID: 25446936 DOI: 10.1016/j.cbpa.2014.10.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/17/2014] [Accepted: 10/18/2014] [Indexed: 01/07/2023]
Abstract
Hypoxia is an unremitting stressor at high altitudes that places a premium on oxygen transport by the respiratory and cardiovascular systems. Phenotypic plasticity and genotypic adaptation at various steps in the O2 cascade could help offset the effects of hypoxia on cellular O2 supply in high-altitude natives. In this review, we will discuss the unique mechanisms by which ventilation, cardiac output, and blood flow are controlled in high-altitude mammals and birds. Acclimatization to high altitudes leads to some changes in respiratory and cardiovascular control that increase O2 transport in hypoxia (e.g., ventilatory acclimatization to hypoxia). However, acclimatization or development in hypoxia can also modify cardiorespiratory control in ways that are maladaptive for O2 transport. Hypoxia responses that arose as short-term solutions to O2 deprivation (e.g., peripheral vasoconstriction) or regional variation in O2 levels in the lungs (i.e., hypoxic pulmonary vasoconstriction) are detrimental at in chronic high-altitude hypoxia. Evolved changes in cardiorespiratory control have arisen in many high-altitude taxa, including increases in effective ventilation, attenuation of hypoxic pulmonary vasoconstriction, and changes in catecholamine sensitivity of the heart and systemic vasculature. Parallel evolution of some of these changes in independent highland lineages supports their adaptive significance. Much less is known about the genomic bases and potential interactive effects of adaptation, acclimatization, developmental plasticity, and trans-generational epigenetic transfer on cardiorespiratory control. Future work to understand these various influences on breathing and circulation in high-altitude natives will help elucidate how complex physiological systems can be pushed to their limits to maintain cellular function in hypoxia.
Collapse
Affiliation(s)
- Catherine M Ivy
- Department of Biology, McMaster University, Hamilton, ON, Canada.
| | - Graham R Scott
- Department of Biology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
12
|
Mayer CA, Wilson CG, MacFarlane PM. Changes in carotid body and nTS neuronal excitability following neonatal sustained and chronic intermittent hypoxia exposure. Respir Physiol Neurobiol 2014; 205:28-36. [PMID: 25266393 DOI: 10.1016/j.resp.2014.09.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 09/21/2014] [Accepted: 09/22/2014] [Indexed: 02/07/2023]
Abstract
We investigated whether pre-treatment with neonatal sustained hypoxia (SH) prior to chronic intermittent hypoxia (SH+CIH) would modify in vitro carotid body (CB) chemoreceptor activity and the excitability of neurons in the caudal nucleus of the solitary tract (nTS). Sustained hypoxia followed by CIH exposure simulates an oxygen paradigm experienced by extremely premature infants who developed persistent apnea. Rat pups were treated with 5 days of SH (11% O2) from postnatal age 1 (P1) followed by 10 days of subsequent chronic intermittent hypoxia (CIH, 5% O2/5 min, 8 h/day, between P6 and P15) as described previously (Mayer et al., Respir. Physiol. Neurobiol. 187(2): 167-75, 2013). At the end of SH+CIH exposure (P16), basal firing frequency was enhanced, and the hypoxic sensory response of single unit CB chemoafferents was attenuated. Further, basal firing frequency and the amplitude of evoked excitatory post-synaptic currents (ESPC's) of nTS neurons was augmented compared to age-matched rats raised in normoxia. These effects were unique to SH+CIH exposure as neither SH or CIH alone elicited any comparable effect on chemoafferent activity or nTS function. These data indicated that pre-treatment with neonatal SH prior to CIH exposure uniquely modified mechanisms of peripheral (CB) and central (nTS) neural function in a way that would be expected to disturb the ventilatory response to acute hypoxia.
Collapse
Affiliation(s)
- C A Mayer
- Department of Pediatrics, Case Western Reserve University, Rainbow Babies & Children's Hospital, Cleveland, OH 44106, USA
| | - C G Wilson
- Center for Perinatal Biology, Loma Linda University, Loma Linda, CA 92350, USA
| | - P M MacFarlane
- Department of Pediatrics, Case Western Reserve University, Rainbow Babies & Children's Hospital, Cleveland, OH 44106, USA.
| |
Collapse
|
13
|
Abstract
There is a growing public awareness that hormones can have a significant impact on most biological systems, including the control of breathing. This review will focus on the actions of two broad classes of hormones on the neuronal control of breathing: sex hormones and stress hormones. The majority of these hormones are steroids; a striking feature is that both groups are derived from cholesterol. Stress hormones also include many peptides which are produced primarily within the paraventricular nucleus of the hypothalamus (PVN) and secreted into the brain or into the circulatory system. In this article we will first review and discuss the role of sex hormones in respiratory control throughout life, emphasizing how natural fluctuations in hormones are reflected in ventilatory metrics and how disruption of their endogenous cycle can predispose to respiratory disease. These effects may be mediated directly by sex hormone receptors or indirectly by neurotransmitter systems. Next, we will discuss the origins of hypothalamic stress hormones and their relationship with the respiratory control system. This relationship is 2-fold: (i) via direct anatomical connections to brainstem respiratory control centers, and (ii) via steroid hormones released from the adrenal gland in response to signals from the pituitary gland. Finally, the impact of stress on the development of neural circuits involved in breathing is evaluated in animal models, and the consequences of early stress on respiratory health and disease is discussed.
Collapse
Affiliation(s)
- Mary Behan
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin, USA.
| | | |
Collapse
|
14
|
Mayer CA, Di Fiore JM, Martin RJ, Macfarlane PM. Vulnerability of neonatal respiratory neural control to sustained hypoxia during a uniquely sensitive window of development. J Appl Physiol (1985) 2013; 116:514-21. [PMID: 24371020 DOI: 10.1152/japplphysiol.00976.2013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The first postnatal weeks represent a period of development in the rat during which the respiratory neural control system may be vulnerable to aberrant environmental stressors. In the present study, we investigated whether sustained hypoxia (SH; 11% O2) exposure starting at different postnatal ages differentially modifies the acute hypoxic (HVR) and hypercapnic ventilatory response (HCVR). Three different groups of rat pups were exposed to 5 days of SH, starting at either postnatal age 1 (SH1-5), 11 (SH11-15), or 21 (SH21-25) days. Whole body plethysmography was used to assess the HVR and HCVR the day after SH exposure ended. The primary results indicated that 1) the HVR and HCVR of SH11-15 rats were absent or attenuated (respectively) compared with age-matched rats raised in normoxia; 2) there was a profoundly high (∼84% of pups) incidence of unexplained mortality in the SH11-15 rats; and 3) these phenomena were unique to the SH11-15 group with no comparable effect of the SH exposure on the HVR, HCVR, or mortality in the younger (SH1-5) or older (SH21-25) rats. These results share several commonalities with the risk factors thought to underlie the etiology of sudden infant death syndrome, including 1) a vulnerable neonate; 2) a critical period of development; and 3) an environmental stressor.
Collapse
Affiliation(s)
- C A Mayer
- Department of Pediatrics, Rainbow Babies & Children's Hospital, Case Western Reserve University, Cleveland, Ohio
| | | | | | | |
Collapse
|
15
|
Abstract
Breathing movements have been demonstrated in the fetuses of every mammalian species investigated and are a critical component of normal fetal development. The classic sheep preparations instrumented for chronic fetal monitoring determined that fetal breathing movements (FBMs) occur in aggregates interspersed with long periods of quiescence that are strongly associated with neurophysiological state. The fetal sheep model also provided data regarding the neurochemical modulation of behavioral state and FBMs under a variety of in utero conditions. Subsequently, in vitro rodent models have been developed to advance our understanding of cellular, synaptic, network, and more detailed neuropharmacological aspects of perinatal respiratory neural control. This includes the ontogeny of the inspiratory rhythm generating center, the preBötzinger complex (preBötC), and the anatomical and functional development of phrenic motoneurons (PMNs) and diaphragm during the perinatal period. A variety of newborn animal models and studies of human infants have provided insights into age-dependent changes in state-dependent respiratory control, responses to hypoxia/hypercapnia and respiratory pathologies.
Collapse
Affiliation(s)
- John J Greer
- Department of Physiology, Centre for Neuroscience, Women and Children Health Research Institute, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
16
|
Abstract
Pontine respiratory nuclei provide synaptic input to medullary rhythmogenic circuits to shape and adapt the breathing pattern. An understanding of this statement depends on appreciating breathing as a behavior, rather than a stereotypic rhythm. In this review, we focus on the pontine-mediated inspiratory off-switch (IOS) associated with postinspiratory glottal constriction. Further, IOS is examined in the context of pontine regulation of glottal resistance in response to multimodal sensory inputs and higher commands, which in turn rules timing, duration, and patterning of respiratory airflow. In addition, network plasticity in respiratory control emerges during the development of the pons. Synaptic plasticity is required for dynamic and efficient modulation of the expiratory breathing pattern to cope with rapid changes from eupneic to adaptive breathing linked to exploratory (foraging and sniffing) and expulsive (vocalizing, coughing, sneezing, and retching) behaviors, as well as conveyance of basic emotions. The speed and complexity of changes in the breathing pattern of behaving animals implies that "learning to breathe" is necessary to adjust to changing internal and external states to maintain homeostasis and survival.
Collapse
Affiliation(s)
- Mathias Dutschmann
- Florey Neurosciences Institutes, University of Melbourne, Victoria, Australia.
| | | |
Collapse
|
17
|
Liu Q, Wong-Riley MTT. Gender considerations in ventilatory and metabolic development in rats: special emphasis on the critical period. Respir Physiol Neurobiol 2013; 188:200-7. [PMID: 23797186 DOI: 10.1016/j.resp.2013.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 06/11/2013] [Accepted: 06/17/2013] [Indexed: 12/11/2022]
Abstract
In rats, a critical period exists around postnatal day (P) 12-13, when an imbalance between heightened inhibition and suppressed excitation led to a weakened ventilatory and metabolic response to acute hypoxia. An open question was whether the two genders follow the same or different developmental trends throughout the first 3 postnatal weeks and whether the critical period exists in one or both genders. The present large-scale, in-depth ventilatory and metabolic study was undertaken to address this question. Our data indicated that: (1) the ventilatory and metabolic rates in both normoxia and acute hypoxia were comparable between the two genders from P0 to P21; thus, gender was never significant as a main effect; and (2) the age effect was highly significant in all parameters studies for both genders, and both genders exhibited a significantly weakened response to acute hypoxia during the critical period. Thus, the two genders have comparable developmental trends, and the critical period exists in both genders in rats.
Collapse
Affiliation(s)
- Qiuli Liu
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | |
Collapse
|
18
|
O'Connell RA, Carberry J, O'Halloran KD. Sternohyoid and diaphragm muscle form and function during postnatal development in the rat. Exp Physiol 2013; 98:1386-400. [PMID: 23709586 DOI: 10.1113/expphysiol.2013.073346] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Co-ordinated activity of the thoracic pump and pharyngeal dilator muscles is critical for maintaining airway calibre and respiratory homeostasis. Whilst postnatal maturation of the diaphragm has been well characterized, surprisingly little is known about the developmental programme in the airway dilator muscles. What is the main finding and its importance? Developmental increases in force-generating capacity and fatigue in the sternohyoid and diaphragm muscles are attributed to a maturational shift in muscle myosin heavy chain phenotype. This maturation is accelerated in the sternohyoid muscle relative to the diaphragm and may have implications for the control of airway calibre in vivo. The striated muscles of breathing, including the thoracic pump and pharyngeal dilator muscles, play a critical role in maintaining respiratory homeostasis. Whilst postnatal maturation of the diaphragm has been well characterized, surprisingly little is known about the developmental programme in airway dilator muscles given that co-ordinated activity of both sets of muscles is needed for the maintenance of airway calibre and effective pulmonary ventilation. The form and function of sternohyoid and diaphragm muscles from Wistar rat pups [postnatal day (PD) 10, 20 and 30] was determined. Isometric contractile and endurance properties were examined in tissue baths containing Krebs solution at 35°C. Myosin heavy chain (MHC) isoform composition was determined using immunofluorescence. Muscle oxidative and glycolytic capacity was assessed by measuring the activities of succinate dehydrogenase and glycerol-3-phosphate dehydrogenase using semi-quantitative histochemistry. Sternohyoid and diaphragm peak isometric force and fatigue increased significantly with postnatal maturation. Developmental myosin disappeared by PD20, whereas MHC2B areal density increased significantly from PD10 to PD30, emerging earlier and to a much greater extent in the sternohyoid muscle. The numerical density of fibres expressing MHC2X and MHC2B increased significantly during development in the sternohyoid. Diaphragm succinate dehydrogenase activity and sternohyoid glycerol-3-phosphate dehydrogenase activity increased significantly with age. Developmental increases in force-generating capacity and fatigue in the sternohyoid and diaphragm muscles are attributed to a postnatal shift in muscle MHC phenotype. The accelerated maturation of the sternohyoid muscle relative to the diaphragm may have implications for the control of airway calibre in vivo.
Collapse
Affiliation(s)
- R A O'Connell
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland.
| | | | | |
Collapse
|
19
|
Mayer CA, Ao J, Di Fiore JM, Martin RJ, MacFarlane PM. Impaired hypoxic ventilatory response following neonatal sustained and subsequent chronic intermittent hypoxia in rats. Respir Physiol Neurobiol 2013; 187:167-75. [PMID: 23562917 DOI: 10.1016/j.resp.2013.03.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 03/20/2013] [Accepted: 03/21/2013] [Indexed: 11/15/2022]
Abstract
Neonatal chronic intermittent hypoxia (CIH) enhances the ventilatory sensitivity to acute hypoxia (acute hypoxic ventilatory response, HVR), whereas sustained hypoxia (SH) can have the opposite effect. Therefore, we investigated whether neonatal rats pre-treated with SH prior to CIH exhibit a modified HVR. Rat pups were exposed to CIH (5% O2/5min, 8h/day) between 6 and 15 days of postnatal age (P6-15) after pre-treatment with either normoxia or SH (11% O2; P1-5). Using whole-body plethysmography, the acute (5min, 10% O2) HVR at P16 (1 day post-CIH) was unchanged following CIH (67.9±6.7% above baseline) and also SH (58.8±10.5%) compared to age-matched normoxic rats (54.7±6.3%). In contrast, the HVR was attenuated (16.5±6.0%) in CIH exposed rats pre-treated with SH. These data suggest that while neonatal SH and CIH alone have little effect on the magnitude of the acute HVR, their combined effects impose a synergistic disturbance to postnatal development of the HVR. These data could provide important insight into the consequences of not maintaining adequate levels of oxygen saturation during the early neonatal period, especially in vulnerable preterm infants susceptible to frequent bouts of hypoxemic events (CIH) that are commonly associated with apnea of prematurity.
Collapse
Affiliation(s)
- C A Mayer
- Department of Pediatrics, Case Western Reserve University, Rainbow Babies & Children's Hospital, Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|
20
|
Gauda EB, Shirahata M, Mason A, Pichard LE, Kostuk EW, Chavez-Valdez R. Inflammation in the carotid body during development and its contribution to apnea of prematurity. Respir Physiol Neurobiol 2013; 185:120-31. [DOI: 10.1016/j.resp.2012.08.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 07/20/2012] [Accepted: 08/02/2012] [Indexed: 01/09/2023]
|
21
|
Holley HS, Behan M, Wenninger JM. Age and sex differences in the ventilatory response to hypoxia and hypercapnia in awake neonatal, pre-pubertal and young adult rats. Respir Physiol Neurobiol 2011; 180:79-87. [PMID: 22067556 DOI: 10.1016/j.resp.2011.10.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 10/17/2011] [Accepted: 10/18/2011] [Indexed: 11/16/2022]
Abstract
There is evidence for a "sensitive period" in respiratory development in rats around postnatal age (P) 12-13d. Little is known about sex differences during that time. The purpose of this study was to assess the effect of sex on breathing development, specifically around the "sensitive period". We used whole-body plethysmography to study breathing in normoxic, hypoxic and hypercapnic gases in non-anesthetized male and female neonatal rats from P10 to P15, juvenile (P30) and young adult (P90) rats. Compared to other neonatal ages, P12-13 male rats had significantly lower ventilation during normoxia, hypoxia, and hypercapnia. Compared to age-matched females, P12-13 male rats had lower ventilation in normoxia and hypoxia and a lower O(2) saturation during hypoxia. Circulating estradiol was greater in P12-13 male vs. female rats. Estradiol and ventilatory responses to hypoxia and hypercapnia were negatively correlated in neonatal male, but not female rats. Our results suggest that P10-15 includes a critical developmental period in male but not female rats.
Collapse
Affiliation(s)
- Heidi S Holley
- University of Wisconsin - Madison School of Veterinary Medicine, Department of Comparative Biosciences, 2015 Linden Drive, Madison, WI 53706, United States
| | | | | |
Collapse
|
22
|
Lumbroso D, Lemoine A, Gonzales M, Villalpando G, Seaborn T, Joseph V. Life-long consequences of postnatal normoxia exposure in rats raised at high altitude. J Appl Physiol (1985) 2011; 112:33-41. [PMID: 21998271 DOI: 10.1152/japplphysiol.01043.2011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We tested the hypothesis that exposure of high-altitude (HA) rats to a period of postnatal normoxia has long-term consequences on the ventilatory and hematological acclimatization in adults. Male and female HA rats (3,600 m, Po(2) ≃ 100 Torr; La Paz, Bolivia) were exposed to normal room air [HA control (HACont)] or enriched oxygen (32% O(2); Po(2) ≃ 160 Torr) from 1 day before to 15 days after birth [HA postnatal normoxia (HApNorm)]. Hematocrit and hemoglobin values were assessed at 2, 12, and 32 wk of age. Cardiac and lung morphology were assessed at 12 wk by measuring right ventricular hypertrophy (pulmonary hypertension index) and lung air space-to-tissue ratio (indicative of alveolarization). Respiratory parameters under baseline conditions and in response to 32% O(2) for 10 min (relieving the ambient hypoxic stimulus) were measured by whole body plethysmography at 12 wk. Finally, we performed a survival analysis up to 600 days of age. Compared with HACont, HApNorm rats had reduced hematocrit and hemoglobin levels at all ages (both sexes); reduced right ventricular hypertrophy (both sexes); lower air space-to-tissue ratio in the lungs (males only); reduced CO(2) production rate, but higher oxygen uptake (males only); and similar respiratory frequency, tidal volume, and minute ventilation. When breathing 32% O(2), HApNorm male rats had a stronger decrease of minute ventilation than HACont. HApNorm rats had a marked tendency toward longer survival throughout the study. We conclude that exposure to ambient hypoxia during postnatal development in HA rats has deleterious consequences on acclimatization to hypoxia as adults.
Collapse
Affiliation(s)
- Delphine Lumbroso
- Department of Pediatrics, Laval University, Centre de Recherche Centre Hospitalier Universitaire de Québec, Hôpital St-François d'Assise, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
23
|
Boychuk CR, Hayward LF. Prenatal nicotine exposure alters postnatal cardiorespiratory integration in young male but not female rats. Exp Neurol 2011; 232:212-21. [PMID: 21945005 DOI: 10.1016/j.expneurol.2011.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 08/24/2011] [Accepted: 09/01/2011] [Indexed: 12/26/2022]
Abstract
The present study tested the hypothesis that prenatal nicotine exposure (PNE) induces sex specific alternations in indices of cardiorespiratory coupling during early development. Rat pups exposed to either nicotine (6 mg/kg/day) or saline (control) in utero were chronically instrumented with ECG electrodes for measurement of heart rate (HR) and respiratory frequency (RF) was monitored by whole body plethysmography on postnatal days (P)13, P16 and P26. PNE had no identifiable effect on resting respiratory frequency (RF) in either sex. There was however a strong trend (p=0.057) for resting HR to be elevated by PNE in male offspring only. Alternatively, the HR response to hypoxia (10% O(2)), was significantly blunted at P13 but significantly elevated at P26 s in the absence of any significant change in RF in PNE males only. Indicators of respiratory sinus arrhythmia (RSA) were also significantly reduced in P26 PNE males. No significant effects of PNE on HR, RF or RSA were identified in female offspring at any age. Our results demonstrate that PNE induces very specific changes in cardiorespiratory integration at select postnatal ages and these changes are more prominent in males. Additionally, alternations in cardiorespiratory integration appear to persist into later development in males only, potentially increasing the risk for cardiovascular diseases such as hypertension later in life.
Collapse
Affiliation(s)
- Carie R Boychuk
- University of Florida, College of Veterinary Medicine, Department of Physiological Sciences, Gainesville, FL 32610, USA
| | | |
Collapse
|
24
|
Teppema LJ, Dahan A. The Ventilatory Response to Hypoxia in Mammals: Mechanisms, Measurement, and Analysis. Physiol Rev 2010; 90:675-754. [DOI: 10.1152/physrev.00012.2009] [Citation(s) in RCA: 281] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The respiratory response to hypoxia in mammals develops from an inhibition of breathing movements in utero into a sustained increase in ventilation in the adult. This ventilatory response to hypoxia (HVR) in mammals is the subject of this review. The period immediately after birth contains a critical time window in which environmental factors can cause long-term changes in the structural and functional properties of the respiratory system, resulting in an altered HVR phenotype. Both neonatal chronic and chronic intermittent hypoxia, but also chronic hyperoxia, can induce such plastic changes, the nature of which depends on the time pattern and duration of the exposure (acute or chronic, episodic or not, etc.). At adult age, exposure to chronic hypoxic paradigms induces adjustments in the HVR that seem reversible when the respiratory system is fully matured. These changes are orchestrated by transcription factors of which hypoxia-inducible factor 1 has been identified as the master regulator. We discuss the mechanisms underlying the HVR and its adaptations to chronic changes in ambient oxygen concentration, with emphasis on the carotid bodies that contain oxygen sensors and initiate the response, and on the contribution of central neurotransmitters and brain stem regions. We also briefly summarize the techniques used in small animals and in humans to measure the HVR and discuss the specific difficulties encountered in its measurement and analysis.
Collapse
Affiliation(s)
- Luc J. Teppema
- Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Albert Dahan
- Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
25
|
Steggerda JA, Mayer CA, Martin RJ, Wilson CG. Effect of intermittent hypercapnia on respiratory control in rat pups. Neonatology 2010; 97:117-23. [PMID: 19752577 PMCID: PMC3696363 DOI: 10.1159/000237222] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 01/13/2009] [Indexed: 11/19/2022]
Abstract
Preterm infants are subject to fluctuations in blood gas status associated with immature respiratory control. Intermittent hypoxia during early postnatal life has been shown to increase chemoreceptor sensitivity and destabilize the breathing pattern; however, intermittent hypercapnia remains poorly studied. Therefore, to test the hypothesis that intermittent hypercapnia results in altered respiratory control, we examined the effects of daily exposure to intermittent hypercapnia on the ventilatory response to subsequent hypercapnic and hypoxic exposure in neonatal rat pups. Exposure cycles consisted of 5 min of intermittent hypercapnia (5% CO(2), 21% O(2), balance N(2)) followed by 10 min of normoxia. Rat pups were exposed to 18 exposure cycles each day for 1 week, from postnatal day 7 to 14. We analyzed diaphragm electromyograms (EMGs) from pups exposed to subsequent acute hypercapnic (5% CO(2)) and hypoxic (12% O(2)) challenges. In response to a subsequent hypercapnia challenge, there was no significant difference in the ventilatory response between control and intermittent hypercapnia-exposed groups. In contrast, intermittent hypercapnia-exposed rat pups showed an enhanced ventilatory response to hypoxic challenge with an increase in minute EMG to 118 +/- 14% of baseline versus 107 +/- 13% for control pups (p < 0.05). We speculate that prior hypercapnic exposure may increase peripheral chemoreceptor response to subsequent hypoxic exposures and result in perturbed neonatal respiratory control.
Collapse
Affiliation(s)
- Justin A Steggerda
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | | |
Collapse
|
26
|
Lumbroso D, Joseph V. Impaired acclimatization to chronic hypoxia in adult male and female rats following neonatal hypoxia. Am J Physiol Regul Integr Comp Physiol 2009; 297:R421-7. [PMID: 19494172 DOI: 10.1152/ajpregu.00068.2009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We tested the hypothesis that neonatal exposure to hypoxia alters acclimatization to chronic hypoxia later in life. Rat pups were exposed to normobaric hypoxia (12% O(2); nHx group) in a sealed chamber, or to normoxia (21% O(2); nNx group) from the day before birth to postnatal day 10. The animals were then raised in normal conditions until reaching 12 wk of age. At this age, we assessed ventilatory and hematological acclimatization to chronic hypoxia by exposing male and female nHx and nNx rats for 2 wk to 10% O(2). Minute ventilation, metabolic rate, hypoxic ventilatory response, hematocrit, and hemoglobin levels were measured both before and after acclimatization. We also quantified right ventricular hypertrophy as an index of pulmonary hypertension both before and after acclimatization. There was a significant effect of neonatal hypoxia that decreases ventilatory response (relative to metabolic rate, VE/VCO(2)) to acute hypoxia before acclimatization in males but not in females. nHx rats had an impaired acclimatization to chronic hypoxia characterized by altered respiratory pattern and elevated hematocrit and hemoglobin levels after acclimatization, in both males and females. Right ventricular hypertrophy was present before and after acclimatization in nHx rats, indicating that neonatal hypoxia results in pulmonary hypertension in adults. We conclude that neonatal hypoxia impairs acclimatization to chronic hypoxia in adults and may be a factor contributing to the establishment of chronic mountain sickness in humans living at high altitude.
Collapse
Affiliation(s)
- Delphine Lumbroso
- Department of Pediatrics, Laval University, Centre de Recherche, Hôpital St-François d'Assise, Quebec, Canada
| | | |
Collapse
|
27
|
Antenatal environmental stress and maturation of the breathing control, experimental data. Respir Physiol Neurobiol 2009; 168:92-100. [PMID: 19427414 DOI: 10.1016/j.resp.2009.04.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 04/27/2009] [Accepted: 04/30/2009] [Indexed: 11/24/2022]
Abstract
The nervous respiratory system undergoes postnatal maturation and yet still must be functional at birth. Any antenatal suboptimal environment could upset either its building prenatally and/or its maturation after birth. Here, we would like to briefly summarize some of the major stresses leading to clinical postnatal respiratory dysfunction that can occur during pregnancy, we then relate them to experimental models that have been developed in order to better understand the underlying mechanisms implicated in the respiratory dysfunctions observed in neonatal care units. Four sections are aimed to review our current knowledge based on experimental data. The first will deal with the metabolic factors such as oxygen and glucose, the second with consumption of psychotropic substances (nicotine, cocaine, alcohol, morphine, cannabis and caffeine), the third with psychoactive molecules commonly consumed by pregnant women within a therapeutic context and/or delivered to premature neonates in critical care units (benzodiazepine, caffeine). In the fourth section, we take into account care protocols involving extended maternal-infant separation due to isolation in incubators. The effects of this stress potentially adds to those previously described.
Collapse
|
28
|
Behan M, Wenninger JM. Sex steroidal hormones and respiratory control. Respir Physiol Neurobiol 2008; 164:213-21. [PMID: 18599386 PMCID: PMC2642889 DOI: 10.1016/j.resp.2008.06.006] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 06/06/2008] [Accepted: 06/07/2008] [Indexed: 12/26/2022]
Abstract
There is a growing public awareness that sex hormones can have an impact on a variety of physiological processes. Yet, despite almost a century of research, we still do not have a clear picture as to the effects of sex hormones on the regulation of breathing. Considerable data has accumulated showing that estrogen, progesterone and testosterone can influence respiratory function in animals and humans. Several disorders of breathing such as obstructive sleep apnea (OSA) and sudden infant death syndrome (SIDS) show clear sex differences in their prevalence, lending weight to the importance of sex hormones in respiratory control. This review focuses on questions such as: how early do sex hormones influence breathing? Which is the most effective? Where do sex hormones exert their effects? What mechanisms are involved? Are there age-associated changes? A clearer understanding of how sex hormones influence the control of breathing could enable sex- and age-specific therapeutic interventions for diseases of the respiratory control system.
Collapse
Affiliation(s)
- Mary Behan
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI 53706-1102, USA.
| | | |
Collapse
|
29
|
Ferner K, Mortola JP. Ventilatory response to hypoxia in chicken hatchlings: a developmental window of sensitivity to embryonic hypoxia. Respir Physiol Neurobiol 2008; 165:49-53. [PMID: 18977462 DOI: 10.1016/j.resp.2008.10.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 09/26/2008] [Accepted: 10/06/2008] [Indexed: 11/26/2022]
Abstract
We had reported previously [Szdzuy, K., Mortola, J.P., 2007b. Ventilatory chemosensitivity of the 1-day-old chicken hatchling after embryonic hypoxia. Am. J. Physiol. (Regul. Integr. Comp. Physiol.) 293, R1640-R1649] that hypoxia during incubation blunted ventilatory chemosensitivity in the hatchling. Because the carotid bodies become functional in the last portion of incubation, we asked whether these last days were the critical period for the effects of hypoxia on the development of ventilatory chemosensitivity. White Leghorn chicken eggs were incubated at 38 degrees C either in 21% O(2) (Controls) or in 15% O(2) for the whole 3-week incubation (HxTot) or for only the 1st (Hx1), 2nd (Hx2) or 3rd week of incubation (Hx3). Hatching time had a delay of half a day in HxTot, and was normal in the other groups. Body weight was similar in all hatchlings. Oxygen consumption ( [Formula: see text] ) and pulmonary ventilation (V e) were measured at about 20 h post-hatching. Ventilatory chemosensitivity was evaluated from the degree of hyperpnea (increase in V e) and hyperventilation (increase in [Formula: see text] ) during acute hypoxia (15 and 10% O(2), 20 min each) and acute hypercapnia (2 and 4% CO(2), 20 min each). The responses to hypoxia were similarly decreased in HxTot and in Hx3 compared to controls, and were normal in the other experimental groups; those to hypercapnia were blunted only in HxTot. The results are in agreement with the idea that prenatal hypoxia blunts V e chemosensitivity by interfering with the normal development of the carotid bodies.
Collapse
Affiliation(s)
- Kirsten Ferner
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, H3G 1Y6 Canada.
| | | |
Collapse
|
30
|
Doperalski NJ, Sandhu MS, Bavis RW, Reier PJ, Fuller DD. Ventilation and phrenic output following high cervical spinal hemisection in male vs. female rats. Respir Physiol Neurobiol 2008; 162:160-7. [PMID: 18586119 PMCID: PMC2605649 DOI: 10.1016/j.resp.2008.06.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 06/05/2008] [Accepted: 06/05/2008] [Indexed: 02/02/2023]
Abstract
Female sex hormones influence the neural control of breathing and may impact neurologic recovery from spinal cord injury. We hypothesized that respiratory recovery after C2 spinal hemisection (C2HS) differs between males and females and is blunted by prior ovariectomy (OVX) in females. Inspiratory tidal volume (VT), frequency (fR), and ventilation (VE) were quantified during quiet breathing (baseline) and 7% CO2 challenge before and after C2HS in unanesthetized adult rats via plethysmography. Baseline breathing was similarly altered in all rats (reduced VT, elevated fR) but during hypercapnia females had relatively higher VT (i.e. compared to pre-injury) than male or OVX rats (p<0.05). Phrenic neurograms recorded in anesthetized rats indicated that normalized burst amplitude recorded ipsilateral to C2HS (i.e. the crossed phrenic phenomenon) is greater in females during respiratory challenge (p<0.05 vs. male and OVX). We conclude that sex differences in recovery of VT and phrenic output are present at 2 weeks post-C2HS. These differences are consistent with the hypothesis that ovarian sex hormones influence respiratory recovery after cervical spinal cord injury.
Collapse
Affiliation(s)
- N J Doperalski
- University of Florida, College of Public Health and Health Professions, Department of Physical Therapy, PO Box 100154, 100 Newell Drive, Gainesville, FL 32610, USA
| | | | | | | | | |
Collapse
|
31
|
Bavis RW, Mitchell GS. Long-term effects of the perinatal environment on respiratory control. J Appl Physiol (1985) 2008; 104:1220-9. [DOI: 10.1152/japplphysiol.01086.2007] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The respiratory control system exhibits considerable plasticity, similar to other regions of the nervous system. Plasticity is a persistent change in system behavior triggered by experiences such as changes in neural activity, hypoxia, and/or disease/injury. Although plasticity is observed in animals of all ages, some forms of plasticity appear to be unique to development (i.e., “developmental plasticity”). Developmental plasticity is an alteration in respiratory control induced by experiences during “critical” developmental periods; similar experiences outside the critical period will have little or no lasting effect. Thus complementary experiments on both mature and developing animals are generally needed to verify that the observed plasticity is unique to development. Frequently studied models of developmental plasticity in respiratory control include developmental manipulations of respiratory gas concentrations (O2and CO2). Environmental factors not specifically associated with breathing may also trigger developmental plasticity, however, including psychological stress or chemicals associated with maternal habits (e.g., nicotine, cocaine). Despite rapid advances in describing models of developmental plasticity in breathing, our understanding of fundamental mechanisms giving rise to such plasticity is poor; mechanistic studies of developmental plasticity are of considerable importance. Developmental plasticity may enable organisms to “fine tune” their phenotype to optimize the performance of this critical homeostatic regulatory system. On the other hand, developmental plasticity could also increase the risk of disease later in life. Future directions for studies concerning the mechanisms and functional implications of developmental plasticity in respiratory motor control are discussed.
Collapse
|
32
|
Kinkead R, Balon N, Genest SE, Gulemetova R, Laforest S, Drolet G. Neonatal maternal separation and enhancement of the inspiratory (phrenic) response to hypoxia in adult rats: disruption of GABAergic neurotransmission in the nucleus tractus solitarius. Eur J Neurosci 2008; 27:1174-88. [DOI: 10.1111/j.1460-9568.2008.06082.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Peyronnet J, Roux JC, Mamet J, Perrin D, Lachuer J, Pequignot JM, Dalmaz Y. Developmental plasticity of the carotid chemoafferent pathway in rats that are hypoxic during the prenatal period. Eur J Neurosci 2008; 26:2865-72. [PMID: 18001283 DOI: 10.1111/j.1460-9568.2007.05884.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The chemoreflex pathway undergoes postnatal maturation, and the perinatal environment plays a critical role in shaping respiratory control system. We investigated the role of prenatal hypoxia on the maturation of the chemoreflex neural circuits regulating ventilation in rat. Effects of hypoxia (10% O2) from the 5th to the 20th day of gestation were studied on male offspring at birth and on postnatal days 3, 7, 21 and 68. Maturation of the respiratory control system was assessed by in vivo tyrosine hydroxylase (TH) activity measurement in peripheral chemoreceptors (carotid bodies, petrosal ganglia), and in brainstem catecholaminergic cell groups (A2C2c and A1C1 areas in the medulla, A5 and A6 areas in the pons). Resting ventilation and ventilatory response to hypoxia were evaluated as functional sequelae. In peripheral structures, prenatal hypoxia reduced TH activity within the first postnatal week and enhanced it later. In contrast, in central areas, prenatal hypoxia upregulated TH activity within the first postnatal week and downregulated it later. The in vivo TH activity impairment is therefore tissue specific, with an opposite effect on the peripheral and central neural circuits. A shift of the effect of prenatal hypoxia occurred between 1 and 3 weeks, indicating a postnatal temporal effect of prenatal hypoxia. An important period in the development of the chemoafferent pathway occurred between the first and the third postnatal week. Functionally, prenatal hypoxia impaired resting ventilation and ventilatory response to hypoxia. The alterations of the catecholaminergic components of the chemoafferent pathway resulting from prenatal hypoxia might contribute to impair postnatal respiratory behaviour.
Collapse
Affiliation(s)
- J Peyronnet
- Université Lyon 1, UMR CNRS 5123, Physiologie intégrative Cellulaire et Moléculaire, Villeurbanne, F-69622, Lyon, France.
| | | | | | | | | | | | | |
Collapse
|
34
|
Szdzuy K, Mortola JP. Ventilatory chemosensitivity of the 1-day-old chicken hatchling after embryonic hypoxia. Am J Physiol Regul Integr Comp Physiol 2007; 293:R1640-9. [PMID: 17686884 DOI: 10.1152/ajpregu.00422.2007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the effects of sustained embryonic hypoxia on the neonatal ventilatory chemosensitivity. White Leghorn chicken eggs were incubated at 38°C either in 21% O2 throughout incubation (normoxia, Nx) or in 15% O2 from embryonic day 5 (hypoxia, Hx), hatching time included. Hx embryos hatched ∼11 h later than Nx, with similar body weights. Measurements of gaseous metabolism (oxygen consumption, V̇o2) and pulmonary ventilation (V̇e) were conducted either within the first 8 h (early) or later hours (late) of the first posthatching day. In resting conditions, Hx had similar V̇o2 and body temperature (Tb) and slightly higher V̇e and ventilatory equivalent (V̇e/V̇o2) than Nx. Ventilatory chemosensitivity was evaluated from the degree of hyperpnea (increase in V̇e) and of hyperventilation (increase in V̇e/V̇o2) during acute hypoxia (15 and 10% O2, 20 min each) and acute hypercapnia (2 and 4% CO2, 20 min each). The chemosensitivity differed between the early and late hours, and at either time the responses to hypoxia and hypercapnia were less in Hx than in Nx because of a lower increase in V̇e and a lower hypoxic hypometabolism. In a second group of Nx and Hx hatchlings, the V̇e response to 10% O2 was tested in the same hatchlings at the early and late hours. The results confirmed the lower hypoxic chemosensitivity of Hx. We conclude that hypoxic incubation affected the development of respiratory control, resulting in a blunted ventilatory chemosensitivity.
Collapse
Affiliation(s)
- Kirsten Szdzuy
- Dept. of Physiology, McGill Univ., 3655 Promenade Sir William Osler, Montreal, Quebec, H3G 1Y6 Canada.
| | | |
Collapse
|
35
|
Bavis RW, Russell KE, Simons JC, Otis JP. Hypoxic ventilatory responses in rats after hypercapnic hyperoxia and intermittent hyperoxia. Respir Physiol Neurobiol 2007; 155:193-202. [DOI: 10.1016/j.resp.2006.06.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Revised: 06/19/2006] [Accepted: 06/20/2006] [Indexed: 10/24/2022]
|
36
|
Reeves SR, Gozal D. Respiratory and metabolic responses to early postnatal chronic intermittent hypoxia and sustained hypoxia in the developing rat. Pediatr Res 2006; 60:680-6. [PMID: 17065578 DOI: 10.1203/01.pdr.0000246073.95911.18] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Exposure to sustained hypoxia (SH) differentially modifies the hypoxic ventilatory response (HVR) in adults and developing rats. We examined the possibility that postnatal intermittent hypoxia (IH), a more prevalent clinical condition than SH, may lead to significant modifications of ventilatory patterning during development. Sprague-Dawley rat pups were exposed as of the d 1 of life to either SH (10% O2) or IH [alternating room air (RA) and 10% O2 every 90 s] for up to 30 d; controls were exposed to normoxia. HVR (10% O2 for 20 min) was assessed in unrestrained pups at 5, 10, 15, and 30 d of age using whole-body plethysmography. IH pups displayed higher normoxic ventilation (VE) at all ages (p < 0.001 versus control; n = 12 per group), which was not observed in SH animals until 10 d of exposure (p < 0.001 versus control; n = 12 per group). Furthermore, both SH and IH modified properties of peak HVR (pHVR), as well as those of the ensuing hypoxic ventilatory decline (HVD); however, the ventilatory strategies adopted after SH and IH greatly differed. We conclude that both postnatal IH and SH modify normal ventilatory patterning and induce altered HVR, but differ in the ventilatory strategies adopted to mount HVR responses.
Collapse
Affiliation(s)
- Stephen R Reeves
- Department of Pediatrics, Kosair Children's Hospital Research Institute, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | | |
Collapse
|
37
|
Vulesevic B, Perry SF. Developmental plasticity of ventilatory control in zebrafish, Danio rerio. Respir Physiol Neurobiol 2006; 154:396-405. [PMID: 16446127 DOI: 10.1016/j.resp.2006.01.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Revised: 01/03/2006] [Accepted: 01/04/2006] [Indexed: 11/20/2022]
Abstract
To determine whether development of ventilatory control in zebrafish (Danio rerio) exhibits plasticity, embryos were exposed to hypoxia, hyperoxia or hypercapnia for the first 7 days post-fertilization. Their acute reflex breathing responses to ventilatory stimuli (hypoxia, hypercapnia and external cyanide) were assessed when they had reached maturity (3 months or older). Zebrafish reared under hyperoxic conditions exhibited significantly higher breathing frequencies at rest (283+/-27min(-1) versus 212+/-16min(-1) in control fish); breathing frequency was unaffected in adult fish subjected to hyperoxia for 7 days. The respiratory responses of fish reared in hyperoxic water to acute hypoxia, hypercapnia or external cyanide were blunted (hypoxia, cyanide) or eliminated (hypercapnia). Adult fish exposed for 7 days to hyperoxia showed no change in acute responses to these stimuli. The respiratory responses to acute hypoxia, hypercapnia or external cyanide of fish reared under hypoxic or hypercapnic conditions were similar to those in fish reared under normal conditions. A subset of all fish examined exhibited episodic breathing; an analysis of breathing patterns demonstrated that fish reared under hypercapnic conditions had an increased tendency to display episodic breathing. The results of this study reveal that there is flexibility in the design and functioning of the embryonic or larval respiratory system in zebrafish.
Collapse
Affiliation(s)
- B Vulesevic
- Department of Biology, University of Ottawa, 10 Marie Curie, Ottawa, Ont., Canada K1N 6N5
| | | |
Collapse
|
38
|
Liu Q, Lowry TF, Wong-Riley MTT. Postnatal changes in ventilation during normoxia and acute hypoxia in the rat: implication for a sensitive period. J Physiol 2006; 577:957-70. [PMID: 17038423 PMCID: PMC1890370 DOI: 10.1113/jphysiol.2006.121970] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Previously, we found heightened expression of inhibitory neurochemicals and depressed expression of excitatory neurochemicals with a sudden drop in metabolic activity around postnatal day (P) 12 in rat brainstem respiratory nuclei, suggesting that this period is a critical window during which respiratory control or regulation may be distinctly different. To test this hypothesis, the hypoxic ventilatory responses (HVR) to 10% oxygen were tested in rats every day from P0 to P21. Our data indicate that (1) during normoxia (N), breathing frequency (f) increased with age, peaking at P13, followed by a gradual decline, whereas both tidal volume (V(T)) and minute ventilation (.V(E) ) significantly increased in the second postnatal week, followed by a progressive increase in V(T) and a relative plateau in .V(E); (2) during 5 min of hypoxia (H), .V(E) exhibited a biphasic response from P3 onward. Significantly, the ratio of .V(E)(H) to .V(E)(N) was generally > 1 during development, except for P13-16, when it was < 1 after the first 1-2 min, with the lowest value at P13; (3) the H : N ratio for f, V(T) and .V(E) during the first 30 s and the last minute of hypoxia all showed a distinct dip at P13, after which the V(T) and .V(E) values rose again, while the f values declined through P21; and (4) the H : N ratios for f, V(T) and .V(E) averaged over 5 min of hypoxia all exhibited a sudden fall at P13. The f ratio remained low thereafter, while those for V(T) and .V(E) increased again with age until P21. Thus, hypoxic ventilatory response is influenced by both f and V(T) before P13, but predominantly by V(T) after P13. The striking changes in normoxic ventilation as well as HVR at or around P13, together with our previous neurochemical and metabolic data, strongly suggests that the end of the second postnatal week is a critical period of development for brainstem respiratory nuclei in the rat.
Collapse
Affiliation(s)
- Qiuli Liu
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | |
Collapse
|
39
|
Bavis RW, Johnson RA, Ording KM, Otis JP, Mitchell GS. Respiratory plasticity after perinatal hypercapnia in rats. Respir Physiol Neurobiol 2006; 153:78-91. [PMID: 16338177 DOI: 10.1016/j.resp.2005.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 09/06/2005] [Accepted: 09/07/2005] [Indexed: 11/21/2022]
Abstract
Environmental conditions during early life may have profound effects on respiratory control development. We hypothesized that perinatal hypercapnia would exert lasting effects on the mammalian hypercapnic ventilatory response, but that these effects would differ between males and females. Rats were exposed to 5% CO2 from 1 to 3 days before birth through postnatal week 2 and ventilation was subsequently measured by whole-body plethysmography. In both male and female rats exposed to perinatal hypercapnia, a rapid, shallow breathing pattern was observed for the first 2 weeks after return to normocapnia, but ventilation was unchanged. Acute hypercapnic ventilatory responses (3% and 5% CO2) were reduced 27% immediately following perinatal hypercapnia, but these responses were normal after 2 weeks of recovery in both sexes and remained normal as adults. Collectively, these data suggest that perinatal hypercapnia elicits only transient respiratory plasticity in both male and female rats. This plasticity appears similar to that observed after chronic hypercapnia in adult animals and, therefore, is not unique to development.
Collapse
Affiliation(s)
- Ryan W Bavis
- Department of Biology, Bates College, 44 Campus Ave., Carnegie Science Hall, Lewiston, ME 04240, USA.
| | | | | | | | | |
Collapse
|
40
|
Moss IR, Bélisle M, Laferrière A. Long-term recurrent hypoxia in developing rat attenuates respiratory responses to subsequent acute hypoxia. Pediatr Res 2006; 59:525-30. [PMID: 16549523 DOI: 10.1203/01.pdr.0000203104.45807.23] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Whereas definitive treatment of pediatric conditions associated with hypoxemia reverses many pathologic symptoms, some physiologic dysfunctions appear to persist. These abnormalities are attributed to long-lasting central effects of prior hypoxia. To investigate such effects in an animal model, male rats were exposed to FiO2 = 0.12 continuously for 7 h daily from postnatal day (p) 17 (representing early childhood) through p33 (representing adolescence), defined as recurrent hypoxia. Respiratory responses during and following 20 min FiO2 = 0.12 were measured on p35 and p47. To control for early weaning on p15 (normal weaning = p21), male rats were weaned on either p15 or p21, raised in normoxia, and also tested for respiratory responsiveness to acute hypoxia. To assess sex differences, female rats were assigned to similar groups and protocols. Minute ventilation, respiratory frequency, tidal volume, and respiratory drive were measured in unsedated animals using whole-body plethysmography. After recurrent hypoxia, male rats displayed an attenuation of ventilation, frequency, and drive during hypoxia, and of all functions after hypoxia on both p35 and p47. There were no differences between test days during hypoxia, and greater attenuation of tidal volume and respiratory drive on p47 during recovery from hypoxia. Respiratory responses displayed no effect of sex on p35, and occasional effects of early weaning on p35 and p47. Thus, recurrent hypoxia produces long-lasting attenuation in respiratory responsiveness to subsequent acute hypoxia. Such long-lasting attenuation, if present in humans, may diminish the protection of children with a history of recurrent hypoxemia against future hypoxic events.
Collapse
Affiliation(s)
- Immanuela Ravé Moss
- Department of Pediatrics, McGill University, Montreal Children's Hospital Research Institute, Montreal, Quebec, Canada.
| | | | | |
Collapse
|
41
|
Reeves SR, Mitchell GS, Gozal D. Early postnatal chronic intermittent hypoxia modifies hypoxic respiratory responses and long-term phrenic facilitation in adult rats. Am J Physiol Regul Integr Comp Physiol 2006; 290:R1664-71. [PMID: 16455761 DOI: 10.1152/ajpregu.00851.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Acute isocapnic intermittent hypoxia elicits time-dependent, serotonin-dependent enhancement of phrenic motor output in anesthetized rats (phrenic long-term facilitation, pLTF). In adult rats, pLTF is enhanced by chronic intermittent hypoxia (CIH). To test the hypothesis that early postnatal CIH induces persistent modifications of ventilation and pLTF, we exposed male Sprague-Dawley rat pups on their first day of life to a CIH profile consisting of alternating room air and 10% oxygen every 90 s for 30 days during daylight hours (RAIH) or to comparable exposures consisting of room air throughout (RARA). One month after cessation of CIH, respiratory responses were recorded using whole body plethysmography, and integrated phrenic nerve activity was recorded in urethane-anesthetized, vagotomized, paralyzed, and ventilated rats at baseline and after exposures to three 5-min hypoxic episodes [inspired O2 fraction (FiO2)=0.11] separated by 5 min of hyperoxia (FiO2=0.5). RAIH rats displayed greater normoxic ventilation and also increased burst frequency compared with RARA rats (P<0.01). Ventilatory responses to hypoxia and short-term phrenic responses during acute hypoxic challenges were reduced in RAIH rats (P<0.01). Although pLTF was present in both RAIH and RARA rats, it was diminished in RAIH rats (minute activity: 74+/-2% in RARA vs. 55+/-5% in RAIH at 60 min; P<0.01). Thus we conclude that early postnatal CIH modifies normoxic and hypoxic ventilatory and phrenic responses that persist at 1 mo after cessation of CIH (i.e., metaplasticity) and markedly differ from previously reported increased neural plasticity changes induced by CIH in adult rats.
Collapse
Affiliation(s)
- Stephen R Reeves
- Department of Pediatrics, Kosair Children's Hospital Research Institute, University of Louisville School of Medicine, Suite 204, 570 South Preston St., Louisville, KY 40202, USA
| | | | | |
Collapse
|
42
|
Soliz J, Joseph V. Perinatal steroid exposure and respiratory control during early postnatal life. Respir Physiol Neurobiol 2005; 149:111-22. [PMID: 16203215 DOI: 10.1016/j.resp.2005.01.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Revised: 01/20/2005] [Accepted: 01/24/2005] [Indexed: 10/25/2022]
Abstract
Numerous factors involved in general homeostasis are able to modulate respiratory motor output. These include placental-derived steroids, which are necessary for maternal physiological adjustments during gestation, including respiratory stimulation. Despite the fact that these hormones exert potent effects on neural development in the fetus, the hypothesis of a developmental control of the neural respiratory network by placental-derived steroids has been approached experimentally only recently. The objective of this review is to summarize the role and mode of action of placental steroids on respiratory control in adult mammals and highlight the potential pathways by which such steroids are supplied to the developing fetus. Additionally, we present recent results showing that the beta estradiol and progesterone receptors are expressed in the carotid body of newborn male rats, thus supporting the hypothesis of receptor-mediated effect of estradiol and progesterone on carotid bodies.
Collapse
Affiliation(s)
- J Soliz
- Institute of Veterinary Physiology, Vetsuisse Faculty of the University of Zürich, Winterthurerstrasse, 260 CH-8057 Zürich, Switzerland
| | | |
Collapse
|
43
|
Reeves SR, Gozal D. Developmental plasticity of respiratory control following intermittent hypoxia. Respir Physiol Neurobiol 2005; 149:301-11. [PMID: 16203218 DOI: 10.1016/j.resp.2005.01.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Revised: 01/24/2005] [Accepted: 01/24/2005] [Indexed: 11/19/2022]
Abstract
During development, windows of increased vulnerability to noxious stimulus occur. These critical periods of maturation represent times at which the maturing animal is uniquely susceptible to external perturbations that may alter the ultimate configuration of neural networks and their associated function(s), thereby inducing persistent (mal)adaptive changes. In contrast, when comparable perturbations are applied to adult animals the associated adaptive changes do not typically persist. This principle has been demonstrated in models of respiratory plasticity in developing mammals including exposure to sustained hypoxia, hyperoxia, and pharmacological agents. Recently, intermittent hypoxia (IH) during development has also been implicated as a potent inducer of respiratory plasticity. Altered ventilatory patterning induced by IH is distinct from other stimuli and elicits markedly different responses in the developing mammal as compared to the adult. Furthermore, adaptations to acute IH (AIH) exposure may involve mechanisms that differ from those invoked by chronic IH exposure (CIH). Thus, critical examination of IH exposure paradigms is also an important consideration. Greater understanding of IH-induced ventilatory plasticity, particularly in the developing animal, will undoubtedly increase our understanding of IH related diseases such as sleep disordered breathing, and perhaps provide future directions for intervention strategies.
Collapse
Affiliation(s)
- Stephen R Reeves
- Kosair Children's Hospital Research Institute, Departments of Pediatrics and Pharmacology and Toxicology, University of Louisville School of Medicine, Suite 204, 570 South Preston St., Louisville, KY 40202, USA
| | | |
Collapse
|
44
|
Bavis RW. Developmental plasticity of the hypoxic ventilatory response after perinatal hyperoxia and hypoxia. Respir Physiol Neurobiol 2005; 149:287-99. [PMID: 16203217 DOI: 10.1016/j.resp.2005.04.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Revised: 03/31/2005] [Accepted: 04/01/2005] [Indexed: 10/25/2022]
Abstract
Both genetic and environmental factors influence the normal development of the respiratory control system. This review examines the role perinatal O2 plays in the development of normoxic breathing and the hypoxic ventilatory response in mammals. Hyperoxia and hypoxia elicit plasticity in respiratory control that is unique to development and may persist weeks to years after return to normoxia. Specifically, both hyperoxia and hypoxia during early postnatal development attenuate the adult hypoxic ventilatory response, but the underlying mechanisms for this plasticity differ. Hyperoxia attenuates the hypoxic ventilatory response through potentially life-long changes in carotid body function. Neonatal hypoxia appears to have short-term effects on carotid body function, but persistent changes in the hypoxic ventilatory response may instead reflect changes in respiratory mechanics or related neural pathways. Overall, it appears that a relatively narrow range of environmental O2 is consistent with "normal" postnatal respiratory control development, predisposing animals to potentially maladaptive plasticity in the face of disease or atypical environmental conditions.
Collapse
Affiliation(s)
- Ryan W Bavis
- Department of Biology, Bates College, 44 Campus Ave., Carnegie Science Hall, Lewiston, ME 04240, USA.
| |
Collapse
|
45
|
Gaultier C, Gallego J. Development of respiratory control: Evolving concepts and perspectives. Respir Physiol Neurobiol 2005; 149:3-15. [PMID: 15941676 DOI: 10.1016/j.resp.2005.04.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Revised: 04/22/2005] [Accepted: 04/25/2005] [Indexed: 10/25/2022]
Abstract
The mechanisms underlying respiratory system immaturity in newborns have been investigated, both in vivo and in vitro, in humans and in animals. Immaturity affects breathing rhythmicity and its modulation by suprapontine influences and by afferents from central and peripheral chemoreceptors. Recent research has moved from bedside tools to sophisticated technologies, bringing new insights into the plasticity and genetics of respiratory control development. Genetic research has benefited from investigations of newborn mice having targeted deletions of genes involved in respiratory control. Genetic variability may govern the normal programming of development and the processes underlying adaptation to homeostasis disturbances induced by prenatal and postnatal insults. Studies of plasticity have emphasized the role of neurotrophic factors. Improvements in our understanding of the mechanistic effects of these factors should lead to new neuroprotective strategies for infants at risk for early respiratory control disturbances, such as apnoeas of prematurity, sudden infant death syndrome and congenital central hypoventilation syndrome.
Collapse
Affiliation(s)
- Claude Gaultier
- Service de Physiologie, Hôpital Robert Debré, 48 Boulevard Serurier, 75019 Paris, France.
| | | |
Collapse
|
46
|
Soukhova-O'Hare GK, Cheng ZJ, Roberts AM, Gozal D. Postnatal intermittent hypoxia alters baroreflex function in adult rats. Am J Physiol Heart Circ Physiol 2005; 290:H1157-64. [PMID: 16155099 DOI: 10.1152/ajpheart.00767.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chronic perinatal intermittent hypoxia (IH) could have long-term cardiovascular effects by altering baroreflex function. To examine this hypothesis, we exposed rats (n = 6/group) for postnatal days 1-30 or prenatal embryonic days 5-21 to IH (8% ambient O2 for 90 s after 90 s of 21% of O2, 12 h/day) or to normoxia (control). Baroreflex sensitivity (BRS) and cardiac chronotropic responses were examined in anesthetized animals 3.5-5 mo later by infusing phenylephrine or sodium nitroprusside (6-12 microg/min iv, 1-2 min) during normoxia and after 18 min of acute IH (IHA). In controls after IHA, baroreflex gain was 42% (P < 0.05) less than during normoxia. BRS in the postnatal IH group during normoxia was approximately 50% less than in control rats and similar to controls after IHA. The heart rate response to phenylephrine in the IH group was also less than in controls (P < 0.05) and was not changed by IHA. BRS and heart rate responses in the prenatal IH group were similar to the normoxic control group. Vagal efferent projections to atrial ganglia neurons in rats after postnatal IH (n = 4) were examined by injecting tracer into the left nucleus ambiguous. After 35 days of postnatal IH, basket ending density was reduced by 17% (P < 0.001) and vagal axon varicose contacts by 56% (P < 0.001) compared with controls. We conclude that reduction of vagal efferent projections in cardiac ganglia could be a cause of long-term modifications in baroreflex function.
Collapse
Affiliation(s)
- Galia K Soukhova-O'Hare
- Department of Pediatrics, Kosair Children's Hospital Research Institute, 570 S Preston St., Suite 321, University of Louisville, Louisville, Kentucky 40202, USA
| | | | | | | |
Collapse
|
47
|
Terblanche JS, Tolley KA, Fahlman A, Myburgh KH, Jackson S. The acute hypoxic ventilatory response: testing the adaptive significance in human populations. Comp Biochem Physiol A Mol Integr Physiol 2005; 140:349-62. [PMID: 15792601 DOI: 10.1016/j.cbpb.2005.01.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2004] [Revised: 01/23/2005] [Accepted: 01/24/2005] [Indexed: 11/30/2022]
Abstract
The acute Hypoxic Ventilatory Response (HVR) is an important component of human hypoxia tolerance, hence presumably physiological adaptation to high altitude. We measured the isocapnic HVR (L min(-1) %(-1)) in two genetically divergent low altitude southern African populations. The HVR does not differ between African Xhosas (X) and Caucasians (C) (X:-0.34+/-0.36; C:-0.42+/-0.33; P > 0.34), but breathing patterns do. Among all Xhosa subjects, size-independent tidal volume was smaller (X: 0.75+/-0.20; C: 1.11+/-0.32 L; P < 0.01), breathing frequency higher (X: 22.2+/-5.7; C: 14.3+/-4.2 breaths min(-1); P < 0.01) and hypoxic oxygen saturation lower than among Caucasians (X: 78.4+/-4.7%; C: 81.7+/-4.7%; P < 0.05). The results remained significant if subjects from Xhosa and Caucasian groups were matched for gender, body mass index and menstrual cycle phase in the case of females. The latter also employed distinct breathing patterns between populations in normoxia. High repeatability (intra-class correlation coefficient) of the HVR in both populations (0.77-0.87) demonstrates that one of the prerequisites for natural selection, consistent between-individual variation, is met. Finally, we explore possible relationships between inter-population genetic distances and HVR differences among Xhosa, European, Aymara Amerindians, Tibetan and Chinese populations. Inter-population differences in the HVR are not attributable to genetic distance (Mantel Z-test, P = 0.59). The results of this study add novel support for the hypothesis that differences in the HVR, should they be found between other human populations, may reflect adaptation to hypoxia rather than genetic divergence through time.
Collapse
Affiliation(s)
- John S Terblanche
- Department of Physiological Sciences, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa.
| | | | | | | | | |
Collapse
|