1
|
Dai Y, Cheng Y, Ge R, Chen K, Yang L. Exercise-induced adaptation of neurons in the vertebrate locomotor system. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 13:160-171. [PMID: 37914153 PMCID: PMC10980905 DOI: 10.1016/j.jshs.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/20/2023] [Accepted: 10/07/2023] [Indexed: 11/03/2023]
Abstract
Vertebrate neurons are highly dynamic cells that undergo several alterations in their functioning and physiologies in adaptation to various external stimuli. In particular, how these neurons respond to physical exercise has long been an area of active research. Studies of the vertebrate locomotor system's adaptability suggest multiple mechanisms are involved in the regulation of neuronal activity and properties during exercise. In this brief review, we highlight recent results and insights from the field with a focus on the following mechanisms: (a) alterations in neuronal excitability during acute exercise; (b) alterations in neuronal excitability after chronic exercise; (c) exercise-induced changes in neuronal membrane properties via modulation of ion channel activity; (d) exercise-enhanced dendritic plasticity; and (e) exercise-induced alterations in neuronal gene expression and protein synthesis. Our hope is to update the community with a cellular and molecular understanding of the recent mechanisms underlying the adaptability of the vertebrate locomotor system in response to both acute and chronic physical exercise.
Collapse
Affiliation(s)
- Yue Dai
- Key Lab of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health Care, East China Normal University, Shanghai 200241, China; Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, Shanghai 200241, China.
| | - Yi Cheng
- Key Lab of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health Care, East China Normal University, Shanghai 200241, China
| | - Renkai Ge
- School of Physical Education and Health Care, East China Jiaotong University, Nanchang 330013, China
| | - Ke Chen
- Key Laboratory of High Confidence Software Technologies of Ministry of Education, School of Computer Science, Peking University, Beijing 100871, China
| | - Liming Yang
- Key Lab of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health Care, East China Normal University, Shanghai 200241, China
| |
Collapse
|
2
|
Beauchamp JA, Pearcey GEP, Khurram OU, Chardon M, Wang YC, Powers RK, Dewald JPA, Heckman CJ. A geometric approach to quantifying the neuromodulatory effects of persistent inward currents on individual motor unit discharge patterns. J Neural Eng 2023; 20:016034. [PMID: 36626825 PMCID: PMC9885522 DOI: 10.1088/1741-2552/acb1d7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/11/2022] [Accepted: 01/10/2023] [Indexed: 01/11/2023]
Abstract
Objective.All motor commands flow through motoneurons, which entrain control of their innervated muscle fibers, forming a motor unit (MU). Owing to the high fidelity of action potentials within MUs, their discharge profiles detail the organization of ionotropic excitatory/inhibitory as well as metabotropic neuromodulatory commands to motoneurons. Neuromodulatory inputs (e.g. norepinephrine, serotonin) enhance motoneuron excitability and facilitate persistent inward currents (PICs). PICs introduce quantifiable properties in MU discharge profiles by augmenting depolarizing currents upon activation (i.e. PIC amplification) and facilitating discharge at lower levels of excitatory input than required for recruitment (i.e. PIC prolongation).Approach. Here, we introduce a novel geometric approach to estimate neuromodulatory and inhibitory contributions to MU discharge by exploiting discharge non-linearities introduced by PIC amplification during time-varying linear tasks. In specific, we quantify the deviation from linear discharge ('brace height') and the rate of change in discharge (i.e. acceleration slope, attenuation slope, angle). We further characterize these metrics on a simulated motoneuron pool with known excitatory, inhibitory, and neuromodulatory inputs and on human MUs (number of MUs; Tibialis Anterior: 1448, Medial Gastrocnemius: 2100, Soleus: 1062, First Dorsal Interosseus: 2296).Main results. In the simulated motor pool, we found brace height and attenuation slope to consistently indicate changes in neuromodulation and the pattern of inhibition (excitation-inhibition coupling), respectively, whereas the paired MU analysis (ΔF) was dependent on both neuromodulation and inhibition pattern. Furthermore, we provide estimates of these metrics in human MUs and show comparable variability in ΔFand brace height measures for MUs matched across multiple trials.Significance. Spanning both datasets, we found brace height quantification to provide an intuitive method for achieving graded estimates of neuromodulatory and inhibitory drive to individual MUs. This complements common techniques and provides an avenue for decoupling changes in the level of neuromodulatory and pattern of inhibitory motor commands.
Collapse
Affiliation(s)
- James A Beauchamp
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, IL, United States of America
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - Gregory E P Pearcey
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Obaid U Khurram
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States of America
| | - Matthieu Chardon
- Northwestern Argonne Institute for Science and Engineering (NAISE), Northwestern University, Evanston, IL, United States of America
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - Y Curtis Wang
- Department of Electrical and Computer Engineering, California State University, Los Angeles, Los Angeles, CA, United States of America
| | - Randall K Powers
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, United States of America
| | - Julius P A Dewald
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, IL, United States of America
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - CJ Heckman
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
- Shirley Ryan AbilityLab, Chicago, IL, United States of America
| |
Collapse
|
3
|
Kavanagh JJ, Taylor JL. Voluntary activation of muscle in humans: does serotonergic neuromodulation matter? J Physiol 2022; 600:3657-3670. [PMID: 35864781 PMCID: PMC9541597 DOI: 10.1113/jp282565] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/12/2022] [Indexed: 11/08/2022] Open
Abstract
Ionotropic inputs to motoneurones have the capacity to depolarise and hyperpolarise the motoneurone, whereas neuromodulatory inputs control the state of excitability of the motoneurone. Intracellular recordings of motoneurones from in vitro and in situ animal preparations have provided extraordinary insight into the mechanisms that underpin how neuromodulators regulate neuronal excitability. However, far fewer studies have attempted to translate the findings from cellular and molecular studies into a human model. In this review, we focus on the role that serotonin (5-HT) plays in muscle activation in humans. 5-HT is a potent regulator of neuronal firing rates, which can influence the force that can be generated by muscles during voluntary contractions. We firstly outline structural and functional characteristics of the serotonergic system, and then describe how motoneurone discharge can be facilitated and suppressed depending on the 5-HT receptor subtype that is activated. We then provide a narrative on how 5-HT effects can influence voluntary activation during muscle contractions in humans, and detail how 5-HT may be a mediator of exercise-induced fatigue that arises from the central nervous system.
Collapse
Affiliation(s)
- Justin J. Kavanagh
- Neural Control of Movement laboratoryMenzies Health Institute QueenslandGriffith UniversityGold CoastAustralia
| | - Janet L. Taylor
- Centre for Human Performance, School of Medical and Health SciencesEdith Cowan UniversityPerthAustralia
- Neuroscience Research AustraliaSydneyAustralia
| |
Collapse
|
4
|
Patterson JR, Dewald JPA, Drogos JM, Gurari N. Impact of Voluntary Muscle Activation on Stretch Reflex Excitability in Individuals With Hemiparetic Stroke. Front Neurol 2022; 13:764650. [PMID: 35359658 PMCID: PMC8964046 DOI: 10.3389/fneur.2022.764650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 02/07/2022] [Indexed: 11/21/2022] Open
Abstract
Objective To characterize how, following a stretch-induced attenuation, volitional muscle activation impacts stretch reflex activity in individuals with stroke. Methods A robotic device rotated the paretic elbow of individuals with hemiparetic stroke from 70° to 150°, and then back to 70° elbow flexion at an angular speed of 120°/s. This stretching sequence was repeated 20 times. Subsequently, participants volitionally activated their elbow musculature or rested. Finally, the stretching sequence was repeated another 20 times. The flexors' stretch reflex activity was quantified as the net torque measured at 135°. Results Data from 15 participants indicated that the stretching sequence attenuated the flexion torque (p < 0.001) and resting sustained the attenuation (p = 1.000). Contrastingly, based on data from 14 participants, voluntary muscle activation increased the flexion torque (p < 0.001) to an initial pre-stretch torque magnitude (p = 1.000). Conclusions Stretch reflex attenuation induced by repeated fast stretches may be nullified when individuals post-stroke volitionally activate their muscles. In contrast, resting may enable a sustained reflex attenuation if the individual remains relaxed. Significance Stretching is commonly implemented to reduce hyperactive stretch reflexes following a stroke. These findings suggest that stretch reflex accommodation arising from repeated fast stretching may be reversed once an individual volitionally moves their paretic arm.
Collapse
Affiliation(s)
- Jacqueline R. Patterson
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States
- Northwestern University Interdepartmental Neuroscience, Northwestern University, Chicago, IL, United States
- Department of Physiology, Northwestern University, Chicago, IL, United States
| | - Julius P. A. Dewald
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States
- Northwestern University Interdepartmental Neuroscience, Northwestern University, Chicago, IL, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States
| | - Justin M. Drogos
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States
| | - Netta Gurari
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States
- Northwestern University Interdepartmental Neuroscience, Northwestern University, Chicago, IL, United States
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, United States
| |
Collapse
|
5
|
Abstract
Beginning about half a century ago, the rules that determine how motor units are recruited during movement have been deduced. These classical experiments led to the formulation of the 'size principle'. It is now clear that motoneuronal size is not the only indicator of recruitment order. In fact, motoneuronal passive, active and synaptic conductances are carefully tuned to achieve sequential recruitment. More recent studies, over the last decade or so, show that the premotor circuitry is also functionally specialized and differentially recruited. Modular sub networks of interneurons and their post-synaptic motoneurons have been shown to drive movements with varying intensities. In addition, these modular networks are under the influence of neuromodulators, which are capable of acting upon multiple motor and premotor targets, thereby altering behavioral outcomes. We discuss the recruitment patterns of motoneurons in light of these new and exciting studies.
Collapse
Affiliation(s)
| | - Urvashi Jha
- National Centre for Biological Sciences, Bangalore, India
| |
Collapse
|
6
|
Zhang Q, Dai Y. A modeling study of spinal motoneuron recruitment regulated by ionic channels during fictive locomotion. J Comput Neurosci 2020; 48:409-428. [PMID: 32895895 DOI: 10.1007/s10827-020-00763-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 11/24/2022]
Abstract
During fictive locomotion cat lumbar motoneurons exhibit changes in membrane proprieties including a decrease in voltage threshold (Vth), afterhyperpolarization (AHP) and input resistance (Rin) and an increase in non-linear membrane property. The impact of these changes on the motoneuron recruitment remains unknown. Using modeling approach we investigated the channel mechanism regulating the motoneuron recruitment. Three types of motoneuron pools including slow (S), fatigue-resistant (FR) and fast-fatigable (FF) motoneurons were constructed based on the membrane proprieties of cat lumbar motoneurons. The transient sodium (NaT), persistent sodium (NaP), delayed-rectifier potassium [K(DR)], Ca2+-dependent K+ [K(AHP)] and L-type calcium (CaL) channels were included in the models. Simulation results showed that (1) Strengthening synaptic inputs increased the number of recruitments in all three types of motoneurons following the size principle. (2) Increasing NaT or NaP or decreasing K(DR) or K(AHP) lowered rheobase of spike generation thus increased recruitment of motoneuron pools. (3) Decreasing Rin reduced recruitment in all three types of motoneurons. (4) The FF-type motoneuron pool, followed by FR- and S-type, were the most sensitive to increase of synaptic inputs, reduction of Rin, upregulation of NaT and NaP, and downregulation of K(DR) and K(AHP). (5) Increasing CaL enhanced overall discharge rate of motoneuron pools with little effect on the recruitment. Simulation results suggested that modulation of ionic channels altered the output of motoneuron pools with either modulating the number of recruited motoneurons or regulating the overall discharge rate of motoneuron pools. Multiple channels contributed to the recruitment of motoneurons with interaction of excitatory and inhibitory synaptic inputs during walking.
Collapse
Affiliation(s)
- Qiang Zhang
- Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, Shanghai, 200241, China
| | - Yue Dai
- Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, Shanghai, 200241, China. .,Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, School of Physical Education and Health Care, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
7
|
Monjo F, Shemmell J. Probing the neuromodulatory gain control system in sports and exercise sciences. J Electromyogr Kinesiol 2020; 53:102442. [DOI: 10.1016/j.jelekin.2020.102442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 01/22/2023] Open
|
8
|
Aguilar Garcia IG, Dueñas-Jiménez JM, Castillo L, Osuna-Carrasco LP, De La Torre Valdovinos B, Castañeda-Arellano R, López-Ruiz JR, Toro-Castillo C, Treviño M, Mendizabal-Ruiz G, Duenas-Jimenez SH. Fictive Scratching Patterns in Brain Cortex-Ablated, Midcollicular Decerebrate, and Spinal Cats. Front Neural Circuits 2020; 14:1. [PMID: 32174815 PMCID: PMC7056700 DOI: 10.3389/fncir.2020.00001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/03/2020] [Indexed: 11/13/2022] Open
Abstract
Background: The spinal cord’s central pattern generators (CPGs) have been explained by the symmetrical half-center hypothesis, the bursts generator, computational models, and more recently by connectome circuits. Asymmetrical models, at odds with the half-center paradigm, are composed of extensor and flexor CPG modules. Other models include not only flexor and extensor motoneurons but also motoneuron pools controlling biarticular muscles. It is unknown whether a preferred model can explain some particularities that fictive scratching (FS) in the cat presents. The first aim of this study was to investigate FS patterns considering the aiming and the rhythmic periods, and second, to examine the effects of serotonin (5HT) on and segmental inputs to FS. Methods: The experiments were carried out first in brain cortex-ablated cats (BCAC), then spinalized (SC), and for the midcollicular (MCC) preparation. Subjects were immobilized and the peripheral nerves were used to elicit the Monosynaptic reflex (MR), to modify the scratching patterns and for electroneurogram recordings. Results: In BCAC, FS was produced by pinna stimulation and, in some cases, by serotonin. The scratching aiming phase (AP) initiates with the activation of either flexor or extensor motoneurons. Serotonin application during the AP produced simultaneous extensor and flexor bursts. Furthermore, WAY 100635 (5HT1A antagonist) produced a brief burst in the tibialis anterior (TA) nerve, followed by a reduction in its electroneurogram (ENG), while the soleus ENG remained silent. In SC, rhythmic phase (RP) activity was recorded in the soleus motoneurons. Serotonin or WAY produced FS bouts. The electrical stimulation of Ia afferent fibers produced heteronymous MRes waxing and waning during the scratch cycle. In MCC, FS began with flexor activity. Electrical stimulation of either deep peroneus (DP) or superficial peroneus (SP) nerves increased the duration of the TA electroneurogram. Medial gastrocnemius (MG) stretching or MG nerve electrical stimulation produced a reduction in the TA electroneurogram and an initial MG extensor burst. MRes waxed and waned during the scratch cycle. Conclusion: Descending pathways and segmental afferent fibers, as well as 5-HT and WAY, can change the FS pattern. To our understanding, the half-center hypothesis is the most suitable for explaining the AP in MCC.
Collapse
Affiliation(s)
| | | | - Luis Castillo
- Centro Básico, Universidad de Aguascalientes, Aguascalientes, Mexico
| | | | | | | | | | - Carmen Toro-Castillo
- Departmento de Electrónica y Computación, CUCEI, Universidad de Guadalajara, Guadalajara, Mexico
| | - Mario Treviño
- Laboratorio de Plasticidad Cortical y Aprendizaje Perceptual, Instituto de Neurociencias, Universidad de Guadalajara, Guadalajara, Mexico
| | - Gerardo Mendizabal-Ruiz
- Departmento de Electrónica y Computación, CUCEI, Universidad de Guadalajara, Guadalajara, Mexico
| | | |
Collapse
|
9
|
Beauchamp JA, Patterson JR, Heckman CJ, Dewald JPA. Experimentally Modifiable Parameters and Their Relation to the Tonic Vibration Reflex in Chronic Hemiparetic Stroke. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:2302-2306. [PMID: 31946360 DOI: 10.1109/embc.2019.8857014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The tonic vibration reflex (TVR), a reflexive muscle contraction resulting from muscle or tendon vibration, is a useful tool in assessing spinal motoneuron excitability, particularly in hyperexcitable conditions, such as in chronic hemiparetic stroke. The influence of experimental parameters, for example the type of vibratory stimulus and limb configuration, and their interactions on the TVR response in chronic stroke is unknown, yet this knowledge is crucial for designing experiments with reliable TVR responses. Therefore, we conducted a screening experiment of six potential driving factors affecting the TVR response, with a D-optimal split plot fractional design matrix consisting of thirty-two combinations for each of the four participants with chronic hemiparetic stroke. Our results suggest that pre-vibration muscle activation level, vibration frequency, and stimulus application force, are all significant contributors to the TVR response in chronic hemiparetic stroke, along with an interaction between elbow flexion angle and muscle activity level. This investigation highlights the sensitivity of the TVR response in chronic hemiparetic stroke and motivates future designed experiments in understanding this reflex as it relates to motoneuron excitability.
Collapse
|
10
|
Morphological and electrophysiological properties of serotonin neurons with NMDA modulation in the mesencephalic locomotor region of neonatal ePet-EYFP mice. Exp Brain Res 2019; 237:3333-3350. [PMID: 31720812 DOI: 10.1007/s00221-019-05675-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 11/07/2019] [Indexed: 10/25/2022]
Abstract
The mesencephalic locomotor region (MLR) is an essential area for initiation of locomotion. Its functional roles and circuits underlying locomotion have been studied intensively in many species. Studies suggest that cuneiform nucleus and pedunculopontine nucleus (PPN) are two core regions in the MLR for locomotion. However, it remains unclear about cellular components and morphological and intrinsic membrane properties of the neurons in these regions, especially the serotonergic neurons. Using neonatal ePet-EYFP transgenic mice and immunofluorescent technique, we demonstrated existence of 5-HT neurons in the MLR and discovered that 5-HT neurons distributed mainly in the caudal PPN. 5-HT neurons were heterogeneous in MLR and had three types of firing pattern (single spike, phasic and tonic) and two subtypes of morphology (pyramidal and stellate). We measured parameters of 5-HT neurons (n = 35) including resting membrane potential (- 69.2 ± 4.2 mV), input resistance (1410.1 ± 616.9 MΩ), membrane capacitance (36.4 ± 14.9 pF), time constant (49.7 ± 19.4 ms), voltage threshold (- 32.1 ± 7.4 mV), rheobase (21.3 ± 12.4 pA), action potential amplitude (58.9 ± 12.8 mV) and half-width (4.7 ± 1.1 ms), afterhyperpolarization amplitude (23.6 ± 10.4 mV) and half-decay (331.6 ± 157.7 ms). 5-HT neurons were intrinsically different from adjacent non-5-HT neurons and less excitable than them. Hyperpolarization-activated inward currents and persistent inward currents were recorded in 5-HT neurons. NMDA increased excitability of 5-HT neurons, especially the tonic-firing neurons, accompanied with depolarization of membrane potential, hyperpolarization of voltage threshold, reduction of afterhyperpolarization half-decay, and left-shift of frequency-current relationship. This study provided insight into the distribution and properties of 5-HT neurons in the MLR and interaction between serotonergic and glutamatergic modulations.
Collapse
|
11
|
Thompson CK, Johnson MD, Negro F, Mcpherson LM, Farina D, Heckman CJ. Exogenous neuromodulation of spinal neurons induces beta-band coherence during self-sustained discharge of hind limb motor unit populations. J Appl Physiol (1985) 2019; 127:1034-1041. [PMID: 31318619 PMCID: PMC6850985 DOI: 10.1152/japplphysiol.00110.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The spontaneous or self-sustained discharge of spinal motoneurons can be observed in both animals and humans. Although the origins of this self-sustained discharge are not fully known, it can be generated by activation of persistent inward currents intrinsic to the motoneuron. If self-sustained discharge is generated exclusively through this intrinsic mechanism, the discharge of individual motor units will be relatively independent of one another. Alternatively, if increased activation of premotor circuits underlies this prolonged discharge of spinal motoneurons, we would expect correlated activity among motoneurons. Our aim is to assess potential synaptic drive by quantifying coherence during self-sustained discharge of spinal motoneurons. Electromyographic activity was collected from 20 decerebrate animals using a 64-channel electrode grid placed on the isolated soleus muscle before and following intrathecal administration of methoxamine, a selective α1-noradrenergic agonist. Sustained muscle activity was recorded and decomposed into the discharge times of ~10-30 concurrently active individual motor units. Consistent with previous reports, the self-sustained discharge of motor units occurred at low mean discharge rates with low-interspike variability. Before methoxamine administration, significant low-frequency coherence (<2 Hz) was observed, while minimal coherence was observed within higher frequency bands. Following intrathecal administration of methoxamine, increases in motor unit discharge rates and strong coherence in both the low-frequency and 15- to 30-Hz beta bands were observed. These data demonstrate beta-band coherence among motor units can be observed through noncortical mechanisms and that neuromodulation of spinal/brainstem neurons greatly influences coherent discharge within spinal motor pools.NEW & NOTEWORTHY The correlated discharge of spinal motoneurons is often used to describe the input to the motor pool. We demonstrate spinal/brainstem neurons devoid of cortical input can generate correlated motor unit discharge in the 15- to 30-Hz beta band, which is amplified through neuromodulation. Activity in the beta band is often ascribed to cortical drive in humans; however, these data demonstrate the capability of the mammalian segmental motor system to generate and modulate this coherent state of motor unit discharge.
Collapse
Affiliation(s)
| | | | - Francesco Negro
- 3Department of Clinical and Experimental Sciences, Research Centre for Neuromuscular Function and Adapted Physical Activity “Teresa Camplani,” Università degli Studi di Brescia, Bescia, Italy
| | | | - Dario Farina
- 5Department of Bioengineering, Imperial College London, London, United Kingdom
| | | |
Collapse
|
12
|
Quinlan KA, Reedich EJ, Arnold WD, Puritz AC, Cavarsan CF, Heckman CJ, DiDonato CJ. Hyperexcitability precedes motoneuron loss in the Smn2B/- mouse model of spinal muscular atrophy. J Neurophysiol 2019; 122:1297-1311. [PMID: 31365319 DOI: 10.1152/jn.00652.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Spinal motoneuron dysfunction and loss are pathological hallmarks of the neuromuscular disease spinal muscular atrophy (SMA). Changes in motoneuron physiological function precede cell death, but how these alterations vary with disease severity and motoneuron maturational state is unknown. To address this question, we assessed the electrophysiology and morphology of spinal motoneurons of presymptomatic Smn2B/- mice older than 1 wk of age and tracked the timing of motor unit loss in this model using motor unit number estimation (MUNE). In contrast to other commonly used SMA mouse models, Smn2B/- mice exhibit more typical postnatal development until postnatal day (P)11 or 12 and have longer survival (~3 wk of age). We demonstrate that Smn2B/- motoneuron hyperexcitability, marked by hyperpolarization of the threshold voltage for action potential firing, was present at P9-10 and preceded the loss of motor units. Using MUNE studies, we determined that motor unit loss in this mouse model occurred 2 wk after birth. Smn2B/- motoneurons were also larger in size, which may reflect compensatory changes taking place during postnatal development. This work suggests that motoneuron hyperexcitability, marked by a reduced threshold for action potential firing, is a pathological change preceding motoneuron loss that is common to multiple models of severe SMA with different motoneuron maturational states. Our results indicate voltage-gated sodium channel activity may be altered in the disease process.NEW & NOTEWORTHY Changes in spinal motoneuron physiologic function precede cell death in spinal muscular atrophy (SMA), but how they vary with maturational state and disease severity remains unknown. This study characterized motoneuron and neuromuscular electrophysiology from the Smn2B/- model of SMA. Motoneurons were hyperexcitable at postnatal day (P)9-10, and specific electrophysiological changes in Smn2B/- motoneurons preceded functional motor unit loss at P14, as determined by motor unit number estimation studies.
Collapse
Affiliation(s)
- K A Quinlan
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island.,George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island.,Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - E J Reedich
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Human Molecular Genetics Program, Stanley Manne Children's Research Institute at Ann & Robert H. Lurie Children's Hospital, Chicago, Illinois
| | - W D Arnold
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, Ohio.,Department of Physical Medicine and Rehabilitation, The Ohio State University Wexner Medical Center, Columbus, Ohio.,Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio.,Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - A C Puritz
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - C F Cavarsan
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island.,George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island
| | - C J Heckman
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - C J DiDonato
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Human Molecular Genetics Program, Stanley Manne Children's Research Institute at Ann & Robert H. Lurie Children's Hospital, Chicago, Illinois
| |
Collapse
|
13
|
Dantsuji M, Nakamura S, Nakayama K, Mochizuki A, Park SK, Bae YC, Ozeki M, Inoue T. 5-HT 2A receptor activation enhances NMDA receptor-mediated glutamate responses through Src kinase in the dendrites of rat jaw-closing motoneurons. J Physiol 2019; 597:2565-2589. [PMID: 30919966 DOI: 10.1113/jp275440] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/26/2019] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS 5-HT increases the excitability of brainstem and spinal motoneurons, including the jaw-closing motoneurons, by depolarizing the membrane potential and decreasing the medium-duration afterhyperpolarization. In this study, we focused on how 5-HT enhances postsynaptic glutamatergic responses in the dendrites of the jaw-closing motoneurons. We demonstrate that 5-HT augments glutamatergic signalling by enhancing the function of the GluN2A-containing NMDA receptor (NMDAR) through the activation of 5-HT2A receptors (5-HT2A Rs) and Src kinase. To enhance glutamatergic responses, activation of the 5-HT2A Rs must occur within ∼60 μm of the location of the glutamate responses. 5-HT inputs to the jaw-closing motoneurons can significantly vary their input-output relationship, which may contribute to wide-range regulation of contractile forces of the jaw-closing muscles. ABSTRACT Various motor behaviours are modulated by 5-HT. Although the masseter (jaw-closing) motoneurons receive both glutamatergic and serotonergic inputs, it remains unclear how 5-HT affects the glutamatergic inputs to the motoneuronal dendrites. We examined the effects of 5-HT on postsynaptic responses evoked by single- or two-photon uncaging of caged glutamate (glutamate responses) to the dendrites of masseter motoneurons in postnatal day 2-5 rats of either sex. Application of 5-HT induced membrane depolarization and enhanced the glutamate-response amplitude. This enhancement was mimicked by the 5-HT2A receptor (5-HT2A R) agonist and was blocked by the 5-HT2A/2C R antagonist. However, neither the 5-HT2B R nor the 5-HT2C R agonists altered glutamate responses. Blockade of the NMDA receptors (NMDARs), but not AMPA receptors, abolished the 5-HT-induced enhancement. Furthermore, the selective antagonist for the GluN2A subunit abolished the 5-HT-induced enhancement. 5-HT increased GluN2A phosphorylation, while the Src kinase inhibitor reduced the 5-HT-induced enhancement and GluN2A phosphorylation. When exposure to the 5-HT2A R agonist was targeted to the dendrites, the enhancement of glutamate responses was restricted to the loci of the dendrites near the puff loci. Electron microscopic immunohistochemistry revealed that both the NMDARs and the 5-HT2A Rs were close to each other in the same dendrite. These results suggest that activation of dendritic 5-HT2A Rs enhances the function of local GluN2A-containing NMDARs through Src kinase. Such enhancement of the glutamate responses by 5-HT may contribute to wide-range regulation of contractile forces of the jaw-closing muscles.
Collapse
Affiliation(s)
- Masanori Dantsuji
- Department of Oral Physiology, Showa University School of Dentistry, Shinagawa-ku, Tokyo, 142-8555, Japan.,Department of Implant Dentistry, Showa University School of Dentistry, Oota-ku, Tokyo, 145-8515, Japan
| | - Shiro Nakamura
- Department of Oral Physiology, Showa University School of Dentistry, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Kiyomi Nakayama
- Department of Oral Physiology, Showa University School of Dentistry, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Ayako Mochizuki
- Department of Oral Physiology, Showa University School of Dentistry, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Sook Kyung Park
- Department of Oral Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, 700-412, Republic of Korea
| | - Yong Chul Bae
- Department of Oral Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, 700-412, Republic of Korea
| | - Masahiko Ozeki
- Department of Implant Dentistry, Showa University School of Dentistry, Oota-ku, Tokyo, 145-8515, Japan
| | - Tomio Inoue
- Department of Oral Physiology, Showa University School of Dentistry, Shinagawa-ku, Tokyo, 142-8555, Japan
| |
Collapse
|
14
|
Collins BW, Pearcey GE, Buckle NC, Power KE, Button DC. Neuromuscular fatigue during repeated sprint exercise: underlying physiology and methodological considerations. Appl Physiol Nutr Metab 2018; 43:1166-1175. [DOI: 10.1139/apnm-2018-0080] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Neuromuscular fatigue occurs when an individual’s capacity to produce force or power is impaired. Repeated sprint exercise requires an individual to physically exert themselves at near-maximal to maximal capacity for multiple short-duration bouts, is extremely taxing on the neuromuscular system, and consequently leads to the rapid development of neuromuscular fatigue. During repeated sprint exercise the development of neuromuscular fatigue is underlined by a combination of central and peripheral fatigue. However, there are a number of methodological considerations that complicate the quantification of the development of neuromuscular fatigue. The main goal of this review is to synthesize the results from recent investigations on the development of neuromuscular fatigue during repeated sprint exercise. Hence, we summarize the overall development of neuromuscular fatigue, explain how recovery time may alter the development of neuromuscular fatigue, outline the contributions of peripheral and central fatigue to neuromuscular fatigue, and provide some methodological considerations for quantifying neuromuscular fatigue during repeated sprint exercise.
Collapse
Affiliation(s)
- Brandon W. Collins
- BioMedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NL A1C 5S7, Canada
| | - Gregory E.P. Pearcey
- Rehabilitation Neuroscience Laboratory and Centre for Biomedical Research, University of Victoria, Victoria, BC V8W 2Y2, Canada
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC V5Z 1M9, Canada
| | - Natasha C.M. Buckle
- School of Human Kinetics and Recreation and BioMedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NL A1C 5S7, Canada
| | - Kevin E. Power
- School of Human Kinetics and Recreation and BioMedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NL A1C 5S7, Canada
| | - Duane C. Button
- School of Human Kinetics and Recreation and BioMedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NL A1C 5S7, Canada
| |
Collapse
|
15
|
Power KE, Lockyer EJ, Forman DA, Button DC. Modulation of motoneurone excitability during rhythmic motor outputs. Appl Physiol Nutr Metab 2018. [DOI: 10.1139/apnm-2018-0077] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In quadrupeds, special circuity located within the spinal cord, referred to as central pattern generators (CPGs), is capable of producing complex patterns of activity such as locomotion in the absence of descending input. During these motor outputs, the electrical properties of spinal motoneurones are modulated such that the motoneurone is more easily activated. Indirect evidence suggests that like quadrupeds, humans also have spinally located CPGs capable of producing locomotor outputs, albeit descending input is considered to be of greater importance. Whether motoneurone properties are reconfigured in a similar manner to those of quadrupeds is unclear. The purpose of this review is to summarize our current state of knowledge regarding the modulation of motoneurone excitability during CPG-mediated motor outputs using animal models. This will be followed by more recent work initially aimed at understanding changes in motoneurone excitability during CPG-mediated motor outputs in humans, which quickly expanded to also include supraspinal excitability.
Collapse
Affiliation(s)
- Kevin E. Power
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
- Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| | - Evan J. Lockyer
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| | - Davis A. Forman
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
- Faculty of Science, University of Ontario Institute of Technology, Oshawa, ON L1H 7K4, Canada
| | - Duane C. Button
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
- Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| |
Collapse
|
16
|
McPherson JG, Ellis MD, Harden RN, Carmona C, Drogos JM, Heckman CJ, Dewald JPA. Neuromodulatory Inputs to Motoneurons Contribute to the Loss of Independent Joint Control in Chronic Moderate to Severe Hemiparetic Stroke. Front Neurol 2018; 9:470. [PMID: 29977224 PMCID: PMC6021513 DOI: 10.3389/fneur.2018.00470] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 05/31/2018] [Indexed: 01/01/2023] Open
Abstract
In chronic hemiparetic stroke, increased shoulder abductor activity causes involuntary increases in elbow, wrist, and finger flexor activation, an abnormal muscle coactivation pattern known as the flexion synergy. Recent evidence suggests that flexion synergy expression may reflect recruitment of contralesional cortico-reticulospinal motor pathways following damage to the ipsilesional corticospinal tract. However, because reticulospinal motor pathways produce relatively weak post-synaptic potentials in motoneurons, it is unknown how preferential use of these pathways could lead to robust muscle activation. Here, we hypothesize that the descending neuromodulatory component of the ponto-medullary reticular formation, which uses the monoaminergic neurotransmitters norepinephrine and serotonin, serves as a gain control mechanism to facilitate motoneuron responses to reticulospinal motor commands. Thus, inhibition of the neuromodulatory component would reduce flexion synergy expression by disfacilitating spinal motoneurons. To test this hypothesis, we conducted a pre-clinical study utilizing two targeted neuropharmacological probes and inert placebo in a cohort of 16 individuals with chronic hemiparetic stroke. Test compounds included Tizanidine (TIZ), a noradrenergic α2 agonist and imidazoline ligand selected for its ability to reduce descending noradrenergic drive, and Isradipine, a dihyropyridine calcium-channel antagonist selected for its ability to post-synaptically mitigate a portion of the excitatory effects of monoamines on motoneurons. We used a previously validated robotic measure to quantify flexion synergy expression. We found that Tizanidine significantly reduced expression of the flexion synergy. A predominantly spinal action for this effect is unlikely because Tizanidine is an agonist acting on a baseline of spinal noradrenergic drive that is likely to be pathologically enhanced post-stroke due to increased reliance on cortico-reticulospinal motor pathways. Although spinal actions of TIZ cannot be excluded, particularly from Group II pathways, our finding is consistent with a supraspinal action of Tizanidine to reduce descending noradrenergic drive and disfacilitate motoneurons. The effects of Isradipine were not different from placebo, likely related to poor central bioavailability. These results support the hypothesis that the descending monoaminergic component of the ponto-medullary reticular formation plays a key role in flexion synergy expression in chronic hemiparetic stroke. These results may provide the basis for new therapeutic strategies to complement physical rehabilitation.
Collapse
Affiliation(s)
- Jacob G McPherson
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Department of Biomedical Engineering, Florida International University, Miami, FL, United States
| | - Michael D Ellis
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - R Norman Harden
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Carolina Carmona
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Justin M Drogos
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Charles J Heckman
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Julius P A Dewald
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States
| |
Collapse
|
17
|
McPherson JG, McPherson LM, Thompson CK, Ellis MD, Heckman CJ, Dewald JPA. Altered Neuromodulatory Drive May Contribute to Exaggerated Tonic Vibration Reflexes in Chronic Hemiparetic Stroke. Front Hum Neurosci 2018; 12:131. [PMID: 29686611 PMCID: PMC5900019 DOI: 10.3389/fnhum.2018.00131] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 03/22/2018] [Indexed: 12/05/2022] Open
Abstract
Exaggerated stretch-sensitive reflexes are a common finding in elbow flexors of the contralesional arm in chronic hemiparetic stroke, particularly when muscles are not voluntarily activated prior to stretch. Previous investigations have suggested that this exaggeration could arise either from an abnormal tonic ionotropic drive to motoneuron pools innervating the paretic limbs, which could bring additional motor units near firing threshold, or from an increased influence of descending monoaminergic neuromodulatory pathways, which could depolarize motoneurons and amplify their responses to synaptic inputs. However, previous investigations have been unable to differentiate between these explanations, leaving the source(s) of this excitability increase unclear. Here, we used tonic vibration reflexes (TVRs) during voluntary muscle contractions of increasing magnitude to infer the sources of spinal motor excitability in individuals with chronic hemiparetic stroke. We show that when the paretic and non-paretic elbow flexors are preactivated to the same percentage of maximum prior to vibration, TVRs remain significantly elevated in the paretic arm. We also show that the rate of vibration-induced torque development increases as a function of increasing preactivation in the paretic limb, even though the amplitude of vibration-induced torque remains conspicuously unchanged as preactivation increases. It is highly unlikely that these findings could be explained by a source that is either purely ionotropic or purely neuromodulatory, because matching preactivation should control for the effects of a potential ionotropic drive (and lead to comparable tonic vibration reflex responses between limbs), while a purely monoaminergic mechanism would increase reflex magnitude as a function of preactivation. Thus, our results suggest that increased excitability of motor pools innervating the paretic limb post-stroke is likely to arise from both ionotropic and neuromodulatory mechanisms.
Collapse
Affiliation(s)
- Jacob G McPherson
- Department of Biomedical Engineering, Florida International University, Miami, FL, United States.,Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Laura M McPherson
- Department of Biomedical Engineering, Florida International University, Miami, FL, United States.,Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Department of Physical Therapy, Florida International University, Miami, FL, United States
| | - Christopher K Thompson
- Department of Physical Therapy, Temple University, Philadelphia, PA, United States.,Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Michael D Ellis
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Charles J Heckman
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Julius P A Dewald
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States
| |
Collapse
|
18
|
Grigonis R, Alaburda A. Spike threshold dynamics in spinal motoneurons during scratching and swimming. J Physiol 2017; 595:5843-5855. [PMID: 28653361 PMCID: PMC5577544 DOI: 10.1113/jp274434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 06/13/2017] [Indexed: 01/06/2023] Open
Abstract
KEY POINTS Action potential threshold can vary depending on firing history and synaptic inputs. We used an ex vivo carapace-spinal cord preparation from adult turtles to study spike threshold dynamics in motoneurons during two distinct types of functional motor behaviour - fictive scratching and fictive swimming. The threshold potential depolarizes by about 10 mV within each burst of spikes generated during scratch and swim network activity and recovers between bursts to a slightly depolarized level. Slow synaptic integration resulting in a wave of membrane potential depolarization is the factor influencing the threshold potential within firing bursts during motor behaviours. Depolarization of the threshold potential decreases the excitability of motoneurons and may provide a mechanism for stabilization of the response of a motoneuron to intense synaptic inputs to maintain the motor commands within an optimal range for muscle activation. ABSTRACT During functional spinal neural network activity motoneurons receive intense synaptic input, and this could modulate the threshold for action potential generation, providing the ability to dynamically adjust the excitability and recruitment order for functional needs. In the present study we investigated the dynamics of action potential threshold during motor network activity. Intracellular recordings from spinal motoneurons in an ex vivo carapace-spinal cord preparation from adult turtles were performed during two distinct types of motor behaviour - fictive scratching and fictive swimming. We found that the threshold of the first spike in episodes of scratching and swimming was the lowest. The threshold potential depolarizes by about 10 mV within each burst of spikes generated during scratch and swim network activity and recovers between bursts to a slightly depolarized level. Depolarization of the threshold potential results in decreased excitability of motoneurons. Synaptic inputs do not modulate the threshold of the first action potential during episodes of scratching or of swimming. There is no correlation between changes in spike threshold and interspike intervals within bursts. Slow synaptic integration that results in a wave of membrane potential depolarization rather than fast synaptic events preceding each spike is the factor influencing the threshold potential within firing bursts during motor behaviours.
Collapse
Affiliation(s)
- Ramunas Grigonis
- Department of Neurobiology and BiophysicsInstitute of Biosciences, Vilnius UniversitySauletekio ave. 7LT‐10257VilniusLithuania
| | - Aidas Alaburda
- Department of Neurobiology and BiophysicsInstitute of Biosciences, Vilnius UniversitySauletekio ave. 7LT‐10257VilniusLithuania
| |
Collapse
|
19
|
McPherson JG, Stienen AH, Drogos JM, Dewald JP. Modification of Spastic Stretch Reflexes at the Elbow by Flexion Synergy Expression in Individuals With Chronic Hemiparetic Stroke. Arch Phys Med Rehabil 2017; 99:491-500. [PMID: 28751255 DOI: 10.1016/j.apmr.2017.06.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 06/15/2017] [Accepted: 06/19/2017] [Indexed: 01/27/2023]
Abstract
OBJECTIVE To systematically characterize the effect of flexion synergy expression on the manifestation of elbow flexor stretch reflexes poststroke, and to relate these findings to elbow flexor stretch reflexes in individuals without neurologic injury. DESIGN Controlled cohort study. SETTING Academic medical center. PARTICIPANTS Participants (N=20) included individuals with chronic hemiparetic stroke (n=10) and a convenience sample of individuals without neurologic or musculoskeletal injury (n=10). INTERVENTIONS Participants with stroke were interfaced with a robotic device that precisely manipulated flexion synergy expression (by regulating shoulder abduction loading) while delivering controlled elbow extension perturbations over a wide range of velocities. This device was also used to elicit elbow flexor stretch reflexes during volitional elbow flexor activation, both in the cohort of individuals with stroke and in a control cohort. In both cases, the amplitude of volitional elbow flexor preactivation was matched to that generated involuntarily during flexion synergy expression. MAIN OUTCOME MEASURES The amplitude of short- and long-latency stretch reflexes in the biceps brachii, assessed by electromyography, and expressed as a function of background muscle activation and stretch velocity. RESULTS Increased shoulder abduction loading potentiated elbow flexor stretch reflexes via flexion synergy expression in the paretic arm. Compared with stretch reflexes in individuals without neurologic injury, paretic reflexes were larger at rest but were approximately equal to control muscles at matched levels of preactivation. CONCLUSIONS Because flexion synergy expression modifies stretch reflexes in involved muscles, interventions that reduce flexion synergy expression may confer the added benefit of reducing spasticity during functional use of the arm.
Collapse
Affiliation(s)
- Jacob G McPherson
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Arno H Stienen
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Justin M Drogos
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Julius P Dewald
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL; Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL; Department of Biomedical Engineering, Northwestern University McCormick School of Engineering, Chicago, IL.
| |
Collapse
|
20
|
Abstract
Motor neurons translate synaptic input from widely distributed premotor networks into patterns of action potentials that orchestrate motor unit force and motor behavior. Intercalated between the CNS and muscles, motor neurons add to and adjust the final motor command. The identity and functional properties of this facility in the path from synaptic sites to the motor axon is reviewed with emphasis on voltage sensitive ion channels and regulatory metabotropic transmitter pathways. The catalog of the intrinsic response properties, their underlying mechanisms, and regulation obtained from motoneurons in in vitro preparations is far from complete. Nevertheless, a foundation has been provided for pursuing functional significance of intrinsic response properties in motoneurons in vivo during motor behavior at levels from molecules to systems. © 2017 American Physiological Society. Compr Physiol 7:463-484, 2017.
Collapse
Affiliation(s)
- Jorn Hounsgaard
- Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
21
|
Feldman AG, Levin MF. Spatial control of reflexes, posture and movement in normal conditions and after neurological lesions. J Hum Kinet 2016; 52:21-34. [PMID: 28149391 PMCID: PMC5260515 DOI: 10.1515/hukin-2015-0191] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2016] [Indexed: 11/24/2022] Open
Abstract
Control of reflexes is usually associated with central modulation of their sensitivity (gain) or phase-dependent inhibition and facilitation of their influences on motoneurons (reflex gating). Accumulated empirical findings show that the gain modulation and reflex gating are secondary, emergent properties of central control of spatial thresholds at which reflexes become functional. In this way, the system pre-determines, in a feedforward and task-specific way, where, in a spatial domain or a frame of reference, muscles are allowed to work without directly prescribing EMG activity and forces. This control strategy is illustrated by considering reflex adaptation to repeated muscle stretches in healthy subjects, a process associated with implicit learning and generalization. It has also been shown that spasticity, rigidity, weakness and other neurological motor deficits may have a common source - limitations in the range of spatial threshold control elicited by neural lesions.
Collapse
Affiliation(s)
- Anatol G. Feldman
- Department of Neuroscience, University of Montreal, Montreal, Quebec, Canada
- Centre for Interdisciplinary Research in Rehabilitation (CRIR), Montreal, Quebec, Canada
| | - Mindy F. Levin
- School of Physical and Occupational Therapy, McGill University, Montreal, Quebec, Canada
- Centre for Interdisciplinary Research in Rehabilitation (CRIR), Montreal, Quebec, Canada
| |
Collapse
|
22
|
Feldman AG. Active sensing without efference copy: referent control of perception. J Neurophysiol 2016; 116:960-76. [PMID: 27306668 PMCID: PMC5009211 DOI: 10.1152/jn.00016.2016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 06/06/2016] [Indexed: 11/22/2022] Open
Abstract
Although action and perception are different behaviors, they are likely to be interrelated, as implied by the notions of perception-action coupling and active sensing. Traditionally, it has been assumed that the nervous system directly preprograms motor commands required for actions and uses a copy of them called efference copy (EC) to also influence our senses. This review offers a critical analysis of the EC concept by identifying its limitations. An alternative to the EC concept is based on the experimentally confirmed notion that sensory signals from receptors are perceived relative to referent signals specified by the brain. These referents also underlie the control of motor actions by predetermining where, in the spatial domain, muscles can work without preprogramming how they should work in terms of motor commands or EC. This approach helps solve several problems of action and explain several sensory experiences, including position sense and the sense that the world remains stationary despite changes in its retinal image during eye or body motion (visual space constancy). The phantom limb phenomenon and other kinesthetic illusions are also explained within this framework.
Collapse
Affiliation(s)
- Anatol G Feldman
- Department of Neuroscience and Institute of Biomedical Engineering, University of Montreal, Montreal, QC, Canada; and Center for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montreal, QC, Canada
| |
Collapse
|
23
|
Lombardo J, Harrington MA. Nonreciprocal mechanisms in up- and downregulation of spinal motoneuron excitability by modulators of KCNQ/Kv7 channels. J Neurophysiol 2016; 116:2114-2124. [PMID: 27512022 DOI: 10.1152/jn.00446.2016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/05/2016] [Indexed: 12/11/2022] Open
Abstract
KCNQ/Kv7 channels form a slow noninactivating K+ current, also known as the M current. They activate in the subthreshold range of membrane potentials and regulate different aspects of excitability in neurons of the central nervous system. In spinal motoneurons (MNs), KCNQ/Kv7 channels have been identified in the somata, axonal initial segment, and nodes of Ranvier, where they generate a slow, noninactivating, K+ current sensitive to both muscarinic receptor-mediated inhibition and KCNQ/Kv7 channel blockers. In this study, we thoroughly reevaluated the function of up- and downregulation of KCNQ/Kv7 channels in mouse immature spinal MNs. Using electrophysiological techniques together with specific pharmacological modulators of the activity of KCNQ/Kv7 channels, we show that enhancement of the activity of these channels decreases the excitability of spinal MNs in mouse neonates. This action on MNs results from a combination of hyperpolarization of the resting membrane potential, a decrease in the input resistance, and depolarization of the voltage threshold. On the other hand, the effect of inhibition of KCNQ/Kv7 channels suggested that these channels play a limited role in regulating basal excitability. Computer simulations confirmed that pharmacological enhancement of KCNQ/Kv7 channel activity decreases excitability and also suggested that the effects of inhibition of KCNQ/Kv7 channels on the excitability of spinal MNs do not depend on a direct effect in these neurons but likely on spinal cord synaptic partners. These results indicate that KCNQ/Kv7 channels have a fundamental role in the modulation of the excitability of spinal MNs acting both in these neurons and in their local presynaptic partners.
Collapse
Affiliation(s)
- Joseph Lombardo
- Department of Biological Sciences, Delaware State University, Dover, Delaware
| | | |
Collapse
|
24
|
Powers RK, Heckman CJ. Contribution of intrinsic motoneuron properties to discharge hysteresis and its estimation based on paired motor unit recordings: a simulation study. J Neurophysiol 2015; 114:184-98. [PMID: 25904704 PMCID: PMC4507952 DOI: 10.1152/jn.00019.2015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 04/22/2015] [Indexed: 11/22/2022] Open
Abstract
Motoneuron activity is strongly influenced by the activation of persistent inward currents (PICs) mediated by voltage-gated sodium and calcium channels. However, the amount of PIC contribution to the activation of human motoneurons can only be estimated indirectly. Simultaneous recordings of pairs of motor units have been used to provide an estimate of the PIC contribution by using the firing rate of the lower threshold unit to provide an estimate of the common synaptic drive to both units, and the difference in firing rate (ΔF) of this lower threshold unit at recruitment and de-recruitment of the higher threshold unit to estimate the PIC contribution to activation of the higher threshold unit. It has recently been suggested that a number of factors other than PIC can contribute to ΔF values, including mechanisms underlying spike frequency adaptation and spike threshold accommodation. In the present study, we used a set of compartmental models representing a sample of 20 motoneurons with a range of thresholds to investigate how several different intrinsic motoneuron properties can potentially contribute to variations in ΔF values. We drove the models with linearly increasing and decreasing noisy conductance commands of different rate of rise and duration and determined the influence of different intrinsic mechanisms on discharge hysteresis (the difference in excitatory drive at recruitment and de-recruitment) and ΔF. Our results indicate that, although other factors can contribute, variations in discharge hysteresis and ΔF values primarily reflect the contribution of dendritic PICs to motoneuron activation.
Collapse
Affiliation(s)
- Randall K Powers
- Department of Physiology & Biophysics, University of Washington, Seattle, Washington; and
| | - C J Heckman
- Departments of Physiology, Physical Medicine and Rehabilitation, and Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
25
|
Wilson JM, Thompson CK, Miller LC, Heckman CJ. Intrinsic excitability of human motoneurons in biceps brachii versus triceps brachii. J Neurophysiol 2015; 113:3692-9. [PMID: 25787957 DOI: 10.1152/jn.00960.2014] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/17/2015] [Indexed: 11/22/2022] Open
Abstract
The intrinsic excitability of spinal motoneurons is mediated in part by the presence of persistent inward currents (PICs), which amplify synaptic input and promote self-sustained firing. Studies using animal models have shown that PICs are greater in extensor motoneurons over flexor motoneurons, but this difference has not yet been demonstrated in humans. The primary objective of this study was to determine whether a similar difference exists in humans by recording from motor units in biceps and triceps brachii during isometric contractions. We compared firing rate profiles of pairs of motor units, in which the firing rate of the lower-threshold "control" unit was used as an indicator of common drive to the higher-threshold "test" unit. The estimated contribution of the PIC was calculated as the difference in firing rate of the control unit at recruitment versus derecruitment of the test unit, a value known as the delta-F (ΔF). We found that ΔF values were significantly higher in triceps brachii (5.4 ± 0.9 imp/s) compared with biceps brachii (3.0 ± 1.4 imp/s; P < 0.001). This difference was still present even after controlling for saturation in firing rate of the control unit, rate modulation of the control unit, and differences in recruitment time between test and control units, which are known to contribute to ΔF variability. We conclude that human elbow flexor and extensor motor units exhibit differences in intrinsic excitability, contributing to different neural motor control strategies between muscle groups.
Collapse
Affiliation(s)
- Jessica M Wilson
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, Illinois;
| | | | - Laura C Miller
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, Illinois; Department of Biomedical Engineering, Northwestern University, Evanston, Illinois; and
| | - Charles J Heckman
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, Illinois; Department of Physiology, Northwestern University, Chicago, Illinois; Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois
| |
Collapse
|
26
|
Motoneuron intrinsic properties, but not their receptive fields, recover in chronic spinal injury. J Neurosci 2014; 33:18806-13. [PMID: 24285887 DOI: 10.1523/jneurosci.2609-13.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Proper movement execution relies on precise input processing by spinal motoneurons (MNs). Spinal MNs are activated by limb joint rotations. Typically, their movement-related receptive fields (MRRFs) are sharply focused and joint-specific. After acute spinal transection MRRFs become wide, but their manifestation is not apparent, as intrinsic excitability, primarily resulting from the loss of persistent inward currents (PICs), dramatically decreases. PICs undergo a remarkable recovery with time after injury. Here we investigate whether MRRFs undergo a recovery that parallels that of the PIC. Using the chronic spinal cat in acute terminal decerebrate preparations, we found that MRRFs remain expanded 1 month after spinal transaction, whereas PICs recovered to >80% of their preinjury amplitudes. These recovered PICs substantially amplified the expanded inputs underlying the MRRFs. As a result, we show that single joint rotations lead to the activation of muscles across the entire limb. These results provide a potential mechanism for the propagation of spasms throughout the limb.
Collapse
|
27
|
Abstract
Postural limb reflexes (PLRs) represent a substantial component of the postural system responsible for stabilization of dorsal-side-up trunk orientation in quadrupeds. Spinalization causes spinal shock, that is a dramatic reduction of extensor tone and spinal reflexes, including PLRs. The goal of our study was to determine changes in activity of spinal interneurons, in particular those mediating PLRs, that is caused by spinalization. For this purpose, in decerebrate rabbits, activity of individual interneurons from L5 was recorded during stimulation causing PLRs under two conditions: (1) when neurons received supraspinal influences and (2) when these influences were temporarily abolished by a cold block of spike propagation in spinal pathways at T12 ("reversible spinalization"; RS). The effect of RS, that is a dramatic reduction of PLRs, was similar to the effect of surgical spinalization. In the examined population of interneurons (n = 199), activity of 84% of them correlated with PLRs, suggesting that they contribute to PLR generation. RS affected differently individual neurons: the mean frequency decreased in 67% of neurons, increased in 15%, and did not change in 18%. Neurons with different RS effects were differently distributed across the spinal cord: 80% of inactivated neurons were located in the intermediate area and ventral horn, whereas 50% of nonaffected neurons were located in the dorsal horn. We found a group of neurons that were coactivated with extensors during PLRs before RS and exhibited a dramatic (>80%) decrease in their activity during RS. We suggest that these neurons are responsible for reduction of extensor tone and postural reflexes during spinal shock.
Collapse
|
28
|
Levin MF. Deficits in spatial threshold control of muscle activation as a window for rehabilitation after brain injury. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 826:229-49. [PMID: 25330894 DOI: 10.1007/978-1-4939-1338-1_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Mindy F Levin
- School of Physical and Occupational Therapy, McGill University, 3654 Promenade SirWilliam Osler, Montreal, QC, H3G 1Y5, Canada,
| |
Collapse
|
29
|
Abstract
Movement is accomplished by the controlled activation of motor unit populations. Our understanding of motor unit physiology has been derived from experimental work on the properties of single motor units and from computational studies that have integrated the experimental observations into the function of motor unit populations. The article provides brief descriptions of motor unit anatomy and muscle unit properties, with more substantial reviews of motoneuron properties, motor unit recruitment and rate modulation when humans perform voluntary contractions, and the function of an entire motor unit pool. The article emphasizes the advances in knowledge on the cellular and molecular mechanisms underlying the neuromodulation of motoneuron activity and attempts to explain the discharge characteristics of human motor units in terms of these principles. A major finding from this work has been the critical role of descending pathways from the brainstem in modulating the properties and activity of spinal motoneurons. Progress has been substantial, but significant gaps in knowledge remain.
Collapse
Affiliation(s)
- C J Heckman
- Northwestern University, Evanston, Illinois, USA.
| | | |
Collapse
|
30
|
Why are seizures rare in rapid eye movement sleep? Review of the frequency of seizures in different sleep stages. EPILEPSY RESEARCH AND TREATMENT 2013; 2013:932790. [PMID: 23853720 PMCID: PMC3703322 DOI: 10.1155/2013/932790] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 05/16/2013] [Indexed: 12/25/2022]
Abstract
Since the formal characterization of sleep stages, there have been reports that seizures may preferentially occur in certain phases of sleep. Through ascending cholinergic connections from the brainstem, rapid eye movement (REM) sleep is physiologically characterized by low voltage fast activity on the electroencephalogram, REMs, and muscle atonia. Multiple independent studies confirm that, in REM sleep, there is a strikingly low proportion of seizures (~1% or less). We review a total of 42 distinct conventional and intracranial studies in the literature which comprised a net of 1458 patients. Indexed to duration, we found that REM sleep was the most protective stage of sleep against focal seizures, generalized seizures, focal interictal discharges, and two particular epilepsy syndromes. REM sleep had an additional protective effect compared to wakefulness with an average 7.83 times fewer focal seizures, 3.25 times fewer generalized seizures, and 1.11 times fewer focal interictal discharges. In further studies REM sleep has also demonstrated utility in localizing epileptogenic foci with potential translation into postsurgical seizure freedom. Based on emerging connectivity data in sleep, we hypothesize that the influence of REM sleep on seizures is due to a desynchronized EEG pattern which reflects important connectivity differences unique to this sleep stage.
Collapse
|
31
|
Montague SJ, Fenrich KK, Mayer-Macaulay C, Maratta R, Neuber-Hess MS, Rose PK. Nonuniform distribution of contacts from noradrenergic and serotonergic boutons on the dendrites of cat splenius motoneurons. J Comp Neurol 2013; 521:638-56. [PMID: 22821606 DOI: 10.1002/cne.23196] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Revised: 07/15/2012] [Accepted: 07/19/2012] [Indexed: 12/23/2022]
Abstract
The input-output properties of motoneurons are dynamically regulated. This regulation depends, in part, on the relative location of excitatory and inhibitory synapses, voltage-dependent and -independent channels, and neuromodulatory synapses on the dendritic tree. The goal of the present study was to quantify the number and distribution of synapses from two powerful neuromodulatory systems that originate from noradrenergic (NA) and serotonergic (5-HT) neurons. Here we show that the dendritic trees of motoneurons innervating a dorsal neck extensor muscle, splenius, in the adult cat are densely, but not uniformly innervated by both NA and 5-HT boutons. Identified splenius motoneurons were intracellularly stained with Neurobiotin. Using 3D reconstruction techniques we mapped the distributions of contacts formed by NA and 5-HT boutons on the reconstructed dendritic trees of these motoneurons. Splenius motoneurons received an average of 1,230 NA contacts (range = 647-1,507) and 1,582 5-HT contacts (range = 1,234-2,143). The densities of these contacts were 10 (NA) to 6 (5-HT)-fold higher on small compared to large-diameter dendrites. This relationship largely accounts for the bias of NA and 5-HT contacts on distal dendrites and is partially responsible for the higher density of NA contacts on dendrites located more than 200 μm dorsal to the soma. These results suggest that the neuromodulatory actions of NA and 5-HT are compartmentalized and regulate the input-output properties of motoneurons according to precisely arranged interactions with voltage-dependent and -independent channels that are primarily located on small-diameter dendrites.
Collapse
Affiliation(s)
- Steven J Montague
- CIHR Group in Sensory-Motor Integration, Department of Biomedical and Molecular Sciences and Center for Neuroscience Studies, Queen's University, Kingston, ON K7L 3N6, Canada
| | | | | | | | | | | |
Collapse
|
32
|
Chopek JW, MacDonell CW, Power KE, Gardiner K, Gardiner PF. Removal of supraspinal input reveals a difference in the flexor and extensor monosynaptic reflex response to quipazine independent of motoneuron excitation. J Neurophysiol 2013; 109:2056-63. [DOI: 10.1152/jn.00405.2012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The purpose of this study was to determine if quipazine, a serotonergic agonist, differentially modulates flexor and extensor motor output. This was achieved by examining the monosynaptic reflex (MSR) of the tibial (extensor) and peroneal (flexor) nerves, by determining the basic and rhythmic properties of extensor and flexor motoneurons, and by recording extracellular Ia field potentials of the tibial and peroneal nerves in the in vivo adult decerebrate rat in both spinal intact and acute spinalized preparations. In the spinal intact preparation, the tibial and peroneal MSR amplitude significantly increased compared with baseline in response to quipazine, with no difference between nerves ( P < 0.05). In the spinalized preparation, the MSR was significantly increased in both the tibial and peroneal nerves with the latter increasing more than the former (5.7 vs. 3.6 times; P < 0.05). Intracellular motoneuron experiments demonstrated that rheobase decreased, while input resistance, afterhyperpolarization amplitude, and the firing rate at a given current injection increased in motoneurons following quipazine administration with no differences between extensor and flexor motoneurons. Both the tibial and peroneal nerve extracellular Ia field potentials increased with the peroneal demonstrating a significantly greater increase (7 vs. 38%; P < 0.05) following quipazine. It is concluded that in the spinal intact preparation quipazine does not have a differential effect on flexor or extensor motor output. However, in the acute spinalized preparation, quipazine preferentially affects the flexor MSR compared with the extensor MSR, likely due to the removal of a descending tonic inhibition on flexor Ia afferents.
Collapse
Affiliation(s)
- Jeremy W. Chopek
- Spinal Cord Research Centre, Department of Physiology and Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Christopher W. MacDonell
- Spinal Cord Research Centre, Department of Physiology and Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kevin E. Power
- Spinal Cord Research Centre, Department of Physiology and Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kalan Gardiner
- Spinal Cord Research Centre, Department of Physiology and Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Phillip F. Gardiner
- Spinal Cord Research Centre, Department of Physiology and Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
33
|
Sukal-Moulton T, Murray TM, Dewald JPA. Loss of independent limb control in childhood hemiparesis is related to time of brain injury onset. Exp Brain Res 2013; 225:455-63. [PMID: 23411673 DOI: 10.1007/s00221-012-3385-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 12/15/2012] [Indexed: 10/27/2022]
Abstract
This study investigated the presence of inter-limb activity at the elbow joint in individuals with childhood-onset hemiparesis, including spontaneous mirror movements during unilateral tasks and the ability to suppress them during bilateral tasks. Eighteen individuals with hemiparesis were divided into three categories of injury timing: before birth (PRE-natal), around the time of birth (PERI-natal), and after 6 months of age (POST-natal). Individuals with hemiparesis, as well as 12 typically developing peers, participated in unilateral and bilateral elbow flexion and extension tasks completed at maximal and submaximal effort while muscle activity was monitored and motor output was quantified by two multiple degrees-of-freedom load cells. Significantly, higher levels of paretic elbow flexion were found only in the PRE- and PERI-natal groups during the flexion of the non-paretic limb, which was modulated by effort level in both unilateral and bilateral tasks. The bilateral activation of elbow flexors in the PRE-/PERI-natal groups indicates potential use of a common cortical command source to drive both upper extremities, while the POST-natal/typically developing groups' flexors appear to receive input from different supraspinal structures.
Collapse
Affiliation(s)
- Theresa Sukal-Moulton
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, 645 N Michigan Avenue Suite 1100, Chicago, IL 60611, USA
| | | | | |
Collapse
|
34
|
McPherson JG, Stienen AHA, Drogos JM, Dewald JPA. The relationship between the flexion synergy and stretch reflexes in individuals with chronic hemiparetic stroke. IEEE Int Conf Rehabil Robot 2012; 2011:5975516. [PMID: 22275712 DOI: 10.1109/icorr.2011.5975516] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This study utilized a novel robotic device, the ACT-4D, to investigate the relationship between the flexion synergy and stretch reflexes in individuals with chronic hemiparetic stroke. Because the flexion synergy influences the amount of elbow flexor muscle activation present in the paretic limb during tasks requiring shoulder abduction loading, it was hypothesized that stretch reflexes may be modulated by expression of this abnormal muscle coactivation pattern. To test this hypothesis, the ACT-4D was used to enable 10 individuals with chronic hemiparetic stroke to generate varying amounts of shoulder abduction torque while concurrently receiving elbow extension position perturbations. It was found that increased expression of the flexion synergy led to greater reflex amplitudes as well as lower reflex velocity thresholds. The physiological basis of the flexion synergy is briefly discussed, as are the implications of the flexion synergy and stretch reflexes for purposeful movement.
Collapse
Affiliation(s)
- Jacob G McPherson
- Dept of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
| | | | | | | |
Collapse
|
35
|
Crisp KM, Gallagher BR, Mesce KA. Mechanisms contributing to the dopamine induction of crawl-like bursting in leech motoneurons. ACTA ACUST UNITED AC 2012; 215:3028-36. [PMID: 22660774 DOI: 10.1242/jeb.069245] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Dopamine (DA) activates fictive crawling behavior in the medicinal leech. To identify the cellular mechanisms underlying this activation at the level of crawl-specific motoneuronal bursting, we targeted potential cAMP-dependent events that are often activated through DA(1)-like receptor signaling pathways. We found that isolated ganglia produced crawl-like motoneuron bursting after bath application of phosphodiesterase inhibitors (PDIs) that upregulated cAMP. This bursting persisted in salines in which calcium ions were replaced with equimolar cobalt or nickel, but was blocked by riluzole, an inhibitor of a persistent sodium current. PDI-induced bursting contained a number of patterned elements that were statistically similar to those observed during DA-induced fictive crawling, except that one motoneuron (CV) exhibited bursting during the contraction rather than the elongation phase of crawling. Although DA and the PDIs produced similar bursting profiles, intracellular recordings from motoneurons revealed differences in altered membrane properties. For example, DA lowered motoneuron excitability whereas the PDIs increased resting discharge rates. We suggest that PDIs (and DA) activate a sodium-influx-dependent timing mechanism capable of setting the crawl rhythm and that multiple DA receptor subtypes are involved in shaping and modulating the phase relationships and membrane properties of cell-specific members of the crawl network to generate crawling.
Collapse
Affiliation(s)
- Kevin M Crisp
- Biology Department and Neuroscience Program, St Olaf College, 1520 St Olaf Avenue, Northfield, MN 55057, USA.
| | | | | |
Collapse
|
36
|
Clair-Auger JM, Collins DF, Dewald JPA. The effects of wide pulse neuromuscular electrical stimulation on elbow flexion torque in individuals with chronic hemiparetic stroke. Clin Neurophysiol 2012; 123:2247-55. [PMID: 22627022 DOI: 10.1016/j.clinph.2012.04.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 04/23/2012] [Accepted: 04/25/2012] [Indexed: 10/28/2022]
Abstract
OBJECTIVE Neuromuscular electrical stimulation that incorporates wide pulse widths (1ms) and high frequencies (100Hz; wide pulse-NMES (WP-NMES)) augments contractions through an increased reflexive recruitment of motoneurons in individuals without neurological impairments and those with spinal cord injury. The current study was designed to investigate whether WP-NMES also augments contractions after stroke. We hypothesized that WP-NMES would generate larger contractions in the paretic arm compared to the non-paretic arm due to increased reflex excitability for paretic muscles after stroke. METHODS The biceps brachii muscles were stimulated bilaterally in 10 individuals with chronic hemiparetic stroke. Four stimulation patterns were delivered to explore the effects of pulse width and frequency on contraction amplitude: 20-100-20Hz (4s each phase, 1ms pulse width); 20-100-20Hz (4s each phase, 0.1ms); 20Hz for 12s (1ms); and 100Hz for 12s (1ms). Elbow flexion torque and electromyography were recorded. RESULTS Stimulation that incorporated 1ms pulses evoked more torque in the paretic arm than the non-paretic arm. When 0.1ms pulses were used there was no difference in torque between arms. For both arms, torque declined significantly during the constant frequency 100Hz stimulation and did not change during the constant frequency 20Hz stimulation. CONCLUSIONS The larger contractions generated by WP-NMES are likely due to increased reflexive recruitment of motoneurons, resulting from increased reflex excitability on the paretic side. SIGNIFICANCE NMES that elicits larger contractions may allow for development of more effective stroke rehabilitation paradigms and functional neural prostheses.
Collapse
Affiliation(s)
- J M Clair-Auger
- Faculty of Physical Education and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
37
|
Lee RH, Mitchell CS. Revisiting the role of spike afterhyperpolarization and spike threshold in motoneuron current-frequency gain. J Neurophysiol 2012; 107:3071-7. [PMID: 22422996 DOI: 10.1152/jn.01195.2011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The relationship between synaptic or injecting input level and firing rate is an important metric to characterize neuron input-output dynamics. In this study, we examine two long-held, but never validated, assumptions in the "algebraic summation of afterhyperpolarization" theory, which explains how firing rate varies with input (typically referred to as input current-frequency modulation or "F-I gain"). In the theory, the afterhyperpolarizations themselves, along with spike threshold, were assumed constant. That is, whereas they were central concepts in the theory, they were not included in any feedback loops, wherein they could both affect and be affected by firing rate. We performed intracellular recordings from spinal motoneurons in the adult cat to determine whether F-I gain correlates with the afterhyperpolarization and/or spike threshold. We observe that the afterhyperpolarization does indeed appear to be out of the F-I gain mechanism loop, and thus that original assumption holds. However, the presented experimental evidence indicates that the spike threshold appears to be in the loop. That is, spike threshold variation associated with input correlates with F-I gain. We present an extension to the original theory, which explains the F-I gain experimental correlations.
Collapse
Affiliation(s)
- Robert H Lee
- Georgia Institute of Technology, Dept. of Biomedical Engineering, Atlanta, GA 30332, USA.
| | | |
Collapse
|
38
|
Power KE, Carlin KP, Fedirchuk B. Modulation of voltage-gated sodium channels hyperpolarizes the voltage threshold for activation in spinal motoneurones. Exp Brain Res 2012; 217:311-22. [DOI: 10.1007/s00221-011-2994-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 12/23/2011] [Indexed: 12/19/2022]
|
39
|
Miles GB, Sillar KT. Neuromodulation of Vertebrate Locomotor Control Networks. Physiology (Bethesda) 2011; 26:393-411. [DOI: 10.1152/physiol.00013.2011] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Vertebrate locomotion must be adaptable in light of changing environmental, organismal, and developmental demands. Much of the underlying flexibility in the output of central pattern generating (CPG) networks of the spinal cord and brain stem is endowed by neuromodulation. This review provides a synthesis of current knowledge on the way that various neuromodulators modify the properties of and connections between CPG neurons to sculpt CPG network output during locomotion.
Collapse
Affiliation(s)
- Gareth B. Miles
- School of Biology, University of St. Andrews, St. Andrews, Scotland, United Kingdom
| | - Keith T. Sillar
- School of Biology, University of St. Andrews, St. Andrews, Scotland, United Kingdom
| |
Collapse
|
40
|
Abstract
In the preceding series of articles, the history of vertebrate motoneuron and motor unit neurobiological studies has been discussed. In this article, we select a few examples of recent advances in neuroscience and discuss their application or potential application to the study of motoneurons and the control of movement. We conclude, like Sherrington, that in order to understand normal, traumatized, and diseased human behavior, it is critical to continue to study motoneuron biology using all available and emerging tools. This article is part of a Special Issue entitled Historical Review.
Collapse
Affiliation(s)
- Robert M Brownstone
- Departments of Surgery (Neurosurgery) and Anatomy & Neurobiology, Dalhousie University, Halifax, NS, Canada B3H 1X5.
| | | |
Collapse
|
41
|
Abstract
Many neurochemical systems interact to generate wakefulness and sleep. Wakefulness is promoted by neurons in the pons, midbrain, and posterior hypothalamus that produce acetylcholine, norepinephrine, dopamine, serotonin, histamine, and orexin/hypocretin. Most of these ascending arousal systems diffusely activate the cortex and other forebrain targets. NREM sleep is mainly driven by neurons in the preoptic area that inhibit the ascending arousal systems, while REM sleep is regulated primarily by neurons in the pons, with additional influence arising in the hypothalamus. Mutual inhibition between these wake- and sleep-regulating regions likely helps generate full wakefulness and sleep with rapid transitions between states. This up-to-date review of these systems should allow clinicians and researchers to better understand the effects of drugs, lesions, and neurologic disease on sleep and wakefulness.
Collapse
Affiliation(s)
- Rodrigo A España
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston Salem, NC, USA
| | | |
Collapse
|
42
|
Johnson MD, Heckman CJ. Interactions between focused synaptic inputs and diffuse neuromodulation in the spinal cord. Ann N Y Acad Sci 2010; 1198:35-41. [PMID: 20536918 DOI: 10.1111/j.1749-6632.2010.05430.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Spinal motoneurons (MNs) amplify synaptic inputs by producing strong dendritic persistent inward currents (PICs), which allow the MN to generate the firing rates and forces necessary for normal behaviors. However, PICs prolong MN depolarization after the initial excitation is removed, tend to "wind-up" with repeated activation and are regulated by a diffuse neuromodulatory system that affects all motor pools. We have shown that PICs are very sensitive to reciprocal inhibition from Ia afferents of antagonist muscles and as a result PIC amplification is related to limb configuration. Because reciprocal inhibition is tightly focused, shared only between strict anatomical antagonists, this system opposes the diffuse effects of the descending neuromodulation that facilitates PICs. Because inhibition appears necessary for PIC control, we hypothesize that Ia inhibition interacts with Ia excitation in a "push-pull" fashion, in which a baseline of simultaneous excitation and inhibition allows depolarization to occur via both excitation and disinhibition (and vice versa for hyperpolarization). Push-pull control appears to mitigate the undesirable affects associated with the PIC while still taking full advantage of PIC amplification.
Collapse
Affiliation(s)
- M D Johnson
- Department of Physiology, Northwestern University Medical School, Chicago, Illinois, USA.
| | | |
Collapse
|
43
|
Power KE, McCrea DA, Fedirchuk B. Intraspinally mediated state-dependent enhancement of motoneurone excitability during fictive scratch in the adult decerebrate cat. J Physiol 2010; 588:2839-57. [PMID: 20547677 DOI: 10.1113/jphysiol.2010.188722] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
This is the first study to report on the increase in motoneurone excitability during fictive scratch in adult decerebrate cats. Intracellular recordings from antidromically identified motoneurones revealed a decrease in the voltage threshold for spike initiation (V(th)), a suppression of motoneurone afterhyperpolarization and activation of voltage-dependent excitation at the onset of scratch. These state-dependent changes recovered within 10-20 s after scratch and could be evoked after acute transection of the spinal cord at C1. Thus, there is a powerful intraspinal system that can quickly and reversibly re-configure neuronal excitability during spinal network activation. Fictive scratch was evoked in spinal intact and transected decerebrate preparations by stroking the pinnae following topical curare application to the dorsal cervical spinal cord and neuromuscular block. Hyperpolarization of V(th) occurred (mean 5.8 mV) in about 80% of ipsilateral flexor, extensor or bifunctional motoneurones during fictive scratch. The decrease in V(th) began before any scratch-evoked motoneurone activity as well as during the initial phase in which extensors are tonically hyperpolarized. The V(th) of contralateral extensors depolarized by a mean of +3.7 mV during the tonic contralateral extensor activity accompanying ipsilateral scratch. There was a consistent and substantial reduction of afterhyperpolarization amplitude without large increases in motoneurone conductance in both spinal intact and transected preparations. Depolarizing current injection increased, and hyperpolarization decreased the amplitude of rhythmic scratch drive potentials in acute spinal preparations indicating that the spinal scratch-generating network can activate voltage-dependent conductances in motoneurones. The enhanced excitability in spinal preparations associated with fictive scratch indicates the existence of previously unrecognized, intraspinal mechanisms increasing motoneurone excitability.
Collapse
Affiliation(s)
- Kevin E Power
- Faculty of Health Sciences, University of Ontario Institute of Technology, 2000 Simcoe St. North, Oshawa, Ontario, Canada.
| | | | | |
Collapse
|
44
|
Evidence from computer simulations for alterations in the membrane biophysical properties and dendritic processing of synaptic inputs in mutant superoxide dismutase-1 motoneurons. J Neurosci 2010; 30:5544-58. [PMID: 20410108 DOI: 10.1523/jneurosci.0434-10.2010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A critical step in improving our understanding of the development of amyotrophic lateral sclerosis (ALS) is to identify the factors contributing to the alterations in the excitability of motoneurons and assess their individual contributions. Here we investigated the early alterations in the passive electrical and morphological properties of neonatal spinal motoneurons that occur by 10 d after birth, long before disease onset. We identified some of the factors contributing to these alterations, and estimated their individual contributions. To achieve this goal, we undertook a computer simulation analysis using realistic morphologies of reconstructed wild-type (WT) and mutant superoxide dismutase-1 (mSOD1) motoneurons. Ion channel parameters of these models were then tuned to match the experimental data on electrical properties obtained from these same motoneurons. We found that the reduced excitability of mSOD1 models was accompanied with decreased specific membrane resistance by approximately 25% and efficacy of synaptic inputs (slow and fast) by 12-22%. Linearity of summation of synaptic currents was similar to WT. We also assessed the contribution of the alteration in dendritic morphology alone to this decreased excitability and found that it reduced the input resistance by 10% and the efficacy of synaptic inputs by 7-15%. Our results were also confirmed in models with dendritic active conductances. Our simulations indicated that the alteration in passive electrical properties of mSOD1 models resulted from concurrent alterations in their morphology and membrane biophysical properties, and consequently altered the motoneuronal dendritic processing of synaptic inputs. These results clarify new aspects of spinal motoneurons malfunction in ALS.
Collapse
|
45
|
Raptis H, Burtet L, Forget R, Feldman AG. Control of wrist position and muscle relaxation by shifting spatial frames of reference for motoneuronal recruitment: possible involvement of corticospinal pathways. J Physiol 2010; 588:1551-70. [PMID: 20231141 PMCID: PMC2876809 DOI: 10.1113/jphysiol.2009.186858] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2010] [Accepted: 03/09/2010] [Indexed: 11/08/2022] Open
Abstract
It has previously been established that muscles become active in response to deviations from a threshold (referent) position of the body or its segments, and that intentional motor actions result from central shifts in the referent position. We tested the hypothesis that corticospinal pathways are involved in threshold position control during intentional changes in the wrist position in humans. Subjects moved the wrist from an initial extended to a final flexed position (and vice versa). Passive wrist muscle forces were compensated with a torque motor such that wrist muscle activity was equalized at the two positions. It appeared that motoneuronal excitability tested by brief muscle stretches was also similar at these positions. Responses to mechanical perturbations before and after movement showed that the wrist threshold position was reset when voluntary changes in the joint angle were made. Although the excitability of motoneurons was similar at the two positions, the same transcranial magnetic stimulus (TMS) elicited a wrist extensor jerk in the extension position and a flexor jerk in the flexion position. Extensor motor-evoked potentials (MEPs) elicited by TMS at the wrist extension position were substantially bigger compared to those at the flexion position and vice versa for flexor MEPs. MEPs were substantially reduced when subjects fully relaxed wrist muscles and the wrist was held passively in each position. Results suggest that the corticospinal pathway, possibly with other descending pathways, participates in threshold position control, a process that pre-determines the spatial frame of reference in which the neuromuscular periphery is constrained to work. This control strategy would underlie not only intentional changes in the joint position, but also muscle relaxation. The notion that the motor cortex may control motor actions by shifting spatial frames of reference opens a new avenue in the analysis and understanding of brain function.
Collapse
Affiliation(s)
- Helli Raptis
- Department of Physiology, University of Montreal, Montreal, QC, H3S 2J4, Canada.
| | | | | | | |
Collapse
|
46
|
Wang M, Bradley RM. Properties of GABAergic neurons in the rostral solitary tract nucleus in mice. J Neurophysiol 2010; 103:3205-18. [PMID: 20375246 DOI: 10.1152/jn.00971.2009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The rostral nucleus of the solitary tract (rNST) plays a pivotal role in taste processing. The rNST contains projection neurons and interneurons that differ in morphology and intrinsic membrane properties. Although characteristics of the projection neurons have been detailed, similar information is lacking on the interneurons. We determined the intrinsic properties of the rNST GABAergic interneurons using a transgenic mouse model that expresses enhanced green fluorescent protein under the control of a GAD67 promoter. Glutamic acid decarboxylase-green fluorescent protein (GAD67-GFP) neurons were distributed throughout the rNST but were concentrated in the ventral subdivision with minimal interaction with the terminal field of the afferent input. Furthermore, the density of the GAD67-GFP neurons decreased in more rostral areas of rNST. In whole cell recordings, GAD67-GFP neurons responded with either an initial burst (73%), tonic (18%), or irregular (9%) discharge pattern of action potentials (APs) in response to membrane depolarization. These three groups also differed in passive and AP characteristics. Initial burst neurons had small ovoid or fusiform cell bodies, whereas tonic firing neurons had large multipolar or fusiform cell bodies. Irregular firing neurons had larger spherical soma. Some of the initial burst and tonic firing neurons were also spontaneously active. The GAD67-GFP neurons could also be categorized in subgroups based on colocalization with somatostatin and parvalbumin immunolabeling. Initial burst neurons would transmit the early dynamic portion of the encoded sensory stimuli, whereas tonic firing neurons could respond to both dynamic and static components of the sensory input, suggesting different roles for GAD67-GFP neurons in taste processing.
Collapse
Affiliation(s)
- Min Wang
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA
| | | |
Collapse
|
47
|
Tartas M, Morin F, Barrière G, Goillandeau M, Lacaille JC, Cazalets JR, Bertrand SS. Noradrenergic modulation of intrinsic and synaptic properties of lumbar motoneurons in the neonatal rat spinal cord. Front Neural Circuits 2010; 4:4. [PMID: 20300468 PMCID: PMC2839852 DOI: 10.3389/neuro.04.004.2010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 01/29/2010] [Indexed: 01/08/2023] Open
Abstract
Although it is known that noradrenaline (NA) powerfully controls spinal motor networks, few data are available regarding the noradrenergic (NAergic) modulation of intrinsic and synaptic properties of neurons in motor networks. Our work explores the cellular basis of NAergic modulation in the rat motor spinal cord. We first show that lumbar motoneurons express the three classes of adrenergic receptors at birth. Using patch-clamp recordings in the newborn rat spinal cord preparation, we characterized the effects of NA and of specific agonists of the three classes of adrenoreceptors on motoneuron membrane properties. NA increases the motoneuron excitability partly via the inhibition of a K(IR) like current. Methoxamine (alpha(1)), clonidine (alpha(2)) and isoproterenol (beta) differentially modulate the motoneuron membrane potential but also increase motoneuron excitability, these effects being respectively inhibited by the antagonists prazosin (alpha(1)), yohimbine (alpha(2)) and propranolol (beta). We show that the glutamatergic synaptic drive arising from the T13-L2 network is enhanced in motoneurons by NA, methoxamine and isoproterenol. On the other hand, NA, isoproterenol and clonidine inhibit both the frequency and amplitude of miniature glutamatergic EPSCs while methoxamine increases their frequency. The T13-L2 synaptic drive is thereby differentially modulated from the other glutamatergic synapses converging onto motoneurons and enhanced by presynaptic alpha(1) and beta receptor activation. Our data thus show that the NAergic system exerts a powerful and complex neuromodulation of lumbar motor networks in the neonatal rat spinal cord.
Collapse
Affiliation(s)
- Maylis Tartas
- CNRS UMR 5227, Université de Bordeaux Bordeaux, France
| | | | | | | | | | | | | |
Collapse
|
48
|
Takeoka A, Kubasak MD, Zhong H, Kaplan J, Roy RR, Phelps PE. Noradrenergic innervation of the rat spinal cord caudal to a complete spinal cord transection: effects of olfactory ensheathing glia. Exp Neurol 2009; 222:59-69. [PMID: 20025875 DOI: 10.1016/j.expneurol.2009.12.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 11/23/2009] [Accepted: 12/05/2009] [Indexed: 02/06/2023]
Abstract
Transplantation of olfactory bulb-derived olfactory ensheathing glia (OEG) combined with step training improves hindlimb locomotion in adult rats with a complete spinal cord transection. Spinal cord injury studies use the presence of noradrenergic (NA) axons caudal to the injury site as evidence of axonal regeneration and we previously found more NA axons just caudal to the transection in OEG- than media-injected spinal rats. We therefore hypothesized that OEG transplantation promotes descending coeruleospinal regeneration that contributes to the recovery of hindlimb locomotion. Now we report that NA axons are present throughout the caudal stump of both media- and OEG-injected spinal rats and they enter the spinal cord from the periphery via dorsal and ventral roots and along large penetrating blood vessels. These results indicate that the presence of NA fibers in the caudal spinal cord is not a reliable indicator of coeruleospinal regeneration. We then asked if NA axons appose cholinergic neurons associated with motor functions, i.e., central canal cluster and partition cells (active during fictive locomotion) and somatic motor neurons (SMNs). We found more NA varicosities adjacent to central canal cluster cells, partition cells, and SMNs in the lumbar enlargement of OEG- than media-injected rats. As non-synaptic release of NA is common in the spinal cord, more associations between NA varicosities and motor-associated cholinergic neurons in the lumbar spinal cord may contribute to the improved treadmill stepping observed in OEG-injected spinal rats. This effect could be mediated through direct association with SMNs and/or indirectly via cholinergic interneurons.
Collapse
Affiliation(s)
- Aya Takeoka
- Department of Physiological Science, UCLA, Box 951606, Los Angeles, CA 90095-1606, USA
| | | | | | | | | | | |
Collapse
|
49
|
Dai Y, Carlin KP, Li Z, McMahon DG, Brownstone RM, Jordan LM. Electrophysiological and pharmacological properties of locomotor activity-related neurons in cfos-EGFP mice. J Neurophysiol 2009; 102:3365-83. [PMID: 19793882 PMCID: PMC2804412 DOI: 10.1152/jn.00265.2009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 09/25/2009] [Indexed: 02/05/2023] Open
Abstract
Although locomotion is known to be generated by networks of spinal neurons, knowledge of the properties of these neurons is limited. Using neonatal transgenic mice that express enhanced green fluorescent protein (EGFP) driven by the c-fos promoter, we visualized EGFP-positive neurons in spinal cord slices from animals that were subjected to a locomotor task or drug cocktail [N-methyl-D-aspartate, serotonin (5-HT), dopamine, and acetylcholine (ACh)]. The activity-dependent expression of EGFP was also induced in dorsal root ganglion neurons with electrical stimulation of the neurons. Following 60-90 min of swimming, whole cell patch-clamp recordings were made from EGFP+ neurons in laminae VII, VIII, and X from slices of segments T(12) to L(4). The EGFP+ neurons (n = 55) could be classified into three types based on their responses to depolarizing step currents: single spike, phasic firing, and tonic firing. Membrane properties observed in these neurons include hyperpolarization-activated inward currents (29/55), postinhibitory rebound (11/55), and persistent-inward currents (31/55). Bath application of 10-40 microM 5-HT and/or ACh increased neuronal excitability or output with hyperpolarization of voltage threshold and changes in membrane potential. 5-HT also increased input resistance, reduced the afterhyperpolarization (AHP), and induced membrane oscillations, whereas ACh reduced the input resistance and increased the AHP. In this study, we demonstrate a new way of identifying neurons active in locomotion. Our results suggest that the EGFP+ neurons are a heterogeneous population of interneurons. The actions of 5-HT and ACh on these neurons provide insights into the neuronal properties modulated by these transmitters for generation of locomotion.
Collapse
Affiliation(s)
- Yue Dai
- Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | | | |
Collapse
|
50
|
Heckman CJ, Mottram C, Quinlan K, Theiss R, Schuster J. Motoneuron excitability: the importance of neuromodulatory inputs. Clin Neurophysiol 2009; 120:2040-2054. [PMID: 19783207 DOI: 10.1016/j.clinph.2009.08.009] [Citation(s) in RCA: 181] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 08/06/2009] [Accepted: 08/07/2009] [Indexed: 11/28/2022]
Abstract
The excitability of spinal motoneurons is both fundamental for motor behavior and essential in diagnosis of neural disorders. There are two mechanisms for altering this excitability. The classic mechanism is mediated by synaptic inputs that depolarize or hyperpolarize motoneurons by generating postsynaptic potentials. This "ionotropic" mechanism works via neurotransmitters that open ion channels in the cell membrane. In the second mechanism, neurotransmitters bind to receptors that activate intracellular signaling pathways. These pathways modulate the properties of the voltage-sensitive channels that determine the intrinsic input-output properties of motoneurons. This "neuromodulatory" mechanism usually does not directly activate motoneurons but instead dramatically alters the neuron's response to ionotropic inputs. We present extensive evidence that neuromodulatory inputs exert a much more powerful effect on motoneuron excitability than ionotropic inputs. The most potent neuromodulators are probably serotonin and norepinephrine, which are released by axons originating in the brainstem and can increase motoneuron excitability fivefold or more. Thus, the standard tests of motoneuron excitability (H-reflexes, tendon taps, tendon vibration and stretch reflexes) are strongly influenced by the level of neuromodulatory input to motoneurons. This insight is likely to be profoundly important for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- C J Heckman
- Physiology, Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL 60126, USA.
| | - Carol Mottram
- Physiology, Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL 60126, USA
| | - Kathy Quinlan
- Physiology, Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL 60126, USA
| | - Renee Theiss
- Physiology, Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL 60126, USA
| | - Jenna Schuster
- Physiology, Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL 60126, USA
| |
Collapse
|