1
|
Vyskočil F. From Frog Muscle to Brain Neurons: Joys and Sorrows in Neuroscience. Physiol Res 2024; 73:S83-S103. [PMID: 38957950 PMCID: PMC11412337 DOI: 10.33549/physiolres.935414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
One element, potassium, can be identified as the connecting link in the research of Czech neurophysiologist Prof. František Vyskočil. It accompanied him from the first student experiments on the frog muscle (Solandt effect) via sodium-potassium pump and quantum and non-quantum release of neurotransmitters (e.g. acetylcholine) to the most appreciated work on the reversible leakage of K+ from brain neurons during the Leao´s spreading cortical depression, often preceding migraine. He used a wide range of methods at the systemic, cellular and genetic levels. The electrophysiology and biochemistry of nerve-muscle contacts and synapses in the muscles and brain led to a range of interesting findings and discoveries on normal, denervated and hibernating laboratory mammals and in tissue cultures. Among others, he co-discovered the facilitating effects of catecholamines (adrenaline in particular) by end-plate synchronization of individual evoked quanta. This helps to understand the general effectiveness of nerve-muscle performance during actual stress. After the transition of the Czech Republic to capitalism, together with Dr. Josef Zicha from our Institute, he was an avid promoter of scientometry as an objective system of estimating a scientist´s success in basic research (journal Vesmír, 69: 644-645, 1990 in Czech).
Collapse
Affiliation(s)
- F Vyskočil
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
2
|
Kovyazina IV, Khamidullina AA. Muscarinic Cholinoreceptors in Skeletal Muscle: Localization and Functional Role. Acta Naturae 2023; 15:44-55. [PMID: 38234599 PMCID: PMC10790362 DOI: 10.32607/actanaturae.25259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/24/2023] [Indexed: 01/19/2024] Open
Abstract
The review focuses on the modern concepts of the functions of muscarinic cholinoreceptors in skeletal muscles, particularly, in neuromuscular contacts, and that of the signaling pathways associated with the activation of various subtypes of muscarinic receptors in the skeletal muscles of cold-blooded and warm-blooded animals. Despite the long history of research into the involvement of muscarinic receptors in the modulation of neuromuscular transmission, many aspects of such regulation and the associated intracellular mechanisms remain unclear. Now it is obvious that the functions of muscarinic receptors in skeletal muscle are not limited to the autoregulation of neurosecretion from motor nerve endings but also extend to the development and morphological rearrangements of the synaptic apparatus, coordinating them with the degree of activity. The review discusses various approaches to the study of the functions of muscarinic receptors in motor synapses, as well as the problems arising when interpreting experimental data. The final part of the review is devoted to an analysis of some of the intracellular mechanisms and signaling pathways that mediate the effects of muscarinic agents on neuromuscular transmission.
Collapse
Affiliation(s)
- I. V. Kovyazina
- Kazan State Medical University, Kazan, 420012 Russian Federation
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, 420111 Russian Federation
| | | |
Collapse
|
3
|
Bukharaeva EA. From Motor Neuron to Muscle—Studies by the School of E.E. Nikolsky. NEUROCHEM J+ 2022. [DOI: 10.1134/s1819712422040043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
4
|
Tsentsevitsky AN, Gafurova CR, Petrov AM. KATP channels as ROS-dependent modulator of neurotransmitter release at the neuromuscular junctions. Life Sci 2022; 310:121120. [DOI: 10.1016/j.lfs.2022.121120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022]
|
5
|
Bukharaeva EA, Skorinkin AI, Samigullin DV, Petrov AM. Presynaptic Acetylcholine Receptors Modulate the Time Course of Action Potential-Evoked Acetylcholine Quanta Secretion at Neuromuscular Junctions. Biomedicines 2022; 10:biomedicines10081771. [PMID: 35892671 PMCID: PMC9332499 DOI: 10.3390/biomedicines10081771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
For effective transmission of excitation in neuromuscular junctions, the postsynaptic response amplitude must exceed a critical level of depolarization to trigger action potential spreading along the muscle-fiber membrane. At the presynaptic level, the end-plate potential amplitude depends not only on the acetylcholine quanta number released from the nerve terminals in response to the nerve impulse but also on a degree of synchronicity of quanta releases. The time course of stimulus-phasic synchronous quanta secretion is modulated by many extra- and intracellular factors. One of the pathways to regulate the neurosecretion kinetics of acetylcholine quanta is an activation of presynaptic autoreceptors. This review discusses the contribution of acetylcholine presynaptic receptors to the control of the kinetics of evoked acetylcholine release from nerve terminals at the neuromuscular junctions. The timing characteristics of neurotransmitter release is nowadays considered an essential factor determining the plasticity and efficacy of synaptic transmission.
Collapse
Affiliation(s)
- Ellya A. Bukharaeva
- Kazan Institute of Biochemistry and Biophysics, Kazan Federal Scientific Centre “Kazan Scientific Centre of Russian Academy of Sciences”, 2/31 Lobatchevsky Street, 420111 Kazan, Russia; (A.I.S.); (D.V.S.); (A.M.P.)
- Correspondence:
| | - Andrey I. Skorinkin
- Kazan Institute of Biochemistry and Biophysics, Kazan Federal Scientific Centre “Kazan Scientific Centre of Russian Academy of Sciences”, 2/31 Lobatchevsky Street, 420111 Kazan, Russia; (A.I.S.); (D.V.S.); (A.M.P.)
| | - Dmitry V. Samigullin
- Kazan Institute of Biochemistry and Biophysics, Kazan Federal Scientific Centre “Kazan Scientific Centre of Russian Academy of Sciences”, 2/31 Lobatchevsky Street, 420111 Kazan, Russia; (A.I.S.); (D.V.S.); (A.M.P.)
- Department of Radiophotonics and Microwave Technologies, Kazan National Research Technical University named after A.N. Tupolev, 420111 Kazan, Russia
| | - Alexey M. Petrov
- Kazan Institute of Biochemistry and Biophysics, Kazan Federal Scientific Centre “Kazan Scientific Centre of Russian Academy of Sciences”, 2/31 Lobatchevsky Street, 420111 Kazan, Russia; (A.I.S.); (D.V.S.); (A.M.P.)
- Institute of Neuroscience, Kazan State Medical University, 49 Butlerova Street, 420012 Kazan, Russia
| |
Collapse
|
6
|
Zhilyakov N, Arkhipov A, Malomouzh A, Samigullin D. Activation of Neuronal Nicotinic Receptors Inhibits Acetylcholine Release in the Neuromuscular Junction by Increasing Ca 2+ Flux through Ca v1 Channels. Int J Mol Sci 2021; 22:9031. [PMID: 34445737 PMCID: PMC8396429 DOI: 10.3390/ijms22169031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022] Open
Abstract
Cholinergic neurotransmission is a key signal pathway in the peripheral nervous system and in several branches of the central nervous system. Despite the fact that it has been studied extensively for a long period of time, some aspects of its regulation still have not yet been established. One is the relationship between the nicotine-induced autoregulation of acetylcholine (ACh) release with changes in the concentration of presynaptic calcium levels. The mouse neuromuscular junction of m. Levator Auris Longus was chosen as the model of the cholinergic synapse. ACh release was assessed by electrophysiological methods. Changes in calcium transients were recorded using a calcium-sensitive dye. Nicotine hydrogen tartrate salt application (10 μM) decreased the amount of evoked ACh release, while the calcium transient increased in the motor nerve terminal. Both of these effects of nicotine were abolished by the neuronal ACh receptor antagonist dihydro-beta-erythroidine and Cav1 blockers, verapamil, and nitrendipine. These data allow us to suggest that neuronal nicotinic ACh receptor activation decreases the number of ACh quanta released by boosting calcium influx through Cav1 channels.
Collapse
Affiliation(s)
- Nikita Zhilyakov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, P.O. Box 261, 420111 Kazan, Russia; (A.A.); (A.M.)
| | - Arsenii Arkhipov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, P.O. Box 261, 420111 Kazan, Russia; (A.A.); (A.M.)
| | - Artem Malomouzh
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, P.O. Box 261, 420111 Kazan, Russia; (A.A.); (A.M.)
| | - Dmitry Samigullin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, P.O. Box 261, 420111 Kazan, Russia; (A.A.); (A.M.)
- Department of Radiophotonics and Microwave Technologies, Federal State Budgetary Educational Institution of Higher Education “Kazan National Research Technical University Named after A.N. Tupolev–KAI”, 420111 Kazan, Russia
| |
Collapse
|
7
|
Bukharaeva EA, Skorinkin AI. Cholinergic Modulation of Acetylcholine
Secretion at the Neuromuscular Junction. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021020174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Tsentsevitsky AN, Zakyrjanova GF, Petrov AM. Cadmium desynchronizes neurotransmitter release in the neuromuscular junction: Key role of ROS. Free Radic Biol Med 2020; 155:19-28. [PMID: 32445865 DOI: 10.1016/j.freeradbiomed.2020.05.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/18/2020] [Accepted: 05/18/2020] [Indexed: 12/11/2022]
Abstract
Cd2+ is one of the most widespread environmental pollutants and its accumulation in central and peripheral nervous systems leads to neurotoxicity as well as aggravation of common neurodegenerative diseases. Mechanism of the Cd2+ toxicity is far from being resolved. Here, using microelectrode recordings of postsynaptic responses and fluorescent redox indicators we studied the effect of Cd2+ in the submicromolar range on timing of neurotransmitter release and oxidative status in two functionally different compartments of the same frog motor nerve terminal. Cd2+ (0.1-1 μM) acting as typical voltage-gated Ca2+channel (VGCC) antagonist decreased neurotransmitter release in both distal and proximal parts of the nerve terminal, but in contrast to the VGCC blockers Cd2+(0.1-0.5 μM) desynchronized the release selectively in the distal region. The latter action of Cd2+ was completely prevented by inhibitor of NADPH-oxidase and antioxidants, including mitochondrial specific, as well as redox-sensitive TRPV1 channel blocker. Cd2+ markedly increased levels of mitochondrial reactive oxygen species (ROS) in both the distal and proximal compartments of the nerve terminal, which was associated with lipid peroxidation mainly in the distal region. Zn2+, whose transport systems translocate Cd2+, markedly enhanced the effects of Cd2+ on both the mitochondrial ROS levels and timing of neurotransmitter release. Furthermore, in the presence of Zn2+ ions, Cd2+ also desynchronized the neurotransmitter release in the proximal region. Thus, in synapses Cd2+ at very low concentrations can increase mitochondrial ROS, lipid peroxidation and disturb the timing of neurotransmitter release via a ROS/TRPV-dependent mechanism. Desynchronization of neurotransmitter release and synaptic oxidative stress could be early events in Cd2+ neurotoxicity.
Collapse
Affiliation(s)
- A N Tsentsevitsky
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center ''Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan, 420111, Russia
| | - G F Zakyrjanova
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center ''Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan, 420111, Russia; Institute of Neuroscience, Kazan State Medial University, 49 Butlerova Street, Kazan, 420012, Russia
| | - A M Petrov
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center ''Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan, 420111, Russia; Institute of Neuroscience, Kazan State Medial University, 49 Butlerova Street, Kazan, 420012, Russia.
| |
Collapse
|
9
|
Ge D, Noakes PG, Lavidis NA. What are Neurotransmitter Release Sites and Do They Interact? Neuroscience 2020; 425:157-168. [DOI: 10.1016/j.neuroscience.2019.11.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 11/10/2019] [Accepted: 11/11/2019] [Indexed: 12/22/2022]
|
10
|
Tsentsevitsky AN, Kovyazina IV, Nurullin LF, Nikolsky EE. Muscarinic cholinoreceptors (M1-, M2-, M3- and M4-type) modulate the acetylcholine secretion in the frog neuromuscular junction. Neurosci Lett 2017; 649:62-69. [PMID: 28408330 DOI: 10.1016/j.neulet.2017.04.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/23/2017] [Accepted: 04/07/2017] [Indexed: 11/28/2022]
Abstract
Muscarinic cholinoreceptors regulate the neurosecretion process in vertebrate neuromuscular junctions. The diversity of muscarinic effects on acetylcholine (ACh) secretion may be attributed to the different muscarinic subtypes involved in this process. In the present study, the location of five muscarinic receptor subtypes (M1, M2, M3, M4 and M5) on the motor nerve terminals of frog cutaneous pectoris muscle was shown using specific polyclonal antibodies. The modulatory roles of these receptors were investigated via assessment of the effects of muscarine and specific muscarinic antagonists on the quantal content of endplate currents (EPCs) and the time course of secretion, which was estimated from the distribution of "real" synaptic delays of EPCs recorded in a low Ca2+/high Mg2+ solution. The agonist muscarine decreased the EPC quantal content and synchronized the release process. The depressing action of muscarine on the EPC quantal content was abolished only by pretreatment of the preparation with the M3 blockers 4-DAMP (1,1-Dimethyl-4-diphenylacetoxypiperidinium iodide) and J 104129 fumarate ((αR)-α-Cyclopentyl-α-hydroxy-N-[1-(4-methyl-3-pentenyl)-4-piperidinyl]benzeneacetamide fumarate). Moreover, antagonists of the M1, M2, M3 and M4 receptors per se diminished the intensity of secretion, which suggests a putative up-regulation of the release by endogenous ACh.
Collapse
Affiliation(s)
- Andrei N Tsentsevitsky
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P. O. Box 30, Lobachevsky Str., 2/31, Kazan, 420111, Russia; Open Laboratory of Neuropharmacology, Kazan Federal University, Kremlevskaya Str., 18, Kazan, 420000, Russia
| | - Irina V Kovyazina
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P. O. Box 30, Lobachevsky Str., 2/31, Kazan, 420111, Russia; Open Laboratory of Neuropharmacology, Kazan Federal University, Kremlevskaya Str., 18, Kazan, 420000, Russia.
| | - Leniz F Nurullin
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P. O. Box 30, Lobachevsky Str., 2/31, Kazan, 420111, Russia; Open Laboratory of Neuropharmacology, Kazan Federal University, Kremlevskaya Str., 18, Kazan, 420000, Russia; Department of Biology, Kazan State Medical University, Butlerov Str., 49, Kazan, 420012, Russia
| | - Eugeny E Nikolsky
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P. O. Box 30, Lobachevsky Str., 2/31, Kazan, 420111, Russia; Open Laboratory of Neuropharmacology, Kazan Federal University, Kremlevskaya Str., 18, Kazan, 420000, Russia; Department of Medical and Biological Physics, Kazan State Medical University, Butlerov Str., 49, Kazan, 420012, Russia
| |
Collapse
|
11
|
Khaziev E, Bukharaeva E, Nikolsky E, Samigullin D. Contribution of Ryanodine Receptors in Forming Presynaptic Ca2+ Level and Cholinergic Modulation in Response to Single Potential in Frog Neuromuscular Junction. BIONANOSCIENCE 2017. [DOI: 10.1007/s12668-016-0308-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Khaziev E, Samigullin D, Zhilyakov N, Fatikhov N, Bukharaeva E, Verkhratsky A, Nikolsky E. Acetylcholine-Induced Inhibition of Presynaptic Calcium Signals and Transmitter Release in the Frog Neuromuscular Junction. Front Physiol 2016; 7:621. [PMID: 28018246 PMCID: PMC5149534 DOI: 10.3389/fphys.2016.00621] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/28/2016] [Indexed: 11/29/2022] Open
Abstract
Acetylcholine (ACh), released from axonal terminals of motor neurons in neuromuscular junctions regulates the efficacy of neurotransmission through activation of presynaptic nicotinic and muscarinic autoreceptors. Receptor-mediated presynaptic regulation could reflect either direct action on exocytotic machinery or modulation of Ca2+ entry and resulting intra-terminal Ca2+ dynamics. We have measured free intra-terminal cytosolic Ca2+ ([Ca2+]i) using Oregon-Green 488 microfluorimetry, in parallel with voltage-clamp recordings of spontaneous (mEPC) and evoked (EPC) postsynaptic currents in post-junctional skeletal muscle fiber. Activation of presynaptic muscarinic and nicotinic receptors with exogenous acetylcholine and its non-hydrolized analog carbachol reduced amplitude of the intra-terminal [Ca2+]i transients and decreased quantal content (calculated by dividing the area under EPC curve by the area under mEPC curve). Pharmacological analysis revealed the role of muscarinic receptors of M2 subtype as well as d-tubocurarine-sensitive nicotinic receptor in presynaptic modulation of [Ca2+]i transients. Modulation of synaptic transmission efficacy by ACh receptors was completely eliminated by pharmacological inhibition of N-type Ca2+ channels. We conclude that ACh receptor-mediated reduction of Ca2+ entry into the nerve terminal through N-type Ca2+ channels represents one of possible mechanism of presynaptic modulation in frog neuromuscular junction.
Collapse
Affiliation(s)
- Eduard Khaziev
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center of the Russian Academy of SciencesKazan, Russia; Open Laboratory of Neuropharmacology, Kazan (Volga Region) Federal UniversityKazan, Russia; Institute of Applied Electrodynamics, Photonics and Living Systems, A.N. Tupolev Kazan National Research Technical UniversityKazan, Russia
| | - Dmitry Samigullin
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center of the Russian Academy of SciencesKazan, Russia; Open Laboratory of Neuropharmacology, Kazan (Volga Region) Federal UniversityKazan, Russia; Institute of Applied Electrodynamics, Photonics and Living Systems, A.N. Tupolev Kazan National Research Technical UniversityKazan, Russia
| | - Nikita Zhilyakov
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center of the Russian Academy of SciencesKazan, Russia; Open Laboratory of Neuropharmacology, Kazan (Volga Region) Federal UniversityKazan, Russia
| | - Nijaz Fatikhov
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center of the Russian Academy of Sciences Kazan, Russia
| | - Ellya Bukharaeva
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center of the Russian Academy of SciencesKazan, Russia; Open Laboratory of Neuropharmacology, Kazan (Volga Region) Federal UniversityKazan, Russia
| | | | - Evgeny Nikolsky
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center of the Russian Academy of SciencesKazan, Russia; Open Laboratory of Neuropharmacology, Kazan (Volga Region) Federal UniversityKazan, Russia; Department of Biophysics, Kazan State Medical UniversityKazan, Russia
| |
Collapse
|
13
|
Tsentsevitsky A, Nurullin L, Nikolsky E, Malomouzh A. Metabotropic and ionotropic glutamate receptors mediate the modulation of acetylcholine release at the frog neuromuscular junction. J Neurosci Res 2016; 95:1391-1401. [DOI: 10.1002/jnr.23977] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 09/19/2016] [Accepted: 10/05/2016] [Indexed: 12/28/2022]
Affiliation(s)
- Andrei Tsentsevitsky
- Laboratory of Biophysics of Synaptic Processes; Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences; Kazan Russia
- Open Laboratory of Neuropharmacology; Kazan Federal University; Kazan Russia
| | - Leniz Nurullin
- Laboratory of Biophysics of Synaptic Processes; Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences; Kazan Russia
- Open Laboratory of Neuropharmacology; Kazan Federal University; Kazan Russia
- Department of Biology; Kazan State Medical University; Kazan Russia
| | - Evgeny Nikolsky
- Laboratory of Biophysics of Synaptic Processes; Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences; Kazan Russia
- Open Laboratory of Neuropharmacology; Kazan Federal University; Kazan Russia
- Department of Medical and Biological Physics; Kazan State Medical University; Kazan Russia
| | - Artem Malomouzh
- Laboratory of Biophysics of Synaptic Processes; Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences; Kazan Russia
- Open Laboratory of Neuropharmacology; Kazan Federal University; Kazan Russia
| |
Collapse
|
14
|
|
15
|
Saveliev A, Khuzakhmetova V, Samigullin D, Skorinkin A, Kovyazina I, Nikolsky E, Bukharaeva E. Bayesian analysis of the kinetics of quantal transmitter secretion at the neuromuscular junction. J Comput Neurosci 2015; 39:119-29. [PMID: 26129670 DOI: 10.1007/s10827-015-0567-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 06/15/2015] [Accepted: 06/19/2015] [Indexed: 11/29/2022]
Abstract
The timing of transmitter release from nerve endings is considered nowadays as one of the factors determining the plasticity and efficacy of synaptic transmission. In the neuromuscular junction, the moments of release of individual acetylcholine quanta are related to the synaptic delays of uniquantal endplate currents recorded under conditions of lowered extracellular calcium. Using Bayesian modelling, we performed a statistical analysis of synaptic delays in mouse neuromuscular junction with different patterns of rhythmic nerve stimulation and when the entry of calcium ions into the nerve terminal was modified. We have obtained a statistical model of the release timing which is represented as the summation of two independent statistical distributions. The first of these is the exponentially modified Gaussian distribution. The mixture of normal and exponential components in this distribution can be interpreted as a two-stage mechanism of early and late periods of phasic synchronous secretion. The parameters of this distribution depend on both the stimulation frequency of the motor nerve and the calcium ions' entry conditions. The second distribution was modelled as quasi-uniform, with parameters independent of nerve stimulation frequency and calcium entry. Two different probability density functions for the distribution of synaptic delays suggest at least two independent processes controlling the time course of secretion, one of them potentially involving two stages. The relative contribution of these processes to the total number of mediator quanta released depends differently on the motor nerve stimulation pattern and on calcium ion entry into nerve endings.
Collapse
Affiliation(s)
- Anatoly Saveliev
- Kazan Federal University, Kremlevskaya St. 18, Kazan, 420008, Russia
| | - Venera Khuzakhmetova
- Kazan Federal University, Kremlevskaya St. 18, Kazan, 420008, Russia.,Laboratory of the Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan, 420111, Russia
| | - Dmitry Samigullin
- Kazan Federal University, Kremlevskaya St. 18, Kazan, 420008, Russia.,Laboratory of the Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan, 420111, Russia.,Kazan National Research Technical University named after A. N. Tupolev, K. Marx St. 10, Kazan, 420111, Russia
| | - Andrey Skorinkin
- Kazan Federal University, Kremlevskaya St. 18, Kazan, 420008, Russia.,Laboratory of the Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan, 420111, Russia
| | - Irina Kovyazina
- Kazan Federal University, Kremlevskaya St. 18, Kazan, 420008, Russia.,Laboratory of the Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan, 420111, Russia
| | - Eugeny Nikolsky
- Kazan Federal University, Kremlevskaya St. 18, Kazan, 420008, Russia.,Laboratory of the Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan, 420111, Russia.,Kazan State Medical University, Butlerov St. 49, Kazan, 420012, Russia
| | - Ellya Bukharaeva
- Kazan Federal University, Kremlevskaya St. 18, Kazan, 420008, Russia. .,Laboratory of the Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan, 420111, Russia.
| |
Collapse
|
16
|
Kovyazina IV, Tsentsevitsky AN, Nikolsky EE. Identification of the muscarinic receptor subtypes involved in autoregulation of acetylcholine quantal release from frog motor nerve endings. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2015; 460:5-7. [PMID: 25773240 DOI: 10.1134/s0012496615010081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Indexed: 11/22/2022]
Affiliation(s)
- I V Kovyazina
- Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, Kazan, 420111, Tatarstan, Russia,
| | | | | |
Collapse
|
17
|
Dudel J. α-Conotoxin M1 (CTx) blocks αδ binding sites of adult nicotinic receptors while ACh binding at αε sites elicits only small and short quantal synaptic currents. Physiol Rep 2014; 2:2/12/e12188. [PMID: 25501436 PMCID: PMC4332195 DOI: 10.14814/phy2.12188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In ‘embryonic’ nicotinic receptors, low CTx concentrations are known to block only the αδ binding site, whereas binding of ACh at the αγ‐site elicits short single channel openings and short bursts. In adult muscles the αγ‐ is replaced by the αε‐site. Quantal EPSCs (qEPSCs) were elicited in adult muscles by depolarization pulses and recorded through a perfused macropatch electrode. One to 200 nmol L−1 CTx reduced amplitudes and decay time constants of qEPSCs, but increased their rise times. CTx block at the αδ binding sites was incomplete: The qEPSCs still contained long bursts from not yet blocked receptors, whereas their average decay time constants were reduced by a short burst component generated by ACh binding to the αε‐site. Two nanomolar CTx applied for 3 h reduced the amplitudes of qEPSCs to less than half with a constant slope. The equilibrium concentration of the block is below 1 nmol L−1 and lower than that of embryonic receptors. CTx‐block increased in proportion to CTx concentrations (average rate 2 × 104 s−1·mol−1 L). Thus, the reactions of ‘embryonic’ and of adult nicotinic receptors to block by CTx are qualitatively the same. – The study of the effects of higher CTx concentrations or of longer periods of application of CTx was limited by presynaptic effects of CTx. Even low CTx concentrations severely reduced the release of quanta by activating presynaptic M2 receptors at a maximal rate of 6 × 105 s−1·mol−1 L. When this dominant inhibition was prevented by blocking the M2 receptors with methoctramine, activation of M1 receptors was unmasked and facilitated release. When CTx blocks the αδ binding site of adult nicotinic receptors, very small and short quantal synaptic currents (qEPSCs) are generated by binding of ACh quanta at the αε‐site, This is very similar to the effects of CTx at embryonic receptors where the short qEPSCs are generated by binding at the αγ site. CTx also activates presynaptic muscarinic M1 and M2 receptors.
Collapse
Affiliation(s)
- Josef Dudel
- Institut für Neurowissenschaften, Technische Universität München, Biedersteinerstr. 29, München, D-80802, Germany
| |
Collapse
|
18
|
Schwann cells sense and control acetylcholine spillover at the neuromuscular junction by α7 nicotinic receptors and butyrylcholinesterase. J Neurosci 2014; 34:11870-83. [PMID: 25186736 DOI: 10.1523/jneurosci.0329-14.2014] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Terminal Schwann cells (TSCs) are key components of the mammalian neuromuscular junction (NMJ). How the TSCs sense the synaptic activity in physiological conditions remains unclear. We have taken advantage of the distinct localization of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) at the NMJ to bring out the function of different ACh receptors (AChRs). AChE is clustered by the collagen Q in the synaptic cleft and prevents the repetitive activation of muscle nicotinic AChRs. We found that BChE is anchored at the TSC by a proline-rich membrane anchor, the small transmembrane protein anchor of brain AChE. When BChE was specifically inhibited, ACh release was significant depressed through the activation of α7 nAChRs localized on the TSC and activated by the spillover of ACh. When both AChE and BChE were inhibited, the spillover increased and induced a dramatic reduction of ACh release that compromised the muscle twitch triggered by the nerve stimulation. α7 nAChRs at the TSC may act as a sensor for spillover of ACh adjusted by BChE and may represent an extrasynaptic sensor for homeostasis at the NMJ. In myasthenic rats, selective inhibition of AChE is more effective in rescuing muscle function than the simultaneous inhibition of AChE and BChE because the concomitant inhibition of BChE counteracts the positive action of AChE inhibition. These results show that inhibition of BChE should be avoided during the treatment of myasthenia and the pharmacological reversal of residual curarization after anesthesia.
Collapse
|
19
|
Khuzakhmetova V, Samigullin D, Nurullin L, Vyskočil F, Nikolsky E, Bukharaeva E. Kinetics of neurotransmitter release in neuromuscular synapses of newborn and adult rats. Int J Dev Neurosci 2014; 34:9-18. [PMID: 24412779 DOI: 10.1016/j.ijdevneu.2013.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 12/24/2013] [Accepted: 12/28/2013] [Indexed: 01/02/2023] Open
Abstract
The kinetics of the phasic synchronous and delayed asynchronous release of acetylcholine quanta was studied at the neuromuscular junctions of aging rats from infant to mature animals at various frequencies of rhythmic stimulation of the motor nerve. We found that in infants 6 (P6) and 10 (P10) days after birth a strongly asynchronous phase of quantal release was observed, along with a reduced number of quanta compared to the synapses of adults. The rise time and decay of uni-quantal end-plate currents were significantly longer in infant synapses. The presynaptic immunostaining revealed that the area of the synapses in infants was significantly (up to six times) smaller than in mature junctions. The intensity of delayed asynchronous release in infants increased with the frequency of stimulation more than in adults. A blockade of the ryanodine receptors, which can contribute to the formation of delayed asynchronous release, had no effect on the kinetics of delayed secretion in the infants unlike synapses of adults. Therefore, high degree of asynchrony of quantal release in infants is not associated with the activity of ryanodine receptors and with the liberation of calcium ions from intracellular calcium stores.
Collapse
Affiliation(s)
- Venera Khuzakhmetova
- Kazan Institute of Biochemistry and Biophysics Kazan Scientific Center of the Russian Academy of Sciences, Post Box 30, 420111 Kazan, Russia
| | - Dmitry Samigullin
- Kazan Institute of Biochemistry and Biophysics Kazan Scientific Center of the Russian Academy of Sciences, Post Box 30, 420111 Kazan, Russia
| | - Leniz Nurullin
- Kazan Institute of Biochemistry and Biophysics Kazan Scientific Center of the Russian Academy of Sciences, Post Box 30, 420111 Kazan, Russia
| | - Frantisek Vyskočil
- Institute of Physiology, Academy of Sciences of the Czech Republic, Videnska 1083, 14200 Prague, Czech Republic; Department of Physiology, Faculty of Sciences, Charles University, Vinicna 7, Prague, Czech Republic
| | - Evgeny Nikolsky
- Kazan Institute of Biochemistry and Biophysics Kazan Scientific Center of the Russian Academy of Sciences, Post Box 30, 420111 Kazan, Russia; Kazan State Medical University, Butlerov st. 49, 420012 Kazan, Russia; Kazan Federal University, Kremlyovskaya st. 18, 420008 Kazan, Russia
| | - Ellya Bukharaeva
- Kazan Institute of Biochemistry and Biophysics Kazan Scientific Center of the Russian Academy of Sciences, Post Box 30, 420111 Kazan, Russia; Kazan State Medical University, Butlerov st. 49, 420012 Kazan, Russia; Kazan Federal University, Kremlyovskaya st. 18, 420008 Kazan, Russia.
| |
Collapse
|
20
|
Tsentsevitsky A, Kovyazina I, Nikolsky E, Bukharaeva E, Giniatullin R. Redox-sensitive synchronizing action of adenosine on transmitter release at the neuromuscular junction. Neuroscience 2013; 248:699-707. [PMID: 23806718 DOI: 10.1016/j.neuroscience.2013.05.065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 05/13/2013] [Accepted: 05/30/2013] [Indexed: 12/20/2022]
Abstract
The kinetics of neurotransmitter release was recognized recently as an important contributor to synaptic efficiency. Since adenosine is the ubiquitous modulator of presynaptic release in peripheral and central synapses, in the current project we studied the action of this purine on the timing of acetylcholine quantal release from motor nerve terminals in the skeletal muscle. Using extracellular recording from frog neuromuscular junction we tested the action of adenosine on the latencies of single quantal events in the pro-oxidant and antioxidant conditions. We found that adenosine, in addition to previously known inhibitory action on release probability, also synchronized release by removing quantal events with long latencies. This action of adenosine on release timing was abolished by oxidants whereas in the presence of the antioxidant the synchronizing action of adenosine was further enhanced. Interestingly, unlike the timing of release, the inhibitory action of adenosine on release probability was redox-independent. Modulation of release timing by adenosine was mediated by purinergic A1 receptors as it was eliminated by the specific A1 antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) and mimicked by the specific A1 agonist N(6)-cyclopentyl-adenosine. Consistent with data obtained from dispersion of single quantal events, adenosine also reduced the rise-time of multiquantal synaptic currents. The latter effect was reproduced in the model based on synchronizing effect of adenosine on release timing. Thus, adenosine which is generated at the neuromuscular junction from the breakdown of the co-transmitter ATP induces the synchronization of quantal events. The effect of adenosine on release timing should preserve the fidelity of synaptic transmission via "cost-effective" use of less transmitter quanta. Our findings also revealed important crosstalk between purinergic and redox modulation of synaptic processes which could take place in the elderly or in neuromuscular diseases associated with oxidative stress like lateral amyotrophic sclerosis.
Collapse
Affiliation(s)
- A Tsentsevitsky
- Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan 420111, Russia
| | | | | | | | | |
Collapse
|
21
|
Nurullin LF, Tsentsevitsky AN, Malomouzh AI, Nikolsky EE. Revealing of T-type low-voltage activated calcium channels (CaV3) in frog neuromuscular junctions. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2013; 449:73-5. [PMID: 23652430 DOI: 10.1134/s0012496613020038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Indexed: 11/23/2022]
Affiliation(s)
- L F Nurullin
- Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, Kazan, 420111 Tatarstan, Russia
| | | | | | | |
Collapse
|
22
|
Petrov KA, Malomouzh AI, Kovyazina IV, Krejci E, Nikitashina AD, Proskurina SE, Zobov VV, Nikolsky EE. Regulation of acetylcholinesterase activity by nitric oxide in rat neuromuscular junction viaN-methyl-d-aspartate receptor activation. Eur J Neurosci 2012; 37:181-9. [DOI: 10.1111/ejn.12029] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 09/14/2012] [Accepted: 09/20/2012] [Indexed: 12/26/2022]
Affiliation(s)
| | - Artem I. Malomouzh
- Kazan Institute of Biochemistry and Biophysics; Russian Academy of Sciences; PO Box 30; Kazan; 420111; Russia
| | - Irina V. Kovyazina
- Kazan Institute of Biochemistry and Biophysics; Russian Academy of Sciences; PO Box 30; Kazan; 420111; Russia
| | - Eric Krejci
- Centre d'Etude de la Sensori-Motricité (CESeM); Université Paris Descartes; CNRS, UMR8194; Paris; France
| | | | | | | | | |
Collapse
|
23
|
Khaziev EF, Fatikhov NF, Samigullin DV, Barrett GL, Bukharaeva EA, Nikolsky EE. Decreased entry of calcium into motor nerve endings upon activation of presynaptic cholinergic receptors. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2012; 446:283-285. [PMID: 23129273 DOI: 10.1134/s0012496612050080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Indexed: 06/01/2023]
Affiliation(s)
- E F Khaziev
- Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, Kazan, Russia
| | | | | | | | | | | |
Collapse
|
24
|
Samigullin DV, Khuzakhmetova VF, Tsentsevitsky AN, Bukharaeva EA. Presynaptic receptors regulating the time course of neurotransmitter release from vertebrate nerve endings. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2012. [DOI: 10.1134/s1990747811060134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Bukharaeva EA, Nikolskii EE. Changes in the Kinetics of Evoked Secretion of Transmitter Quanta – an Effective Mechanism Modulating the Synaptic Transmission of Excitation. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s11055-011-9548-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
26
|
Tsentsevitsky A, Nikolsky E, Giniatullin R, Bukharaeva E. Opposite modulation of time course of quantal release in two parts of the same synapse by reactive oxygen species. Neuroscience 2011; 189:93-9. [PMID: 21627983 DOI: 10.1016/j.neuroscience.2011.05.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 05/11/2011] [Accepted: 05/12/2011] [Indexed: 10/18/2022]
Abstract
Reactive oxygen species (ROS) are potent regulators of transmitter release in chemical synapses, but the mechanism of this action remains almost unknown. Presynaptic modulation can change either the release probability or the time course of quantal release, which was recently recognized as an efficient mechanism determining synaptic efficiency. The nonuniform structure and a big size of the frog neuromuscular junction make it a useful model to study the action of ROS in compartments different in release probability and in time course of transmitter release. The time course (or kinetics) of quantal release could be estimated by measuring the dispersion of the synaptic delays for evoked uniquantal endplate currents (EPCs) under low release probability. Using two-electrode recording technique, the action of ROS on kinetics and release probabilities were studied at the proximal and distal parts within the same neuromuscular junction. The stable ROS hydrogen peroxide (H2O2) increased the dispersion of synaptic delays of EPCs (i.e. desynchronized quantal release) within the distal part but decreased delay dispersion (synchronized quantal release) within the proximal part of the same synapse. Unlike the opposite modulation of kinetics, H2O2 reduced release probability in both distal and proximal parts. Since ATP is released from motor nerve terminals together with acetylcholine and can be involved in ROS signaling, we tested the presynaptic action of ATP. In the presence of the pro-oxidant Fe2+, extracellular ATP, similarly to H2O2, induced significant desynchronization of release in the distal regions. The antioxidant N-acetyl-cysteine attenuated the inhibitory action of ATP on release probability and abolished the action of H2O2 and ATP in the presence of Fe2+, on release kinetics. Our data suggest that ROS induced during muscle activity could change the time course of transmitter release along the motor nerve terminal to provide fine tuning of synaptic efficacy.
Collapse
Affiliation(s)
- A Tsentsevitsky
- Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan, 420111, Russia
| | | | | | | |
Collapse
|
27
|
Kovyazina IV, Tsentsevitsky AN, Nikolsky EE, Bukharaeva EA. Kinetics of acetylcholine quanta release at the neuromuscular junction during high-frequency nerve stimulation. Eur J Neurosci 2010; 32:1480-9. [DOI: 10.1111/j.1460-9568.2010.07430.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
28
|
Mechanisms of the inhibition of endplate acetylcholine receptors by antiseptic chlorhexidine (experiments and models). Naunyn Schmiedebergs Arch Pharmacol 2009; 380:551-60. [PMID: 19806343 DOI: 10.1007/s00210-009-0458-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 09/11/2009] [Indexed: 10/20/2022]
Abstract
Mechanisms of the inhibition of evoked multiquantal endplate currents (EPC) by chlorhexidine (CHX) were studied in electrophysiological experiments and by mathematical modeling to discriminate between possible channel, receptor, and non-receptor effects of this common antiseptic drug. Experiments were carried out on the isolated neuromuscular preparation of the cut m. sartorius of the frog Rana ridibunda. The nerve-stimulation-evoked endplate currents were measured by standard double microelectrode technique. For the mathematical simulation, a method based on the solution of a system of ordinary differential equations was used. CHX in milimolar concentrations suppressed the amplitude and shortened the evoked EPC. Recovery of the EPC amplitude was very slow, and EPC shortening persisted during 30-40 min washout of the drug. There is no indication that CHX competes for acetylcholine or carbachol binding site(s). A comparison of the experimental data with mathematical simulation made it possible to construct a reliable kinetic scheme, which describes the action of CHX. CHX induces a combined slow blockade of the open ionic channel and long-lasting allosteric inhibition of the nicotinic acetylcholine receptor. The very slow washout of the drug in terms of EPC amplitude and virtually no recovery of the shortened EPC time course might substantiate certain caution to avoid unintentional high-dose application during its antibacterial application.
Collapse
|
29
|
Tsentsevitsky AN, Vasin AL, Bukharaeva EA, Nikolsky EE. Participation of different types of voltage-dependent calcium channels in evoked quantal transmitter release in frog neuromuscular junctions. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2008; 423:389-391. [PMID: 19213416 DOI: 10.1134/s0012496608060069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Affiliation(s)
- A N Tsentsevitsky
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center, Russian Academy of Sciences, Kazan, 420111 Tatarstan, Russia
| | | | | | | |
Collapse
|
30
|
Dudel J. The time course of transmitter release in mouse motor nerve terminals is differentially affected by activation of muscarinic M1 or M2 receptors. Eur J Neurosci 2008; 26:2160-8. [PMID: 17953614 DOI: 10.1111/j.1460-9568.2007.05770.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
At endplates of mouse diaphragms the effects of activation of presynaptic muscarinic M1 and M2 autoreceptors on the time courses of monoquantal releases have been investigated at 20 degrees C. Quantal excitatory postsynaptic currents (qEPSCs) were elicited and recorded with a perfused macropatch electrode, through which control- and drug-containing solutions were applied to 10 microm phi regions of a neuromuscular junction. M2 receptors were activated with muscarine, while the M1 receptors were blocked by pirenzepine. M2 activation presented a slight, but highly significant augmentation of early releases. Analogously, M1 receptors were activated with muscarine, while M2 receptors were blocked by methoctramine. M1 activation elicited a highly significant small shift of the time course of release towards longer delays. In controls, the number of late releases decayed with a time constant of 0.3 ms. This time constant did not change appreciably when methoctramine or methoctramine + muscarine were applied. However, methoctramine + muscarine reduced the amplitude of qEPSCs and shortened their decay by a partial block of postsynaptic channels. Double blocks with pirenzepine + methoctramine allowed no presynaptic effect of muscarine, showing that the blocker concentrations were sufficient. Neither the addition of methoctramine to pirenzepine, nor the further addition of muscarine changed the time constant of decay of the number of late releases. The results are very similar to that of autoreceptor activations in the glutamatergic crayfish synapse: activation of inhibitory receptors augmented early releases, and that of facilitatory receptors depressed early releases [J. Dudel (2006a) Eur. J. Neurosci., 23, 2695-2700], which may suggest a general presynaptic mechanism.
Collapse
Affiliation(s)
- J Dudel
- Friedrich-Schedel-Institut für Neurowissenschaften der Technischen Universität München, Germany.
| |
Collapse
|
31
|
Balezina OP, Fedorin VV, Gaidukov AE. Effect of nicotine on neuromuscular transmission in mouse motor synapses. Bull Exp Biol Med 2007; 142:17-21. [PMID: 17369892 DOI: 10.1007/s10517-006-0280-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Nicotine (10 nM) inhibits rhythmic activity of the neuromuscular synapse in mice. This effect was prevented by alpha-cobratoxin and apamin. Hence, the effects of nicotine are realized via presynaptic neuronal nicotinic cholinoceptors and Ca(2+)-activated potassium channels.
Collapse
Affiliation(s)
- O P Balezina
- Department of Human and Animal Physiology, Biological Faculty, M. V. Lomonosov Moscow State University.
| | | | | |
Collapse
|
32
|
Bukharaeva EA, Samigullin D, Nikolsky EE, Magazanik LG. Modulation of the kinetics of evoked quantal release at mouse neuromuscular junctions by calcium and strontium. J Neurochem 2006; 100:939-49. [PMID: 17212698 DOI: 10.1111/j.1471-4159.2006.04282.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The effects of calcium and strontium on the quantal content of nerve-evoked endplate currents and on the kinetic parameters of quantal release (minimal synaptic delay, value of main mode of synaptic delay histogram, and variability of synaptic delay) were studied at the mouse neuromuscular synapse. At low calcium ion concentrations (0.2-0.6 mmol/L), evoked signals with long synaptic delays (several times longer than the value of main mode) were observed. Their number decreased substantially when [Ca(2+)](o) was increased (i.e. the release of transmitter became more synchronous). By contrast, the early phase of secretion, characterized by minimal synaptic delay and accounting for the main peak of the synaptic delay histogram, did not change significantly with increasing [Ca(2+)](o). Hence, extracellular calcium affected mainly the late, 'asynchronous', portion of phasic release. The average quantal content grew exponentially from 0.09 +/- 0.01 to 1.04 +/- 0.07 with the increase in [Ca(2+)](o) without reaching saturation. Similar results were obtained when calcium was replaced by strontium, but the asynchronous portion of phasic release was more pronounced and higher strontium concentrations (to 1.2-1.4 mmol/L) were required to abolish responses with long delays. Treatment of preparations with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis acetoxymethyl ester (BAPTA-AM) (25 micromol/L), but not with ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid acetoxymethyl ester (EGTA-AM) (25 micromol/L), abolished the responses with long delays. The dependence of quantal content and synchrony of quantal release on calcium and strontium concentrations have quite different slopes, suggesting that they are governed by different mechanisms.
Collapse
Affiliation(s)
- Ellya A Bukharaeva
- Institute of Biochemistry and Biophysics, Russian Academy of Sciences, Kazan, Russia
| | | | | | | |
Collapse
|