1
|
Fard D, Barbiera A, Dobrowolny G, Tamagnone L, Scicchitano BM. Semaphorins: Missing Signals in Age-dependent Alteration of Neuromuscular Junctions and Skeletal Muscle Regeneration. Aging Dis 2024; 15:517-534. [PMID: 37728580 PMCID: PMC10917540 DOI: 10.14336/ad.2023.0801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/01/2023] [Indexed: 09/21/2023] Open
Abstract
Skeletal muscle is characterized by a remarkable capacity to rearrange after physiological changes and efficiently regenerate. However, during aging, extensive injury, or pathological conditions, the complete regenerative program is severely affected, with a progressive loss of muscle mass and function, a condition known as sarcopenia. The compromised tissue repair program is attributable to the gradual depletion of stem cells and to altered regulatory signals. Defective muscle regeneration can severely affect re-innervation by motor axons, and neuromuscular junctions (NMJs) development, ultimately leading to skeletal muscle atrophy. Defects in NMJ formation and maintenance occur physiologically during aging and are responsible for the pathogenesis of several neuromuscular disorders. However, it is still largely unknown how neuromuscular connections are restored on regenerating fibers. It has been suggested that attractive and repelling signals used for axon guidance could be implicated in this process; in particular, guidance molecules called semaphorins play a key role. Semaphorins are a wide family of extracellular regulatory signals with a multifaceted role in cell-cell communication. Originally discovered as axon guidance factors, they have been implicated in cancer progression, embryonal organogenesis, skeletal muscle innervation, and other physiological and developmental functions in different tissues. In particular, in skeletal muscle, specific semaphorin molecules are involved in the restoration and remodeling of the nerve-muscle connections, thus emphasizing their plausible role to ensure the success of muscle regeneration. This review article aims to discuss the impact of aging on skeletal muscle regeneration and NMJs remodeling and will highlight the most recent insights about the role of semaphorins in this context.
Collapse
Affiliation(s)
- Damon Fard
- Sezione di Istologia ed Embriologia, Dipartimento di Scienze della Vita e Sanità Pubblica,Università Cattolica del Sacro Cuore, 00168 Roma, Italy.
| | - Alessandra Barbiera
- Sezione di Istologia ed Embriologia, Dipartimento di Scienze della Vita e Sanità Pubblica,Università Cattolica del Sacro Cuore, 00168 Roma, Italy.
| | - Gabriella Dobrowolny
- DAHFMO-Unità di Istologia ed Embriologia Medica, Sapienza Università di Roma, 00161 Roma, Italy.
| | - Luca Tamagnone
- Sezione di Istologia ed Embriologia, Dipartimento di Scienze della Vita e Sanità Pubblica,Università Cattolica del Sacro Cuore, 00168 Roma, Italy.
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy.
| | - Bianca Maria Scicchitano
- Sezione di Istologia ed Embriologia, Dipartimento di Scienze della Vita e Sanità Pubblica,Università Cattolica del Sacro Cuore, 00168 Roma, Italy.
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy.
| |
Collapse
|
2
|
Nayak S, Mishra CSK, Guru BC, Samal S. Histological anomalies and alterations in enzyme activities of the earthworm Glyphidrillus tuberosus exposed to high concentrations of phosphogypsum. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:529. [PMID: 30121706 DOI: 10.1007/s10661-018-6933-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 08/14/2018] [Indexed: 06/08/2023]
Abstract
Phosphogypsum (PG) is the major solid waste generated by phosphate fertilizer plants and is used worldwide as sulfur and calcium supplement in agricultural soil. Considering the probability of elevated doses of PG during agricultural applications, this study was carried out to assess its impact on the connective tissue, tissue cholinesterase (ChE) activity, lactate dehydrogenase (LDH) activity, and lipid peroxidation (LPX) level of the tropical earthworm Glyphidrillus tuberosus (Stephenson) found in abundance in the rice fields in India. Consistent loss of connective tissue and sloughing of the intestinal epithelium were observed in worms exposed to 10%, 15%, and 20% concentrations of PG in soil over an incubation period of 30 days. ChE, LDH activities, and the level of LPX indicated highly significant variation (p < 0.01) between pre and postclitellar regions of the worm and concentrations of treatment. ChE activity was higher in postclitellar with respect to preclitellar region; however, the values for LDH activity and LPX level were higher in preclitellar region in comparison to postclitellar region in both PG treated and control worms. It was concluded that PG concentration at and beyond 10% could cause damage to muscle fibers and bring about significant alterations in these enzyme activities in G.tuberosus thus affecting the physiology and ecological functions of these worms.
Collapse
Affiliation(s)
- Soumya Nayak
- Department of Zoology, College of Basic Science and Humanities, Orissa University of Agriculture and Technology, Bhubaneswar, 751003, India
| | - C S K Mishra
- Department of Zoology, College of Basic Science and Humanities, Orissa University of Agriculture and Technology, Bhubaneswar, 751003, India
| | - B C Guru
- Post Graduate Department of Zoology, Utkal University, Vani Vihar, Bhubaneswar, 751004, India
| | - Suryasikha Samal
- Department of Zoology, College of Basic Science and Humanities, Orissa University of Agriculture and Technology, Bhubaneswar, 751003, India.
| |
Collapse
|
3
|
Li Y, Yuan J, Wang Q, Sun L, Sha Y, Li Y, Wang L, Wang Z, Ma Y, Cao H. The collective influence of 1, 25-dihydroxyvitamin D 3 with physiological fluid shear stress on osteoblasts. Steroids 2018; 129:9-16. [PMID: 29155218 DOI: 10.1016/j.steroids.2017.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/23/2017] [Accepted: 11/12/2017] [Indexed: 11/27/2022]
Abstract
1, 25-dihydroxyvitamin D3 (1, 25 (OH)2 D3) and mechanical stimuli in physiological environment contributes greatly to osteoporosis pathogenesis. Wide investigations have been conducted on how 1, 25-dihydroxyvitamin D3 and mechanical stimuli separately impact osteoblasts. This study reports the collective influences of 1, 25-dihydroxyvitamin D3 and flow shear stress (FSS) on biological functions of osteoblasts. 1, 25 (OH)2 D3 were prepared in various kinds of concentrations (0, 1, 10, 100 nmmol/L), while physiological fluid shear stress (12 dynes/cm2) was produced by using a parallel-plate fluid flow system. 1, 25 (OH)2 D3 affects the responses of ROBs to FSS, including the inhibition of NO release and cell proliferation as well as the promotion of PGE2 release and cell differentiation. These findings provide a possible mechanism by which 1, 25(OH)2 D3 influences osteoblasts' responses to FSS, thus most probably providing guidance for the selection of 1, 25(OH)2 D3 concentration and mechanical loading in order to produce functional bone tissues in vitro.
Collapse
Affiliation(s)
- Yan Li
- School of Pharmacy, Taizhou Polytechnic College, Taizhou 225300, China; Bone Tissue Engineering Research Center of Taizhou, Taizhou 225300, China.
| | - Jiafeng Yuan
- School of Pharmacy, Taizhou Polytechnic College, Taizhou 225300, China; Bone Tissue Engineering Research Center of Taizhou, Taizhou 225300, China
| | - Qianwen Wang
- School of Pharmacy, Taizhou Polytechnic College, Taizhou 225300, China; Bone Tissue Engineering Research Center of Taizhou, Taizhou 225300, China
| | - Lijie Sun
- School of Pharmacy, Taizhou Polytechnic College, Taizhou 225300, China; Bone Tissue Engineering Research Center of Taizhou, Taizhou 225300, China
| | - Yunying Sha
- School of Pharmacy, Taizhou Polytechnic College, Taizhou 225300, China; Bone Tissue Engineering Research Center of Taizhou, Taizhou 225300, China
| | - Yanxiang Li
- School of Pharmacy, Taizhou Polytechnic College, Taizhou 225300, China; Bone Tissue Engineering Research Center of Taizhou, Taizhou 225300, China
| | - Lizhong Wang
- School of Pharmacy, Taizhou Polytechnic College, Taizhou 225300, China; Bone Tissue Engineering Research Center of Taizhou, Taizhou 225300, China
| | - Zhonghua Wang
- School of Pharmacy, Taizhou Polytechnic College, Taizhou 225300, China; Bone Tissue Engineering Research Center of Taizhou, Taizhou 225300, China
| | - Yonggang Ma
- School of Pharmacy, Taizhou Polytechnic College, Taizhou 225300, China; Bone Tissue Engineering Research Center of Taizhou, Taizhou 225300, China
| | - Hui Cao
- School of Pharmacy, Taizhou Polytechnic College, Taizhou 225300, China; Bone Tissue Engineering Research Center of Taizhou, Taizhou 225300, China
| |
Collapse
|
4
|
Li Y, Wang J, Xing J, Wang Y, Luo Y. Surface chemistry regulates the sensitivity and tolerability of osteoblasts to various magnitudes of fluid shear stress. J Biomed Mater Res A 2016; 104:2978-2991. [PMID: 27466082 DOI: 10.1002/jbm.a.35848] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 07/09/2016] [Accepted: 07/27/2016] [Indexed: 11/08/2022]
Abstract
Scaffolds provide a physical support for osteoblasts and act as the medium to transfer mechanical stimuli to cells. To verify our hypothesis that the surface chemistry of scaffolds regulates the perception of cells to mechanical stimuli, the sensitivity and tolerability of osteoblasts to fluid shear stress (FSS) of various magnitudes (5, 12, 20 dynes/cm2 ) were investigated on various surface chemistries (-OH, -CH3 , -NH2 ), and their follow-up effects on cell proliferation and differentiation were examined as well. The sensitivity was characterized by the release of adenosine triphosphate (ATP), nitric oxide (NO) and prostaglandin E2 (PGE2 ) while the tolerability was by cellular membrane integrity. The cell proliferation was characterized by S-phase cell fraction and the differentiation by ALP activity and ECM expression (fibronectin and type I collagen). As revealed, osteoblasts demonstrated higher sensitivity and lower tolerability on OH and CH3 surfaces, yet lower sensitivity and higher tolerability on NH2 surfaces. Observations on the focal adhesion formation, F-actin organization and cellular orientation before and after FSS exposure suggest that the potential mechanism lies in the differential control of F-actin organization and focal adhesion formation by surface chemistry, which further divergently mediates the sensitivity and tolerability of ROBs to FSS and the follow-up cell proliferation and differentiation. These findings are essentially valuable for design/selection of desirable surface chemistry to orchestrate with FSS stimuli, inducing appropriate cell responses and promoting bone formation. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2978-2991, 2016.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing, 400030, China.,Research Center of Bioinspired Materials Science and Engineering, College of Bioengineering, Chongqing University, Chongqing, 400030, China.,School of Pharmacy, Taizhou Polytechnic College, Taizhou, 225300, China
| | - Jinfeng Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing, 400030, China.,Research Center of Bioinspired Materials Science and Engineering, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Juan Xing
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing, 400030, China.,Research Center of Bioinspired Materials Science and Engineering, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Yuanliang Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing, 400030, China.,Research Center of Bioinspired Materials Science and Engineering, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Yanfeng Luo
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing, 400030, China. .,Research Center of Bioinspired Materials Science and Engineering, College of Bioengineering, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
5
|
Early applied electric field stimulation attenuates secondary apoptotic responses and exerts neuroprotective effects in acute spinal cord injury of rats. Neuroscience 2015; 291:260-71. [DOI: 10.1016/j.neuroscience.2015.02.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 02/09/2015] [Accepted: 02/10/2015] [Indexed: 01/31/2023]
|
6
|
Cairns SP, Leader JP, Loiselle DS, Higgins A, Lin W, Renaud JM. Extracellular Ca2+-induced force restoration in K+-depressed skeletal muscle of the mouse involves an elevation of [K+]i: implications for fatigue. J Appl Physiol (1985) 2015; 118:662-74. [PMID: 25571990 DOI: 10.1152/japplphysiol.00705.2013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined whether a Ca(2+)-K(+) interaction was a potential mechanism operating during fatigue with repeated tetani in isolated mouse muscles. Raising the extracellular Ca(2+) concentration ([Ca(2+)]o) from 1.3 to 10 mM in K(+)-depressed slow-twitch soleus and/or fast-twitch extensor digitorum longus muscles caused the following: 1) increase of intracellular K(+) activity by 20-60 mM (raised intracellular K(+) content, unchanged intracellular fluid volume), so that the K(+)-equilibrium potential increased by ∼10 mV and resting membrane potential repolarized by 5-10 mV; 2) large restoration of action potential amplitude (16-54 mV); 3) considerable recovery of excitable fibers (∼50% total); and 4) restoration of peak force with the peak tetanic force-extracellular K(+) concentration ([K(+)]o) relationship shifting rightward toward higher [K(+)]o. Double-sigmoid curve-fitting to fatigue profiles (125 Hz for 500 ms, every second for 100 s) showed that prior exposure to raised [K(+)]o (7 mM) increased, whereas lowered [K(+)]o (2 mM) decreased, the rate and extent of force loss during the late phase of fatigue (second sigmoid) in soleus, hence implying a K(+) dependence for late fatigue. Prior exposure to 10 mM [Ca(2+)]o slowed late fatigue in both muscle types, but was without effect on the extent of fatigue. These combined findings support our notion that a Ca(2+)-K(+) interaction is plausible during severe fatigue in both muscle types. We speculate that a diminished transsarcolemmal K(+) gradient and lowered [Ca(2+)]o contribute to late fatigue through reduced action potential amplitude and excitability. The raised [Ca(2+)]o-induced slowing of fatigue is likely to be mediated by a higher intracellular K(+) activity, which prolongs the time before stimulation-induced K(+) efflux depolarizes the sarcolemma sufficiently to interfere with action potentials.
Collapse
Affiliation(s)
- Simeon P Cairns
- Sports Performance Research Institute New Zealand, School of Sport and Recreation, Faculty of Health and Environmental Sciences, AUT University, Auckland, New Zealand; Health and Rehabilitation Research Institute, Faculty of Health and Environmental Sciences, AUT University, Auckland, New Zealand;
| | - John P Leader
- Department of Medicine, University of Otago, Dunedin, New Zealand; Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Denis S Loiselle
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand; Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand; and
| | - Amanda Higgins
- Department of Cellular and Molecular Medicine, Center for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada
| | - Wei Lin
- Department of Cellular and Molecular Medicine, Center for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada
| | - Jean-Marc Renaud
- Department of Cellular and Molecular Medicine, Center for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
7
|
Carmona G, Guerrero M, Cussó R, Padullés JM, Moras G, Lloret M, Bedini JL, Cadefau JA. Muscle enzyme and fiber type-specific sarcomere protein increases in serum after inertial concentric-eccentric exercise. Scand J Med Sci Sports 2014; 25:e547-57. [PMID: 25441613 DOI: 10.1111/sms.12363] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2014] [Indexed: 12/16/2022]
Abstract
Muscle damage induced by inertial exercise performed on a flywheel device was assessed through the serum evolution of muscle enzymes, interleukin 6, and fiber type-specific sarcomere proteins such as fast myosin (FM) and slow myosin (SM). We hypothesized that a model of muscle damage could be constructed by measuring the evolution of serum concentration of muscle proteins following inertial exercise, according to their molecular weight and the fiber compartment in which they are located. Moreover, by measuring FM and SM, the type of fibers that are affected could be assessed. Serum profiles were registered before and 24, 48, and 144 h after exercise in 10 healthy and recreationally active young men. Creatine kinase (CK) and CK-myocardial band isoenzyme increased in serum early (24 h) and returned to baseline values after 48 h. FM increased in serum late (48 h) and remained elevated 144 h post-exercise. The increase in serum muscle enzymes suggests increased membrane permeability of both fast and slow fibers, and the increase in FM reveals sarcomere disruption as well as increased membrane permeability of fast fibers. Consequently, FM could be adopted as a fiber type-specific biomarker of muscle damage.
Collapse
Affiliation(s)
- G Carmona
- Institut Nacional d'Educació Física de Catalunya (INEFC), University of Barcelona, Barcelona, Spain
| | - M Guerrero
- Departament de Ciències Fisiològiques I, University of Barcelona, Barcelona, Spain
| | - R Cussó
- Departament de Ciències Fisiològiques I, University of Barcelona, Barcelona, Spain
| | - J M Padullés
- Institut Nacional d'Educació Física de Catalunya (INEFC), University of Barcelona, Barcelona, Spain
| | - G Moras
- Institut Nacional d'Educació Física de Catalunya (INEFC), University of Barcelona, Barcelona, Spain
| | - M Lloret
- Institut Nacional d'Educació Física de Catalunya (INEFC), University of Barcelona, Barcelona, Spain
| | - J L Bedini
- Hospital Clínic de Barcelona, Barcelona, Spain
| | - J A Cadefau
- Institut Nacional d'Educació Física de Catalunya (INEFC), University of Barcelona, Barcelona, Spain.,Departament de Ciències Fisiològiques I, University of Barcelona, Barcelona, Spain
| |
Collapse
|
8
|
Behringer M, Montag J, Franz A, McCourt ML, Mester J, Nosaka KK. Exhaustive exercise--a near death experience for skeletal muscle cells? Med Hypotheses 2014; 83:758-65. [PMID: 25459151 DOI: 10.1016/j.mehy.2014.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 09/02/2014] [Accepted: 10/05/2014] [Indexed: 12/26/2022]
Abstract
In sports medicine, muscle enzymes in the blood are frequently used as an indicator of muscle damage. It is commonly assumed that mechanical stress disrupts plasma membrane to an extent that allows large molecules, such as enzymes, to leak into the extracellular space. However, this does not appear to fully explain changes in muscle enzyme activity in the blood after exercise. Apart from this mechanically induced membrane damage, we hypothesize that, under critical metabolic conditions, ATP consuming enzymes like creatine kinase (CK) are "volitionally" expulsed by muscle cells in order to prevent cell death. This would put themselves into a situation comparable to that of CK deficient muscle fibers, which have been shown in animal experiments to be virtually infatigable at the expense of muscle strength. Additionally we expand on this hypothesis with the idea that membrane blebbing is a way for the muscle fibers to store CK in fringe areas of the muscle fiber or to expulse CK from the cytosol by detaching the blebs from the plasma membrane. The blebbing has been shown to occur in heart muscle cells under ischaemic conditions and has been speculated to be an alternative pathway for the expulsion of troponin. The blebbing has also been seen skeletal muscle cells when intracellular calcium concentration increases. Cytoskeletal damage, induced by reactive oxygen species (ROS) or by calcium activated proteases in concert with increasing intracellular pressure, seems to provoke this type of membrane reaction. If these hypotheses are confirmed by future investigations, our current understanding of CK as a blood muscle damage marker will be fundamentally affected.
Collapse
Affiliation(s)
- Michael Behringer
- Institute of Training Science and Sport Informatics, German Sport University Cologne, Germany.
| | - Johannes Montag
- Institute of Training Science and Sport Informatics, German Sport University Cologne, Germany
| | - Alexander Franz
- Institute of Training Science and Sport Informatics, German Sport University Cologne, Germany
| | - Molly L McCourt
- Institute of Training Science and Sport Informatics, German Sport University Cologne, Germany
| | - Joachim Mester
- Institute of Training Science and Sport Informatics, German Sport University Cologne, Germany
| | - Kazunori Ken Nosaka
- School of Exercise and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
9
|
Clausen T. Excitation-induced exchange of Na+, K+, and Cl- in rat EDL muscle in vitro and in vivo: physiology and pathophysiology. J Gen Physiol 2013; 141:179-92. [PMID: 23319728 PMCID: PMC3557307 DOI: 10.1085/jgp.201210892] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 12/19/2012] [Indexed: 11/20/2022] Open
Abstract
In skeletal muscle, excitation leads to increased [Na(+)](i), loss of K(+), increased [K(+)](o), depolarization, and Cl(-) influx. This study quantifies these changes in rat extensor digitorum longus (EDL) muscles in vitro and in vivo using flame photometric determination of Na(+) and K(+) and (36)Cl as a tracer for Cl(-). In vitro, 5-Hz stimulation for 300 s increased intracellular Na(+) content by 4.6 ± 1.2 µmol/g wet wt (P < 0.002) and decreased intracellular K(+) content by 5.5 ± 2.3 µmol/g wet wt (P < 0.03). This would increase [K(+)](o) by 28 ± 12 mM, sufficient to cause severe loss of excitability as the result of inactivation of Na(+) channels. In rat EDL, in vivo stimulation at 5 Hz for 300 s or 60 Hz for 60 s induced significant loss of K(+) (P < 0.01), sufficient to increase [K(+)](o) by 71 ± 22 mM and 73 ± 15 mM, respectively. In spite of this, excitability may be maintained by the rapid and marked stimulation of the electrogenic Na(+),K(+) pumps already documented. This may require full utilization of the transport capacity of Na(+),K(+) pumps, which then becomes a limiting factor for physical performance. In buffer containing (36)Cl, depolarization induced by increasing [K(+)](o) to 40-80 mM augmented intracellular (36)Cl by 120-399% (P < 0.001). Stimulation for 120-300 s at 5-20 Hz increased intracellular (36)Cl by 100-188% (P < 0.001). In rats, Cl(-) transport in vivo was examined by injecting (36)Cl, where electrical stimulation at 5 Hz for 300 s or 60 Hz for 60 s increased (36)Cl uptake by 81% (P < 0.001) and 84% (P < 0.001), respectively, indicating excitation-induced depolarization. Cl(-) influx favors repolarization, improving K(+) clearance and maintenance of excitability. In conclusion, excitation-induced fluxes of Na(+), K(+), and Cl(-) can be quantified in vivo, providing new evidence that in working muscles, extracellular accumulation of K(+) is considerably higher than previously observed and the resulting depression of membrane excitability may be a major cause of muscle fatigue.
Collapse
Affiliation(s)
- Torben Clausen
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark. tc@fi.au.dk
| |
Collapse
|
10
|
Fredsted A, Gissel H, Ortenblad N, Clausen T. Effects of β₂-agonists on force during and following anoxia in rat extensor digitorum longus muscle. J Appl Physiol (1985) 2012; 112:2057-67. [PMID: 22492937 DOI: 10.1152/japplphysiol.01558.2011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Electrical stimulation of isolated muscles may lead to membrane depolarization, gain of Na(+), loss of K(+) and fatigue. These effects can be counteracted with β(2)-agonists possibly via activation of the Na(+)-K(+) pumps. Anoxia induces loss of force; however, it is not known whether β(2)-agonists affect force and ion homeostasis in anoxic muscles. In the present study isolated rat extensor digitorum longus (EDL) muscles exposed to anoxia showed a considerable loss of force, which was markedly reduced by the β(2)-agonists salbutamol (10(-6) M) and terbutaline (10(-6) M). Intermittent stimulation (15-30 min) clearly increased loss of force during anoxia and reduced force recovery during reoxygenation. The β(2)-agonists salbutamol (10(-7)-10(-5) M) and salmeterol (10(-6) M) improved force development during anoxia (25%) and force recovery during reoxygenation (55-262%). The effects of salbutamol on force recovery were prevented by blocking the Na(+)-K(+) pumps with ouabain or by blocking glycolysis with 2-deoxyglucose. Dibutyryl cAMP (1 mM) or theophylline (1 mM) also improved force recovery remarkably. In anoxic muscles, salbutamol decreased intracellular Na(+) and increased (86)Rb uptake and K(+) content, indicating stimulation of the Na(+)-K(+) pumps. In fatigued muscles salbutamol induced recovery of excitability. Thus β(2)-agonists reduce the anoxia-induced loss of force, leading to partial force recovery. These data strongly suggest that this effect is mediated by cAMP stimulation of the Na(+)-K(+) pumps and that it is not related to recovery of energy status (PCr, ATP, lactate).
Collapse
Affiliation(s)
- A Fredsted
- Department of Biomedicine, Aarhus University, Denmark.
| | | | | | | |
Collapse
|
11
|
Hojman P, Brolin C, Gissel H. Calcium influx determines the muscular response to electrotransfer. Am J Physiol Regul Integr Comp Physiol 2012; 302:R446-53. [DOI: 10.1152/ajpregu.00383.2011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cell membrane permeabilization by electric pulses (electropermeabilization), results in free exchange of ions across the cell membrane. The role of electrotransfer-mediated Ca2+-influx on muscle signaling pathways involved in degeneration (β-actin and MurF), inflammation (IL-6 and TNF-α), and regeneration (MyoD1, myogenin, and Myf5) was investigated, using pulse parameters of both electrochemotherapy (8 HV) and DNA delivery (HVLV). Three pulsing conditions were used: 8 high-voltage pulses (8 HV), resulting in large permeabilization and ion flux, and a combination of one high-voltage pulse and one low-voltage pulse (HVLV), either alone or in combination with injection of DNA. Mice and rats were anesthetized before pulsing. At the times given, animals were killed, and intact tibialis cranialis muscles were excised for analysis. Uptake of Ca2+ was assessed using 45Ca as a tracer. Using gene expression analyses and histology, we showed a clear association between Ca2+ influx and muscular response. Moderate Ca2+ influx induced by HVLV pulses results in activation of pathways involved in immediate repair and hypertrophy. This response could be attenuated by intramuscular injection of EGTA reducing Ca2+ influx. Larger Ca2+ influx as induced by 8-HV pulses leads to muscle damage and muscle fiber regeneration through recruitment of satellite cells. The extent of Ca2+ influx determines the muscular response to electrotransfer and, thus, the success of a given application. In the case of electrochemotherapy, in which the objective is cell death, a large influx of Ca2+ may be beneficial, whereas for DNA electrotransfer, muscle recovery should occur without myofiber loss to ensure preservation of plasmid DNA.
Collapse
Affiliation(s)
- Pernille Hojman
- The Centre of Inflammation and Metabolism, Department of Infectious Diseases and Copenhagen Muscle Research Centre, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen
- Department of Oncology 5405, Copenhagen University Hospital Herlev, Denmark; and
| | - Camilla Brolin
- Department of Oncology 5405, Copenhagen University Hospital Herlev, Denmark; and
| | - Hanne Gissel
- Department of Biomedicine, University of Aarhus, Aarhus, Denmark
| |
Collapse
|
12
|
Camargo MZ, Siqueira CPCM, Preti MCP, Nakamura FY, de Lima FM, Dias IFL, Toginho Filho DDO, Ramos SDP. Effects of light emitting diode (LED) therapy and cold water immersion therapy on exercise-induced muscle damage in rats. Lasers Med Sci 2012; 27:1051-8. [PMID: 22223060 DOI: 10.1007/s10103-011-1039-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 12/05/2011] [Indexed: 11/26/2022]
Abstract
The aim of this work is to analyze the effects of LED therapy at 940 nm or cold water immersion therapy (CWI) after an acute bout of exercise on markers of muscle damage and inflammation. Thirty-two male Wistar rats were allocated into four groups: animals kept at rest (control), exercised animals (E), exercised + CWI (CWI), and exercised + LED therapy (LED). The animals swam for 100 min, after which blood samples were collected for lactate analysis. Animals in the E group were returned to their cages without treatment, the CWI group was placed in cold water (10°C) for 10 min and the LED group received LED irradiation on both gastrocnemius muscles (4 J/cm(2) each). After 24 h, the animals were killed and the soleus muscles were submitted to histological analysis. Blood samples were used for hematological and CK analyses. The results demonstrated that the LED group presented fewer areas of muscle damage and inflammatory cell infiltration and lower levels of CK activity than the E group. Fewer areas of damaged muscle fiber were observed in the LED group than in CWI. CWI and LED did not reduce edema areas. Hematological analysis showed no significant effect of either treatment on leukocyte counts. The results suggest that LED therapy is more efficient than CWI in preventing muscle damage and local inflammation after exercise.
Collapse
|
13
|
Reduced soleus muscle injury at long muscle length during contraction in the rat. Anat Sci Int 2010; 86:50-7. [PMID: 20480406 DOI: 10.1007/s12565-010-0085-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2009] [Accepted: 04/09/2010] [Indexed: 10/19/2022]
Abstract
Muscle injury was studied to test the hypotheses that maintaining the soleus muscle at a long muscle length during contraction prevents muscle injuries and that the prevention of initial muscle injuries reduces subsequent muscle damage. The rat sciatic nerve was stimulated for 30 min with plantar or dorsal flexion of the foot, and the time course of contraction-induced injuries was examined. The soleus muscle injuries were first classified into one of five types, and the percentages of aberrant sarcomere areas observed in the soleus muscle were then separately quantified by electron microscopy at 0, 1, 6, 12, and 24 h (n = 3) post-stimulation. At a short muscle length (plantar flexion) during contraction, the soleus muscle showed sarcomere hypercontraction (9.8 ± 2.5%, mean ± standard error) and Z-band disarrangement (31.0 ± 4.5%) at 0 h, sarcomere hypercontraction (6.7 ± 1.9%), Z-band disarrangement (28.0 ± 4.9%), and sarcomere hyperstretching (1.3 ± 1.3%) at 1 h, the absence of sarcomere hypercontraction, but Z-band disarrangement (6.7 ± 1.9%) and sarcomere hyperstretching (5.0 ± 1.8%) at 6 h, and myofilament disorganization at 12 and 24 h (5.2 ± 1.5 and 2.5 ± 1.0%, respectively). In contrast, the soleus muscles at a long muscle length (dorsal flexion) during contraction using a self-made brace showed alterations in 1.2-2.4% of sarcomeres at 0 h and afterwards. Desmin disappeared, and α-actinin immunostaining was weaker in areas of sarcomere hypercontraction, whereas dystrophin was always detected along the sarcoplasmic membrane, suggesting that the integrity of the sarcolemma was intact. These results indicate that initial and subsequent muscle injuries were significantly reduced at long muscle length during contraction, probably through the prevention of sarcomere hypercontraction, and that initial muscle injuries rapidly progress to other injuries or normal structure.
Collapse
|
14
|
Venkatesh S, Zachariah A, Oommen A. Myofibril Membranes in Relation to the Neuromuscular Weakness of Acute Monocrotophos Poisoning. Toxicol Mech Methods 2008; 16:419-26. [DOI: 10.1080/15376520600685813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Fredsted A, Clausen T, Overgaard K. Effects of step exercise on muscle damage and muscle Ca2+ content in men and women. J Strength Cond Res 2008; 22:1136-46. [PMID: 18545196 DOI: 10.1519/jsc.0b013e318173db9b] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Eccentric exercise often produces severe muscle damage, whereas concentric exercise of a similar load elicits a minor degree of muscle damage. The cellular events initiating muscle damage are thought to include an increase in cytosolic Ca. It was hypothesized that eccentric muscle activity in humans would lead to a larger degree of cell damage and increased intracellular Ca accumulation in skeletal muscle than concentric activity would. Furthermore, possible differences between men and women in muscle damage were investigated following step exercise. Thirty-three healthy subjects (18 men and 15 women) participated in a 30-minute step exercise protocol involving concentric contractions with 1 leg and eccentric contractions with the other leg. Muscle Ca content, maximal voluntary contraction (MVC), and muscle enzymes in the plasma were measured. In a subgroup of the subjects, T2 relaxation time was measured by magnetic resonance imaging. No significant changes were found in muscle Ca content in vastus lateralis biopsy specimens in women or in men. Following step exercise, MVC decreased in both legs of both genders. The women had a significantly larger strength decrease in the eccentric leg than the men had on postexercise day 2 (p < 0.01). Plasma creatine kinase increased following step exercise, with a sevenfold higher response in women than in men on day 3 (p < 0.001). The women, but not the men, had an increase in T2 relaxation time in the eccentrically working adductor magnus muscle, peaking on day 3 (75%) (p < 0.001). In conclusion, step exercise does not lead to Ca accumulation in the vastus lateralis but does induce muscle damage preferentially in the eccentrically working muscles, considerably more in women than in men. This indicates that gender-specific step training programs may be warranted to avoid excessive muscle damage.
Collapse
Affiliation(s)
- Anne Fredsted
- Department of Physiology, University of Aarhus, Aarhus, Denmark.
| | | | | |
Collapse
|
16
|
Zhao X, Weisleder N, Thornton A, Oppong Y, Campbell R, Ma J, Brotto M. Compromised store-operated Ca2+ entry in aged skeletal muscle. Aging Cell 2008; 7:561-8. [PMID: 18505477 DOI: 10.1111/j.1474-9726.2008.00408.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
In aged skeletal muscle, changes to the composition and function of the contractile machinery cannot fully explain the observed decrease in the specific force produced by the contractile machinery that characterizes muscle weakness during aging. Since modification in extracellular Ca(2+) entry in aged nonexcitable and excitable cells has been recently identified, we evaluated the functional status of store-operated Ca(2+) entry (SOCE) in aged mouse skeletal muscle. Using Mn(2+) quenching of Fura-2 fluorescence and confocal-microscopic imaging of Ca(2+) movement from the transverse tubules, we determined that SOCE was severely compromised in muscle fibers isolated from aged mice (26-27 months) as compared with those from young (2-5 months) mice. While reduced SOCE in aged skeletal muscle does not appear to result from altered expression levels of STIM1 or reduced expression of mRNA for Orai, this reduction in SOCE is mirrored in fibers isolated from young mice null for mitsugumin-29, a synaptophysin-related protein that displays decreased expression in aged skeletal muscle. Our data suggest that decreased mitsugumin-29 expression and reduced SOCE may contribute to the diminished intracellular Ca(2+) homeostatic capacity generally associated with muscle aging.
Collapse
Affiliation(s)
- Xiaoli Zhao
- Department of Physiology and Biophysics, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Repeated, intense use of muscles leads to a decline in performance known as muscle fatigue. Many muscle properties change during fatigue including the action potential, extracellular and intracellular ions, and many intracellular metabolites. A range of mechanisms have been identified that contribute to the decline of performance. The traditional explanation, accumulation of intracellular lactate and hydrogen ions causing impaired function of the contractile proteins, is probably of limited importance in mammals. Alternative explanations that will be considered are the effects of ionic changes on the action potential, failure of SR Ca2+release by various mechanisms, and the effects of reactive oxygen species. Many different activities lead to fatigue, and an important challenge is to identify the various mechanisms that contribute under different circumstances. Most of the mechanistic studies of fatigue are on isolated animal tissues, and another major challenge is to use the knowledge generated in these studies to identify the mechanisms of fatigue in intact animals and particularly in human diseases.
Collapse
|
18
|
Fredsted A, Gissel H, Madsen K, Clausen T. Causes of excitation-induced muscle cell damage in isometric contractions: mechanical stress or calcium overload? Am J Physiol Regul Integr Comp Physiol 2007; 292:R2249-58. [PMID: 17332163 DOI: 10.1152/ajpregu.00415.2006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prolonged or unaccustomed exercise leads to muscle cell membrane damage, detectable as release of the intracellular enzyme lactic acid dehydrogenase (LDH). This is correlated to excitation-induced influx of Ca2+, but it cannot be excluded that mechanical stress contributes to the damage. We here explore this question using N-benzyl-p-toluene sulfonamide (BTS), which specifically blocks muscle contraction. Extensor digitorum longus muscles were prepared from 4-wk-old rats and mounted on holders for isometric contractions. Muscles were stimulated intermittently at 40 Hz for 15-60 min or exposed to the Ca2+ ionophore A23187. Electrical stimulation increased 45Ca influx 3-5 fold. This was followed by a progressive release of LDH, which was correlated to the influx of Ca2+. BTS (50 microM) caused a 90% inhibition of contractile force but had no effect on the excitation-induced 45Ca influx. After stimulation, ATP and creatine phosphate levels were higher in BTS-treated muscles, most likely due to the cessation of ATP-utilization for cross-bridge cycling, indicating a better energy status of these muscles. No release of LDH was observed in BTS-treated muscles. However, when exposed to anoxia, electrical stimulation caused a marked increase in LDH release that was not suppressed by BTS but associated with a decrease in the content of ATP. Dynamic passive stretching caused no increase in muscle Ca2+ content and only a minor release of LDH, whereas treatment with A23187 markedly increased LDH release both in control and BTS-treated muscles. In conclusion, after isometric contractions, muscle cell membrane damage depends on Ca2+ influx and energy status and not on mechanical stress.
Collapse
Affiliation(s)
- Anne Fredsted
- Department of Physiology and Biophysics, University of Aarhus, Denmark.
| | | | | | | |
Collapse
|
19
|
Abstract
Skeletal muscles have a high content of Na+-K+-ATPase, an enzyme that is identical to the Na+-K+ pump, a transport system mediating active extrusion of Na+ from the cells and accumulation of K+ in the cells. The major function of the Na+-K+ pumps is to maintain the concentration gradients for Na+ and K+ across the plasma membrane. This generates the resting membrane potential, allowing the propagation of action potentials, excitation-contraction coupling and force development. Muscles exposed to (1) high extracellular K+ or (2) low extracellular Na+ show a considerable loss of force. A similar force decline is elicited by (3) increasing Na+ permeability or (4) decreasing K+ permeability. Under all of these four conditions, stimulation of the Na+-K+ pumps can restore contractility. Following exposure to electroporation or fatiguing stimulation, muscle cell membranes develop leaks to Na+ and K+ and a partially reversible loss of force. The restoration of force is abolished by blocking the Na+-K+ pumps and markedly improved by stimulating the Na+-K+ pumps with beta 2-agonists, calcitonin gene-related peptide, or dbcAMP. These observations indicate that the Na+-K+ pumps are important for the functional compensation of the commonly occurring loss of muscle cell integrity. Stimulation of the Na+-K+ pumps with beta 2-agonists or other agents may be of therapeutic value in the treatment of muscle cell damage induced by electrical shocks, prolonged exercise, burns, or bruises.
Collapse
Affiliation(s)
- Torben Clausen
- Institute of Physiology and Biophysics, University of Aarhus, Ole Worms Alle 160, Universitetsparken, DK-8000 Arhus C., Denmark.
| |
Collapse
|
20
|
Lanner JT, Katz A, Tavi P, Sandström ME, Zhang SJ, Wretman C, James S, Fauconnier J, Lännergren J, Bruton JD, Westerblad H. The role of Ca2+ influx for insulin-mediated glucose uptake in skeletal muscle. Diabetes 2006; 55:2077-83. [PMID: 16804078 DOI: 10.2337/db05-1613] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The involvement of Ca(2+) in insulin-mediated glucose uptake is uncertain. We measured Ca(2+) influx (as Mn(2+) quenching or Ba(2+) influx) and 2-deoxyglucose (2-DG) uptake in single muscle fibers isolated from limbs of adult mice; 2-DG uptake was also measured in isolated whole muscles. Exposure to insulin increased the Ca(2+) influx in single muscle cells. Ca(2+) influx in the presence of insulin was decreased by 2-aminoethoxydiphenyl borate (2-APB) and increased by the membrane-permeable diacylglycerol analog 1-oleyl-2-acetyl-sn-glycerol (OAG), agents frequently used to block and activate, respectively, nonselective cation channels. Maneuvers that decreased Ca(2+) influx in the presence of insulin also decreased 2-DG uptake, whereas increased Ca(2+) influx was associated with increased insulin-mediated glucose uptake in isolated single cells and whole muscles from both normal and insulin-resistant obese ob/ob mice. 2-APB and OAG affected neither basal nor hypoxia- or contraction-mediated 2-DG uptake. 2-APB did not inhibit the insulin-mediated activation of protein kinase B or extracellular signal-related kinase 1/2 in whole muscles. In conclusion, alterations in Ca(2+) influx specifically modulate insulin-mediated glucose uptake in both normal and insulin-resistant skeletal muscle. Moreover, the present results indicate that Ca(2+) acts late in the insulin signaling pathway, for instance, in the GLUT4 translocation to the plasma membrane.
Collapse
Affiliation(s)
- Johanna T Lanner
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Mikkelsen UR, Gissel H, Fredsted A, Clausen T. Excitation-induced cell damage and β2-adrenoceptor agonist stimulated force recovery in rat skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2006; 290:R265-72. [PMID: 16210418 DOI: 10.1152/ajpregu.00392.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intensive exercise leads to a loss of force, which may be long lasting and associated with muscle cell damage. To simulate this impairment and to develop means of compensating the loss of force, extensor digitorum longus muscles from 4-wk-old rats were fatigued using intermittent 40-Hz stimulation (10 s on, 30 s off). After stimulation, force recovery, cell membrane leakage, and membrane potential were followed for 240 min. The 30–60 min of stimulation reduced tetanic force to ∼10% of the prefatigue level, followed by a spontaneous recovery to ∼20% in 120–240 min. Loss of force was associated with a decrease in K+ content, gain of Na+ and Ca2+ content, leakage of the intracellular enzyme lactic acid dehydrogenase (10-fold increase), and depolarization (13 mV). Stimulation of the Na+-K+ pump with either the β2-adrenoceptor agonist salbutamol, epinephrine, rat calcitonin gene-related peptide (rCGRP), or dibutyryl cAMP improved force recovery by 40–90%. The β-blocker propranolol abolished the effect of epinephrine on force recovery but not that of CGRP. Both spontaneous and salbutamol-induced force recovery were prevented by ouabain. The salbutamol-induced force recovery was associated with repolarization of the membrane potential (12 mV) to the level measured in unfatigued muscles. In conclusion, in muscles exposed to fatiguing stimulation leading to a considerable loss of force, cell leakage, and depolarization, stimulation of the Na+-K+ pump induces repolarization and improves force recovery, possibly due to the electrogenic action of the Na+-K+ pump. This mechanism may be important for the restoration of muscle function after intense exercise.
Collapse
|
22
|
Allen DG, Whitehead NP, Yeung EW. Mechanisms of stretch-induced muscle damage in normal and dystrophic muscle: role of ionic changes. J Physiol 2005; 567:723-35. [PMID: 16002444 PMCID: PMC1474216 DOI: 10.1113/jphysiol.2005.091694] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2005] [Accepted: 07/05/2005] [Indexed: 12/22/2022] Open
Abstract
Muscle damage, characterized by prolonged weakness and delayed onset of stiffness and soreness, is common following contractions in which the muscles are stretched. Stretch-induced damage of this sort is more pronounced in the muscular dystrophies and the profound muscle damage observed in these conditions may involve similar pathways. It has been known for many years that damaged muscles accumulate calcium and that elevating calcium in normal muscles simulates many aspects of muscle damage. The changes in intracellular calcium, sodium and pH following stretched contractions are reviewed and the various pathways which have been proposed to allow ion entry are discussed. One possibility is that TRPC1 (transient receptor potential, canonical), a protein which seems to form both a stretch-activated channel and a store-operated channel, is the main source of Ca(2+) entry. The mechanisms by which the changes in intracellular ions contribute to reduced force production, to increased protein breakdown and to increased membrane permeability are considered. A hypothetical scheme for muscle damage which incorporates these ideas is presented.
Collapse
Affiliation(s)
- D G Allen
- School of Medical Sciences, University of Sydney, NSW, Australia.
| | | | | |
Collapse
|
23
|
Fredsted A, Mikkelsen UR, Gissel H, Clausen T. Anoxia induces Ca2+influx and loss of cell membrane integrity in rat extensor digitorum longus muscle. Exp Physiol 2005; 90:703-14. [PMID: 15908508 DOI: 10.1113/expphysiol.2005.030247] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Anoxia can lead to skeletal muscle damage. In this study we have investigated whether an increased influx of Ca2+, which is known to cause damage during electrical stimulation, is a causative factor in anoxia-induced muscle damage. Isolated extensor digitorum longus (EDL) muscles from 4-week-old Wistar rats were mounted at resting length and were either resting or stimulated (30 min, 40 Hz, 10 s on, 30 s off) in the presence of standard oxygenation (95% O2, 5% CO2), anoxia (95% N2, 5% CO2) or varying degrees of reduced oxygenation. At varying extracellular Ca2+ concentrations ([Ca2+]o), 45Ca influx and total cellular Ca2+ content were measured and the release of lactic acid dehydrogenase (LDH) was determined as an indicator of cell membrane leakage. In resting muscles, incubated at 1.3 mM Ca2+, 15-75 min of exposure to anoxia increased 45Ca influx by 46-129% (P<0.001) and Ca2+ content by 20-50% (P<0.001). Mg2+ (11.2 mM) reduced the anoxia-induced increase in 45Ca influx by 43% (P<0.001). In muscles incubated at 20 and 5% O2, 45Ca influx was also stimulated (P<0.001). Increasing [Ca2+]o to 5 mM induced a progressive increase in both 45Ca uptake and LDH release in resting anoxic muscles. When electrical stimulation was applied during anoxia, Ca2+ content and LDH release increased markedly and showed a significant correlation (r2=0.55, P<0.001). In conclusion, anoxia or incubation at 20 or 5% O2 leads to an increased influx of 45Ca. This is associated with a loss of cell membrane integrity, possibly initiated by Ca2+. The loss of cell membrane integrity further increases Ca2+ influx, which may elicit a self-amplifying process of cell membrane leakage.
Collapse
Affiliation(s)
- Anne Fredsted
- Department of Physiology, University of Aarhus, Ole Worms Allé 160, DK-8000 Arhus C, Denmark.
| | | | | | | |
Collapse
|