1
|
Hatano R, Smith AM, Raman R, Zamora JE, Bashir R, McCloskey KE. Comparing fabrication techniques for engineered cardiac tissue. J Biomed Mater Res A 2024; 112:1921-1929. [PMID: 38752415 DOI: 10.1002/jbm.a.37737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 04/25/2024] [Accepted: 05/02/2024] [Indexed: 09/03/2024]
Abstract
Tissue engineering can provide in vitro models for drug testing, disease modeling, and perhaps someday, tissue/organ replacements. For building 3D heart tissue, the alignment of cardiac cells or cardiomyocytes (CMs) is important in generating a synchronously contracting tissue. To that end, researchers have generated several fabrication methods for building heart tissue, but direct comparisons of pros and cons using the same cell source is lacking. Here, we derived cardiomyocytes (CMs) from human induced pluripotent stem cells (hiPSCs) and compare the assembly of these cells using three fabrication methods: cardiospheres, muscle rings, and muscle strips. All three protocols successfully generated compacted tissue comprised of hiPSC-derived CMs stable for at least 2 weeks. The percentage of aligned cells was greatest in the muscle strip (55%) and the muscle ring (50%) compared with the relatively unaligned cardiospheres (35%). The iPSC-derived CMs within the muscle strip also exhibited the greatest elongation, with elongation factor at 2.0 compared with 1.5 for the muscle ring and 1.2 for the cardiospheres. This is the first direct comparison of various fabrication techniques using the same cell source.
Collapse
Affiliation(s)
- Rachel Hatano
- Graduate Program in Bioengineering and Small-scale Technologies, University of California, Merced, USA
| | - Ariell M Smith
- Bioengineering Department, University of California, Merced, USA
| | - Ritu Raman
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Jose E Zamora
- Graduate Program in Materials and Biomaterials Science and Engineering, University of California, Merced, USA
| | - Rashid Bashir
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Kara E McCloskey
- Graduate Program in Bioengineering and Small-scale Technologies, University of California, Merced, USA
- Materials Science and Engineering Department, University of California, Merced, USA
| |
Collapse
|
2
|
Clancy CE, Santana LF. Advances in induced pluripotent stem cell-derived cardiac myocytes: technological breakthroughs, key discoveries and new applications. J Physiol 2024; 602:3871-3892. [PMID: 39032073 PMCID: PMC11326976 DOI: 10.1113/jp282562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/02/2024] [Indexed: 07/22/2024] Open
Abstract
A transformation is underway in precision and patient-specific medicine. Rapid progress has been enabled by multiple new technologies including induced pluripotent stem cell-derived cardiac myocytes (iPSC-CMs). Here, we delve into these advancements and their future promise, focusing on the efficiency of reprogramming techniques, the fidelity of differentiation into the cardiac lineage, the functional characterization of the resulting cardiac myocytes, and the many applications of in silico models to understand general and patient-specific mechanisms controlling excitation-contraction coupling in health and disease. Furthermore, we explore the current and potential applications of iPSC-CMs in both research and clinical settings, underscoring the far-reaching implications of this rapidly evolving field.
Collapse
Affiliation(s)
- Colleen E Clancy
- Department of Physiology & Membrane Biology, School of Medicine, University of California Davis, Davis, CA, USA
- Center for Precision Medicine and Data Sciences, University of California Davis, School of Medicine, Sacramento, CA, USA
| | - L Fernando Santana
- Department of Physiology & Membrane Biology, School of Medicine, University of California Davis, Davis, CA, USA
- Center for Precision Medicine and Data Sciences, University of California Davis, School of Medicine, Sacramento, CA, USA
| |
Collapse
|
3
|
Ryan T, Roberts JD. Stem cell models of inherited arrhythmias. NATURE CARDIOVASCULAR RESEARCH 2024; 3:420-430. [PMID: 39196215 DOI: 10.1038/s44161-024-00451-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/29/2024] [Indexed: 08/29/2024]
Abstract
Inherited arrhythmias are a heterogeneous group of conditions that confer risk of sudden death. Many inherited arrhythmias have been linked to pathogenic genetic variants that result in ion channel dysfunction, although current genetic testing panels fail to identify variants in many patients, potentially secondary to their underlying substrates being oligogenic or polygenic. Here we review the current state of knowledge surrounding the cellular mechanisms of inherited arrhythmias generated from stem cell models with a focus on integrating genetic and mechanistic data. The utility and limitations of human induced pluripotent stem cell models in disease modeling and drug development are also explored with a particular focus on examples of pharmacogenetics and precision medicine. We submit that progress in understanding inherited arrhythmias is likely to be made by using human induced pluripotent stem cells to model probable polygenic cases as well as to interrogate the diverse and potentially complex molecular networks implicated by genome-wide association studies.
Collapse
Affiliation(s)
- Tammy Ryan
- McMaster University, Hamilton, Ontario, Canada.
| | - Jason D Roberts
- McMaster University, Hamilton, Ontario, Canada
- Population Health Research Institute and Hamilton Health Sciences, Hamilton, Ontario, Canada
| |
Collapse
|
4
|
Rapöhn M, Cyganek L, Voigt N, Hasenfuß G, Lehnart SE, Wegener JW. Noninvasive analysis of contractility during identical maturations revealed two phenotypes in ventricular but not in atrial iPSC-CM. Am J Physiol Heart Circ Physiol 2024; 326:H599-H611. [PMID: 38180453 PMCID: PMC11221812 DOI: 10.1152/ajpheart.00527.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/06/2023] [Accepted: 01/02/2024] [Indexed: 01/06/2024]
Abstract
Patient-derived induced pluripotent stem cells (iPSCs) can be differentiated into atrial and ventricular cardiomyocytes to allow for personalized drug screening. A hallmark of differentiation is the manifestation of spontaneous beating in a two-dimensional (2-D) cell culture. However, an outstanding observation is the high variability in this maturation process. We valued that contractile parameters change during differentiation serving as an indicator of maturation. Consequently, we recorded noninvasively spontaneous motion activity during the differentiation of male iPSC toward iPSC cardiomyocytes (iPSC-CMs) to further analyze similar maturated iPSC-CMs. Surprisingly, our results show that identical differentiations into ventricular iPSC-CMs are variable with respect to contractile parameters resulting in two distinct subpopulations of ventricular-like cells. In contrast, differentiation into atrial iPSC-CMs resulted in only one phenotype. We propose that the noninvasive and cost-effective recording of contractile activity during maturation using a smartphone device may help to reduce the variability in results frequently reported in studies on ventricular iPSC-CMs.NEW & NOTEWORTHY Differentiation of induced pluripotent stem cells (iPSCs) into iPSC-derived cardiomyocytes (iPSC-CMs) exhibits a high variability in mature parameters. Here, we monitored noninvasively contractile parameters of iPSC-CM during full-time differentiation using a smartphone device. Our results show that parallel maturations of iPSCs into ventricular iPSC-CMs, but not into atrial iPSC-CMs, resulted in two distinct subpopulations of iPSC-CMs. These findings suggest that our cost-effective method may help to compare iPSC-CMs at the same maturation level.
Collapse
Affiliation(s)
- Marcel Rapöhn
- Department of Cardiology and Pulmonology, University Medical Center of Göttingen, Göttingen, Germany
| | - Lukas Cyganek
- Department of Cardiology and Pulmonology, University Medical Center of Göttingen, Göttingen, Germany
- German Centre for Cardiovascular Research (Deutsches Zentrum für Herz-Kreislaufforschung), Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells," University of Göttingen, Göttingen, Germany
| | - Niels Voigt
- German Centre for Cardiovascular Research (Deutsches Zentrum für Herz-Kreislaufforschung), Göttingen, Germany
- Department of Pharmacology and Toxicology, University Medical Center of Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells," University of Göttingen, Göttingen, Germany
| | - Gerd Hasenfuß
- Department of Cardiology and Pulmonology, University Medical Center of Göttingen, Göttingen, Germany
- German Centre for Cardiovascular Research (Deutsches Zentrum für Herz-Kreislaufforschung), Göttingen, Germany
| | - Stephan E Lehnart
- Department of Cardiology and Pulmonology, University Medical Center of Göttingen, Göttingen, Germany
- German Centre for Cardiovascular Research (Deutsches Zentrum für Herz-Kreislaufforschung), Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells," University of Göttingen, Göttingen, Germany
| | - Jörg W Wegener
- Department of Cardiology and Pulmonology, University Medical Center of Göttingen, Göttingen, Germany
- German Centre for Cardiovascular Research (Deutsches Zentrum für Herz-Kreislaufforschung), Göttingen, Germany
| |
Collapse
|
5
|
Abrasheva VO, Kovalenko SG, Slotvitsky M, Romanova SА, Aitova AA, Frolova S, Tsvelaya V, Syunyaev RA. Human sodium current voltage-dependence at physiological temperature measured by coupling a patch-clamp experiment to a mathematical model. J Physiol 2024; 602:633-661. [PMID: 38345560 DOI: 10.1113/jp285162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 01/02/2024] [Indexed: 02/20/2024] Open
Abstract
Voltage-gated Na+ channels are crucial to action potential propagation in excitable tissues. Because of the high amplitude and rapid activation of the Na+ current, voltage-clamp measurements are very challenging and are usually performed at room temperature. In this study, we measured Na+ current voltage-dependence in stem cell-derived cardiomyocytes at physiological temperature. While the apparent activation and inactivation curves, measured as the dependence of current amplitude on voltage, fall within the range reported in previous studies, we identified a systematic error in our measurements. This error is caused by the deviation of the membrane potential from the command potential of the amplifier. We demonstrate that it is possible to account for this artifact using computer simulation of the patch-clamp experiment. We obtained surprising results through patch-clamp model optimization: a half-activation of -11.5 mV and a half-inactivation of -87 mV. Although the half-activation deviates from previous research, we demonstrate that this estimate reproduces the conduction velocity dependence on extracellular potassium concentration. KEY POINTS: Voltage-gated Na+ currents play a crucial role in excitable tissues including neurons, cardiac and skeletal muscle. Measurement of Na+ current is challenging because of its high amplitude and rapid kinetics, especially at physiological temperature. We have used the patch-clamp technique to measure human Na+ current voltage-dependence in human induced pluripotent stem cell-derived cardiomyocytes. The patch-clamp data were processed by optimization of the model accounting for voltage-clamp experiment artifacts, revealing a large difference between apparent parameters of Na+ current and the results of the optimization. We conclude that actual Na+ current activation is extremely depolarized in comparison to previous studies. The new Na+ current model provides a better understanding of action potential propagation; we demonstrate that it explains propagation in hyperkalaemic conditions.
Collapse
Affiliation(s)
| | - Sandaara G Kovalenko
- Moscow Institute of Physics and Technology, Moscow, Russia
- M. F. Vladimirsky Moscow Regional Research Clinical Institute, Moscow, Russia
- ITMO University, St Petersburg, Russia
| | - Mihail Slotvitsky
- Moscow Institute of Physics and Technology, Moscow, Russia
- M. F. Vladimirsky Moscow Regional Research Clinical Institute, Moscow, Russia
- ITMO University, St Petersburg, Russia
| | - Serafima А Romanova
- Moscow Institute of Physics and Technology, Moscow, Russia
- M. F. Vladimirsky Moscow Regional Research Clinical Institute, Moscow, Russia
| | - Aleria A Aitova
- Moscow Institute of Physics and Technology, Moscow, Russia
- M. F. Vladimirsky Moscow Regional Research Clinical Institute, Moscow, Russia
- ITMO University, St Petersburg, Russia
| | - Sheida Frolova
- Moscow Institute of Physics and Technology, Moscow, Russia
- M. F. Vladimirsky Moscow Regional Research Clinical Institute, Moscow, Russia
| | - Valeria Tsvelaya
- Moscow Institute of Physics and Technology, Moscow, Russia
- M. F. Vladimirsky Moscow Regional Research Clinical Institute, Moscow, Russia
- ITMO University, St Petersburg, Russia
| | | |
Collapse
|
6
|
Babini H, Jiménez-Sábado V, Stogova E, Arslanova A, Butt M, Dababneh S, Asghari P, Moore EDW, Claydon TW, Chiamvimonvat N, Hove-Madsen L, Tibbits GF. hiPSC-derived cardiomyocytes as a model to study the role of small-conductance Ca 2+-activated K + (SK) ion channel variants associated with atrial fibrillation. Front Cell Dev Biol 2024; 12:1298007. [PMID: 38304423 PMCID: PMC10830749 DOI: 10.3389/fcell.2024.1298007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024] Open
Abstract
Atrial fibrillation (AF), the most common arrhythmia, has been associated with different electrophysiological, molecular, and structural alterations in atrial cardiomyocytes. Therefore, more studies are required to elucidate the genetic and molecular basis of AF. Various genome-wide association studies (GWAS) have strongly associated different single nucleotide polymorphisms (SNPs) with AF. One of these GWAS identified the rs13376333 risk SNP as the most significant one from the 1q21 chromosomal region. The rs13376333 risk SNP is intronic to the KCNN3 gene that encodes for small conductance calcium-activated potassium channels type 3 (SK3). However, the functional electrophysiological effects of this variant are not known. SK channels represent a unique family of K+ channels, primarily regulated by cytosolic Ca2+ concentration, and different studies support their critical role in the regulation of atrial excitability and consequently in the development of arrhythmias like AF. Since different studies have shown that both upregulation and downregulation of SK3 channels can lead to arrhythmias by different mechanisms, an important goal is to elucidate whether the rs13376333 risk SNP is a gain-of-function (GoF) or a loss-of-function (LoF) variant. A better understanding of the functional consequences associated with these SNPs could influence clinical practice guidelines by improving genotype-based risk stratification and personalized treatment. Although research using native human atrial cardiomyocytes and animal models has provided useful insights, each model has its limitations. Therefore, there is a critical need to develop a human-derived model that represents human physiology more accurately than existing animal models. In this context, research with human induced pluripotent stem cells (hiPSC) and subsequent generation of cardiomyocytes derived from hiPSC (hiPSC-CMs) has revealed the underlying causes of various cardiovascular diseases and identified treatment opportunities that were not possible using in vitro or in vivo studies with animal models. Thus, the ability to generate atrial cardiomyocytes and atrial tissue derived from hiPSCs from human/patients with specific genetic diseases, incorporating novel genetic editing tools to generate isogenic controls and organelle-specific reporters, and 3D bioprinting of atrial tissue could be essential to study AF pathophysiological mechanisms. In this review, we will first give an overview of SK-channel function, its role in atrial fibrillation and outline pathophysiological mechanisms of KCNN3 risk SNPs. We will then highlight the advantages of using the hiPSC-CM model to investigate SNPs associated with AF, while addressing limitations and best practices for rigorous hiPSC studies.
Collapse
Affiliation(s)
- Hosna Babini
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Verónica Jiménez-Sábado
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- IIB SANT PAU, and CIBERCV, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Ekaterina Stogova
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Alia Arslanova
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Mariam Butt
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Saif Dababneh
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Parisa Asghari
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Edwin D. W. Moore
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Thomas W. Claydon
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | | | - Leif Hove-Madsen
- IIB SANT PAU, and CIBERCV, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), Barcelona, Spain
| | - Glen F. Tibbits
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
7
|
Lamberto F, Shashikadze B, Elkhateib R, Lombardo SD, Horánszky A, Balogh A, Kistamás K, Zana M, Menche J, Fröhlich T, Dinnyés A. Low-dose Bisphenol A exposure alters the functionality and cellular environment in a human cardiomyocyte model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122359. [PMID: 37567409 DOI: 10.1016/j.envpol.2023.122359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/26/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Early embryonic development represents a sensitive time-window during which the foetus might be vulnerable to the exposure of environmental contaminants, potentially leading to heart diseases also later in life. Bisphenol A (BPA), a synthetic chemical widely used in plastics manufacturing, has been associated with heart developmental defects, even in low concentrations. This study aims to investigate the effects of environmentally relevant doses of BPA on developing cardiomyocytes using a human induced pluripotent stem cell (hiPSC)-derived model. Firstly, a 2D in vitro differentiation system to obtain cardiomyocytes from hiPSCs (hiPSC-CMs) have been established and characterised to provide a suitable model for the early stages of cardiac development. Then, the effects of a repeated BPA exposure, starting from the undifferentiated stage throughout the differentiation process, were evaluated. The chemical significantly decreased the beat rate of hiPSC-CMs, extending the contraction and relaxation time in a dose-dependent manner. Quantitative proteomics analysis revealed a high abundance of basement membrane (BM) components (e.g., COL4A1, COL4A2, LAMC1, NID2) and a significant increase in TNNC1 and SERBP1 proteins in hiPSC-CMs treated with BPA. Network analysis of proteomics data supported altered extracellular matrix remodelling and provided a disease-gene association with well-known pathological conditions of the heart. Furthermore, upon hypoxia-reoxygenation challenge, hiPSC-CMs treated with BPA showed higher rate of apoptotic events. Taken together, our results revealed that a long-term treatment, even with low doses of BPA, interferes with hiPSC-CMs functionality and alters the surrounding cellular environment, providing new insights about diseases that might arise upon the toxin exposure. Our study contributes to the current understanding of BPA effects on developing human foetal cardiomyocytes, in correlation with human clinical observations and animal studies, and it provides a suitable model for New Approach Methodologies (NAMs) for environmental chemical hazard and risk assessment.
Collapse
Affiliation(s)
- Federica Lamberto
- BioTalentum Ltd., Aulich Lajos Str. 26, Gödöllő, H-2100, Hungary; Department of Physiology and Animal Health, Institute of Physiology and Animal Nutrition, Hungarian University of Agriculture and Life Sciences, Páter Károly Str. 1, H-2100, Gödöllő, Hungary
| | - Bachuki Shashikadze
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377, Munich, Germany
| | - Radwa Elkhateib
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377, Munich, Germany
| | - Salvo Danilo Lombardo
- Max Perutz Labs, Vienna Biocenter Campus (VBC), 1030, Vienna, Austria; Department of Structural and Computational Biology, Center for Molecular Biology, University of Vienna, 1030, Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Alex Horánszky
- BioTalentum Ltd., Aulich Lajos Str. 26, Gödöllő, H-2100, Hungary; Department of Physiology and Animal Health, Institute of Physiology and Animal Nutrition, Hungarian University of Agriculture and Life Sciences, Páter Károly Str. 1, H-2100, Gödöllő, Hungary
| | - Andrea Balogh
- BioTalentum Ltd., Aulich Lajos Str. 26, Gödöllő, H-2100, Hungary
| | - Kornél Kistamás
- BioTalentum Ltd., Aulich Lajos Str. 26, Gödöllő, H-2100, Hungary
| | - Melinda Zana
- BioTalentum Ltd., Aulich Lajos Str. 26, Gödöllő, H-2100, Hungary
| | - Jörg Menche
- Max Perutz Labs, Vienna Biocenter Campus (VBC), 1030, Vienna, Austria; Department of Structural and Computational Biology, Center for Molecular Biology, University of Vienna, 1030, Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria; Faculty of Mathematics, University of Vienna, 1090, Vienna, Austria
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377, Munich, Germany
| | - András Dinnyés
- BioTalentum Ltd., Aulich Lajos Str. 26, Gödöllő, H-2100, Hungary; Department of Physiology and Animal Health, Institute of Physiology and Animal Nutrition, Hungarian University of Agriculture and Life Sciences, Páter Károly Str. 1, H-2100, Gödöllő, Hungary; Department of Cell Biology and Molecular Medicine, University of Szeged, H-6720, Szeged, Hungary.
| |
Collapse
|
8
|
Du R, Bai S, Zhao Y, Ma Y. Efficient generation of TBX3 + atrioventricular conduction-like cardiomyocytes from human pluripotent stem cells. Biochem Biophys Res Commun 2023; 669:143-149. [PMID: 37271026 DOI: 10.1016/j.bbrc.2023.05.104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 05/24/2023] [Indexed: 06/06/2023]
Abstract
Atrioventricular conduction cardiomyocytes (AVCCs) regulate the rate and rhythm of heart contractions. Dysfunction due to aging or disease can cause atrioventricular (AV) block, interrupting electrical impulses from the atria to the ventricles. Generation of functional atrioventricular conduction like cardiomyocytes (AVCLCs) from human pluripotent stem cells (hPSCs) provides a promising approach to repair damaged atrioventricular conduction tissue by cell transplantation. In this study, we put forward the generation of AVCLCs from hPSCs by stage-specific manipulation of the retinoic acid (RA), WNT, and bone morphogenetic protein (BMP) signaling pathways. These cells express AVCC-specific markers, including the transcription factors TBX3, MSX2 and NKX2.5, display functional electrophysiological characteristics and present low conduction velocity (0.07 ± 0.02 m/s). Our findings provide new insights into the understanding of the development of the atrioventricular conduction system and propose a strategy for the treatment of severe atrioventricular conduction block by cell transplantation in future.
Collapse
Affiliation(s)
- Rulong Du
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shuyun Bai
- Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510530, China.
| | - Ya Zhao
- Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510530, China
| | - Yue Ma
- Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; Medical School of University of Chinese Academy of Sciences, Beijing, 100101, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510530, China.
| |
Collapse
|
9
|
Dark N, Cosson MV, Tsansizi LI, Owen TJ, Ferraro E, Francis AJ, Tsai S, Bouissou C, Weston A, Collinson L, Abi-Gerges N, Miller PE, MacLeod KT, Ehler E, Mitter R, Harding SE, Smith JC, Bernardo AS. Generation of left ventricle-like cardiomyocytes with improved structural, functional, and metabolic maturity from human pluripotent stem cells. CELL REPORTS METHODS 2023; 3:100456. [PMID: 37159667 PMCID: PMC10163040 DOI: 10.1016/j.crmeth.2023.100456] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 01/23/2023] [Accepted: 03/25/2023] [Indexed: 05/11/2023]
Abstract
Decreased left ventricle (LV) function caused by genetic mutations or injury often leads to debilitating and fatal cardiovascular disease. LV cardiomyocytes are, therefore, a potentially valuable therapeutical target. Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) are neither homogeneous nor functionally mature, which reduces their utility. Here, we exploit cardiac development knowledge to instruct differentiation of hPSCs specifically toward LV cardiomyocytes. Correct mesoderm patterning and retinoic acid pathway blocking are essential to generate near-homogenous LV-specific hPSC-CMs (hPSC-LV-CMs). These cells transit via first heart field progenitors and display typical ventricular action potentials. Importantly, hPSC-LV-CMs exhibit increased metabolism, reduced proliferation, and improved cytoarchitecture and functional maturity compared with age-matched cardiomyocytes generated using the standard WNT-ON/WNT-OFF protocol. Similarly, engineered heart tissues made from hPSC-LV-CMs are better organized, produce higher force, and beat more slowly but can be paced to physiological levels. Together, we show that functionally matured hPSC-LV-CMs can be obtained rapidly without exposure to current maturation regimes.
Collapse
Affiliation(s)
| | | | - Lorenza I. Tsansizi
- The Francis Crick Institute, London, UK
- NHLI, Imperial College London, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Andreia S. Bernardo
- The Francis Crick Institute, London, UK
- NHLI, Imperial College London, London, UK
| |
Collapse
|
10
|
Barbuti A, Baruscotti M, Bucchi A. The “Funny” Pacemaker Current. HEART RATE AND RHYTHM 2023:63-87. [DOI: 10.1007/978-3-031-33588-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
Oguntuyo K, Schuftan D, Guo J, Simmons D, Bhagavan D, Moreno JD, Kang PW, Miller E, Silva JR, Huebsch N. Robust, Automated Analysis of Electrophysiology in Induced Pluripotent Stem Cell-Derived Micro-Heart Muscle for Drug Toxicity. Tissue Eng Part C Methods 2022; 28:457-468. [PMID: 35925789 PMCID: PMC9527045 DOI: 10.1089/ten.tec.2022.0053] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/19/2022] [Indexed: 11/12/2022] Open
Abstract
Drugs are often removed from clinical trials or market progression owing to their unforeseen effects on cardiac action potential and calcium handling. Induced pluripotent stem cell-derived cardiomyocytes and tissues fabricated from these cells are promising as screening tools for early identification of these potential cardiac liabilities. In this study, we describe an automated, open-source MATLAB-based analysis software for calculating cardiac action potentials and calcium transients from fluorescent reporters. We first identified the most robust manner in which to automatically identify the initiation point for action potentials and calcium transients in a user-independent manner, and used this approach to quantify the duration and morphology of these signals. We then demonstrate the software by assessing changes to action potentials and calcium transients in our micro-heart muscles after exposure to hydroxychloroquine, an antimalarial drug with known cardiac liability. Consistent with clinical observations, our system predicted mild action potential prolongation. However, we also observed marked calcium transient suppression, highlighting the advantage of testing multiple physiologic readouts in cardiomyocytes rather than relying on heterologous overexpression of single channels such as the human ether-a-go-go-related gene channel. This open-source software can serve as a useful, high-throughput tool for analyzing cardiomyocyte physiology from fluorescence imaging.
Collapse
Affiliation(s)
- Kasoorelope Oguntuyo
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - David Schuftan
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jingxuan Guo
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Daniel Simmons
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Druv Bhagavan
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jonathan D. Moreno
- Division of Cardiology, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Po Wei Kang
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Evan Miller
- Department of Chemistry, University of California, Berkeley, Berkeley, California, USA
| | - Jonathan R. Silva
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Nathaniel Huebsch
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
12
|
Ntahkie Takembo C, Kofane TC. Controlling discharge mode in electrical activities of myocardial cell using mixed frequencies magnetic radiation. Heliyon 2022; 8:e09084. [PMID: 35309399 PMCID: PMC8924321 DOI: 10.1016/j.heliyon.2022.e09084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/27/2021] [Accepted: 03/07/2022] [Indexed: 12/23/2022] Open
Affiliation(s)
- Clovis Ntahkie Takembo
- Department of Electrical and Electronic Engineering, College of Technology, University of Buea I, P.O. Box 63, Buea, Cameroon
- Laboratory of Biophysics, Department of Physics, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaounde, Cameroon
- Corresponding author at: Department of Electrical and Electronic Engineering, College of Technology, University of Buea I, P.O. Box 63, Buea, Cameroon.
| | - Timoleon Crepin Kofane
- Laboratory of Mechanics, Department of Physics, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaounde, Cameroon
| |
Collapse
|
13
|
Stüdemann T, Weinberger F. The Guinea Pig Model in Cardiac Regeneration Research; Current Tissue Engineering Approaches and Future Directions. ADVANCED TECHNOLOGIES IN CARDIOVASCULAR BIOENGINEERING 2022:103-122. [DOI: 10.1007/978-3-030-86140-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
14
|
Computational modeling of aberrant electrical activity following remuscularization with intramyocardially injected pluripotent stem cell-derived cardiomyocytes. J Mol Cell Cardiol 2022; 162:97-109. [PMID: 34487753 PMCID: PMC8766907 DOI: 10.1016/j.yjmcc.2021.08.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/16/2021] [Accepted: 08/31/2021] [Indexed: 01/03/2023]
Abstract
Acute engraftment arrhythmias (EAs) remain a serious complication of remuscularization therapy. Preliminary evidence suggests that a focal source underlies these EAs stemming from the automaticity of immature pluripotent stem cell-derived cardiomyocytes (PSC-CMs) in nascent myocardial grafts. How these EAs arise though during early engraftment remains unclear. In a series of in silico experiments, we probed the origin of EAs-exploring aspects of altered impulse formation and altered impulse propagation within nascent PSC-CM grafts and at the host-graft interface. To account for poor gap junctional coupling during early PSC-CM engraftment, the voltage dependence of gap junctions and the possibility of ephaptic coupling were incorporated. Inspired by cardiac development, we also studied the contributions of another feature of immature PSC-CMs, circumferential sodium channel (NaCh) distribution in PSC-CMs. Ectopic propagations emerged from nascent grafts of immature PSC-CMs at a rate of <96 bpm. Source-sink effects dictated this rate and contributed to intermittent capture between host and graft. Moreover, ectopic beats emerged from dynamically changing sites along the host-graft interface. The latter arose in part because circumferential NaCh distribution in PSC-CMs contributed to preferential conduction slowing and block of electrical impulses from host to graft myocardium. We conclude that additional mechanisms, in addition to focal ones, contribute to EAs and recognize that their relative contributions are dynamic across the engraftment process.
Collapse
|
15
|
Schmid C, Abi-Gerges N, Leitner MG, Zellner D, Rast G. Ion Channel Expression and Electrophysiology of Singular Human (Primary and Induced Pluripotent Stem Cell-Derived) Cardiomyocytes. Cells 2021; 10:3370. [PMID: 34943878 PMCID: PMC8699770 DOI: 10.3390/cells10123370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 01/19/2023] Open
Abstract
Subtype-specific human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are promising tools, e.g., to assess the potential of drugs to cause chronotropic effects (nodal hiPSC-CMs), atrial fibrillation (atrial hiPSC-CMs), or ventricular arrhythmias (ventricular hiPSC-CMs). We used single-cell patch-clamp reverse transcriptase-quantitative polymerase chain reaction to clarify the composition of the iCell cardiomyocyte population (Fujifilm Cellular Dynamics, Madison, WI, USA) and to compare it with atrial and ventricular Pluricytes (Ncardia, Charleroi, Belgium) and primary human atrial and ventricular cardiomyocytes. The comparison of beating and non-beating iCell cardiomyocytes did not support the presence of true nodal, atrial, and ventricular cells in this hiPSC-CM population. The comparison of atrial and ventricular Pluricytes with primary human cardiomyocytes showed trends, indicating the potential to derive more subtype-specific hiPSC-CM models using appropriate differentiation protocols. Nevertheless, the single-cell phenotypes of the majority of the hiPSC-CMs showed a combination of attributes which may be interpreted as a mixture of traits of adult cardiomyocyte subtypes: (i) nodal: spontaneous action potentials and high HCN4 expression and (ii) non-nodal: prominent INa-driven fast inward current and high expression of SCN5A. This may hamper the interpretation of the drug effects on parameters depending on a combination of ionic currents, such as beat rate. However, the proven expression of specific ion channels supports the evaluation of the drug effects on ionic currents in a more realistic cardiomyocyte environment than in recombinant non-cardiomyocyte systems.
Collapse
Affiliation(s)
- Christina Schmid
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany; (M.G.L.); (G.R.)
- Food Chemistry and Toxicology, Department of Chemistry, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | | | - Michael Georg Leitner
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany; (M.G.L.); (G.R.)
| | - Dietmar Zellner
- Non-Clinical Statistics, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany
| | - Georg Rast
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany; (M.G.L.); (G.R.)
| |
Collapse
|
16
|
Gong Y, Yang L, Tang J, Zheng J, Witman N, Jakob P, Tan Y, Liu M, Chen Y, Wang H, Fu W, Wang W. Yohimbine Directly Induces Cardiotoxicity on Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Cardiovasc Toxicol 2021; 22:141-151. [PMID: 34817810 DOI: 10.1007/s12012-021-09709-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/12/2021] [Indexed: 11/26/2022]
Abstract
Yohimbine is a highly selective and potent α2-adrenoceptor antagonist, which is usually treated as an adjunction for impotence, as well for weight loss and natural bodybuilding aids. However, it was recently reported that Yohimbine causes myocardial injury and controversial results were reported in the setting of cardiac diseases. Here, we used human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) as a model system to explore electrophysiologic characterization after exposure to Yohimbine. HiPSC-CMs were differentiated by employment of inhibitory Wnt compounds. For analysis of electrophysiological properties, conventional whole-cell patch-clamp recording was used. Specifically, spontaneous action potentials, pacemaker currents (If), sodium (Na+) channel (INa), and calcium (Ca++) channel currents (ICa) were assessed in hiPSC-CMs after exposure to Yohimbine. HiPSC-CMs expressed sarcomeric-α-actinin and MLC2V proteins, as well as exhibited ventricular-like spontaneous action potential waveform. Yohimbine inhibited frequency of hiPSC-CMs spontaneous action potentials and significantly prolonged action potential duration in a dose-dependent manner. In addition, rest potential, threshold potential, amplitude, and maximal diastolic potential were decreased, whereas APD50/APD90 was prolonged. Yohimbine inhibited the amplitude of INa in low doses (IC50 = 14.2 μM, n = 5) and inhibited ICa in high doses (IC50 = 139.7 μM, n = 5). Whereas Yohimbine did not affect the activation curves, treatment resulted in left shifts in inactivation curves of both Na+ and Ca++ channels. Here, we show that Yohimbine induces direct cardiotoxic effects on spontaneous action potentials of INa and ICa in hiPSC-CMs. Importantly, these effects were not mediated by α2-adrenoceptor signaling. Our results strongly suggest that Yohimbine directly and negatively affects electrophysiological properties of human cardiomyocytes. These findings are highly relevant for potential application of Yohimbine in patients with atrioventricular conduction disorder.
Collapse
Affiliation(s)
- Yiqi Gong
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai, 200127, China
- Department of Cardiology, University Heart Center, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Li Yang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jun Tang
- Department of Anesthesiology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China
| | - Jijian Zheng
- Department of Anesthesiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Nevin Witman
- Department of Cell and Molecular Biology, Karolinska Institute, 17177, Stockholm, Sweden
| | - Philipp Jakob
- Department of Cardiology, University Heart Center, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Yao Tan
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai, 200127, China
| | - Minglu Liu
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai, 200127, China
| | - Ying Chen
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai, 200127, China
| | - Huijing Wang
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Wei Fu
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai, 200127, China.
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
- Shanghai Key Laboratory of Tissue Engineering, Shanghai 9th People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China.
| | - Wei Wang
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai, 200127, China.
| |
Collapse
|
17
|
Tenreiro MF, Louro AF, Alves PM, Serra M. Next generation of heart regenerative therapies: progress and promise of cardiac tissue engineering. NPJ Regen Med 2021; 6:30. [PMID: 34075050 PMCID: PMC8169890 DOI: 10.1038/s41536-021-00140-4] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/10/2021] [Indexed: 02/04/2023] Open
Abstract
The adult heart is a vital and highly specialized organ of the human body, with limited capability of self-repair and regeneration in case of injury or disease. Engineering biomimetic cardiac tissue to regenerate the heart has been an ambition in the field of tissue engineering, tracing back to the 1990s. Increased understanding of human stem cell biology and advances in process engineering have provided an unlimited source of cells, particularly cardiomyocytes, for the development of functional cardiac muscle, even though pluripotent stem cell-derived cardiomyocytes poorly resemble those of the adult heart. This review outlines key biology-inspired strategies reported to improve cardiomyocyte maturation features and current biofabrication approaches developed to engineer clinically relevant cardiac tissues. It also highlights the potential use of this technology in drug discovery science and disease modeling as well as the current efforts to translate it into effective therapies that improve heart function and promote regeneration.
Collapse
Affiliation(s)
- Miguel F Tenreiro
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biologica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ana F Louro
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biologica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Paula M Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biologica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Margarida Serra
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal.
- Instituto de Tecnologia Química e Biologica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| |
Collapse
|
18
|
Liu D, Song AT, Qi X, van Vliet PP, Xiao J, Xiong F, Andelfinger G, Nattel S. Cohesin-protein Shugoshin-1 controls cardiac automaticity via HCN4 pacemaker channel. Nat Commun 2021; 12:2551. [PMID: 33953173 PMCID: PMC8100125 DOI: 10.1038/s41467-021-22737-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
Endogenous cardiac pacemaker function regulates the rate and rhythm of cardiac contraction. The mutation p.Lys23Glu in the cohesin protein Shugoshin-1 causes severe heart arrhythmias due to sinoatrial node dysfunction and a debilitating gastrointestinal motility disorder, collectively termed the Chronic Atrial and Intestinal Dysrhythmia Syndrome, linking Shugoshin-1 and pacemaker activity. Hyperpolarization-activated, cyclic nucleotide-gated cation channel 4 (HCN4) is the predominant pacemaker ion-channel in the adult heart and carries the majority of the "funny" current, which strongly contributes to diastolic depolarization in pacemaker cells. Here, we study the mechanism by which Shugoshin-1 affects cardiac pacing activity with two cell models: neonatal rat ventricular myocytes and Chronic Atrial and Intestinal Dysrhythmia Syndrome patient-specific human induced pluripotent stem cell derived cardiomyocytes. We find that Shugoshin-1 interacts directly with HCN4 to promote and stabilize cardiac pacing. This interaction enhances funny-current by optimizing HCN4 cell-surface expression and function. The clinical p.Lys23Glu mutation leads to an impairment in the interaction between Shugoshin-1 and HCN4, along with depressed funny-current and dysrhythmic activity in induced pluripotent stem cell derived cardiomyocytes derived from Chronic Atrial and Intestinal Dysrhythmia Syndrome patients. Our work reveals a critical non-canonical, cohesin-independent role for Shugoshin-1 in maintaining cardiac automaticity and identifies potential therapeutic avenues for cardiac pacemaking disorders, in particular Chronic Atrial and Intestinal Dysrhythmia Syndrome.
Collapse
Affiliation(s)
- Donghai Liu
- Montreal Heart Institute, Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Andrew Taehun Song
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
- Cardiovascular Genetics, Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Research Centre, University of Montreal, Montréal, QC, Canada
| | - Xiaoyan Qi
- Montreal Heart Institute, Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Patrick Piet van Vliet
- Cardiovascular Genetics, Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Research Centre, University of Montreal, Montréal, QC, Canada
- LIA (International Associated Laboratory) INSERM, Marseille, France
- LIA (International Associated Laboratory) Centre Hospitalier Universitaire Sainte-Justine, Montréal, QC, Canada
| | - Jiening Xiao
- Montreal Heart Institute, Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Feng Xiong
- Montreal Heart Institute, Department of Medicine, Université de Montréal, Montréal, QC, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| | - Gregor Andelfinger
- Cardiovascular Genetics, Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Research Centre, University of Montreal, Montréal, QC, Canada
- Department of Pediatrics, University of Montreal, Montréal, QC, Canada
- Department of Biochemistry, University of Montreal, Montréal, QC, Canada
| | - Stanley Nattel
- Montreal Heart Institute, Department of Medicine, Université de Montréal, Montréal, QC, Canada.
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada.
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany.
- IHU LIRYC Institute, Fondation Bordeaux Université, Bordeaux, France.
| |
Collapse
|
19
|
Verkerk AO, Wilders R. Dynamic Clamp in Electrophysiological Studies on Stem Cell-Derived Cardiomyocytes-Why and How? J Cardiovasc Pharmacol 2021; 77:267-279. [PMID: 33229908 DOI: 10.1097/fjc.0000000000000955] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/31/2020] [Indexed: 12/15/2022]
Abstract
ABSTRACT Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) are supposed to be a good human-based model, with virtually unlimited cell source, for studies on mechanisms underlying cardiac development and cardiac diseases, and for identification of drug targets. However, a major drawback of hPSC-CMs as a model system, especially for electrophysiological studies, is their depolarized state and associated spontaneous electrical activity. Various approaches are used to overcome this drawback, including the injection of "synthetic" inward rectifier potassium current (IK1), which is computed in real time, based on the recorded membrane potential ("dynamic clamp"). Such injection of an IK1-like current results in quiescent hPSC-CMs with a nondepolarized resting potential that show "adult-like" action potentials on stimulation, with functional availability of the most important ion channels involved in cardiac electrophysiology. These days, dynamic clamp has become a widely appreciated electrophysiological tool. However, setting up a dynamic clamp system can still be laborious and difficult, both because of the required hardware and the implementation of the dedicated software. In the present review, we first summarize the potential mechanisms underlying the depolarized state of hPSC-CMs and the functional consequences of this depolarized state. Next, we explain how an existing manual patch clamp setup can be extended with dynamic clamp. Finally, we shortly validate the extended setup with atrial-like and ventricular-like hPSC-CMs. We feel that dynamic clamp is a highly valuable tool in the field of cellular electrophysiological studies on hPSC-CMs and hope that our directions for setting up such dynamic clamp system may prove helpful.
Collapse
Affiliation(s)
- Arie O Verkerk
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands ; and
- Department of Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Ronald Wilders
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands ; and
| |
Collapse
|
20
|
Almeida HV, Tenreiro MF, Louro AF, Abecasis B, Santinha D, Calmeiro T, Fortunato E, Ferreira L, Alves PM, Serra M. Human Extracellular-Matrix Functionalization of 3D hiPSC-Based Cardiac Tissues Improves Cardiomyocyte Maturation. ACS APPLIED BIO MATERIALS 2021; 4:1888-1899. [PMID: 35014458 DOI: 10.1021/acsabm.0c01490] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Human induced pluripotent stem cells (hiPSC) possess significant therapeutic potential due to their high self-renewal capability and potential to differentiate into specialized cells such as cardiomyocytes. However, generated hiPSC-derived cardiomyocytes (hiPSC-CM) are still immature, with phenotypic and functional features resembling the fetal rather than their adult counterparts, which limits their application in cell-based therapies, in vitro cardiac disease modeling, and drug cardiotoxicity screening. Recent discoveries have demonstrated the potential of the extracellular matrix (ECM) as a critical regulator in development, homeostasis, and injury of the cardiac microenvironment. Within this context, this work aimed to assess the impact of human cardiac ECM in the phenotype and maturation features of hiPSC-CM. Human ECM was isolated from myocardium tissue through a physical decellularization approach. The cardiac tissue decellularization process reduced DNA content significantly while maintaining ECM composition in terms of sulfated glycosaminoglycans (s-GAG) and collagen content. These ECM particles were successfully incorporated in three-dimensional (3D) hiPSC-CM aggregates (CM+ECM) with no impact on viability and metabolic activity throughout 20 days in 3D culture conditions. Also, CM+ECM aggregates displayed organized and longer sarcomeres, with improved calcium handling when compared to hiPSC-CM aggregates. This study shows that human cardiac ECM functionalization of hiPSC-based cardiac tissues improves cardiomyocyte maturation. The knowledge generated herein provides essential insights to streamline the application of ECM in the development of hiPSC-based therapies targeting cardiac diseases.
Collapse
Affiliation(s)
- Henrique V Almeida
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Miguel F Tenreiro
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ana F Louro
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Bernardo Abecasis
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Deolinda Santinha
- CNC, Centro de Neurociências e Biologia Celular, Universidade de Coimbra, 3004-517 Coimbra, Portugal.,Faculdade de Medicina, Universidade de Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| | - Tomás Calmeiro
- CENIMAT
- i3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Elvira Fortunato
- CENIMAT
- i3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Lino Ferreira
- CNC, Centro de Neurociências e Biologia Celular, Universidade de Coimbra, 3004-517 Coimbra, Portugal.,Faculdade de Medicina, Universidade de Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| | - Paula M Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Margarida Serra
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
21
|
Weisbrod D. Small and Intermediate Calcium Activated Potassium Channels in the Heart: Role and Strategies in the Treatment of Cardiovascular Diseases. Front Physiol 2020; 11:590534. [PMID: 33329039 PMCID: PMC7719780 DOI: 10.3389/fphys.2020.590534] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/02/2020] [Indexed: 12/11/2022] Open
Abstract
Calcium-activated potassium channels are a heterogeneous family of channels that, despite their different biophysical characteristics, structures, and pharmacological signatures, play a role of transducer between the ubiquitous intracellular calcium signaling and the electric variations of the membrane. Although this family of channels was extensively described in various excitable and non-excitable tissues, an increasing amount of evidences shows their functional role in the heart. This review aims to focus on the physiological role and the contribution of the small and intermediate calcium-activated potassium channels in cardiac pathologies.
Collapse
|
22
|
Li W, Stauske M, Luo X, Wagner S, Vollrath M, Mehnert CS, Schubert M, Cyganek L, Chen S, Hasheminasab SM, Wulf G, El-Armouche A, Maier LS, Hasenfuss G, Guan K. Disease Phenotypes and Mechanisms of iPSC-Derived Cardiomyocytes From Brugada Syndrome Patients With a Loss-of-Function SCN5A Mutation. Front Cell Dev Biol 2020; 8:592893. [PMID: 33195263 PMCID: PMC7642519 DOI: 10.3389/fcell.2020.592893] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/01/2020] [Indexed: 12/19/2022] Open
Abstract
Brugada syndrome (BrS) is one of the major causes of sudden cardiac death in young people, while the underlying mechanisms are not completely understood. Here, we investigated the pathophysiological phenotypes and mechanisms using induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CMs) from two BrS patients (BrS-CMs) carrying a heterozygous SCN5A mutation p.S1812X. Compared to CMs derived from healthy controls (Ctrl-CMs), BrS-CMs displayed a 50% reduction of INa density, a 69.5% reduction of NaV1.5 expression, and the impaired localization of NaV1.5 and connexin 43 (Cx43) at the cell surface. BrS-CMs exhibited reduced action potential (AP) upstroke velocity and conduction slowing. The Ito in BrS-CMs was significantly augmented, and the ICaL window current probability was increased. Our data indicate that the electrophysiological mechanisms underlying arrhythmia in BrS-CMs may involve both depolarization and repolarization disorders. Cilostazol and milrinone showed dramatic inhibitions of Ito in BrS-CMs and alleviated the arrhythmic activity, suggesting their therapeutic potential for BrS patients.
Collapse
Affiliation(s)
- Wener Li
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany
| | - Michael Stauske
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Göttingen, Göttingen, Germany
| | - Xiaojing Luo
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany
| | - Stefan Wagner
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany.,Department of Hematology and Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Meike Vollrath
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany
| | - Carola S Mehnert
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany
| | - Mario Schubert
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany
| | - Lukas Cyganek
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Göttingen, Göttingen, Germany
| | - Simin Chen
- German Center for Cardiovascular Research (DZHK), Partner site Göttingen, Göttingen, Germany
| | - Sayed-Mohammad Hasheminasab
- Department of Dermatology, Venereology and Allergy, Charité - Universitätsmedizin Berlin, Berlin, Germany.,CCU Translational Radiation Oncology, German Cancer Consortium Core-Center Heidelberg, National Center for Tumor Diseases, Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Gerald Wulf
- Department of Hematology and Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Ali El-Armouche
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany
| | - Lars S Maier
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany.,Clinic for Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Gerd Hasenfuss
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Göttingen, Göttingen, Germany
| | - Kaomei Guan
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany.,Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Göttingen, Göttingen, Germany
| |
Collapse
|
23
|
Zhang Y, Zhang L, Wang Y, Wang K. A Simulation Study on the Pacing and Driving of the Biological Pacemaker. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4803172. [PMID: 32596315 PMCID: PMC7273435 DOI: 10.1155/2020/4803172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/05/2020] [Accepted: 02/20/2020] [Indexed: 11/30/2022]
Abstract
The research on the biological pacemaker has been very active in recent years. And turning nonautomatic ventricular cells into pacemaking cells is believed to hold the key to making a biological pacemaker. In the study, the inward-rectifier K+ current (I K1) is depressed to induce the automaticity of the ventricular myocyte, and then, the effects of the other membrane ion currents on the automaticity are analyzed. It is discovered that the L-type calcium current (I CaL) plays a major part in the rapid depolarization of the action potential (AP). A small enough I CaL would lead to the failure of the automaticity of the ventricular myocyte. Meanwhile, the background sodium current (I bNa), the background calcium current (I bCa), and the Na+/Ca2+ exchanger current (I NaCa) contribute significantly to the slow depolarization, indicating that these currents are the main supplementary power of the pacing induced by depressing I K1, while in the 2D simulation, we find that the weak electrical coupling plays a more important role in the driving of a biological pacemaker.
Collapse
Affiliation(s)
- Yue Zhang
- College of Computer Science and Technology, Harbin Engineering University, Harbin 150001, China
- School of Computer Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Lei Zhang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Yong Wang
- College of Computer Science and Technology, Harbin Engineering University, Harbin 150001, China
| | - Kuanquan Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
24
|
Zhao Y, Rafatian N, Wang EY, Wu Q, Lai BFL, Lu RX, Savoji H, Radisic M. Towards chamber specific heart-on-a-chip for drug testing applications. Adv Drug Deliv Rev 2020; 165-166:60-76. [PMID: 31917972 PMCID: PMC7338250 DOI: 10.1016/j.addr.2019.12.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/26/2019] [Accepted: 12/30/2019] [Indexed: 02/06/2023]
Abstract
Modeling of human organs has long been a task for scientists in order to lower the costs of therapeutic development and understand the pathological onset of human disease. For decades, despite marked differences in genetics and etiology, animal models remained the norm for drug discovery and disease modeling. Innovative biofabrication techniques have facilitated the development of organ-on-a-chip technology that has great potential to complement conventional animal models. However, human organ as a whole, more specifically the human heart, is difficult to regenerate in vitro, in terms of its chamber specific orientation and its electrical functional complexity. Recent progress with the development of induced pluripotent stem cell differentiation protocols, made recapitulating the complexity of the human heart possible through the generation of cells representative of atrial & ventricular tissue, the sinoatrial node, atrioventricular node and Purkinje fibers. Current heart-on-a-chip approaches incorporate biological, electrical, mechanical, and topographical cues to facilitate tissue maturation, therefore improving the predictive power for the chamber-specific therapeutic effects targeting adult human. In this review, we will give a summary of current advances in heart-on-a-chip technology and provide a comprehensive outlook on the challenges involved in the development of human physiologically relevant heart-on-a-chip.
Collapse
Affiliation(s)
- Yimu Zhao
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Naimeh Rafatian
- Division of Cardiology and Peter Munk Cardiac Center, University of Health Network, Toronto, Ontario M5G 2N2, Canada
| | - Erika Yan Wang
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Qinghua Wu
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Benjamin F L Lai
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Rick Xingze Lu
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Houman Savoji
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Milica Radisic
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada; Toronto General Research Institute, Toronto, Ontario M5G 2C4, Canada.
| |
Collapse
|
25
|
Garg P, Garg V, Shrestha R, Sanguinetti MC, Kamp TJ, Wu JC. Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes as Models for Cardiac Channelopathies: A Primer for Non-Electrophysiologists. Circ Res 2019; 123:224-243. [PMID: 29976690 DOI: 10.1161/circresaha.118.311209] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Life threatening ventricular arrhythmias leading to sudden cardiac death are a major cause of morbidity and mortality. In the absence of structural heart disease, these arrhythmias, especially in the younger population, are often an outcome of genetic defects in specialized membrane proteins called ion channels. In the heart, exceptionally well-orchestrated activity of a diversity of ion channels mediates the cardiac action potential. Alterations in either the function or expression of these channels can disrupt the configuration of the action potential, leading to abnormal electrical activity of the heart that can sometimes initiate an arrhythmia. Understanding the pathophysiology of inherited arrhythmias can be challenging because of the complexity of the disorder and lack of appropriate cellular and in vivo models. Recent advances in human induced pluripotent stem cell technology have provided remarkable progress in comprehending the underlying mechanisms of ion channel disorders or channelopathies by modeling these complex arrhythmia syndromes in vitro in a dish. To fully realize the potential of induced pluripotent stem cells in elucidating the mechanistic basis and complex pathophysiology of channelopathies, it is crucial to have a basic knowledge of cardiac myocyte electrophysiology. In this review, we will discuss the role of the various ion channels in cardiac electrophysiology and the molecular and cellular mechanisms of arrhythmias, highlighting the promise of human induced pluripotent stem cell-cardiomyocytes as a model for investigating inherited arrhythmia syndromes and testing antiarrhythmic strategies. Overall, this review aims to provide a basic understanding of the electrical activity of the heart and related channelopathies, especially to clinicians or research scientists in the cardiovascular field with limited electrophysiology background.
Collapse
Affiliation(s)
- Priyanka Garg
- From the Stanford Cardiovascular Institute (P.G., R.S., J.C.W.).,Department of Medicine, Division of Cardiology (P.G., R.S., J.C.W.).,Institute for Stem Cell Biology and Regenerative Medicine (P.G., R.S., J.C.W.)
| | - Vivek Garg
- Stanford University School of Medicine, CA; Department of Physiology, University of California San Francisco (V.G.)
| | - Rajani Shrestha
- From the Stanford Cardiovascular Institute (P.G., R.S., J.C.W.).,Department of Medicine, Division of Cardiology (P.G., R.S., J.C.W.).,Institute for Stem Cell Biology and Regenerative Medicine (P.G., R.S., J.C.W.)
| | | | - Timothy J Kamp
- Department of Medicine, University of Wisconsin-Madison (T.J.K.)
| | - Joseph C Wu
- From the Stanford Cardiovascular Institute (P.G., R.S., J.C.W.) .,Department of Medicine, Division of Cardiology (P.G., R.S., J.C.W.).,Institute for Stem Cell Biology and Regenerative Medicine (P.G., R.S., J.C.W.)
| |
Collapse
|
26
|
Salvarani N, Crasto S, Miragoli M, Bertero A, Paulis M, Kunderfranco P, Serio S, Forni A, Lucarelli C, Dal Ferro M, Larcher V, Sinagra G, Vezzoni P, Murry CE, Faggian G, Condorelli G, Di Pasquale E. The K219T-Lamin mutation induces conduction defects through epigenetic inhibition of SCN5A in human cardiac laminopathy. Nat Commun 2019; 10:2267. [PMID: 31118417 PMCID: PMC6531493 DOI: 10.1038/s41467-019-09929-w] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 04/06/2019] [Indexed: 12/14/2022] Open
Abstract
Mutations in LMNA, which encodes the nuclear proteins Lamin A/C, can cause cardiomyopathy and conduction disorders. Here, we employ induced pluripotent stem cells (iPSCs) generated from human cells carrying heterozygous K219T mutation on LMNA to develop a disease model. Cardiomyocytes differentiated from these iPSCs, and which thus carry K219T-LMNA, have altered action potential, reduced peak sodium current and diminished conduction velocity. Moreover, they have significantly downregulated Nav1.5 channel expression and increased binding of Lamin A/C to the promoter of SCN5A, the channel's gene. Coherently, binding of the Polycomb Repressive Complex 2 (PRC2) protein SUZ12 and deposition of the repressive histone mark H3K27me3 are increased at SCN5A. CRISPR/Cas9-mediated correction of the mutation re-establishes sodium current density and SCN5A expression. Thus, K219T-LMNA cooperates with PRC2 in downregulating SCN5A, leading to decreased sodium current density and slower conduction velocity. This mechanism may underlie the conduction abnormalities associated with LMNA-cardiomyopathy.
Collapse
Affiliation(s)
- Nicolò Salvarani
- Institute of Genetic and Biomedical Research (IRGB), UOS of Milan, National Research Council of Italy, Milan, 20138, Italy
- Department of Cardiovascular Medicine and Laboratory of Medical Biotechnology, Humanitas Clinical and Research Center - IRCCS, Rozzano (MI), 20089, Italy
| | - Silvia Crasto
- Institute of Genetic and Biomedical Research (IRGB), UOS of Milan, National Research Council of Italy, Milan, 20138, Italy
- Department of Cardiovascular Medicine and Laboratory of Medical Biotechnology, Humanitas Clinical and Research Center - IRCCS, Rozzano (MI), 20089, Italy
| | - Michele Miragoli
- Institute of Genetic and Biomedical Research (IRGB), UOS of Milan, National Research Council of Italy, Milan, 20138, Italy
- Department of Cardiovascular Medicine and Laboratory of Medical Biotechnology, Humanitas Clinical and Research Center - IRCCS, Rozzano (MI), 20089, Italy
- Department of Medicine and Surgery, University of Parma, Parma, 43121, Italy
| | - Alessandro Bertero
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, 98109, WA, USA
| | - Marianna Paulis
- Institute of Genetic and Biomedical Research (IRGB), UOS of Milan, National Research Council of Italy, Milan, 20138, Italy
- Department of Cardiovascular Medicine and Laboratory of Medical Biotechnology, Humanitas Clinical and Research Center - IRCCS, Rozzano (MI), 20089, Italy
| | - Paolo Kunderfranco
- Department of Cardiovascular Medicine and Laboratory of Medical Biotechnology, Humanitas Clinical and Research Center - IRCCS, Rozzano (MI), 20089, Italy
| | - Simone Serio
- Department of Cardiovascular Medicine and Laboratory of Medical Biotechnology, Humanitas Clinical and Research Center - IRCCS, Rozzano (MI), 20089, Italy
| | - Alberto Forni
- Division of Cardiac Surgery, University of Verona, Verona, 37129, Italy
| | - Carla Lucarelli
- Division of Cardiac Surgery, University of Verona, Verona, 37129, Italy
| | - Matteo Dal Ferro
- Cardiovascular Department, "Ospedali Riuniti" and University of Trieste, Trieste, 34129, Italy
| | - Veronica Larcher
- Department of Cardiovascular Medicine and Laboratory of Medical Biotechnology, Humanitas Clinical and Research Center - IRCCS, Rozzano (MI), 20089, Italy
| | - Gianfranco Sinagra
- Cardiovascular Department, "Ospedali Riuniti" and University of Trieste, Trieste, 34129, Italy
| | - Paolo Vezzoni
- Institute of Genetic and Biomedical Research (IRGB), UOS of Milan, National Research Council of Italy, Milan, 20138, Italy
- Department of Cardiovascular Medicine and Laboratory of Medical Biotechnology, Humanitas Clinical and Research Center - IRCCS, Rozzano (MI), 20089, Italy
| | - Charles E Murry
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, 98109, WA, USA
| | - Giuseppe Faggian
- Division of Cardiac Surgery, University of Verona, Verona, 37129, Italy
| | - Gianluigi Condorelli
- Institute of Genetic and Biomedical Research (IRGB), UOS of Milan, National Research Council of Italy, Milan, 20138, Italy.
- Department of Cardiovascular Medicine and Laboratory of Medical Biotechnology, Humanitas Clinical and Research Center - IRCCS, Rozzano (MI), 20089, Italy.
- Humanitas University, Rozzano (MI), 20089, Italy.
| | - Elisa Di Pasquale
- Institute of Genetic and Biomedical Research (IRGB), UOS of Milan, National Research Council of Italy, Milan, 20138, Italy.
- Department of Cardiovascular Medicine and Laboratory of Medical Biotechnology, Humanitas Clinical and Research Center - IRCCS, Rozzano (MI), 20089, Italy.
| |
Collapse
|
27
|
Amin M, Kushida Y, Wakao S, Kitada M, Tatsumi K, Dezawa M. Cardiotrophic Growth Factor-Driven Induction of Human Muse Cells Into Cardiomyocyte-Like Phenotype. Cell Transplant 2019; 27:285-298. [PMID: 29637816 PMCID: PMC5898685 DOI: 10.1177/0963689717721514] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Multilineage-differentiating stress-enduring (Muse) cells are endogenous nontumorigenic stem cells collectable as stage-specific embryonic antigen 3 (SSEA-3) + from various organs including the bone marrow and are pluripotent-like. The potential of human bone marrow-derived Muse cells to commit to cardiac lineage cells was evaluated. We found that (1) initial treatment of Muse cells with 5'-azacytidine in suspension culture successfully accelerated demethylation of cardiac marker Nkx2.5 promoter; (2) then transferring the cells onto adherent culture and treatment with early cardiac differentiation factors including wingless-int (Wnt)-3a, bone morphogenetic proteins (BMP)-2/4, and transforming growth factor (TGF) β1; and (3) further treatment with late cardiac differentiation cytokines including cardiotrophin-1 converted Muse cells into cardiomyocyte-like cells that expressed α-actinin and troponin-I with a striation-like pattern. MLC2a expression in the final step suggested differentiation of the cells into an atrial subtype. MLC2v, a marker for a mature ventricular subtype, was expressed when cells were treated with Dickkopf-related protein 1 (DKK-1) and Noggin, inhibitors of Wnt3a and BMP-4, respectively, between steps (2) and (3). None of the steps included exogenous gene transfection, making induced cells feasible for future clinical application.
Collapse
Affiliation(s)
- Mohamed Amin
- 1 Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan.,2 Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahlia, Egypt
| | - Yoshihiro Kushida
- 1 Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shohei Wakao
- 1 Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masaaki Kitada
- 1 Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuki Tatsumi
- 1 Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan.,3 Life Science Institute Inc., Regenerative Medicine Division, Nagoya, Japan
| | - Mari Dezawa
- 1 Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
28
|
Ravens U. Ionic basis of cardiac electrophysiology in zebrafish compared to human hearts. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 138:38-44. [DOI: 10.1016/j.pbiomolbio.2018.06.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/23/2018] [Accepted: 06/15/2018] [Indexed: 12/14/2022]
|
29
|
Anderson DJ, Kaplan DI, Bell KM, Koutsis K, Haynes JM, Mills RJ, Phelan DG, Qian EL, Leitoguinho AR, Arasaratnam D, Labonne T, Ng ES, Davis RP, Casini S, Passier R, Hudson JE, Porrello ER, Costa MW, Rafii A, Curl CL, Delbridge LM, Harvey RP, Oshlack A, Cheung MM, Mummery CL, Petrou S, Elefanty AG, Stanley EG, Elliott DA. NKX2-5 regulates human cardiomyogenesis via a HEY2 dependent transcriptional network. Nat Commun 2018; 9:1373. [PMID: 29636455 PMCID: PMC5893543 DOI: 10.1038/s41467-018-03714-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/05/2018] [Indexed: 12/19/2022] Open
Abstract
Congenital heart defects can be caused by mutations in genes that guide cardiac lineage formation. Here, we show deletion of NKX2-5, a critical component of the cardiac gene regulatory network, in human embryonic stem cells (hESCs), results in impaired cardiomyogenesis, failure to activate VCAM1 and to downregulate the progenitor marker PDGFRα. Furthermore, NKX2-5 null cardiomyocytes have abnormal physiology, with asynchronous contractions and altered action potentials. Molecular profiling and genetic rescue experiments demonstrate that the bHLH protein HEY2 is a key mediator of NKX2-5 function during human cardiomyogenesis. These findings identify HEY2 as a novel component of the NKX2-5 cardiac transcriptional network, providing tangible evidence that hESC models can decipher the complex pathways that regulate early stage human heart development. These data provide a human context for the evaluation of pathogenic mutations in congenital heart disease. A gene regulatory network, including the transcription factor Nkx2-5, regulates cardiac development. Here, the authors show that on deletion of NKX2-5 from human embryonic stem cells, there is impaired cardiomyogenesis and changes in action potentials, and that this is regulated via HEY2.
Collapse
Affiliation(s)
- David J Anderson
- Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, Parkville, VIC, 3052, Australia
| | - David I Kaplan
- The Florey Institute of Neuroscience and Mental Health; Centre for Neuroscience, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Katrina M Bell
- Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, Parkville, VIC, 3052, Australia
| | - Katerina Koutsis
- Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, Parkville, VIC, 3052, Australia
| | - John M Haynes
- Monash Institute of Pharmaceutical Science, Monash University, 381 Royal Parade Parkville, Victoria, 3052, Australia
| | - Richard J Mills
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Dean G Phelan
- Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, Parkville, VIC, 3052, Australia
| | - Elizabeth L Qian
- Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, Parkville, VIC, 3052, Australia
| | - Ana Rita Leitoguinho
- Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, Parkville, VIC, 3052, Australia
| | - Deevina Arasaratnam
- Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, Parkville, VIC, 3052, Australia
| | - Tanya Labonne
- Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, Parkville, VIC, 3052, Australia
| | - Elizabeth S Ng
- Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, Parkville, VIC, 3052, Australia
| | - Richard P Davis
- Department of Anatomy and Embryology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Simona Casini
- Department of Anatomy and Embryology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Robert Passier
- Department of Anatomy and Embryology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - James E Hudson
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Enzo R Porrello
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | | | - Arash Rafii
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar Qatar Foundation, Doha, Qatar.,Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Clare L Curl
- Department of Physiology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Lea M Delbridge
- Department of Physiology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Richard P Harvey
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2052, Australia.,St. Vincent's Clinical School and School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, 2052, Australia
| | - Alicia Oshlack
- Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, Parkville, VIC, 3052, Australia
| | - Michael M Cheung
- Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, Parkville, VIC, 3052, Australia.,Department of Pediatrics, The Royal Children's Hospital, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Stephen Petrou
- The Florey Institute of Neuroscience and Mental Health; Centre for Neuroscience, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Andrew G Elefanty
- Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, Parkville, VIC, 3052, Australia.,Department of Pediatrics, The Royal Children's Hospital, University of Melbourne, Parkville, VIC, 3052, Australia.,Department of Anatomy and Developmental Biology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Edouard G Stanley
- Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, Parkville, VIC, 3052, Australia.,Department of Pediatrics, The Royal Children's Hospital, University of Melbourne, Parkville, VIC, 3052, Australia.,Department of Anatomy and Developmental Biology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - David A Elliott
- Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, Parkville, VIC, 3052, Australia. .,Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia. .,School of Biosciences, University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|
30
|
Lee HA, Hyun SA, Byun B, Chae JH, Kim KS. Electrophysiological mechanisms of vandetanib-induced cardiotoxicity: Comparison of action potentials in rabbit Purkinje fibers and pluripotent stem cell-derived cardiomyocytes. PLoS One 2018; 13:e0195577. [PMID: 29630634 PMCID: PMC5891061 DOI: 10.1371/journal.pone.0195577] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 03/26/2018] [Indexed: 01/08/2023] Open
Abstract
Vandetanib, a multi-kinase inhibitor used for the treatment of various cancers, has been reported to induce several adverse cardiac effects. However, the underlying mechanisms of vandetanib-induced cardiotoxicity are unclear. This study aimed to investigate the mechanism of vandetanib-induced cardiotoxicity using intracellular electrophysiological recordings on human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), rabbit Purkinje fibers, and HEK293 cells transiently expressing human ether-a-go-go-related gene (hERG; the rapidly activating delayed rectifier K+ channel, IKr), KCNQ1/KCNE1 (the slowly activating delayed rectifier K+ current, IKs), KCNJ2 (the inwardly rectifying K+ current, IK1) or SCN5A (the inward Na+ current, INa). Purkinje fiber assays and ion channel studies showed that vandetanib at concentrations of 1 and 3 μM inhibited the hERG currents and prolonged the action potential duration. Alanine scanning and in silico hERG docking studies demonstrated that Y652 and F656 in the hERG S6 domain play critical roles in vandetanib binding. In hiPSC-CMs, vandetanib markedly reduced the maximum rate of depolarization during the AP upstroke. Ion channel studies revealed that hiPSC-CMs were more sensitive to inhibition of the INa by vandetanib than in a heterogeneously expressed HEK293 cell model, consistent with the changes in the AP parameters of hiPSC-CMs. The subclasses of Class I antiarrhythmic drugs inhibited INa currents in a dose-dependent manner in hiPSC-CMs and SCN5A-encoded HEK293 cells. The inhibitory potency of vandetanib for INa was much higher in hiPSC-CMs (IC50: 2.72 μM) than in HEK293 cells (IC50: 36.63 μM). These data suggest that AP and INa assays using hiPSC-CMs are useful electrophysiological models for prediction of drug-induced cardiotoxicity.
Collapse
Affiliation(s)
- Hyang-Ae Lee
- Predictive model Research Center, Korea Institute of Toxicology, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Sung-Ae Hyun
- Research Center for Safety Pharmacology, Korea Institute of Toxicology, Research Institute of Chemical Technology, Daejeon, South Korea
| | - Byungjin Byun
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Jong-Hak Chae
- Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Ki-Suk Kim
- Predictive model Research Center, Korea Institute of Toxicology, Korea Research Institute of Chemical Technology, Daejeon, South Korea
- Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon, South Korea
- * E-mail: ,
| |
Collapse
|
31
|
Hidalgo A, Glass N, Ovchinnikov D, Yang SK, Zhang X, Mazzone S, Chen C, Wolvetang E, Cooper-White J. Modelling ischemia-reperfusion injury (IRI) in vitro using metabolically matured induced pluripotent stem cell-derived cardiomyocytes. APL Bioeng 2018; 2:026102. [PMID: 31069299 PMCID: PMC6481709 DOI: 10.1063/1.5000746] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 02/27/2018] [Indexed: 12/31/2022] Open
Abstract
Coronary intervention following ST-segment elevation myocardial infarction (STEMI) is the treatment of choice for reducing cardiomyocyte death but paradoxically leads to reperfusion injury. Pharmacological post-conditioning is an attractive approach to minimize Ischemia-Reperfusion Injury (IRI), but candidate drugs identified in IRI animal models have performed poorly in human clinical trials, highlighting the need for a human cell-based model of IRI. In this work, we show that when we imposed sequential hypoxia and reoxygenation episodes [mimicking the ischemia (I) and reperfusion (R) events] to immature human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs), they display significant hypoxia resistance and minimal cell death (∼5%). Metabolic maturation of hPSC-CMs for 8 days substantially increased their sensitivity to changes in oxygen concentration and led to up to ∼30% cell death post-hypoxia and reoxygenation. To mimic the known transient changes in the interstitial tissue microenvironment during an IRI event in vivo, we tested a new in vitro IRI model protocol that required glucose availability and lowering of media pH during the ischemic episode, resulting in a significant increase in cell death in vitro (∼60%). Finally, we confirm that in this new physiologically matched IRI in vitro model, pharmacological post-conditioning reduces reperfusion-induced hPSC-CM cell death by 50%. Our results indicate that in recapitulating key aspects of an in vivo IRI event, our in vitro model can serve as a useful method for the study of IRI and the validation and screening of human specific pharmacological post-conditioning drug candidates.
Collapse
Affiliation(s)
| | - Nick Glass
- Tissue Engineering and Microfluidics Group, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia
| | - Dmitry Ovchinnikov
- Stem Cell Engineering Group, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia
| | - Seung-Kwon Yang
- Laboratory for Respiratory Neuroscience and Mucosal Immunity, School of Biomedical Sciences, The University of Queensland, St. Lucia 4072, Australia
| | - Xinli Zhang
- Laboratory for Endocrinology and Metabolism, School of Biomedical Sciences, The University of Queensland, St. Lucia 4072, Australia
| | - Stuart Mazzone
- Laboratory for Respiratory Neuroscience and Mucosal Immunity, School of Biomedical Sciences, The University of Queensland, St. Lucia 4072, Australia
| | - Chen Chen
- Laboratory for Endocrinology and Metabolism, School of Biomedical Sciences, The University of Queensland, St. Lucia 4072, Australia
| | - Ernst Wolvetang
- Stem Cell Engineering Group, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia
| | | |
Collapse
|
32
|
Izadifar M, Chapman D, Babyn P, Chen X, Kelly ME. UV-Assisted 3D Bioprinting of Nanoreinforced Hybrid Cardiac Patch for Myocardial Tissue Engineering. Tissue Eng Part C Methods 2018; 24:74-88. [DOI: 10.1089/ten.tec.2017.0346] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Mohammad Izadifar
- Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, Canada
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Canada
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Canada
- Division of Cardiovascular Surgery, Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, Canada
| | - Dean Chapman
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Canada
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Paul Babyn
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Canada
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Xiongbiao Chen
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Canada
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Canada
| | - Michael E. Kelly
- Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, Canada
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
33
|
Gunasekaran V, Selvaraj R. Biological Pacemakers – A Review. INTERNATIONAL JOURNAL OF CARDIOVASCULAR PRACTICE 2018. [DOI: 10.21859/ijcp-03103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
34
|
Besser RR, Ishahak M, Mayo V, Carbonero D, Claure I, Agarwal A. Engineered Microenvironments for Maturation of Stem Cell Derived Cardiac Myocytes. Am J Cancer Res 2018; 8:124-140. [PMID: 29290797 PMCID: PMC5743464 DOI: 10.7150/thno.19441] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 10/19/2017] [Indexed: 01/11/2023] Open
Abstract
Through the use of stem cell-derived cardiac myocytes, tissue-engineered human myocardial constructs are poised for modeling normal and diseased physiology of the heart, as well as discovery of novel drugs and therapeutic targets in a human relevant manner. This review highlights the recent bioengineering efforts to recapitulate microenvironmental cues to further the maturation state of newly differentiated cardiac myocytes. These techniques include long-term culture, co-culture, exposure to mechanical stimuli, 3D culture, cell-matrix interactions, and electrical stimulation. Each of these methods has produced various degrees of maturation; however, a standardized measure for cardiomyocyte maturation is not yet widely accepted by the scientific community.
Collapse
|
35
|
Selga E, Sendfeld F, Martinez-Moreno R, Medine CN, Tura-Ceide O, Wilmut SI, Pérez GJ, Scornik FS, Brugada R, Mills NL. Sodium channel current loss of function in induced pluripotent stem cell-derived cardiomyocytes from a Brugada syndrome patient. J Mol Cell Cardiol 2018; 114:10-19. [PMID: 29024690 PMCID: PMC5807028 DOI: 10.1016/j.yjmcc.2017.10.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 09/15/2017] [Accepted: 10/04/2017] [Indexed: 12/24/2022]
Abstract
Brugada syndrome predisposes to sudden death due to disruption of normal cardiac ion channel function, yet our understanding of the underlying cellular mechanisms is incomplete. Commonly used heterologous expression models lack many characteristics of native cardiomyocytes and, in particular, the individual genetic background of a patient. Patient-specific induced pluripotent stem (iPS) cell-derived cardiomyocytes (iPS-CM) may uncover cellular phenotypical characteristics not observed in heterologous models. Our objective was to determine the properties of the sodium current in iPS-CM with a mutation in SCN5A associated with Brugada syndrome. Dermal fibroblasts from a Brugada syndrome patient with a mutation in SCN5A (c.1100G>A, leading to Nav1.5_p.R367H) were reprogrammed to iPS cells. Clones were characterized and differentiated to form beating clusters and sheets. Patient and control iPS-CM were structurally indistinguishable. Sodium current properties of patient and control iPS-CM were compared. These results were contrasted with those obtained in tsA201 cells heterologously expressing sodium channels with the same mutation. Patient-derived iPS-CM showed a 33.1-45.5% reduction in INa density, a shift in both activation and inactivation voltage-dependence curves, and faster recovery from inactivation. Co-expression of wild-type and mutant channels in tsA201 cells did not compromise channel trafficking to the membrane, but resulted in a reduction of 49.8% in sodium current density without affecting any other parameters. Cardiomyocytes derived from iPS cells from a Brugada syndrome patient with a mutation in SCN5A recapitulate the loss of function of sodium channel current associated with this syndrome; including pro-arrhythmic changes in channel function not detected using conventional heterologous expression systems.
Collapse
Affiliation(s)
- Elisabet Selga
- Cardiovascular Genetics Centre, Department of Medical Sciences, University of Girona, Girona, Spain; Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Franziska Sendfeld
- Scottish Centre for Regenerative Medicine, University of Edinburgh, United Kingdom; BHF/University Centre for Cardiovascular Sciences, University of Edinburgh, United Kingdom
| | - Rebecca Martinez-Moreno
- Cardiovascular Genetics Centre, Department of Medical Sciences, University of Girona, Girona, Spain; Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Claire N Medine
- Scottish Centre for Regenerative Medicine, University of Edinburgh, United Kingdom; BHF/University Centre for Cardiovascular Sciences, University of Edinburgh, United Kingdom
| | - Olga Tura-Ceide
- Department of Pulmonary Medicine, Hospital Clinic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, University of Barcelona, Spain
| | - Sir Ian Wilmut
- Scottish Centre for Regenerative Medicine, University of Edinburgh, United Kingdom
| | - Guillermo J Pérez
- Cardiovascular Genetics Centre, Department of Medical Sciences, University of Girona, Girona, Spain; Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Fabiana S Scornik
- Cardiovascular Genetics Centre, Department of Medical Sciences, University of Girona, Girona, Spain; Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Ramon Brugada
- Cardiovascular Genetics Centre, Department of Medical Sciences, University of Girona, Girona, Spain; Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain; Hospital Josep Trueta, Girona, Spain
| | - Nicholas L Mills
- BHF/University Centre for Cardiovascular Sciences, University of Edinburgh, United Kingdom.
| |
Collapse
|
36
|
Sartiani L, Mannaioni G, Masi A, Novella Romanelli M, Cerbai E. The Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels: from Biophysics to Pharmacology of a Unique Family of Ion Channels. Pharmacol Rev 2017; 69:354-395. [PMID: 28878030 DOI: 10.1124/pr.117.014035] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/07/2017] [Indexed: 12/22/2022] Open
Abstract
Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels are important members of the voltage-gated pore loop channels family. They show unique features: they open at hyperpolarizing potential, carry a mixed Na/K current, and are regulated by cyclic nucleotides. Four different isoforms have been cloned (HCN1-4) that can assemble to form homo- or heterotetramers, characterized by different biophysical properties. These proteins are widely distributed throughout the body and involved in different physiologic processes, the most important being the generation of spontaneous electrical activity in the heart and the regulation of synaptic transmission in the brain. Their role in heart rate, neuronal pacemaking, dendritic integration, learning and memory, and visual and pain perceptions has been extensively studied; these channels have been found also in some peripheral tissues, where their functions still need to be fully elucidated. Genetic defects and altered expression of HCN channels are linked to several pathologies, which makes these proteins attractive targets for translational research; at the moment only one drug (ivabradine), which specifically blocks the hyperpolarization-activated current, is clinically available. This review discusses current knowledge about HCN channels, starting from their biophysical properties, origin, and developmental features, to (patho)physiologic role in different tissues and pharmacological modulation, ending with their present and future relevance as drug targets.
Collapse
Affiliation(s)
- Laura Sartiani
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Guido Mannaioni
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Alessio Masi
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Maria Novella Romanelli
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Elisabetta Cerbai
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| |
Collapse
|
37
|
Affiliation(s)
- Yoshinori Yoshida
- From the Center for iPS Cell Research and Application, Kyoto University, Japan (Y.Y., S.Y.); and Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA (S.Y.)
| | - Shinya Yamanaka
- From the Center for iPS Cell Research and Application, Kyoto University, Japan (Y.Y., S.Y.); and Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA (S.Y.)
| |
Collapse
|
38
|
Overexpression of KCNJ2 in induced pluripotent stem cell-derived cardiomyocytes for the assessment of QT-prolonging drugs. J Pharmacol Sci 2017; 134:75-85. [DOI: 10.1016/j.jphs.2017.05.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 05/14/2017] [Accepted: 05/17/2017] [Indexed: 02/05/2023] Open
|
39
|
Shen N, Knopf A, Westendorf C, Kraushaar U, Riedl J, Bauer H, Pöschel S, Layland SL, Holeiter M, Knolle S, Brauchle E, Nsair A, Hinderer S, Schenke-Layland K. Steps toward Maturation of Embryonic Stem Cell-Derived Cardiomyocytes by Defined Physical Signals. Stem Cell Reports 2017; 9:122-135. [PMID: 28528699 PMCID: PMC5511039 DOI: 10.1016/j.stemcr.2017.04.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 04/19/2017] [Accepted: 04/20/2017] [Indexed: 01/18/2023] Open
Abstract
Cardiovascular disease remains a leading cause of mortality and morbidity worldwide. Embryonic stem cell-derived cardiomyocytes (ESC-CMs) may offer significant advances in creating in vitro cardiac tissues for disease modeling, drug testing, and elucidating developmental processes; however, the induction of ESCs to a more adult-like CM phenotype remains challenging. In this study, we developed a bioreactor system to employ pulsatile flow (1.48 mL/min), cyclic strain (5%), and extended culture time to improve the maturation of murine and human ESC-CMs. Dynamically-cultured ESC-CMs showed an increased expression of cardiac-associated proteins and genes, cardiac ion channel genes, as well as increased SERCA activity and a Raman fingerprint with the presence of maturation-associated peaks similar to primary CMs. We present a bioreactor platform that can serve as a foundation for the development of human-based cardiac in vitro models to verify drug candidates, and facilitates the study of cardiovascular development and disease. Custom-made bioreactor exposes ESC-CMs to defined shear stress and cyclic stretch Physical signals and extended culture significantly improve maturation of ESC-CMs Biochemical fingerprint of dynamically cultured ESC-CMs is similar to primary CMs
Collapse
Affiliation(s)
- Nian Shen
- Department of Cell and Tissue Engineering, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart 70569, Germany; Department of Women's Health, Research Institute of Women's Health, University Hospital of the Eberhard Karls University Tübingen, Tübingen 72076, Germany
| | - Anne Knopf
- Department of Cell and Tissue Engineering, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart 70569, Germany; Department of Women's Health, Research Institute of Women's Health, University Hospital of the Eberhard Karls University Tübingen, Tübingen 72076, Germany
| | - Claas Westendorf
- Department of Cell and Tissue Engineering, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart 70569, Germany
| | - Udo Kraushaar
- Department of Cell Biology, Electrophysiology, Natural and Medical Sciences Institute, University of Tübingen, Reutlingen 72770, Germany
| | - Julia Riedl
- Department of Cell and Tissue Engineering, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart 70569, Germany; Department of Women's Health, Research Institute of Women's Health, University Hospital of the Eberhard Karls University Tübingen, Tübingen 72076, Germany
| | - Hannah Bauer
- Department of Women's Health, Research Institute of Women's Health, University Hospital of the Eberhard Karls University Tübingen, Tübingen 72076, Germany
| | - Simone Pöschel
- Department of Women's Health, Research Institute of Women's Health, University Hospital of the Eberhard Karls University Tübingen, Tübingen 72076, Germany
| | - Shannon Lee Layland
- Department of Cell and Tissue Engineering, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart 70569, Germany; Department of Women's Health, Research Institute of Women's Health, University Hospital of the Eberhard Karls University Tübingen, Tübingen 72076, Germany
| | - Monika Holeiter
- Department of Cell and Tissue Engineering, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart 70569, Germany; Department of Women's Health, Research Institute of Women's Health, University Hospital of the Eberhard Karls University Tübingen, Tübingen 72076, Germany
| | - Stefan Knolle
- Department of Cell and Tissue Engineering, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart 70569, Germany; Department of Cell Biology, Electrophysiology, Natural and Medical Sciences Institute, University of Tübingen, Reutlingen 72770, Germany
| | - Eva Brauchle
- Department of Cell and Tissue Engineering, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart 70569, Germany; Department of Women's Health, Research Institute of Women's Health, University Hospital of the Eberhard Karls University Tübingen, Tübingen 72076, Germany
| | - Ali Nsair
- Department of Medicine/Cardiology, Cardiovascular Research Laboratories (CVRL), David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA; Broad Stem Cell Research Center, David School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Svenja Hinderer
- Department of Cell and Tissue Engineering, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart 70569, Germany; Department of Women's Health, Research Institute of Women's Health, University Hospital of the Eberhard Karls University Tübingen, Tübingen 72076, Germany
| | - Katja Schenke-Layland
- Department of Cell and Tissue Engineering, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart 70569, Germany; Department of Women's Health, Research Institute of Women's Health, University Hospital of the Eberhard Karls University Tübingen, Tübingen 72076, Germany; Department of Medicine/Cardiology, Cardiovascular Research Laboratories (CVRL), David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA.
| |
Collapse
|
40
|
Jara-Avaca M, Kempf H, Rückert M, Robles-Diaz D, Franke A, de la Roche J, Fischer M, Malan D, Sasse P, Solodenko W, Dräger G, Kirschning A, Martin U, Zweigerdt R. EBIO Does Not Induce Cardiomyogenesis in Human Pluripotent Stem Cells but Modulates Cardiac Subtype Enrichment by Lineage-Selective Survival. Stem Cell Reports 2017; 8:305-317. [PMID: 28089668 PMCID: PMC5311470 DOI: 10.1016/j.stemcr.2016.12.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 12/13/2016] [Accepted: 12/14/2016] [Indexed: 12/21/2022] Open
Abstract
Subtype-specific human cardiomyocytes (CMs) are valuable for basic and applied research. Induction of cardiomyogenesis and enrichment of nodal-like CMs was described for mouse pluripotent stem cells (mPSCs) in response to 1-ethyl-2-benzimidazolinone (EBIO), a chemical modulator of small-/intermediate-conductance Ca2+-activated potassium channels (SKs 1-4). Investigating EBIO in human pluripotent stem cells (PSCs), we have applied three independent differentiation protocols of low to high cardiomyogenic efficiency. Equivalent to mPSCs, timed EBIO supplementation during hPSC differentiation resulted in dose-dependent enrichment of up to 80% CMs, including an increase in nodal- and atrial-like phenotypes. However, our study revealed extensive EBIO-triggered cell loss favoring cardiac progenitor preservation and, subsequently, CMs with shortened action potentials. Proliferative cells were generally more sensitive to EBIO, presumably via an SK-independent mechanism. Together, EBIO did not promote cardiogenic differentiation of PSCs, opposing previous findings, but triggered lineage-selective survival at a cardiac progenitor stage, which we propose as a pharmacological strategy to modulate CM subtype composition.
Collapse
Affiliation(s)
- Monica Jara-Avaca
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, REBIRTH-Cluster of Excellence, Hannover Medical School, Carl-Neuberg Straße 1, 30625 Hannover, Germany
| | - Henning Kempf
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, REBIRTH-Cluster of Excellence, Hannover Medical School, Carl-Neuberg Straße 1, 30625 Hannover, Germany
| | - Michael Rückert
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, REBIRTH-Cluster of Excellence, Hannover Medical School, Carl-Neuberg Straße 1, 30625 Hannover, Germany
| | - Diana Robles-Diaz
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, REBIRTH-Cluster of Excellence, Hannover Medical School, Carl-Neuberg Straße 1, 30625 Hannover, Germany
| | - Annika Franke
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, REBIRTH-Cluster of Excellence, Hannover Medical School, Carl-Neuberg Straße 1, 30625 Hannover, Germany
| | - Jeanne de la Roche
- Institute for Neurophysiology, Hannover Medical School, Carl-Neuberg Straße, 30625 Hannover, Germany
| | - Martin Fischer
- Institute for Neurophysiology, Hannover Medical School, Carl-Neuberg Straße, 30625 Hannover, Germany
| | - Daniela Malan
- Institute of Physiology I, Life & Brain Center, University of Bonn, Sigmund-Freud-Straße 25, 53127 Bonn, Germany
| | - Philipp Sasse
- Institute of Physiology I, Life & Brain Center, University of Bonn, Sigmund-Freud-Straße 25, 53127 Bonn, Germany
| | - Wladimir Solodenko
- Center of Biomolecular Drug Research (BMWZ), Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 38, 30167 Hannover, Germany
| | - Gerald Dräger
- Center of Biomolecular Drug Research (BMWZ), Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 38, 30167 Hannover, Germany
| | - Andreas Kirschning
- Center of Biomolecular Drug Research (BMWZ), Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 38, 30167 Hannover, Germany
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, REBIRTH-Cluster of Excellence, Hannover Medical School, Carl-Neuberg Straße 1, 30625 Hannover, Germany
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, REBIRTH-Cluster of Excellence, Hannover Medical School, Carl-Neuberg Straße 1, 30625 Hannover, Germany.
| |
Collapse
|
41
|
Barbuti A, Benzoni P, Campostrini G, Dell'Era P. Human derived cardiomyocytes: A decade of knowledge after the discovery of induced pluripotent stem cells. Dev Dyn 2016; 245:1145-1158. [DOI: 10.1002/dvdy.24455] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/05/2016] [Accepted: 05/05/2016] [Indexed: 12/27/2022] Open
Affiliation(s)
- Andrea Barbuti
- Department of Biosciences; Università degli Studi di Milano; Milan Italy
| | - Patrizia Benzoni
- Department of Biosciences; Università degli Studi di Milano; Milan Italy
| | - Giulia Campostrini
- Department of Biosciences; Università degli Studi di Milano; Milan Italy
| | - Patrizia Dell'Era
- Cellular Fate Reprogramming Unit, Department of Molecular and Translational Medicine; Università degli Studi di Brescia; Brescia Italy
| |
Collapse
|
42
|
Kujala VJ, Pasqualini FS, Goss JA, Nawroth JC, Parker KK. Laminar ventricular myocardium on a microelectrode array-based chip. J Mater Chem B 2016; 4:3534-3543. [PMID: 32263387 DOI: 10.1039/c6tb00324a] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Pharmaceutical screening based on human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and multi electrode arrays (MEAs) have been proposed as a complementary method for electrophysiological safety and efficacy assessment in drug discovery and development. Contrary to animal models, these cells offer a human genetic background but, at present, fail to recapitulate the mechanical and structural properties of the native human myocardium. Here, we report that topographical cues on soft micromolded gelatin can coax hiPSC-CMs to form laminar cardiac tissues that resemble the native architecture of the heart. Importantly, using this method we were able to record tissue-level electrophysiological responses with a commercially available MEA setup. To validate this platform, we recorded cardiac field potentials at baseline and after pharmacological interventions with a β-adrenergic agonist (isoproterenol). Further, we tested the ability of our system to predict the response of laminar human cardiac tissues to a cardiotoxic pro-drug (terfenadine) and its non-cardiotoxic metabolite (fexofenadine). Finally, we integrated our platform with microfluidic components to build a heart-on-a-chip system that can be fluidically linked with other organs-on-chips in the future.
Collapse
Affiliation(s)
- Ville J Kujala
- Disease Biophysics Group, Harvard Stem Cell Institute, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, K.K.P. 29 Oxford Street, Pierce Hall Cambridge, MA 02130, USA.
| | | | | | | | | |
Collapse
|
43
|
Rajamohan D, Kalra S, Duc Hoang M, George V, Staniforth A, Russell H, Yang X, Denning C. Automated Electrophysiological and Pharmacological Evaluation of Human Pluripotent Stem Cell-Derived Cardiomyocytes. Stem Cells Dev 2016; 25:439-52. [PMID: 26906236 PMCID: PMC4790208 DOI: 10.1089/scd.2015.0253] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Automated planar patch clamp systems are widely used in drug evaluation studies because of their ability to provide accurate, reliable, and reproducible data in a high-throughput manner. Typically, CHO and HEK tumorigenic cell lines overexpressing single ion channels are used since they can be harvested as high-density, homogenous, single-cell suspensions. While human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) are physiologically more relevant, these cells are fragile, have complex culture requirements, are inherently heterogeneous, and are expensive to produce, which has restricted their use on automated patch clamp (APC) devices. Here, we used high efficiency differentiation protocols to produce cardiomyocytes from six different hPSC lines for analysis on the Patchliner (Nanion Technologies GmbH) APC platform. We developed a two-step cell preparation protocol that yielded cell catch rates and whole-cell breakthroughs of ∼80%, with ∼40% of these cells allowing electrical activity to be recorded. The protocol permitted formation of long-lasting (>15 min), high quality seals (>2 GΩ) in both voltage- and current-clamp modes. This enabled density of sodium, calcium, and potassium currents to be evaluated, along with dose–response curves to their respective channel inhibitors, tetrodotoxin, nifedipine, and E-4031. Thus, we show the feasibility of using the Patchliner platform for automated evaluation of the electrophysiology and pharmacology of hPSC-CMs, which will enable considerable increase in throughput for reliable and efficient drug evaluation.
Collapse
Affiliation(s)
- Divya Rajamohan
- 1 Division of Cancer and Stem Cells, School of Medicine, Wolfson Centre for Stem Cells, Tissue Engineering & Modelling, University of Nottingham , Nottingham, United Kingdom
| | - Spandan Kalra
- 1 Division of Cancer and Stem Cells, School of Medicine, Wolfson Centre for Stem Cells, Tissue Engineering & Modelling, University of Nottingham , Nottingham, United Kingdom
| | - Minh Duc Hoang
- 1 Division of Cancer and Stem Cells, School of Medicine, Wolfson Centre for Stem Cells, Tissue Engineering & Modelling, University of Nottingham , Nottingham, United Kingdom
| | - Vinoj George
- 1 Division of Cancer and Stem Cells, School of Medicine, Wolfson Centre for Stem Cells, Tissue Engineering & Modelling, University of Nottingham , Nottingham, United Kingdom
| | - Andrew Staniforth
- 2 Nottingham University Hospitals NHS Trust , Department of Cardiology, Nottingham, United Kingdom
| | - Hugh Russell
- 3 Biomaterials and Tissue Engineering Group, Department of Oral Biology, University of Leeds, St. James's University Hospital , Leeds, United Kingdom
| | - Xuebin Yang
- 3 Biomaterials and Tissue Engineering Group, Department of Oral Biology, University of Leeds, St. James's University Hospital , Leeds, United Kingdom
| | - Chris Denning
- 1 Division of Cancer and Stem Cells, School of Medicine, Wolfson Centre for Stem Cells, Tissue Engineering & Modelling, University of Nottingham , Nottingham, United Kingdom
| |
Collapse
|
44
|
Mount S, Davis DR. Electrical effects of stem cell transplantation for ischaemic cardiomyopathy: friend or foe? J Physiol 2016; 594:2511-24. [PMID: 26584682 DOI: 10.1113/jp270540] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/18/2015] [Indexed: 01/07/2023] Open
Abstract
Despite advances in other realms of cardiac care, the mortality attributable to ischaemic cardiomyopathy has only marginally decreased over the last 10 years. These findings highlight the growing realization that current pharmacological and device therapies rarely reverse disease progression and rationalize a focus on novel means to reverse, repair and re-vascularize damaged hearts. As such, multiple candidate cell types have been used to regenerate damaged hearts either directly (through differentiation to form new tissue) or indirectly (via paracrine effects). Emerging literature suggests that robust engraftment of electrophysiolgically heterogeneous tissue from transplanted cells comes at the cost of a high incidence of ventricular arrhythmias. Similar electrophysiological studies of haematological stem cells raised early concerns that transplant of depolarized, inexcitable cells that also induce paracrine-mediated electrophysiological remodelling may be pro-arrhythmic. However, meta-analyses suggest that patients receiving haematological stem cells paradoxically may experience a decrease in ventricular arrhythmias, an observation potentially related to the extremely poor long-term survival of injected cells. Finally, early clinical and preclinical data from technologies capable of differentiating to a mature cardiomyocyte phenotype (such as cardiac-derived stem cells) suggests that these cells are not pro-arrhythmic although they too lack robust long-term engraftment. These results highlight the growing understanding that as next generation cell therapies are developed, emphasis should also be placed on understanding possible anti-arrhythmic contributions of transplanted cells while vigilance is needed to predict and treat the inadvertent effects of regenerative cell therapies on the electrophysiological stability of the ischaemic cardiomyopathic heart.
Collapse
Affiliation(s)
- Seth Mount
- University of Ottawa Heart Institute, Ottawa, Canada, K1Y 4W7
| | - Darryl R Davis
- University of Ottawa Heart Institute, Ottawa, Canada, K1Y 4W7
| |
Collapse
|
45
|
Autonomous beating rate adaptation in human stem cell-derived cardiomyocytes. Nat Commun 2016; 7:10312. [PMID: 26785135 PMCID: PMC4735644 DOI: 10.1038/ncomms10312] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 11/27/2015] [Indexed: 02/06/2023] Open
Abstract
The therapeutic success of human stem cell-derived cardiomyocytes critically depends on their ability to respond to and integrate with the surrounding electromechanical environment. Currently, the immaturity of human cardiomyocytes derived from stem cells limits their utility for regenerative medicine and biological research. We hypothesize that biomimetic electrical signals regulate the intrinsic beating properties of cardiomyocytes. Here we show that electrical conditioning of human stem cell-derived cardiomyocytes in three-dimensional culture promotes cardiomyocyte maturation, alters their automaticity and enhances connexin expression. Cardiomyocytes adapt their autonomous beating rate to the frequency at which they were stimulated, an effect mediated by the emergence of a rapidly depolarizing cell population, and the expression of hERG. This rate-adaptive behaviour is long lasting and transferable to the surrounding cardiomyocytes. Thus, electrical conditioning may be used to promote cardiomyocyte maturation and establish their automaticity, with implications for cell-based reduction of arrhythmia during heart regeneration.
Collapse
|
46
|
Hartman ME, Dai DF, Laflamme MA. Human pluripotent stem cells: Prospects and challenges as a source of cardiomyocytes for in vitro modeling and cell-based cardiac repair. Adv Drug Deliv Rev 2016; 96:3-17. [PMID: 25980938 DOI: 10.1016/j.addr.2015.05.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 04/27/2015] [Accepted: 05/07/2015] [Indexed: 12/13/2022]
Abstract
Human pluripotent stem cells (PSCs) represent an attractive source of cardiomyocytes with potential applications including disease modeling, drug discovery and safety screening, and novel cell-based cardiac therapies. Insights from embryology have contributed to the development of efficient, reliable methods capable of generating large quantities of human PSC-cardiomyocytes with cardiac purities ranging up to 90%. However, for human PSCs to meet their full potential, the field must identify methods to generate cardiomyocyte populations that are uniform in subtype (e.g. homogeneous ventricular cardiomyocytes) and have more mature structural and functional properties. For in vivo applications, cardiomyocyte production must be highly scalable and clinical grade, and we will need to overcome challenges including graft cell death, immune rejection, arrhythmogenesis, and tumorigenic potential. Here we discuss the types of human PSCs, commonly used methods to guide their differentiation into cardiomyocytes, the phenotype of the resultant cardiomyocytes, and the remaining obstacles to their successful translation.
Collapse
|
47
|
Liu J, Laksman Z, Backx PH. The electrophysiological development of cardiomyocytes. Adv Drug Deliv Rev 2016; 96:253-73. [PMID: 26788696 DOI: 10.1016/j.addr.2015.12.023] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 12/23/2015] [Accepted: 12/31/2015] [Indexed: 02/07/2023]
Abstract
The generation of human cardiomyocytes (CMs) from human pluripotent stem cells (hPSCs) has become an important resource for modeling human cardiac disease and for drug screening, and also holds significant potential for cardiac regeneration. Many challenges remain to be overcome however, before innovation in this field can translate into a change in the morbidity and mortality associated with heart disease. Of particular importance for the future application of this technology is an improved understanding of the electrophysiologic characteristics of CMs, so that better protocols can be developed and optimized for generating hPSC-CMs. Many different cell culture protocols are currently utilized to generate CMs from hPSCs and all appear to yield relatively “developmentally” immature CMs with highly heterogeneous electrical properties. These hPSC-CMs are characterized by spontaneous beating at highly variable rates with a broad range of depolarization-repolarization patterns, suggestive of mixed populations containing atrial, ventricular and nodal cells. Many recent studies have attempted to introduce approaches to promote maturation and to create cells with specific functional properties. In this review, we summarize the studies in which the electrical properties of CMs derived from stem cells have been examined. In order to place this information in a useful context, we also review the electrical properties of CMs as they transition from the developing embryo to the adult human heart. The signal pathways involved in the regulation of ion channel expression during development are also briefly considered.
Collapse
|
48
|
Tzatzalos E, Abilez OJ, Shukla P, Wu JC. Engineered heart tissues and induced pluripotent stem cells: Macro- and microstructures for disease modeling, drug screening, and translational studies. Adv Drug Deliv Rev 2016; 96:234-244. [PMID: 26428619 DOI: 10.1016/j.addr.2015.09.010] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 09/16/2015] [Accepted: 09/23/2015] [Indexed: 01/01/2023]
Abstract
Engineered heart tissue has emerged as a personalized platform for drug screening. With the advent of induced pluripotent stem cell (iPSC) technology, patient-specific stem cells can be developed and expanded into an indefinite source of cells. Subsequent developments in cardiovascular biology have led to efficient differentiation of cardiomyocytes, the force-producing cells of the heart. iPSC-derived cardiomyocytes (iPSC-CMs) have provided potentially limitless quantities of well-characterized, healthy, and disease-specific CMs, which in turn has enabled and driven the generation and scale-up of human physiological and disease-relevant engineered heart tissues. The combined technologies of engineered heart tissue and iPSC-CMs are being used to study diseases and to test drugs, and in the process, have advanced the field of cardiovascular tissue engineering into the field of precision medicine. In this review, we will discuss current developments in engineered heart tissue, including iPSC-CMs as a novel cell source. We examine new research directions that have improved the function of engineered heart tissue by using mechanical or electrical conditioning or the incorporation of non-cardiomyocyte stromal cells. Finally, we discuss how engineered heart tissue can evolve into a powerful tool for therapeutic drug testing.
Collapse
Affiliation(s)
- Evangeline Tzatzalos
- Stanford Cardiovascular Institute
- Institute for Stem Cell Biology and Regenerative Medicine
| | - Oscar J Abilez
- Stanford Cardiovascular Institute
- Institute for Stem Cell Biology and Regenerative Medicine
- Bio-X Program
- Department of Medicine, Division of Cardiovascular Medicine
| | - Praveen Shukla
- Stanford Cardiovascular Institute
- Institute for Stem Cell Biology and Regenerative Medicine
| | - Joseph C Wu
- Stanford Cardiovascular Institute
- Institute for Stem Cell Biology and Regenerative Medicine
- Bio-X Program
- Department of Medicine, Division of Cardiovascular Medicine
| |
Collapse
|
49
|
Youm JB. Electrophysiological properties and calcium handling of embryonic stem cell-derived cardiomyocytes. Integr Med Res 2016; 5:3-10. [PMID: 28462091 PMCID: PMC5381424 DOI: 10.1016/j.imr.2015.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 12/28/2015] [Accepted: 12/30/2015] [Indexed: 01/31/2023] Open
Abstract
Embryonic stem cell-derived cardiomyocytes (ESC-CMs) hold great interest in many fields of research including clinical applications such as stem cell and gene therapy for cardiac repair or regeneration. ESC-CMs are also used as a platform tool for pharmacological tests or for investigations of cardiac remodeling. ESC-CMs have many different aspects of morphology, electrophysiology, calcium handling, and bioenergetics compared with adult cardiomyocytes. They are immature in morphology, similar to sinus nodal-like in the electrophysiology, higher contribution of trans-sarcolemmal Ca2+ influx to Ca2+ handling, and higher dependence on anaerobic glycolysis. Here, I review a detailed electrophysiology and Ca2+ handling features of ESC-CMs during differentiation into adult cardiomyocytes to gain insights into how all the developmental changes are related to each other to display cardinal features of developing cardiomyocytes.
Collapse
Affiliation(s)
- Jae Boum Youm
- National Research Laboratory for Mitochondrial Signaling Laboratory, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Korea
| |
Collapse
|
50
|
The Interaction between Adult Cardiac Fibroblasts and Embryonic Stem Cell-Derived Cardiomyocytes Leads to Proarrhythmic Changes in In Vitro Cocultures. Stem Cells Int 2016; 2016:2936126. [PMID: 26880949 PMCID: PMC4736407 DOI: 10.1155/2016/2936126] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 11/16/2015] [Accepted: 12/14/2015] [Indexed: 01/14/2023] Open
Abstract
Transplantation of stem cell-derived cardiomyocytes is one of the most promising therapeutic approaches after myocardial infarction, as loss of cardiomyocytes is virtually irreversible by endogenous repair mechanisms. In myocardial scars, transplanted cardiomyocytes will be in immediate contact with cardiac fibroblasts. While it is well documented how the electrophysiology of neonatal cardiomyocytes is modulated by cardiac fibroblasts of the same developmental stage, it is unknown how adult cardiac fibroblasts (aCFs) affect the function of embryonic stem cell-derived cardiomyocytes (ESC-CMs). To investigate the effects of aCFs on ESC-CM electrophysiology, we performed extra- and intracellular recordings of murine aCF-ESC-CM cocultures. We observed that spontaneous beating behaviour was highly irregular in aCF-ESC-CM cocultures compared to cocultures with mesenchymal stem cells (coefficient of variation of the interspike interval: 40.5 ± 15.2% versus 9.3 ± 2.0%, p = 0.008) and that action potential amplitude and maximal upstroke velocity (V max) were reduced (amplitude: 52.3 ± 1.7 mV versus 65.1 ± 1.5 mV, V max: 7.0 ± 1.0 V/s versus 36.5 ± 5.3 V/s), while action potential duration (APD) was prolonged (APD50: 25.6 ± 1.0 ms versus 16.8 ± 1.9 ms, p < 0.001; APD90: 52.2 ± 1.5 ms versus 43.3 ± 3.3 ms, p < 0.01) compared to controls. Similar changes could be induced by aCF-conditioned medium. We conclude that the presence of aCFs changes automaticity and induces potentially proarrhythmic changes of ESC-CM electrophysiology.
Collapse
|