1
|
Soon HR, Gaunt JR, Bansal VA, Lenherr C, Sze SK, Ch’ng TH. Seizure enhances SUMOylation and zinc-finger transcriptional repression in neuronal nuclei. iScience 2023; 26:107707. [PMID: 37694138 PMCID: PMC10483055 DOI: 10.1016/j.isci.2023.107707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/29/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023] Open
Abstract
A single episode of pilocarpine-induced status epilepticus can trigger the development of spontaneous recurrent seizures in a rodent model for epilepsy. The initial seizure-induced events in neuronal nuclei that lead to long-term changes in gene expression and cellular responses likely contribute toward epileptogenesis. Using a transgenic mouse model to specifically isolate excitatory neuronal nuclei, we profiled the seizure-induced nuclear proteome via tandem mass tag mass spectrometry and observed robust enrichment of nuclear proteins associated with the SUMOylation pathway. In parallel with nuclear proteome, we characterized nuclear gene expression by RNA sequencing which provided insights into seizure-driven transcriptional regulation and dynamics. Strikingly, we saw widespread downregulation of zinc-finger transcription factors, specifically proteins that harbor Krüppel-associated box (KRAB) domains. Our results provide a detailed snapshot of nuclear events induced by seizure activity and demonstrate a robust method for cell-type-specific nuclear profiling that can be applied to other cell types and models.
Collapse
Affiliation(s)
- Hui Rong Soon
- School of Biological Science, Nanyang Technological University, Singapore 636551, Singapore
| | - Jessica Ruth Gaunt
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Vibhavari Aysha Bansal
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Clara Lenherr
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- Centre for Discovery Brain Science, The University of Edinburgh, Edinburgh, UK
| | - Siu Kwan Sze
- Faculty of Applied Health Sciences, Brock University, St. Catherines, ON, Canada
| | - Toh Hean Ch’ng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- School of Biological Science, Nanyang Technological University, Singapore 636551, Singapore
| |
Collapse
|
2
|
Hong DK, Kho AR, Lee SH, Kang BS, Park MK, Choi BY, Suh SW. Pathophysiological Roles of Transient Receptor Potential (Trp) Channels and Zinc Toxicity in Brain Disease. Int J Mol Sci 2023; 24:ijms24076665. [PMID: 37047637 PMCID: PMC10094935 DOI: 10.3390/ijms24076665] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/05/2023] Open
Abstract
Maintaining the correct ionic gradient from extracellular to intracellular space via several membrane-bound transporters is critical for maintaining overall cellular homeostasis. One of these transporters is the transient receptor potential (TRP) channel family that consists of six putative transmembrane segments systemically expressed in mammalian tissues. Upon the activation of TRP channels by brain disease, several cations are translocated through TRP channels. Brain disease, especially ischemic stroke, epilepsy, and traumatic brain injury, triggers the dysregulation of ionic gradients and promotes the excessive release of neuro-transmitters and zinc. The divalent metal cation zinc is highly distributed in the brain and is specifically located in the pre-synaptic vesicles as free ions, usually existing in cytoplasm bound with metallothionein. Although adequate zinc is essential for regulating diverse physiological functions, the brain-disease-induced excessive release and translocation of zinc causes cell damage, including oxidative stress, apoptotic cascades, and disturbances in energy metabolism. Therefore, the regulation of zinc homeostasis following brain disease is critical for the prevention of brain damage. In this review, we summarize recent experimental research findings regarding how TRP channels (mainly TRPC and TRPM) and zinc are regulated in animal brain-disease models of global cerebral ischemia, epilepsy, and traumatic brain injury. The blockade of zinc translocation via the inhibition of TRPC and TRPM channels using known channel antagonists, was shown to be neuroprotective in brain disease. The regulation of both zinc and TRP channels may serve as targets for treating and preventing neuronal death.
Collapse
Affiliation(s)
- Dae Ki Hong
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - A Ra Kho
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, College of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Song Hee Lee
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Beom Seok Kang
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Min Kyu Park
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Bo Young Choi
- Department of Physical Education, Hallym University, Chuncheon 24252, Republic of Korea
- Institute of Sport Science, Hallym University, Chuncheon 24252, Republic of Korea
| | - Sang Won Suh
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| |
Collapse
|
3
|
Abstract
Amyloids are organized suprastructural polypeptide arrangements. The prevalence of amyloid-related processes of pathophysiological relevance has been linked to aging-related degenerative diseases. Besides the role of genetic polymorphisms on the relative risk of amyloid diseases, the contributions of nongenetic ontogenic cluster of factors remain elusive. In recent decades, mounting evidences have been suggesting the role of essential micronutrients, in particular transition metals, in the regulation of amyloidogenic processes, both directly (such as binding to amyloid proteins) or indirectly (such as regulating regulatory partners, processing enzymes, and membrane transporters). The features of transition metals as regulatory cofactors of amyloid proteins and the consequences of metal dyshomeostasis in triggering amyloidogenic processes, as well as the evidences showing amelioration of symptoms by dietary supplementation, suggest an exaptative role of metals in regulating amyloid pathways. The self- and cross-talk replicative nature of these amyloid processes along with their systemic distribution support the concept of their metastatic nature. The role of amyloidosis as nutrient sensors would act as intra- and transgenerational epigenetic metabolic programming factors determining health span and life span, viability, which could participate as an evolutive selective pressure.
Collapse
Affiliation(s)
- Luís Maurício T R Lima
- Laboratory for Pharmaceutical Biotechnology - pbiotech, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory for Macromolecules (LAMAC-DIMAV), National Institute of Metrology, Quality and Technology - INMETRO, Duque de Caxias, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tháyna Sisnande
- Laboratory for Pharmaceutical Biotechnology - pbiotech, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Li LR, Sethi G, Zhang X, Liu CL, Huang Y, Liu Q, Ren BX, Tang FR. The neuroprotective effects of icariin on ageing, various neurological, neuropsychiatric disorders, and brain injury induced by radiation exposure. Aging (Albany NY) 2022; 14:1562-1588. [PMID: 35165207 PMCID: PMC8876913 DOI: 10.18632/aging.203893] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/08/2022] [Indexed: 11/25/2022]
Abstract
Epimedium brevicornum Maxim, a Traditional Chinese Medicine, has been used for the treatment of impotence, sinew and bone disorders, “painful impediment caused by wind-dampness,” numbness, spasms, hypertension, coronary heart disease, menopausal syndrome, bronchitis, and neurasthenia for many years in China. Recent animal experimental studies indicate that icariin, a major bioactive component of epimedium may effectively treat Alzheimer’s disease, cerebral ischemia, depression, Parkinson’s disease, multiple sclerosis, as well as delay ageing. Our recent study also suggested that epimedium extract could exhibit radio-neuro-protective effects and prevent ionizing radiation-induced impairment of neurogenesis. This paper reviewed the pharmacodynamics of icariin in treating different neurodegenerative and neuropsychiatric diseases, ageing, and radiation-induced brain damage. The relevant molecular mechanisms and its anti-neuroinflammatory, anti-apoptotic, anti-oxidant, as well as pro-neurogenesis roles were also discussed.
Collapse
Affiliation(s)
- Ling Rui Li
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei, China
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Xing Zhang
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei, China
| | - Cui Liu Liu
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei, China
| | - Yan Huang
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei, China
| | - Qun Liu
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei, China
| | - Bo Xu Ren
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei, China
| | - Feng Ru Tang
- Radiation Physiology Lab, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore 138602, Singapore
| |
Collapse
|
5
|
Daliry A, Pereira ENGDS. Role of Maternal Microbiota and Nutrition in Early-Life Neurodevelopmental Disorders. Nutrients 2021; 13:3533. [PMID: 34684534 PMCID: PMC8540774 DOI: 10.3390/nu13103533] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/14/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023] Open
Abstract
The rise in the prevalence of obesity and other related metabolic diseases has been paralleled by an increase in the frequency of neurodevelopmental problems, which has raised the likelihood of a link between these two phenomena. In this scenario, maternal microbiota is a possible linking mechanistic pathway. According to the "Developmental Origins of Health and Disease" paradigm, environmental exposures (in utero and early life) can permanently alter the body's structure, physiology, and metabolism, increasing illness risk and/or speeding up disease progression in offspring, adults, and even generations. Nutritional exposure during early developmental stages may induce susceptibility to the later development of human diseases via interactions in the microbiome, including alterations in brain function and behavior of offspring, as explained by the gut-brain axis theory. This review provides an overview of the implications of maternal nutrition on neurodevelopmental disorders and the establishment and maturation of gut microbiota in the offspring.
Collapse
Affiliation(s)
- Anissa Daliry
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil;
| | | |
Collapse
|
6
|
Zheng M, Chen M, Wang W, Zhou M, Liu C, Fan Y, Shi D. Protection by rhynchophylline against MPTP/MPP +-induced neurotoxicity via regulating PI3K/Akt pathway. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113568. [PMID: 33188898 DOI: 10.1016/j.jep.2020.113568] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Isolated from Uncaria rhynchophylla (U. rhynchophylla), rhynchophylline (Rhy) has been applied for treating diseases related to central nervous system such as Parkinson's disease. Nevertheless, the molecular mechanism of the neuroprotective effect has not been well interpreted. AIM OF THE STUDY To investigate the effects of Rhy on MPTP/MPP + -induced neurotoxicity in C57BL/6 mice or PC12 cells and study the mechanisms involved. MATERIALS AND METHODS The neuroprotective effect of Rhy on MPTP-induced neurotoxicity was evaluated by spontaneous motor activity test, as well as a test of rota-rod on a rat model of Parkinson's disease. The numbers of TH-positive neurons in the substantia nigra pars compacta (SNpc) was assessed by immunohistological. CCK-8, lactate dehydrogenase (LDH), reactive oxygen species (ROS), the concentration of intracellular calcium ([Ca2+]i) and flow cytometry analysis were performed to evaluate the pharmacological property of Rhy on 1-methyl-4-phenylpyridinium (MPP+) induced neurotoxicity in PC12 cells. Besides, LY294002, a PI3K inhibitor was employed to determine the underlying molecular signaling pathway revealing the effect of Rhy by western-blot analysis. RESULTS The results showed that Rhy exhibited a protective effect against the MPTP-induced decrease in tyrosine hydroxylase (TH)-positive fibers in the substantia nigra at 30 mg/kg, demonstrated by the immunohistological and behavioral outcomes. Furthermore, it has been indicated that cell viability was improved and the MPP+-induced apoptosis was inhibited after the treatment of Rhy at 20 μM, which were severally analyzed by the CCK-8 and the Annexin V/propidium iodide staining method. In addition, Rhy treatment attenuated MPP+-induced up-regulation of LDH, ([Ca2+]i), and the levels of ROS. Besides, it can be revealed from the Western blot assay that LY294002, as a selective Phosphatidylinositol 3-Kinase (PI3K) inhibitor, effectively inhibited the Akt phosphorylation caused by Rhy, which suggested that Rhy showed its protective property through the activated the PI3K/Akt signaling pathway. Moreover, the Rhy-induced decreases of Bax and caspase-3 as the proapoptotic markers and the increase of Bcl-2 as the antiapoptotic marker, were blocked by LY294002 in the MPP+-treated PC12 cells. CONCLUSIONS Rhy exerts a neuroprotective effect is partly mediated by activating the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Meizhu Zheng
- The Central Laboratory, Changchun Normal University, Changchun, Jilin, PR China.
| | - Minghui Chen
- College of Life Science, Changchun Normal University, Changchun, Jilin, PR China.
| | - Wenli Wang
- College of Life Science, Changchun Normal University, Changchun, Jilin, PR China.
| | - Mi Zhou
- College of Life Science, Changchun Normal University, Changchun, Jilin, PR China.
| | - Chunming Liu
- The Central Laboratory, Changchun Normal University, Changchun, Jilin, PR China.
| | - Yajun Fan
- College of Life Science, Changchun Normal University, Changchun, Jilin, PR China.
| | - Dongfang Shi
- The Central Laboratory, Changchun Normal University, Changchun, Jilin, PR China.
| |
Collapse
|
7
|
Insights into Potential Targets for Therapeutic Intervention in Epilepsy. Int J Mol Sci 2020; 21:ijms21228573. [PMID: 33202963 PMCID: PMC7697405 DOI: 10.3390/ijms21228573] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
Epilepsy is a chronic brain disease that affects approximately 65 million people worldwide. However, despite the continuous development of antiepileptic drugs, over 30% patients with epilepsy progress to drug-resistant epilepsy. For this reason, it is a high priority objective in preclinical research to find novel therapeutic targets and to develop effective drugs that prevent or reverse the molecular mechanisms underlying epilepsy progression. Among these potential therapeutic targets, we highlight currently available information involving signaling pathways (Wnt/β-catenin, Mammalian Target of Rapamycin (mTOR) signaling and zinc signaling), enzymes (carbonic anhydrase), proteins (erythropoietin, copine 6 and complement system), channels (Transient Receptor Potential Vanilloid Type 1 (TRPV1) channel) and receptors (galanin and melatonin receptors). All of them have demonstrated a certain degree of efficacy not only in controlling seizures but also in displaying neuroprotective activity and in modifying the progression of epilepsy. Although some research with these specific targets has been done in relation with epilepsy, they have not been fully explored as potential therapeutic targets that could help address the unsolved issue of drug-resistant epilepsy and develop new antiseizure therapies for the treatment of epilepsy.
Collapse
|
8
|
Jeong JH, Lee SH, Kho AR, Hong DK, Kang DH, Kang BS, Park MK, Choi BY, Choi HC, Lim MS, Suh SW. The Transient Receptor Potential Melastatin 7 (TRPM7) Inhibitors Suppress Seizure-Induced Neuron Death by Inhibiting Zinc Neurotoxicity. Int J Mol Sci 2020; 21:ijms21217897. [PMID: 33114331 PMCID: PMC7663745 DOI: 10.3390/ijms21217897] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/25/2022] Open
Abstract
Transient receptor potential melastatin 7 (TRPM7) is an ion channel that mediates monovalent cations out of cells, as well as the entry of divalent cations, such as zinc, magnesium, and calcium, into the cell. It has been reported that inhibitors of TRPM7 are neuroprotective in various neurological diseases. Previous studies in our lab suggested that seizure-induced neuronal death may be caused by the excessive release of vesicular zinc and the subsequent accumulation of zinc in the neurons. However, no studies have evaluated the effects of carvacrol and 2-aminoethoxydiphenyl borate (2-APB), both inhibitors of TRPM7, on the accumulation of intracellular zinc in dying neurons following seizure. Here, we investigated the therapeutic efficacy of carvacrol and 2-APB against pilocarpine-induced seizure. Carvacrol (50 mg/kg) was injected once per day for 3 or 7 days after seizure. 2-APB (2 mg/kg) was also injected once per day for 3 days after seizure. We found that inhibitors of TRPM7 reduced seizure-induced TRPM7 overexpression, intracellular zinc accumulation, and reactive oxygen species production. Moreover, there was a suppression of oxidative stress, glial activation, and the blood–brain barrier breakdown. In addition, inhibitors of TRPM7 remarkably decreased apoptotic neuron death following seizure. Taken together, the present study demonstrates that TRPM7-mediated zinc translocation is involved in neuron death after seizure. The present study suggests that inhibitors of TRPM7 may have high therapeutic potential to reduce seizure-induced neuron death.
Collapse
Affiliation(s)
- Jeong Hyun Jeong
- Department of Physiology, Hallym University, College of Medicine, Chuncheon 24252, Korea; (J.H.J.); (S.H.L.); (A.R.K.); (D.K.H.); (D.H.K.); (B.S.K.); (M.K.P.)
| | - Song Hee Lee
- Department of Physiology, Hallym University, College of Medicine, Chuncheon 24252, Korea; (J.H.J.); (S.H.L.); (A.R.K.); (D.K.H.); (D.H.K.); (B.S.K.); (M.K.P.)
| | - A Ra Kho
- Department of Physiology, Hallym University, College of Medicine, Chuncheon 24252, Korea; (J.H.J.); (S.H.L.); (A.R.K.); (D.K.H.); (D.H.K.); (B.S.K.); (M.K.P.)
| | - Dae Ki Hong
- Department of Physiology, Hallym University, College of Medicine, Chuncheon 24252, Korea; (J.H.J.); (S.H.L.); (A.R.K.); (D.K.H.); (D.H.K.); (B.S.K.); (M.K.P.)
| | - Dong Hyeon Kang
- Department of Physiology, Hallym University, College of Medicine, Chuncheon 24252, Korea; (J.H.J.); (S.H.L.); (A.R.K.); (D.K.H.); (D.H.K.); (B.S.K.); (M.K.P.)
| | - Beom Seok Kang
- Department of Physiology, Hallym University, College of Medicine, Chuncheon 24252, Korea; (J.H.J.); (S.H.L.); (A.R.K.); (D.K.H.); (D.H.K.); (B.S.K.); (M.K.P.)
| | - Min Kyu Park
- Department of Physiology, Hallym University, College of Medicine, Chuncheon 24252, Korea; (J.H.J.); (S.H.L.); (A.R.K.); (D.K.H.); (D.H.K.); (B.S.K.); (M.K.P.)
| | - Bo Young Choi
- Department of Physiology, Hallym University, College of Medicine, Chuncheon 24252, Korea; (J.H.J.); (S.H.L.); (A.R.K.); (D.K.H.); (D.H.K.); (B.S.K.); (M.K.P.)
- Correspondence: (B.Y.C.); (H.C.C.); (M.-S.L.); (S.W.S.); Tel.: +82-10-8573-6364 (S.W.S.)
| | - Hui Chul Choi
- Department of Neurology, Hallym University, College of Medicine, Chuncheon 24252, Korea
- Correspondence: (B.Y.C.); (H.C.C.); (M.-S.L.); (S.W.S.); Tel.: +82-10-8573-6364 (S.W.S.)
| | - Man-Sup Lim
- Department of Medical Education, Hallym University, College of Medicine, Chuncheon 24252, Korea
- Correspondence: (B.Y.C.); (H.C.C.); (M.-S.L.); (S.W.S.); Tel.: +82-10-8573-6364 (S.W.S.)
| | - Sang Won Suh
- Department of Physiology, Hallym University, College of Medicine, Chuncheon 24252, Korea; (J.H.J.); (S.H.L.); (A.R.K.); (D.K.H.); (D.H.K.); (B.S.K.); (M.K.P.)
- Correspondence: (B.Y.C.); (H.C.C.); (M.-S.L.); (S.W.S.); Tel.: +82-10-8573-6364 (S.W.S.)
| |
Collapse
|
9
|
Chen WF, Wu L, Du ZR, Chen L, Xu AL, Chen XH, Teng JJ, Wong MS. Neuroprotective properties of icariin in MPTP-induced mouse model of Parkinson's disease: Involvement of PI3K/Akt and MEK/ERK signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 25:93-99. [PMID: 28190476 DOI: 10.1016/j.phymed.2016.12.017] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/15/2016] [Accepted: 12/28/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Epimedium sagittatum is a traditional Chinese herb normally which is used to treat the osteoporosis, cardiovascular dysfunction, and to improve neurological and sexual function in China, Korea and Japan. Icariin is the major active ingredient in Epimedium sagittatum. In the present research, we examined the neuroprotective effects of icariin on dopaminergic neurons and the possible mechanisms in a mouse model of Parkinson's disease (PD). METHODS Ovariectomized PD mice were treated with vehicle or icariin (3 days before MPTP injections) with or without the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 or mitogen-activated protein kinase kinase (MEK) inhibitor PD98059. The dopamine (DA) content in the striatum was studied by HPLC. Western blot was used to determine the protein expressions of Bcl-2, Bax and Caspase 3 in the striatum. The numbers of tyrosine hydroxylase-immunoreactive (TH-IR) neurons in the substantial nigra pars compacta (SNpc) were assessed by immunohistochemistry. The activation of Akt and ERK by icariin were detected in doparminergic MES23.5 cells. RESULTS Icariin pretreatment could ameliorate the decreased striatum DA content and the loss of TH-IR neurons in the SNpc induced by MPTP. The MPTP-induced changes of Bcl-2, Bax and caspase 3 protein expressions in the striatum could be reversed by icariin pretreatment. Blockade of PI3K/Akt or MEK/ERK signaling pathway by LY294002 or PD98059 could attenuate the increase of DA content in the striatum and TH-IR in the SNpc induced by icariin in PD mice model. Additionally, icariin treatment alone significantly induced the phosphorylation of Akt and ERK in a time dependent pattern in dopaminergic MES 23.5 cells. These effects were abolished by co-treatment with LY294002 or PD98059. CONCLUSION These data demonstrated that icariin has neuroprotective effect on dopaminergic neurons in PD mice model and the potential mechanisms might be related to PI3K/Akt and MEK/ERK pathways.
Collapse
Affiliation(s)
- Wen-Fang Chen
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Medical College of Qingdao University, Qingdao 266071, China..
| | - Lin Wu
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Medical College of Qingdao University, Qingdao 266071, China.; Department of Physiology, Heze Medical College, Heze 274000, China
| | - Zhong-Rui Du
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Medical College of Qingdao University, Qingdao 266071, China
| | - Lei Chen
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Medical College of Qingdao University, Qingdao 266071, China
| | - Ai-Li Xu
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Medical College of Qingdao University, Qingdao 266071, China.; Department of Physiology, Binzhou Medical University, Yantai 264003, China
| | - Xiao-Han Chen
- Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Medical College of Qingdao University, Qingdao 266071, China
| | - Ji-Jun Teng
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao 266071, China
| | - Man-Sau Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, SAR, PR China
| |
Collapse
|
10
|
Takeda A, Tamano H. Innervation from the entorhinal cortex to the dentate gyrus and the vulnerability to Zn 2. J Trace Elem Med Biol 2016; 38:19-23. [PMID: 27267970 DOI: 10.1016/j.jtemb.2016.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/20/2016] [Accepted: 05/23/2016] [Indexed: 11/30/2022]
Abstract
Hippocampal Zn2+ homeostasis is critical for cognitive activity and hippocampus-dependent memory. Extracellular Zn2+ signaling is linked to extracellular glutamate signaling and leads to intracellular Zn2+ signaling, which is involved in cognitive activity. On the other hand, excess intracellular Zn2+ signaling that is induced by excess glutamate signaling is involved in cognitive decline. In the hippocampal formation, the dentate gyrus is the most vulnerable to aging and is thought to contribute to age-related cognitive decline. The layer II of the entorhinal cortex is the most vulnerable to neuronal death in Alzheimer's disease. The perforant pathway provides input from the layer II to the dentate gyrus and is one of the earliest affected pathways in Alzheimer's disease. Medial perforant pathway-dentate granule cell synapses are vulnerable to either excess intracellular Zn2+ or β-amyloid (Aβ)-bound zinc, which induce transient cognitive decline via attenuation of medial perforant pathway LTP. However, it is unknown whether the vulnerability to excess intracellular Zn2+ is involved in region-specific vulnerability to aging and Alzheimer's disease. To discover a strategy to prevent short-term cognitive decline in normal aging process and the pre-dementia stage of Alzheimer's disease, the present paper deals with vulnerability of medial perforant pathway-dentate granule cell synapses to intracellular Zn2+ dyshomeostasis and its possible involvement in differential vulnerability to aging and Alzheimer's disease in the hippocampal formation.
Collapse
Affiliation(s)
- Atsushi Takeda
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Hanuna Tamano
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
11
|
Takeda A, Tamano H. Insight into cognitive decline from Zn 2+ dynamics through extracellular signaling of glutamate and glucocorticoids. Arch Biochem Biophys 2016; 611:93-99. [DOI: 10.1016/j.abb.2016.06.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/23/2016] [Accepted: 06/30/2016] [Indexed: 02/06/2023]
|
12
|
Wormuth C, Lundt A, Henseler C, Müller R, Broich K, Papazoglou A, Weiergräber M. Review: Ca v2.3 R-type Voltage-Gated Ca 2+ Channels - Functional Implications in Convulsive and Non-convulsive Seizure Activity. Open Neurol J 2016; 10:99-126. [PMID: 27843503 PMCID: PMC5080872 DOI: 10.2174/1874205x01610010099] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/16/2016] [Accepted: 06/24/2016] [Indexed: 11/22/2022] Open
Abstract
Background: Researchers have gained substantial insight into mechanisms of synaptic transmission, hyperexcitability, excitotoxicity and neurodegeneration within the last decades. Voltage-gated Ca2+ channels are of central relevance in these processes. In particular, they are key elements in the etiopathogenesis of numerous seizure types and epilepsies. Earlier studies predominantly targeted on Cav2.1 P/Q-type and Cav3.2 T-type Ca2+ channels relevant for absence epileptogenesis. Recent findings bring other channels entities more into focus such as the Cav2.3 R-type Ca2+ channel which exhibits an intriguing role in ictogenesis and seizure propagation. Cav2.3 R-type voltage gated Ca2+ channels (VGCC) emerged to be important factors in the pathogenesis of absence epilepsy, human juvenile myoclonic epilepsy (JME), and cellular epileptiform activity, e.g. in CA1 neurons. They also serve as potential target for various antiepileptic drugs, such as lamotrigine and topiramate. Objective: This review provides a summary of structure, function and pharmacology of VGCCs and their fundamental role in cellular Ca2+ homeostasis. We elaborate the unique modulatory properties of Cav2.3 R-type Ca2+ channels and point to recent findings in the proictogenic and proneuroapoptotic role of Cav2.3 R-type VGCCs in generalized convulsive tonic–clonic and complex-partial hippocampal seizures and its role in non-convulsive absence like seizure activity. Conclusion: Development of novel Cav2.3 specific modulators can be effective in the pharmacological treatment of epilepsies and other neurological disorders.
Collapse
Affiliation(s)
- Carola Wormuth
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany
| | - Andreas Lundt
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany
| | - Christina Henseler
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany
| | - Ralf Müller
- Department of Psychiatry and Psychotherapy, University of Cologne, Faculty of Medicine, Cologne, Germany
| | - Karl Broich
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany
| | - Anna Papazoglou
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany
| | - Marco Weiergräber
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany
| |
Collapse
|
13
|
Squadrone S, Brizio P, Mancini C, Pozzi E, Cavalieri S, Abete MC, Brusco A. Blood metal levels and related antioxidant enzyme activities in patients with ataxia telangiectasia. Neurobiol Dis 2015; 81:162-7. [PMID: 25882094 DOI: 10.1016/j.nbd.2015.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 04/04/2015] [Accepted: 04/07/2015] [Indexed: 10/23/2022] Open
Abstract
Transition metals are cofactors for a wide range of vital enzymes and are directly or indirectly involved in the response against reactive oxygen species (ROS), which can damage cellular components. Their altered homeostasis has been studied in neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS), but no data are available on rarer conditions. We aimed at studying the role of essential trace elements in ataxia telangiectasia (A-T), a rare form of pediatric autosomal recessive cerebellar ataxia with altered antioxidant response. We found an increased level of copper (Cu, p=0.0002) and a reduced level of zinc (Zn, p=0.0002) in the blood of patients (n. 16) compared to controls, using inductively coupled plasma mass spectrometry (ICP-MS). Other trace elements involved in the oxidative stress response, such as manganese (Mn) and selenium (Se), were unaltered. Cu/Zn-dependent superoxide dismutase (SOD1) was shown to have a 30% reduction in gene expression and 40% reduction in enzyme activity upon analysis of lymphoblastoid cell lines of patients (Student's t-test, p=0.0075). We also found a 30% reduction of Mn-SOD (SOD2; Student's t-test, p=0.02), probably due to a feedback regulatory loop between the two enzymes. The expression of antioxidant enzymes, such as erythrocyte glutathione peroxidase (GPX1), and SOD2 was unaltered, whereas catalase (CAT) was increased in A-T cells, both at the mRNA level and in terms of enzyme activity (~25%). Enhanced CAT expression can be attributed to the high ROS status, which induces CAT transcription. These results suggest that alterations in essential trace elements and their related enzymes may play a role in the pathogenesis of A-T, although we cannot conclude if altered homeostasis is a direct effect of A-T mutated genes (ATM). Altered homeostasis of trace elements may be more prevalent in neurodegenerative diseases than previously thought, and it may represent both a biomarker and a generic therapeutic target for different disorders with the common theme of altered antioxidant enzyme responses associated with an unbalance of metals.
Collapse
Affiliation(s)
- Stefania Squadrone
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, via Bologna 148, Torino 10154, Italy.
| | - Paola Brizio
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, via Bologna 148, Torino 10154, Italy
| | - Cecilia Mancini
- Department of Medical Sciences, University of Torino, Torino 10126, Italy
| | - Elisa Pozzi
- Department of Medical Sciences, University of Torino, Torino 10126, Italy
| | - Simona Cavalieri
- Department of Medical Sciences, University of Torino, Torino 10126, Italy; Città della Salute e della Scienza University Hospital, Medical Genetics Unit, Torino 10126, Italy
| | - Maria Cesarina Abete
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, via Bologna 148, Torino 10154, Italy
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, Torino 10126, Italy; Città della Salute e della Scienza University Hospital, Medical Genetics Unit, Torino 10126, Italy
| |
Collapse
|
14
|
Liao SL, Ou YC, Chang CY, Chen WY, Kuan YH, Wang WY, Pan HC, Chen CJ. Diethylmaleate and iodoacetate in combination caused profound cell death in astrocytes. J Neurochem 2013; 127:271-282. [PMID: 23647195 DOI: 10.1111/jnc.12291] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 04/30/2013] [Indexed: 10/26/2022]
Abstract
Energy failure and oxidative stress have been implicated in the pathogenesis of ischemia. Here, we report a potential link between cytosolic phospholipase A₂ (cPLA₂) activation and energy failure/oxidative stress-induced astrocyte damage involving reactive oxygen species (ROS), protein kinase C-α (PKC-α), Src, Raf, and extracellular signal-regulated kinase (ERK) signaling and concurrent elevation of endogenous chelatable zinc. Energy failure and oxidative stress were produced by treating astrocytes with glycolytic inhibitor iodoacetate and glutathione chelator diethylmaleate, respectively. Diethylmaleate and iodoacetate in combination caused augmented damage to astrocytes in a time- and concentration-dependent manner. The cell death caused by diethylmaleate/iodoacetate was accompanied by increased ROS generation, PKC-α membrane translocation, Src, Raf, ERK, and cPLA₂ phosphorylation. Pharmacological studies revealed that these activations all contributed to diethylmaleate/iodoacetate-induced astrocyte death. Intriguingly, the mobilization of endogenous chelatable zinc was observed in diethylmaleate/iodoacetate-treated astrocytes. Zinc appears to act as a downstream mediator in response to diethylmaleate/iodoacetate treatment because of the attenuating effects of its chelator N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine. These observations indicate that ROS/PKC-α, Src/Raf/ERK signaling and cPLA₂ are active participants in diethylmaleate/iodoacetate-induced astrocyte death and contribute to a vicious cycle between the depletion of ATP/glutathione and the mobilization of chelatable zinc as critical upstream effectors in initiating cytotoxic cascades.
Collapse
Affiliation(s)
- Su-Lan Liao
- Department of Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Szewczyk B. Zinc homeostasis and neurodegenerative disorders. Front Aging Neurosci 2013; 5:33. [PMID: 23882214 PMCID: PMC3715721 DOI: 10.3389/fnagi.2013.00033] [Citation(s) in RCA: 198] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 06/24/2013] [Indexed: 12/19/2022] Open
Abstract
Zinc is an essential trace element, whose importance to the function of the central nervous system (CNS) is increasingly being appreciated. Alterations in zinc dyshomeostasis has been suggested as a key factor in the development of several neuropsychiatric disorders. In the CNS, zinc occurs in two forms: the first being tightly bound to proteins and, secondly, the free, cytoplasmic, or extracellular form found in presynaptic vesicles. Under normal conditions, zinc released from the synaptic vesicles modulates both ionotropic and metabotropic post-synaptic receptors. While under clinical conditions such as traumatic brain injury, stroke or epilepsy, the excess influx of zinc into neurons has been found to result in neurotoxicity and damage to postsynaptic neurons. On the other hand, a growing body of evidence suggests that a deficiency, rather than an excess, of zinc leads to an increased risk for the development of neurological disorders. Indeed, zinc deficiency has been shown to affect neurogenesis and increase neuronal apoptosis, which can lead to learning and memory deficits. Altered zinc homeostasis is also suggested as a risk factor for depression, Alzheimer's disease (AD), aging, and other neurodegenerative disorders. Under normal CNS physiology, homeostatic controls are put in place to avoid the accumulation of excess zinc or its deficiency. This cellular zinc homeostasis results from the actions of a coordinated regulation effected by different proteins involved in the uptake, excretion and intracellular storage/trafficking of zinc. These proteins include membranous transporters (ZnT and Zip) and metallothioneins (MT) which control intracellular zinc levels. Interestingly, alterations in ZnT and MT have been recently reported in both aging and AD. This paper provides an overview of both clinical and experimental evidence that implicates a dysfunction in zinc homeostasis in the pathophysiology of depression, AD, and aging.
Collapse
Affiliation(s)
- Bernadeta Szewczyk
- Department of Neurobiology, Institute of Pharmacology Polish Academy of SciencesKrakow, Poland
| |
Collapse
|
16
|
Calamai E, Dall'Angelo S, Koss D, Domarkas J, McCarthy TJ, Mingarelli M, Riedel G, Schweiger LF, Welch A, Platt B, Zanda M. 18F-barbiturates are PET tracers with diagnostic potential in Alzheimer's disease. Chem Commun (Camb) 2013; 49:792-4. [DOI: 10.1039/c2cc38443d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Antioxidant and astroprotective effects of a Pulicaria incisa infusion. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:157598. [PMID: 23320126 PMCID: PMC3540991 DOI: 10.1155/2012/157598] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Accepted: 11/21/2012] [Indexed: 12/30/2022]
Abstract
Oxidative stress is involved in the pathogenesis of neurodegenerative diseases such as Parkinson's and Alzheimer's diseases. Astrocytes, the most abundant glial cells in the brain, protect neurons from reactive oxygen species (ROS) and provide them with trophic support, such as glial-derived neurotrophic factor (GDNF). Thus, any damage to astrocytes will affect neuronal survival. In the present study, an infusion prepared from the desert plant Pulicaria incisa (Pi) was tested for its protective and antioxidant effects on astrocytes subjected to oxidative stress. The Pi infusion attenuated the intracellular accumulation of ROS following treatment with hydrogen peroxide and zinc and prevented the H(2)O(2)-induced death of astrocytes. The Pi infusion also exhibited an antioxidant effect in vitro and induced GDNF transcription in astrocytes. It is proposed that this Pi infusion be further evaluated for use as a functional beverage for the prevention and/or treatment of brain injuries and neurodegenerative diseases in which oxidative stress plays a role.
Collapse
|
18
|
Torres-Vega A, Pliego-Rivero BF, Otero-Ojeda GA, Gómez-Oliván LM, Vieyra-Reyes P. Limbic system pathologies associated with deficiencies and excesses of the trace elements iron, zinc, copper, and selenium. Nutr Rev 2012. [PMID: 23206282 DOI: 10.1111/j.1753-4887.2012.00521.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Deficiencies of nutrients such as amino acids, vitamins, lipids, and trace elements during gestation and early infanthood have strong deleterious effects on the development of the limbic system; these effects may be irreversible, even when adequate supplementation is provided at later developmental stages. Recent advances in the neurochemistry of biometals are increasingly establishing the roles of the trace elements iron, copper, zinc, and selenium in a variety of cell functions and are providing insight into the repercussions of deficiencies and excesses of these elements on the development of the central nervous system, especially the limbic system. The limbic system comprises diverse areas with high metabolic demands and differential storage of iron, copper, zinc, and selenium. This review summarizes available evidence suggesting the involvement of these trace elements in pathological disorders of the limbic system.
Collapse
Affiliation(s)
- Adriana Torres-Vega
- Neurofisiología de la Conducta, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Estado de México, Mexico
| | | | | | | | | |
Collapse
|
19
|
Nydegger I, Rumschik SM, Zhao J, Kay AR. Evidence for an extracellular zinc-veneer in rodent brains from experiments with Zn-ionophores and ZnT3 knockouts. ACS Chem Neurosci 2012; 3:761-6. [PMID: 23077720 DOI: 10.1021/cn300061z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 07/02/2012] [Indexed: 01/03/2023] Open
Abstract
Ionic zinc is found at a high concentration in some glutamatergic vesicles of the mammalian brain. Ionic zinc is also found chelated to macromolecules in the extracellular space, constituting what has been called the "zinc veneer". In this communication we show that the zinc ionophore, pyrithione, can be used to demonstrate the presence of the veneer. Application of pyrithione without added ionic zinc to rodent hippocampal slices mobilizes extracellular zinc, which can be detected intracellularly by the zinc probe FluoZin-3. In addition, we show that ZnT3 null mice, which lack the transporter responsible for stocking synaptic vesicles, nevertheless do have a zinc veneer, albeit diminished compared to wild type animals. The presence of the zinc veneer in ZnT3 null mice may account for the absence of any marked deficit in these animals.
Collapse
Affiliation(s)
- Irma Nydegger
- Departments
of Biology and ‡Chemistry, 336 BB, University of Iowa, Iowa City, Iowa 52242, United States
| | - Sean M. Rumschik
- Departments
of Biology and ‡Chemistry, 336 BB, University of Iowa, Iowa City, Iowa 52242, United States
| | - Jinfu Zhao
- Departments
of Biology and ‡Chemistry, 336 BB, University of Iowa, Iowa City, Iowa 52242, United States
| | - Alan R. Kay
- Departments
of Biology and ‡Chemistry, 336 BB, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
20
|
Hfaiedh N, Murat JC, Elfeki A. A combination of ascorbic acid and α-tocopherol or a combination of Mg and Zn are both able to reduce the adverse effects of lindane-poisoning on rat brain and liver. J Trace Elem Med Biol 2012; 26:273-8. [PMID: 22677539 DOI: 10.1016/j.jtemb.2012.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 03/27/2012] [Accepted: 04/02/2012] [Indexed: 11/25/2022]
Abstract
The purpose of this study, carried out on male Wistar rats, was to evaluate the beneficial effects of supplementation with ascorbic acid (Vit C) and α-tocopherol (Vit E) or with Mg and Zn upon lindane-induced damages in liver and brain. Under our experimental conditions, lindane poisoning (5mg/kg body weight per day for 3 days) resulted in (1) an increased level of plasma glucose, cholesterol and triglycerides, (2) an increased activity of LDH, ALP, AST, ALT, (3) an oxidative stress in liver and brain as revealed by an increased level of lipids peroxidation (TBARS) and a decrease of glutathione-peroxidase, superoxide dismutase and catalase activities in liver and brain. In conclusion, both Vit C+E or Mg+Zn treatments display beneficial effects upon oxidative stress induced by lindane treatment in liver and brain.
Collapse
Affiliation(s)
- Najla Hfaiedh
- Laboratoire d'Ecophysiologie Animale, Sfax, Tunisia.
| | | | | |
Collapse
|
21
|
Zhu J, Shao CY, Yang W, Zhang XM, Wu ZY, Zhou L, Wang XX, Li YH, Xia J, Luo JH, Shen Y. Chronic zinc exposure decreases the surface expression of NR2A-containing NMDA receptors in cultured hippocampal neurons. PLoS One 2012; 7:e46012. [PMID: 23049922 PMCID: PMC3457937 DOI: 10.1371/journal.pone.0046012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 08/23/2012] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Zinc distributes widely in the central nervous system, especially in the hippocampus, amygdala and cortex. The dynamic balance of zinc is critical for neuronal functions. Zinc modulates the activity of N-methyl-D-aspartate receptors (NMDARs) through the direct inhibition and various intracellular signaling pathways. Abnormal NMDAR activities have been implicated in the aetiology of many brain diseases. Sustained zinc accumulation in the extracellular fluid is known to link to pathological conditions. However, the mechanism linking this chronic zinc exposure and NMDAR dysfunction is poorly understood. METHODOLOGY/PRINCIPAL FINDINGS We reported that chronic zinc exposure reduced the numbers of NR1 and NR2A clusters in cultured hippocampal pyramidal neurons. Whole-cell and synaptic NR2A-mediated currents also decreased. By contrast, zinc did not affect NR2B, suggesting that chronic zinc exposure specifically influences NR2A-containg NMDARs. Surface biotinylation indicated that zinc exposure attenuated the membrane expression of NR1 and NR2A, which might arise from to the dissociation of the NR2A-PSD-95-Src complex. CONCLUSIONS Chronic zinc exposure perturbs the interaction of NR2A to PSD-95 and causes the disorder of NMDARs in hippocampal neurons, suggesting a novel action of zinc distinct from its acute effects on NMDAR activity.
Collapse
Affiliation(s)
- Jia Zhu
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Chong-Yu Shao
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Wei Yang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Xiao-Min Zhang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Zhen-Yong Wu
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Liang Zhou
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Xin-Xin Wang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Yun-Hong Li
- Department of Neurobiology, Center of Scientific Technology, Cranial Cerebral Disease Lab, Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Jun Xia
- Department of Biochemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, People’s Republic of China
| | - Jian-Hong Luo
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Ying Shen
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| |
Collapse
|
22
|
Piechal A, Blecharz-Klin K, Pyrzanowska J, Widy-Tyszkiewicz E. Maternal zinc supplementation improves spatial memory in rat pups. Biol Trace Elem Res 2012; 147:299-308. [PMID: 22249889 PMCID: PMC3362702 DOI: 10.1007/s12011-012-9323-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 01/03/2012] [Indexed: 11/24/2022]
Abstract
A large body of evidence supports an opinion that adequate dietary zinc is essential for prenatal and postnatal brain development. Behavioural effects of maternal supplementation with ZnSO(4) were analysed in rat pups with the Morris water task performance, a hole board and a T-maze. Wistar females during pregnancy and lactation received a drinking water solution of ZnSO(4) at doses of 16 mg/kg (group Zn16) or 32 mg/kg (group Zn32). Behavioural tests were conducted on the 4-week-old male rat pups. Zinc concentration in the serum, hippocampus and prefrontal cortex of offsprings was determined by means of atomic absorption techniques. The Newman-Keuls multiple comparison test revealed an increase of climbing in the Zn16 group in comparison to the control group (Con) and the Zn32 group during the hole board test. ANOVA for repeated measures showed a significant memory improvement in both supplemented groups compared to the control in the probe trial on day 5 of the water maze test. ZnSO(4) treatment significantly elevated zinc levels in the rat serum. Follow-up data on brain content of zinc in the hippocampus revealed significant differences between the groups and in supplemented groups correlated with crossings above the original platform position. These findings suggest that pre- and postnatal zinc supplementation may improve cognitive development in rats.
Collapse
Affiliation(s)
- Agnieszka Piechal
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland.
| | | | | | | |
Collapse
|
23
|
Affiliation(s)
- Katalin Tóth
- Center de recherche Université Laval Robert Giffard, Quebec City, G1J 2G3 Canada;
| |
Collapse
|
24
|
Szewczyk B, Kubera M, Nowak G. The role of zinc in neurodegenerative inflammatory pathways in depression. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:693-701. [PMID: 20156515 DOI: 10.1016/j.pnpbp.2010.02.010] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 01/23/2010] [Accepted: 02/09/2010] [Indexed: 11/28/2022]
Abstract
According to new hypothesis, depression is characterized by decreased neurogenesis and enhanced neurodegeneration which, in part, may be caused by inflammatory processes. There is much evidence indicating that depression, age-related changes often associated with impaired brain function and cognitive performances or neurodegenerative processes could be related to dysfunctions affecting the zinc ion availability. Clinical studies revealed that depression is accompanied by serum hypozincemia, which can be normalized by successful antidepressant treatment. In patients with major depression, a low zinc serum level was correlated with an increase in the activation of markers of the immune system, suggesting that this effect may result in part from a depression-related alteration in the immune-inflammatory system. Moreover, a preliminary clinical study demonstrated the benefit of zinc supplementation in antidepressant therapy in both treatment non-resistant and resistant patients. In the preclinical study, the antidepressant activity of zinc was observed in the majority of rodent tests and models of depression and revealed a causative role for zinc deficiency in the induction of depressive-like symptoms, the reduction of neurogenesis and neuronal survival or impaired learning and memory ability. This paper provides an overview of the clinical and experimental evidence that implicates the role of zinc in the pathophysiology and therapy of depression within the context of the inflammatory and neurodegenerative hypothesis of this disease.
Collapse
Affiliation(s)
- Bernadeta Szewczyk
- Laboratory of Trace Elements Neurobiology, Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343 Kraków, Poland.
| | | | | |
Collapse
|
25
|
Baraka AM, Hassab El Nabi W, El Ghotni S. Investigating the role of zinc in a rat model of epilepsy. CNS Neurosci Ther 2011; 18:327-33. [PMID: 22070383 DOI: 10.1111/j.1755-5949.2011.00252.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
AIMS The aim of the present study was to investigate the role of zinc (Zn) in pilocarpine-induced seizures and its interrelation with an antiepileptic drug, namely, valproic acid. METHODOLOGY The study was carried out on 110 male Wistar albino rats that were divided into the following groups: Group I, control rats that received intraperitoneal (i.p.) saline vehicle; Groups II-V received Zn in a medium dose, Zn in a high dose, valproic acid in a therapeutic dose, as well as a combination of valproic acid with medium dose Zn, respectively, for 3 weeks before saline injection, Group VI received i.p. pilocarpine to induce seizures; Groups VII-XI received Zn in a medium dose, Zn in a high dose, valproic acid in a therapeutic dose, a combination of therapeutic dose of valproic acid with medium dose Zn, as well as a combination of subeffective dose of valproic acid with medium dose of Zn, respectively, for 3 weeks before pilocarpine injection. The seizure's latency and severity for each rat was recorded. Blood and brain hippocampal samples were collected for determination of serum neuron specific enolase (NSE), hippocampal Zn, interleukin-1 beta concentrations as well as hippocampal superoxide dismutase and caspase-3 activities. RESULTS The results of the current study demonstrated that pretreatment with high dose of Zn exacerbated pilocarpine-induced seizures. Whereas, a medium dose of Zn and valproic acid either alone or in combination reduced the severity of pilocarpine-induced limbic seizures and increased the latency to attain the forelimb clonus. Also both drugs, either alone or in combination, ameliorated all studied biochemical parameters with the exception of hippocampal Zn concentration, which was only significantly increased by pretreatment with Zn, either alone or in combination with valproic acid. CONCLUSIONS The present study highlights the antiepileptic role that could be played by Zn, when given in appropriate doses.
Collapse
Affiliation(s)
- A M Baraka
- Clinical Pharmacology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | | | | |
Collapse
|
26
|
Knockout of Zn transporters Zip-1 and Zip-3 attenuates seizure-induced CA1 neurodegeneration. J Neurosci 2011; 31:97-104. [PMID: 21209194 DOI: 10.1523/jneurosci.5162-10.2011] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
CA1 pyramidal neurons are the final integrators of information flow leaving the hippocampus, yet are singularly vulnerable to activity-dependent cell death. Zinc (Zn) entry into cells may add to this vulnerability. Here, we find that Slc39a1 and Slc39a3, members of the Zip (Zrt/Irt-like protein) plasmalemmal Zn transporter family, are predominantly expressed in the hippocampus. We examined Zip-1,3-deficient mice to investigate their role in neurodegeneration following intense synaptic activation. When isolated by blockade of NMDA receptors and voltage-gated calcium channels, the absence of both transporters slowed passive Zn uptake into CA1 neurons measured with intracellular fluorescent Zn dyes. In vivo CA1 cell damage following kainic acid exposure was greatly attenuated. Consistent with the hypothesis that Zn entry contributes to neurodegeneration, Znt-3-deficient mice lacking synaptic Zn also show less hippocampal cell damage following kainic acid injection. Zip transporters may provide selective therapeutic targets to protect these neurons from early Zn-induced neurodegeneration following injury.
Collapse
|
27
|
Takeda A. Insight into glutamate excitotoxicity from synaptic zinc homeostasis. Int J Alzheimers Dis 2010; 2011:491597. [PMID: 21234391 PMCID: PMC3017909 DOI: 10.4061/2011/491597] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 11/05/2010] [Indexed: 02/06/2023] Open
Abstract
Zinc is released from glutamatergic (zincergic) neuron terminals in the hippocampus, followed by the increase in Zn(2+) concentration in the intracellular (cytosol) compartment, as well as that in the extracellular compartment. The increase in Zn(2+) concentration in the intracellular compartment during synaptic excitation is mainly due to Zn(2+) influx through calcium-permeable channels and serves as Zn(2+) signaling as well as the case in the extracellular compartment. Synaptic Zn(2+) homeostasis is important for glutamate signaling and altered under numerous pathological processes such as Alzheimer's disease. Synaptic Zn(2+) homeostasis might be altered in old age, and this alteration might be involved in the pathogenesis and progression of Alzheimer's disease; Zinc may play as a key-mediating factor in the pathophysiology of Alzheimer's disease. This paper summarizes the role of Zn(2+) signaling in glutamate excitotoxicity, which is involved in Alzheimer's disease, to understand the significance of synaptic Zn(2+) homeostasis in the pathophysiology of Alzheimer's disease.
Collapse
Affiliation(s)
- Atsushi Takeda
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Global COE, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
28
|
Zinc Signaling in the Hippocampus and Its Relation to Pathogenesis of Depression. Mol Neurobiol 2010; 44:166-74. [DOI: 10.1007/s12035-010-8158-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 12/02/2010] [Indexed: 11/26/2022]
|
29
|
Chang CY, Ou YC, Kao TK, Pan HC, Lin SY, Liao SL, Wang WY, Lu HC, Chen CJ. Glucose exacerbates zinc-induced astrocyte death. Toxicol Lett 2010; 199:102-109. [PMID: 20800666 DOI: 10.1016/j.toxlet.2010.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 08/16/2010] [Accepted: 08/20/2010] [Indexed: 01/04/2023]
Abstract
Zinc and cytosolic phospholipase A(2) (cPLA(2)) have been implicated in the death of neural cells and the pathogenesis of ischemia, and hyperglycemia is a potential augmenting factor. However, their potential crosstalk and/or interaction in mediating cell damage have not yet been fully elucidated. Here, we report that a potential link between cPLA(2) activation and zinc-induced astrocyte damage involving reactive oxygen species (ROS)/protein kinase C-α (PKC-α)/extracellular signal-regulated kinase (ERK) signaling and glucose is able to increase zinc uptake and potentiate zinc-induced alterations and astrocyte damage. The cell death caused by ZnCl(2) was accompanied by increased ROS generation, PKC-α membrane translocation, ERK phosphorylation, and cPLA(2) phosphorylation and activity. Pharmacological studies revealed that these activations contributed to ZnCl(2)-induced astrocyte death. Mechanistic studies had suggested that ROS/PKC-α/ERK was a potential signal linking zinc and cPLA(2). Glucose increased zinc uptake and potentiated ZnCl(2)-induced alterations and astrocyte death. These observations indicated that ROS/PKC-α/ERK signaling and cPLA(2) were actively involved in zinc-induced astrocyte damage, and suggested zinc was a potential downstream effector in hyperglycemia-aggravated astrocyte injury.
Collapse
Affiliation(s)
- Cheng-Yi Chang
- Department of Surgery, Fong Yuan Hospital, Taichung, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Su CK, Sun YC, Tzeng SF, Yang CS, Wang CY, Yang MH. In vivo monitoring of the transfer kinetics of trace elements in animal brains with hyphenated inductively coupled plasma mass spectrometry techniques. MASS SPECTROMETRY REVIEWS 2010; 29:392-424. [PMID: 19437493 DOI: 10.1002/mas.20240] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The roles of metal ions to sustain normal function and to cause dysfunction of neurological systems have been confirmed by various studies. However, because of the lack of adequate analytical method to monitor the transfer kinetics of metal ions in the brain of a living animal, research on the physiopathological roles of metal ions in the CNS remains in its early stages and more analytical efforts are still needed. To explicitly model the possible links between metal ions and physiopathological alterations, it is essential to develop in vivo monitoring techniques that can bridge the gap between metalloneurochemistry and neurophysiopathology. Although inductively coupled plasma mass spectrometry (ICP-MS) is a very powerful technique for multiple trace element analyses, when dealing with chemically complex microdialysis samples, the detection capability is largely limited by instrumental sensitivity, selectivity, and contamination that arise from the experimental procedure. As a result, in recent years several high efficient and clean on-line sample pretreatment systems have been developed and combined with microdialysis and ICP-MS for the continuous and in vivo determination of the concentration-time profiles of metal ions in the extracellular space of rat brain. This article reviews the research relevant to the development of analytical techniques for the in vivo determination of dynamic variation in the concentration levels of metal ions in a living animal.
Collapse
Affiliation(s)
- Cheng-Kuan Su
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | | | | | | | | | | |
Collapse
|
31
|
Chemical blocking of zinc ions in CNS increases neuronal damage following traumatic brain injury (TBI) in mice. PLoS One 2010; 5:e10131. [PMID: 20396380 PMCID: PMC2852423 DOI: 10.1371/journal.pone.0010131] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Accepted: 03/12/2010] [Indexed: 12/02/2022] Open
Abstract
Background Traumatic brain injury (TBI) is one of the leading causes of disability and death among young people. Although much is already known about secondary brain damage the full range of brain tissue responses to TBI remains to be elucidated. A population of neurons located in cerebral areas associated with higher cognitive functions harbours a vesicular zinc pool co-localized with glutamate. This zinc enriched pool of synaptic vesicles has been hypothesized to take part in the injurious signalling cascade that follows pathological conditions such as seizures, ischemia and traumatic brain injury. Pathological release of excess zinc ions from pre-synaptic vesicles has been suggested to mediate cell damage/death to postsynaptic neurons. Methodology/Principal Findings In order to substantiate the influence of vesicular zinc ions on TBI, we designed a study in which damage and zinc movements were analysed in several different ways. Twenty-four hours after TBI ZnT3-KO mice (mice without vesicular zinc) were compared to littermate Wild Type (WT) mice (mice with vesicular zinc) with regard to histopathology. Furthermore, in order to evaluate a possible neuro-protective dimension of chemical blocking of vesicular zinc, we treated lesioned mice with either DEDTC or selenite. Our study revealed that chemical blocking of vesicular zinc ions, either by chelation with DEDTC or accumulation in zinc-selenium nanocrystals, worsened the effects on the aftermath of TBI in the WT mice by increasing the number of necrotic and apoptotic cells within the first 24 hours after TBI, when compared to those of chemically untreated WT mice. Conclusion/Significance ZnT3-KO mice revealed more damage after TBI compared to WT controls. Following treatment with DEDTC or selenium an increase in the number of both dead and apoptotic cells were seen in the controls within the first 24 hours after TBI while the degree of damage in the ZnT3-KO mice remained largely unchanged. Further analyses revealed that the damage development in the two mouse strains was almost identical after either zinc chelation or zinc complexion therapy.
Collapse
|
32
|
Hou S, Vigeland LE, Zhang G, Xu R, Li M, Heinemann SH, Hoshi T. Zn2+ activates large conductance Ca2+-activated K+ channel via an intracellular domain. J Biol Chem 2009; 285:6434-42. [PMID: 20037152 DOI: 10.1074/jbc.m109.069211] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Zinc is an essential trace element and plays crucial roles in normal development, often as an integral structural component of transcription factors and enzymes. Recent evidence suggests that intracellular Zn(2+) functions as a signaling molecule, mediating a variety of important physiological phenomena. However, the immediate effectors of intracellular Zn(2+) signaling are not well known. We show here that intracellular Zn(2+) potently and reversibly activates large-conductance voltage- and Ca(2+)-activated Slo1 K(+) (BK) channels. The full effect of Zn(2+) requires His(365) in the RCK1 (regulator of conductance for K(+)) domain of the channel. Furthermore, mutation of two nearby acidic residues, Asp(367) and Glu(399), also reduced activation of the channel by Zn(2+), suggesting a possible structural arrangement for Zn(2+) binding by the aforementioned residues. Extracellular Zn(2+) activated Slo1 BK channels when coexpressed with Zn(2+)-permeable TRPM7 (transient receptor potential melastatin 7) channels. The results thus demonstrate that Slo1 BK channels represent a positive and direct effector of Zn(2+) signaling and may participate in sculpting cellular response to an increase in intracellular Zn(2+) concentration.
Collapse
Affiliation(s)
- Shangwei Hou
- Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Takeda A, Tamano H. Insight into zinc signaling from dietary zinc deficiency. ACTA ACUST UNITED AC 2009; 62:33-44. [PMID: 19747942 DOI: 10.1016/j.brainresrev.2009.09.003] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 08/28/2009] [Accepted: 09/04/2009] [Indexed: 02/01/2023]
Abstract
Zinc is necessary for not only brain development but also brain function. Zinc homeostasis in the brain is tightly regulated by the brain barrier system and is not easily disrupted by dietary zinc deficiency. However, histochemically reactive zinc as revealed by Timm's staining is susceptible to zinc deficiency, suggesting that the pool of Zn(2+) can be reduced by zinc deficiency. The hippocampus is also susceptible to zinc deficiency in the brain. On the other hand, zinc deficiency causes abnormal glucocorticoid secretion from the adrenal cortex, which is observed prior to the decrease in extracellular zinc concentration in the hippocampus. The hippocampus is enriched with glucocorticoid receptors and hippocampal functions are changed by abnormal glucocorticoid secretion. Zinc deficiency elicits neuropsychological symptoms and affects cognitive performance. It may also aggravate glutamate excitotoxicity in neurological diseases. Abnormal glucocorticoid secretion is associated with these symptoms in zinc deficiency. Furthermore, the decrease in Zn(2+) pool may cooperate with glucocorticoid action in zinc deficiency. Judging from susceptibility of Zn(2+) pool in the brain to zinc deficiency, it is possible that the decrease in Zn(2+) pool in the peripheral tissues triggers abnormal glucocorticoid secretion. To understand the importance of zinc as a signaling factor, this paper analyzes the relationship among the changes in hippocampal functions, abnormal behavior and pathophysiological changes in zinc deficiency, based on the data from experimental animals.
Collapse
Affiliation(s)
- Atsushi Takeda
- Department of Medical Biochemistry, University of Shizuoka, Yada, Suruga-ku, Japan.
| | | |
Collapse
|
34
|
Synaptically released zinc triggers metabotropic signaling via a zinc-sensing receptor in the hippocampus. J Neurosci 2009; 29:2890-901. [PMID: 19261885 DOI: 10.1523/jneurosci.5093-08.2009] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Zn(2+) is coreleased with glutamate from mossy fiber terminals and can influence synaptic function. Here, we demonstrate that synaptically released Zn(2+) activates a selective postsynaptic Zn(2+)-sensing receptor (ZnR) in the CA3 region of the hippocampus. ZnR activation induced intracellular release of Ca(2+), as well as phosphorylation of extracellular-regulated kinase and Ca(2+)/calmodulin kinase II. Blockade of synaptic transmission by tetrodotoxin or CdCl inhibited the ZnR-mediated Ca(2+) rises. The responses mediated by ZnR were largely attenuated by the extracellular Zn(2+) chelator, CaEDTA, and in slices from mice lacking vesicular Zn(2+), suggesting that synaptically released Zn(2+) triggers the metabotropic activity. Knockdown of the expression of the orphan G-protein-coupled receptor 39 (GPR39) attenuated ZnR activity in a neuronal cell line. Importantly, we observed widespread GPR39 labeling in CA3 neurons, suggesting a role for this receptor in mediating ZnR signaling in the hippocampus. Our results describe a unique role for synaptic Zn(2+) acting as the physiological ligand of a metabotropic receptor and provide a novel pathway by which synaptic Zn(2+) can regulate neuronal function.
Collapse
|
35
|
Takeda A, Itoh H, Nagayoshi A, Oku N. Abnormal Ca2+ mobilization in hippocampal slices of epileptic animals fed a zinc-deficient diet. Epilepsy Res 2009; 83:73-80. [DOI: 10.1016/j.eplepsyres.2008.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 09/24/2008] [Accepted: 09/25/2008] [Indexed: 11/16/2022]
|
36
|
Paoletti P, Vergnano AM, Barbour B, Casado M. Zinc at glutamatergic synapses. Neuroscience 2008; 158:126-36. [PMID: 18353558 DOI: 10.1016/j.neuroscience.2008.01.061] [Citation(s) in RCA: 311] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 01/04/2008] [Accepted: 01/08/2008] [Indexed: 12/21/2022]
Abstract
It has long been known that the mammalian forebrain contains a subset of glutamatergic neurons that sequester zinc in their synaptic vesicles. This zinc may be released into the synaptic cleft upon neuronal activity. Extracellular zinc has the potential to interact with and modulate many different synaptic targets, including glutamate receptors and transporters. Among these targets, NMDA receptors appear particularly interesting because certain NMDA receptor subtypes (those containing the NR2A subunit) contain allosteric sites exquisitely sensitive to extracellular zinc. The existence of these high-affinity zinc binding sites raises the possibility that zinc may act both in a phasic and tonic mode. Changes in zinc concentration and subcellular zinc distribution have also been described in several pathological conditions linked to glutamatergic transmission dysfunctions. However, despite intense investigation, the functional significance of vesicular zinc remains largely a mystery. In this review, we present the anatomy and the physiology of the glutamatergic zinc-containing synapse. Particular emphasis is put on the molecular and cellular mechanisms underlying the putative roles of zinc as a messenger involved in excitatory synaptic transmission and plasticity. We also highlight the many controversial issues and unanswered questions. Finally, we present and compare two widely used zinc chelators, CaEDTA and tricine, and show why tricine should be preferred to CaEDTA when studying fast transient zinc elevations as may occur during synaptic activity.
Collapse
Affiliation(s)
- P Paoletti
- Laboratoire de Neurobiologie, CNRS UMR 8544, Ecole Normale Supérieure, 46 rue d'Ulm, 75005 Paris, France.
| | | | | | | |
Collapse
|
37
|
Doering P, Danscher G, Larsen A, Bruhn M, Søndergaard C, Stoltenberg M. Changes in the vesicular zinc pattern following traumatic brain injury. Neuroscience 2007; 150:93-103. [DOI: 10.1016/j.neuroscience.2007.09.066] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 08/13/2007] [Accepted: 09/11/2007] [Indexed: 02/05/2023]
|
38
|
Zhang L, Chi ZH, Ren H, Rong M, Dahlstrom A, Huang L, Wang ZY. Imunoreactivity of zinc transporter 7 (ZNT7) in mouse dorsal root ganglia. Brain Res Bull 2007; 74:278-83. [PMID: 17720550 DOI: 10.1016/j.brainresbull.2007.06.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Revised: 06/28/2007] [Accepted: 06/29/2007] [Indexed: 01/16/2023]
Abstract
In the present study, we showed for the first time the localization of ZNT7 immunoreactivity in the mouse dorsal root ganglion (DRG) by means of immunohistochemistry and confocal laser scanning microscopy. Our results revealed that ZNT7 immunoreactivity was abundantly expressed in the nerve cells of the mouse DRG. Strong ZNT7 immunoreactivity was predominantly distributed in the perinuclear region of positive cells, while the nuclei were devoid of staining. Double immunofluorescence labeling of ZNT7 and TGN38 revealed a colocalization of the two antigens in the Golgi apparatus. In addition, the presence of labile zinc ions was detected with in vivo zinc selenium autometallography (AMG). AMG observations showed that the zinc staining pattern was also predominately located in the perinuclear Golgi area, like the ZNT7 immunostaining pattern in the DRG. These observations strongly suggest that ZNT7 may play an important role in facilitating zinc transport into the Golgi apparatus from the cytosol in the mouse DRG.
Collapse
Affiliation(s)
- Li Zhang
- Department of Histology and Embryology, China Medical University, Shenyang 110001, PR China
| | | | | | | | | | | | | |
Collapse
|
39
|
Jin H, Hwang SK, Kwon JT, Lee YS, An GH, Lee KH, Prats AC, Morello D, Beck GR, Cho MH. Low dietary inorganic phosphate affects the brain by controlling apoptosis, cell cycle and protein translation. J Nutr Biochem 2007; 19:16-25. [PMID: 17509857 DOI: 10.1016/j.jnutbio.2006.12.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2006] [Revised: 12/14/2006] [Accepted: 12/20/2006] [Indexed: 01/01/2023]
Abstract
Inorganic phosphate (Pi) plays a key role in diverse physiologic functions. In a previous study, we showed that high dietary Pi perturbs brain growth through Akt/ERK signaling in developing mice. However, no study has investigated the response of the brain to low dietary Pi. In this study, we addressed this question by studying the effects of low dietary Pi on the cerebrum of developing mice. Two-week-old weaned mice were fed with a low phosphate diet for 4 weeks. At the end of the study, their cerebrum was dissected and signals important for protein translation, apoptosis and cell cycle were examined. The low phosphate diet did not cause physiologically significant changes; it increased the protein expression of phosphatase and tensin homolog deleted on chromosome 10 but decreased Akt activity. In addition, expression of eukaryotic translation initiation factor binding protein coupled with increased complex formation of eukaryotic translation initiation factor 4E/eukaryotic translation initiation factor binding protein 1 was induced in the cerebrum by low phosphate, leading to reduced cap-dependent protein translation. Finally, low phosphate facilitated apoptosis and suppressed signals important for the cell cycle in the cerebrum of dual-luciferase reporter mice. In summary, our results showed that a low phosphate diet affects the brain by controlling protein translation, apoptosis and cell cycle in developing mice. Our results support the hypothesis that Pi works as a stimulus capable of increasing or decreasing several pivotal genes for normal development and suggest that regulation of Pi consumption is important in maintaining a healthy life.
Collapse
Affiliation(s)
- Hua Jin
- Laboratory of Toxicology, College of Veterinary Medicine and BK21 Program for Veterinary Science, Seoul National University, Seoul 151-742, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Priel T, Aricha-Tamir B, Sekler I. Clioquinol attenuates zinc-dependent beta-cell death and the onset of insulitis and hyperglycemia associated with experimental type I diabetes in mice. Eur J Pharmacol 2007; 565:232-9. [PMID: 17434477 DOI: 10.1016/j.ejphar.2007.02.064] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 02/11/2007] [Accepted: 02/13/2007] [Indexed: 11/30/2022]
Abstract
Zinc in the pancreas is co-released with insulin from beta-cells reaching concentrations similar to those found in the vicinity of glutamatergic synapses. In the brain, the role of zinc in excitotoxic brain damage is well established. In contrast, its role in islet destruction during diabetes is poorly understood. We have studied the efficacy of zinc homeostatic proteins and an intracellular zinc chelator, clioquinol, in conferring resistance against zinc toxicity in pancreatic islets. We further assessed the ability of clioquinol to protect the islets in an experimental model of type I diabetes. Our results indicate that endogenous mechanisms for lowering [Zn]i are deficient in the insulinoma cell line, MIN6, and that permeation of Zn2+ triggered cell death. Application of the low affinity, intracellular zinc chelator, clioquinol, reduced Zn2+-induced cell death by 80%. In addition, chelation of zinc ions by clioquinol in vivo prevented onset of multiple low dose streptozotocin-induced diabetes, and reduced the insulitis and hyperglycemia associated with this model. Furthermore, the glucose tolerance test (GTT) score of multiple low dose streptozotocin (MLD-STZ) mice pretreated with clioquinol was, statistically indistinguishable from that of untreated, control mice. Taken together, our results point to the potential utility of in vivo zinc chelation as a therapeutic strategy for treatment of idiopathic type I diabetes.
Collapse
Affiliation(s)
- Tsvia Priel
- Department of Physiology and Zlotowski Center for Neurosciences, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | |
Collapse
|
41
|
Lavoie N, Peralta MR, Chiasson M, Lafortune K, Pellegrini L, Seress L, Tóth K. Extracellular chelation of zinc does not affect hippocampal excitability and seizure-induced cell death in rats. J Physiol 2006; 578:275-89. [PMID: 17095563 PMCID: PMC2075111 DOI: 10.1113/jphysiol.2006.121848] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In the nervous system, zinc can influence synaptic responses and at extreme concentrations contributes to epileptic and ischaemic neuronal injury. Zinc can originate from synaptic vesicles, the extracellular space and from intracellular stores. In this study, we aimed to determine which of these zinc pools is responsible for the increased hippocampal excitability observed in zinc-depleted animals or following zinc chelation. Also, we investigated the source of intracellularly accumulating zinc in vulnerable neurons. Our data show that membrane-permeable and membrane-impermeable zinc chelators had little or no effect on seizure activity in the CA3 region. Furthermore, extracellular zinc chelation could not prevent the accumulation of lethal concentrations of zinc in dying neurons following epileptic seizures. At the electron microscopic level, zinc staining significantly increased at the presynaptic membrane of mossy fibre terminals in kainic acid-treated animals. These data indicate that intracellular but not extracellular zinc chelators could influence neuronal excitability and seizure-induced zinc accumulation observed in the cytosol of vulnerable neurons.
Collapse
Affiliation(s)
- Nathalie Lavoie
- Centre de Recherche Université Laval Robert Giffard, 2601 chemin de la Canardière, Québec, Canada G1J 2G3
| | | | | | | | | | | | | |
Collapse
|
42
|
Domínguez MI, Blasco-Ibáñez JM, Crespo C, Nacher J, Marqués-Marí AI, Martínez-Guijarro FJ. Neural Overexcitation and Implication of NMDA and AMPA Receptors in a Mouse Model of Temporal Lobe Epilepsy Implying Zinc Chelation. Epilepsia 2006; 47:887-99. [PMID: 16686654 DOI: 10.1111/j.1528-1167.2006.00501.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE Zinc chelation with diethyldithiocarbamate (DEDTC) during nondamaging kainic acid administration enhances excitotoxicity to the level of cell damage. The objective of this work was to study the developing of the lesion in this model of temporal lobe epilepsy and the implications of the different types of glutamate receptors. METHODS The antagonist of the N-methyl-D-aspartate (NMDA) receptor MK-801, and the antagonist of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor GYKI52466, were used concomitantly with intraperitoneal administration of kainic acid (15 mg/kg) followed by DEDTC (150 mg/kg) in mouse. The animals were killed at different times from 4 h to 7 days. Fos proteins were used as markers of cell overexcitation; heat-shock protein 72 (HSP72) as marker of cell stress. RESULTS Neither kainic acid nor DEDTC alone, at the doses used, led to cell loss, HSP72 expression, or permanent Fos protein induction. When combined, the hilus and cornu ammonis were damaged; principal cells in these areas coexpressed c-Fos and HSP72, with the exception of CA2; interneurons did not express HSP72 in any area. MK-801 completely abolished damage and HSP72 expression from the hippocampus. GYKI52466 blocked CA1 damage and HSP72 expression in the CA1 but not in the CA3. CONCLUSIONS Synaptic zinc increases the tolerance of hippocampus to overexcitation. All the areas that are fated to die are determined simultaneously; the damage in the CA1 is not an extension of the damage in the CA3. Damage of the CA3 is dependent on kainate and NMDA receptors, whereas the damage of the CA1 depends on AMPA and NMDA receptors.
Collapse
MESH Headings
- Animals
- Benzodiazepines/pharmacology
- Cell Death/drug effects
- Chelating Agents/metabolism
- Disease Models, Animal
- Ditiocarb/analogs & derivatives
- Ditiocarb/pharmacology
- Dizocilpine Maleate/pharmacology
- Epilepsy, Temporal Lobe/chemically induced
- Epilepsy, Temporal Lobe/metabolism
- Epilepsy, Temporal Lobe/physiopathology
- HSP72 Heat-Shock Proteins/metabolism
- Hippocampus/drug effects
- Hippocampus/pathology
- Hippocampus/physiopathology
- Kainic Acid/pharmacology
- Male
- Mice
- Neuroprotective Agents/pharmacology
- Proto-Oncogene Proteins c-fos/metabolism
- Receptors, AMPA/drug effects
- Receptors, AMPA/physiology
- Receptors, Kainic Acid/drug effects
- Receptors, Kainic Acid/physiology
- Receptors, N-Methyl-D-Aspartate/drug effects
- Receptors, N-Methyl-D-Aspartate/physiology
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
- Zinc/metabolism
- Zinc/physiology
Collapse
Affiliation(s)
- María-Isabel Domínguez
- Universidad de Valencia, Facultad de Ciencias Biológicas, Departamento de Biología Celular, Unidad de Neurobiología, Burjasot, Spain
| | | | | | | | | | | |
Collapse
|
43
|
Mathie A, Sutton GL, Clarke CE, Veale EL. Zinc and copper: pharmacological probes and endogenous modulators of neuronal excitability. Pharmacol Ther 2006; 111:567-83. [PMID: 16410023 DOI: 10.1016/j.pharmthera.2005.11.004] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Accepted: 11/23/2005] [Indexed: 12/19/2022]
Abstract
As well as being key structural components of many proteins, increasing evidence suggests that zinc and copper ions function as signaling molecules in the nervous system and are released from the synaptic terminals of certain neurons. In this review, we consider the actions of these two ions on proteins that regulate neuronal excitability. In addition to the established actions of zinc, and to a lesser degree copper, on excitatory and inhibitory ligand-gated ion channels, we show that both ions have a number of actions on selected members of the voltage-gated-like ion channel superfamily. For example, zinc is a much more effective blocker of one subtype of tetrodotoxin (TTX)-insensitive sodium (Na+) channel (NaV1.5) than other Na+ channels, whereas a certain T-type calcium (Ca2+) channel subunit (CaV3.2) is particularly sensitive to zinc. For potassium (K+) channels, zinc can have profound effects on the gating of certain KV channels whereas zinc and copper have distinct actions on closely related members of the 2 pore domain potassium channel (K2P) channel family. In addition to direct actions on these proteins, zinc is able to permeate a number of membrane proteins such as (S)-alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)/kainate receptors, Ca2+ channels and some transient receptor potential (trp) channels. There are a number of important physiological and pathophysiological consequences of these many actions of zinc and copper on membrane proteins, in terms of regulation of neuronal excitability and neurotoxicity. Furthermore, the concentration of free zinc and copper either in the synaptic cleft or neuronal cytoplasm may contribute to the etiology of certain disease states such as Alzheimer's disease (AD) and epilepsy.
Collapse
Affiliation(s)
- Alistair Mathie
- Biophysics Section, Blackett Laboratory, Division of Cell and Molecular Biology, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | | | | | | |
Collapse
|
44
|
Jin H, Hwang SK, Yu K, Anderson HK, Lee YS, Lee KH, Prats AC, Morello D, Beck GR, Cho MH. A high inorganic phosphate diet perturbs brain growth, alters Akt-ERK signaling, and results in changes in cap-dependent translation. Toxicol Sci 2005; 90:221-9. [PMID: 16338957 DOI: 10.1093/toxsci/kfj066] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Inorganic phosphate (Pi) plays a key role in diverse physiological functions. Recently, considerable progress has been made in our understanding of the function and regulation of the brain-specific sodium-dependent inorganic phosphate transporter 1 (NPT1), which is found to exist principally in cerebrum and cerebellum. The potential importance of Pi as a novel signaling molecule and the poor prognosis of diverse neurodegenerative diseases that involve brain-specific NPT1 have prompted us to define the pathways by which Pi affects mouse brain growth. A high phosphate diet caused an increase in serum Pi accompanied by a decrease in calcium, and a decrease in body weight coupled with a decreased relative weight of cerebellum. A high phosphate diet caused a significant increase in protein expression of NPT1, both in cerebrum and cerebellum. Additionally, the high phosphate diet increased Homo sapiens v-akt murine thymoma viral oncogene homolog 1 (Akt) phosphorylation at Ser473 in cerebrum and cerebellum, whereas suppression of Akt phosphorylation at Thr308 was observed only in cerebellum. Selective suppression of eukaryotic translation initiation factor-binding protein (eIF4E-BP1) in cerebrum was induced by high levels of Pi, which induced cap-dependent and cap-independent protein translation in cerebrum and cerebellum, respectively. Phosphorylation of extracellular regulated kinase 1 (ERK1) in comparison with that of ERK2 was significantly reduced in both cerebrum and cerebellum. High levels of Pi reduced protein expressions of proliferating cell nuclear antigen (PCNA) and cyclin D1 in cerebrum and cerebellum. In conclusion, the results indicate that high dietary Pi can perturb normal brain growth, possibly through Akt-ERK signaling in developing mice.
Collapse
Affiliation(s)
- Hua Jin
- Laboratory of Toxicology, College of Veterinary Medicine and School of Agricultural Biotechnology, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|