1
|
Ezzedini S, Abidi M, de Marco G. Enhancing cognitive and motor performance through mental training: The interplay between temporal preparation, inhibition and autonomic arousal. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2025:10.3758/s13415-025-01301-4. [PMID: 40304891 DOI: 10.3758/s13415-025-01301-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Accepted: 04/15/2025] [Indexed: 05/02/2025]
Abstract
Optimal cognitive and motor performance relies on the ability to prepare and execute responses with precise timing. Autonomic arousal is thought to modulate these processes, influencing both the readiness and execution phases of actions. This study explores the effects of motor imagery-based mental training on reactive inhibitory control and its correlation with autonomic activity. In Experiment 1, 20 healthy participants completed a stop-signal task to enable the evaluation of motor response performance. The results showed that mental training led to significant improvements in overall response speed and stop-signal reaction time, indicating enhanced reactive inhibition, particularly during the diastolic phase. This suggests an interaction between training effects and the cardiac cycle. In Experiment 2, 20 healthy participants performed an alertness task with two foreperiods (650 ms and 710 ms) to enable the assessment of response timing with different preparatory intervals. Mental training significantly improved response timing during the longer foreperiod, and this enhancement correlated with increased parasympathetic activity. Similarly, an improvement in the suppression of premature responses was observed during the shorter foreperiod, although it did not reach statistical significance after correction. A significant reduction in omission rates in trials without foreperiods was also found. These findings suggest an association between mental training, temporal preparation, and autonomic modulation. However, further research is needed to determine the nature of this relationship and its underlying mechanisms.
Collapse
Affiliation(s)
- Souhir Ezzedini
- Laboratory LINP2, UPL, Paris Nanterre University, 200 Avenue de La République, LINP292000, Nanterre, France.
| | - Malek Abidi
- Laboratory LINP2, UPL, Paris Nanterre University, 200 Avenue de La République, LINP292000, Nanterre, France
| | - Giovanni de Marco
- Laboratory LINP2, UPL, Paris Nanterre University, 200 Avenue de La République, LINP292000, Nanterre, France
| |
Collapse
|
2
|
Rungta S, Basu D, Sendhilnathan N, Murthy A. Preparatory activity links the frontal eye field response with small amplitude motor unit recruitment of neck muscles during gaze planning. J Neurophysiol 2021; 126:451-463. [PMID: 34232741 DOI: 10.1152/jn.00141.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A hallmark of intelligent behavior is that we can separate intention from action. To understand the mechanism that gates the flow of information between motor planning and execution, we compared the activity of frontal eye field neurons with motor unit activity from neck muscles in the presence of an intervening delay period in which spatial information regarding the target was available to plan a response. Although spatially specific delay period activity was present in the activity of frontal eye field neurons, it was absent in motor unit activity. Nonetheless, motor unit activity was correlated with the time it took to initiate saccades. Interestingly, we observed a heterogeneity of responses among motor units, such that only units with smaller amplitudes showed a clear modulation during the delay period. These small amplitude motor units also had higher spontaneous activity compared with the units which showed modulation only during the movement epoch. Taken together, our results suggest the activity of smaller motor units convey temporal information and explains how the delay period primes muscle activity leading to faster reaction times.NEW & NOTEWORTHY This study shows that the temporal aspects of a motor plan in the oculomotor circuitry can be accessed by peripheral neck muscles hundreds of milliseconds before the instruction to initiate a saccadic eye movement. The coupling between central and peripheral processes during the delay time is mediated by the recruitment pattern of motor units with smaller amplitude. These findings suggest that information processed in cortical areas could be read from periphery before execution.
Collapse
Affiliation(s)
- Satya Rungta
- IISc Mathematics Initiative, Indian Institute of Science, Bengaluru, India.,Centre for Neuroscience, Indian Institute of Science, Bengaluru, India
| | - Debaleena Basu
- Centre for Neuroscience, Indian Institute of Science, Bengaluru, India
| | | | - Aditya Murthy
- Centre for Neuroscience, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
3
|
Srisupornkornkool K, Sornkaew K, Chatkanjanakool K, Ampairattana C, Pongtasom P, Somthavil S, Boonyarom O, Yuenyongchaiwat K, Pongpanit K. Electromyography features during physical and imagined standing up in healthy young adults, Phitsanulok, Thailand. JOURNAL OF HEALTH RESEARCH 2020. [DOI: 10.1108/jhr-08-2019-0175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
PurposeTo compare the electromyography (EMG) features during physical and imagined standing up in healthy young adults.Design/methodology/approachTwenty-two participants (ages ranged from 20–29 years old) were recruited to participate in this study. Electrodes were attached to the rectus femoris, biceps femoris, tibialis anterior and the medial gastrocnemius muscles of both sides to monitor the EMG features during physical and imagined standing up. The %maximal voluntary contraction (%MVC), onset and duration were calculated.FindingsThe onset and duration of each muscle of both sides had no statistically significant differences between physical and imagined standing up (p > 0.05). The %MVC of all four muscles during physical standing up was statistically significantly higher than during imagined standing up (p < 0.05) on both sides. Moreover, the tibialis anterior muscle of both sides showed a statistically significant contraction before the other muscles (p < 0.05) during physical and imagined standing up.Originality/valueMuscles can be activated during imagined movement, and the patterns of muscle activity during physical and imagined standing up were similar. Imagined movement may be used in rehabilitation as an alternative or additional technique combined with other techniques to enhance the STS skill.
Collapse
|
4
|
Arıkan KB, Zadeh HGM, Turgut AE, Zinnuroğlu M, Bayer G, Günendi Z, Cengiz B. Anticipatory effect of execution on observation: an approach using ExoPinch finger robot. Turk J Med Sci 2019; 49:1054-1067. [PMID: 31293146 PMCID: PMC7018293 DOI: 10.3906/sag-1812-143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Background/aim This study aims to explore the mirror neuron system (MNS) involvement using mu (8–12 Hz)/beta (15–25 Hz) band suppression in an action observation-execution paradigm. Materials and methods Electrophysiological (EEG) data from 16 electrodes were recorded while 8 participants observed video clips of a hand squeezing a spring. Specifically, the effect of anticipated execution on observation was studied. For this purpose, a fully actuated finger exoskeleton robot was utilized to synchronize observation and execution and to control the execution condition for the partici-pants. Anticipatory effect was created with a randomized robot accompany session. Results The results showed that the observational condition (with or without anticipation) interacted with hemisphere at central chan-nels near somatosensory cortex. Additionally, we explored the response of MNS on the kinetics features of visual stimuli (hard or soft spring). Conclusion he results showed an interaction effect of kinetics features and hemisphere at frontal channels corresponding nearly to the ventral premotor cortex area of the brain. The activation of mirror neurons in this area plays a crucial role in observational learning. Based on our results, we propose that specific type of visual stimuli can be combined with the functional abilities of the MNS in the ac-tion observation based treatment of hand motor dysfunction of stroke patients to have a positive additional impact.
Collapse
Affiliation(s)
- Kutluk Bilge Arıkan
- Department of Mechanical Engineering, Faculty of Engineering, TED University, Ankara, Turkey
| | | | - Ali Emre Turgut
- Department of Mechanical Engineering, Faculty of Engineering, Middle East Technical University, Ankara, Turkey
| | - Murat Zinnuroğlu
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Gözde Bayer
- Department of Mechatronics Engineering, Faculty of Engineering, Atılım University, Ankara, Turkey
| | - Zafer Günendi
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Bülent Cengiz
- Department of Neurology, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
5
|
Riehle A, Brochier T, Nawrot M, Grün S. Behavioral Context Determines Network State and Variability Dynamics in Monkey Motor Cortex. Front Neural Circuits 2018; 12:52. [PMID: 30050415 PMCID: PMC6052126 DOI: 10.3389/fncir.2018.00052] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/15/2018] [Indexed: 11/13/2022] Open
Abstract
Variability of spiking activity is ubiquitous throughout the brain but little is known about its contextual dependance. Trial-to-trial spike count variability, estimated by the Fano Factor (FF), and within-trial spike time irregularity, quantified by the coefficient of variation (CV), reflect variability on long and short time scales, respectively. We co-analyzed FF and the local coefficient of variation (CV2) in monkey motor cortex comparing two behavioral contexts, movement preparation (wait) and execution (movement). We find that the FF significantly decreases from wait to movement, while the CV2 increases. The more regular firing (expressed by a low CV2) during wait is related to an increased power of local field potential (LFP) beta oscillations and phase locking of spikes to these oscillations. In renewal processes, a widely used model for spiking activity under stationary input conditions, both measures are related as FF ≈ CV2. This expectation was met during movement, but not during wait where FF ≫ CV22. Our interpretation is that during movement preparation, ongoing brain processes result in changing network states and thus in high trial-to-trial variability (expressed by a high FF). During movement execution, the network is recruited for performing the stereotyped motor task, resulting in reliable single neuron output. Our interpretation is in the light of recent computational models that generate non-stationary network conditions.
Collapse
Affiliation(s)
- Alexa Riehle
- UMR7289 Institut de Neurosciences de la Timone (INT), Centre National de la Recherche Scientifique (CNRS)-Aix-Marseille Université (AMU), Marseille, France.,Institute of Neuroscience and Medicine (INM-6), Institute for Advanced Simulation (IAS-6) and JARA Brain Institute I, Forschungszentrum Jülich, Jülich, Germany
| | - Thomas Brochier
- UMR7289 Institut de Neurosciences de la Timone (INT), Centre National de la Recherche Scientifique (CNRS)-Aix-Marseille Université (AMU), Marseille, France
| | - Martin Nawrot
- Computational Systems Neuroscience, Institute for Zoology, University of Cologne, Cologne, Germany
| | - Sonja Grün
- Institute of Neuroscience and Medicine (INM-6), Institute for Advanced Simulation (IAS-6) and JARA Brain Institute I, Forschungszentrum Jülich, Jülich, Germany.,RIKEN Brain Science Institute (BSI), Wako, Japan.,Theoretical Systems Neurobiology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
6
|
Thomaschke R, Hoffmann J, Haering C, Kiesel A. Time-Based Expectancy for Task Relevant Stimulus Features. TIMING & TIME PERCEPTION 2016. [DOI: 10.1163/22134468-00002069] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
When a particular target stimulus appears more frequently after a certain interval than after another one, participants adapt to such regularity, as evidenced by faster responses to frequent interval-target combinations than to infrequent ones. This phenomenon is known as time-based expectancy. Previous research has suggested that time-based expectancy is primarily motor-based, in the sense that participants learn to prepare a particular response after a specific interval. Perceptual time-based expectancy — in the sense of learning to perceive a certain stimulus after specific interval — has previously not been observed. We conducted a Two-Alternative-Forced-Choice experiment with four stimuli differing in shape and orientation. A subset of the stimuli was frequently paired with a certain interval, while the other subset was uncorrelated with interval. We varied the response relevance of the interval-correlated stimuli, and investigated under which conditions time-based expectancy transfers from trials with interval-correlated stimuli to trials with interval-uncorrelated stimuli. Transfer was observed only where transfer of perceptual expectancy and transfer of response expectancy predicted the same behavioral pattern, not when they predicted opposite patterns. The results indicate that participants formed time-based expectancy for stimuli as well as for responses. However, alternative interpretations are also discussed.
Collapse
|
7
|
Abstract
Preparing actions requires the operation of several cognitive control processes that influence the state of the motor system to ensure that the appropriate behavior is ultimately selected and executed. For example, some form of competition resolution ensures that the right action is chosen among alternatives, often in the presence of conflict; at the same time, impulse control ought to be deployed to prevent premature responses. Here we review how state-changes in the human motor system during action preparation can be studied through motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation over the contralateral primary motor cortex (M1). We discuss how the physiological fingerprints afforded by MEPs have helped to decompose some of the dynamic and effector-specific influences on the motor system during action preparation. We focus on competition resolution, conflict and impulse control, as well as on the influence of higher cognitive decision–related variables. The selected examples demonstrate the usefulness of MEPs as physiological readouts for decomposing the influence of distinct, but often overlapping, control processes on the human motor system during action preparation.
Collapse
Affiliation(s)
- Sven Bestmann
- Sobell Department for Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, University College London, London, UK
| | - Julie Duque
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
8
|
Wheeler ME, Woo SG, Ansel T, Tremel JJ, Collier AL, Velanova K, Ploran EJ, Yang T. The strength of gradually accruing probabilistic evidence modulates brain activity during a categorical decision. J Cogn Neurosci 2014; 27:705-19. [PMID: 25313658 DOI: 10.1162/jocn_a_00739] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The evolution of neural activity during a perceptual decision is well characterized by the evidence parameter in sequential sampling models. However, it is not known whether accumulating signals in human neuroimaging are related to the integration of evidence. Our aim was to determine whether activity accumulates in a nonperceptual task by identifying brain regions tracking the strength of probabilistic evidence. fMRI was used to measure whole-brain activity as choices were informed by integrating a series of learned prior probabilities. Participants first learned the predictive relationship between a set of shape stimuli and one of two choices. During scanned testing, they made binary choices informed by the sum of the predictive strengths of individual shapes. Sequences of shapes adhered to three distinct rates of evidence (RoEs): rapid, gradual, and switch. We predicted that activity in regions informing the decision would modulate as a function of RoE prior to the choice. Activity in some regions, including premotor areas, changed as a function of RoE and response hand, indicating a role in forming an intention to respond. Regions in occipital, temporal, and parietal lobes modulated as a function of RoE only, suggesting a preresponse stage of evidence processing. In all of these regions, activity was greatest on rapid trials and least on switch trials, which is consistent with an accumulation-to-boundary account. In contrast, activity in a set of frontal and parietal regions was greatest on switch and least on rapid trials, which is consistent with an effort or time-on-task account.
Collapse
|
9
|
Arias P, Robles-García V, Espinosa N, Corral-Bergantiños Y, Mordillo-Mateos L, Grieve K, Oliviero A, Cudeiro J. The effects of expectancy on corticospinal excitability: passively preparing to observe a movement. J Neurophysiol 2014; 111:1479-86. [DOI: 10.1152/jn.00353.2013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The corticospinal tract excitability is modulated when preparing movements. Earlier to movement execution, the excitability of the spinal cord increases waiting for supraspinal commands to release the movement. Movement execution and movement observation share processes within the motor system, although movement observation research has focused on processes later to movement onset. We used single and paired pulse transcranial magnetic stimulation on M1 ( n = 12), and electrical cervicomedullary stimulation ( n = 7), to understand the modulation of the corticospinal system during the “preparation” to observe a third person's movement. Subjects passively observed a hand that would remain still or make an index finger extension. The observer's corticospinal excitability rose when “expecting to see a movement” vs. when “expecting to see a still hand.” The modulation took origin at a spinal level and not at the corticocortical networks explored. We conclude that expectancy of seeing movements increases the excitability of the spinal cord.
Collapse
Affiliation(s)
- Pablo Arias
- Laboratory of Neuroscience and Motor Control (NEUROcom), Department of Medicine-INEF-Galicia and Institute of Biomedical Research of Coruña, University of A Coruña, A Coruña, Spain
| | - Verónica Robles-García
- Laboratory of Neuroscience and Motor Control (NEUROcom), Department of Medicine-INEF-Galicia and Institute of Biomedical Research of Coruña, University of A Coruña, A Coruña, Spain
| | - Nelson Espinosa
- Laboratory of Neuroscience and Motor Control (NEUROcom), Department of Medicine-INEF-Galicia and Institute of Biomedical Research of Coruña, University of A Coruña, A Coruña, Spain
| | - Yoanna Corral-Bergantiños
- Laboratory of Neuroscience and Motor Control (NEUROcom), Department of Medicine-INEF-Galicia and Institute of Biomedical Research of Coruña, University of A Coruña, A Coruña, Spain
| | - Laura Mordillo-Mateos
- Functional Exploration and Neuromodulation of Nervous System Investigation Group, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla-La Mancha, Toledo, Spain; and
| | - Kenneth Grieve
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Antonio Oliviero
- Functional Exploration and Neuromodulation of Nervous System Investigation Group, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla-La Mancha, Toledo, Spain; and
| | - Javier Cudeiro
- Laboratory of Neuroscience and Motor Control (NEUROcom), Department of Medicine-INEF-Galicia and Institute of Biomedical Research of Coruña, University of A Coruña, A Coruña, Spain
| |
Collapse
|
10
|
Power KE, Copithorne DB. Increased corticospinal excitability prior to arm cycling is due to enhanced supraspinal but not spinal motoneurone excitability. Appl Physiol Nutr Metab 2013; 38:1154-61. [DOI: 10.1139/apnm-2013-0084] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human studies have not assessed supraspinal or spinal motoneurone excitability in the quiescent state prior to a rhythmic and alternating cyclical motor output. The purpose of the current study was to determine whether supraspinal and (or) spinal motoneurone excitability was modulated in humans prior to arm cycling when compared with rest with no intention to move. We hypothesized that corticospinal excitability would be enhanced prior to arm cycling due, in part, to increased spinal motoneurone excitability. Supraspinal and spinal motoneurone excitability were assessed via transcranial magnetic stimulation (TMS) of the motor cortex and transmastoid stimulation of the corticospinal tract, respectively. Surface electromyography recordings of TMS motor evoked potentials (MEPs) and cervicomedullary MEPs (CMEPs) were made from the relaxed biceps brachii muscle prior to rhythmic arm cycling and at rest with no intention to move. The amplitude of the MEPs was greater (mean increase: +9.8% of maximal M wave; p = 0.006) and their onset latencies were shorter (mean decrease: –1.5 ms; p < 0.05) prior to cycling when compared with rest. The amplitudes of the CMEPs at any of 3 stimulation intensities were not different between conditions. We conclude that premovement enhancement of corticospinal excitability is greater prior to arm cycling than at rest because of increases in supraspinal but not spinal motoneurone excitability.
Collapse
Affiliation(s)
- Kevin E. Power
- Faculty of Health Sciences, University of Ontario Institute of Technology, Oshawa, ON L1H 7K4, Canada
| | - David B. Copithorne
- Faculty of Health Sciences, University of Ontario Institute of Technology, Oshawa, ON L1H 7K4, Canada
| |
Collapse
|
11
|
The role of response inhibition in temporal preparation: evidence from a go/no-go task. Cognition 2013; 129:328-44. [PMID: 23969298 DOI: 10.1016/j.cognition.2013.07.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 07/18/2013] [Accepted: 07/19/2013] [Indexed: 11/22/2022]
Abstract
During the foreperiod (FP) of a warned reaction task, participants engage in a process of temporal preparation to speed response to the impending target stimulus. Previous neurophysiological studies have shown that inhibition is applied during FP to prevent premature response. Previous behavioral studies have shown that the duration of FP on both the current and the preceding trial codetermine response time to the target. Integrating these findings, the present study tested the hypothesis that the behavioral effects find their origin in response inhibition on the preceding trial. In two experiments the variable-FP paradigm was combined with a go/no-go task, in which no-go stimuli required explicit response inhibition. The resulting data pattern revealed sequential effects of both FP (long or short) and response requirement (go or no-go), which could be jointly understood as expressions of response inhibition, consistent with the hypothesis.
Collapse
|
12
|
Matsuya R, Ushiyama J, Ushiba J. Prolonged reaction time during episodes of elevated β-band corticomuscular coupling and associated oscillatory muscle activity. J Appl Physiol (1985) 2013; 114:896-904. [PMID: 23393066 DOI: 10.1152/japplphysiol.00942.2012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Oscillatory activity in the sensorimotor cortex is coherent with 15-35 Hz band (β-band) muscle activity during tonic isometric voluntary contractions. In human subjects with higher corticomuscular coherence, prominent grouped discharge associated with a significant silent period was observed in electromyographic (EMG) signals. We examined the potential effects of β-band corticomuscular coupling on new ballistic movement as assessed by reaction time (RT). First, we quantified the coherence between electroencephalographic (EEG) signals over the sensorimotor cortex and rectified EMG signals from the tibialis anterior muscle during tonic isometric voluntary dorsiflexion at 30% of maximal effort in 15 healthy subjects. Subjects were divided into 2 groups [i.e., those with significant EEG-EMG coherence (COH+, n = 8) and those with no significant coherence (COH-, n = 7)]. Next, subjects performed ballistic contractions from a preliminary state of sustained contractions in reaction to auditory signals. RT was defined as the interval between the signal and the response onset measured by force. There were no intersubject differences in RT between COH+ and COH-. However, when the trials performed by COH+ subjects were divided into 2 groups depending on whether clear grouped discharge in the β-band was observed in the EMG (GD+ or GD-) just prior to the reaction, RT was significantly longer in the GD+ than in the GD- trials. We found that the magnitude of EEG-EMG coherence just before the reaction was significantly greater in the GD+ than in the GD- trials. These results suggest that generation of a new movement is delayed when corticomuscular coupling is elevated.
Collapse
Affiliation(s)
- Ryosuke Matsuya
- Graduate School of Science and Technology, Keio University, Kanagawa, Japan
| | | | | |
Collapse
|
13
|
An B, Hong I, Choi S. Long-term neural correlates of reversible fear learning in the lateral amygdala. J Neurosci 2012; 32:16845-56. [PMID: 23175837 PMCID: PMC6621751 DOI: 10.1523/jneurosci.3017-12.2012] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 08/31/2012] [Accepted: 09/24/2012] [Indexed: 11/21/2022] Open
Abstract
Fear conditioning and extinction are behavioral models that reflect the association and dissociation of environmental cues to aversive outcomes, both known to involve the lateral amygdala (LA). Accordingly, responses of LA neurons to conditioned stimuli (CS) increase after fear conditioning and decrease partially during extinction. However, the long-term effects of repeated fear conditioning and extinction on LA neuronal firing have not been explored. Here we show, using stable, high signal-to-noise ratio single-unit recordings, that the ensemble activity of all recorded LA neurons correlates tightly with conditioned fear responses of rats in a conditioning/extinction/reconditioning paradigm spanning 3 d. This CS-evoked ensemble activity increased after conditioning, decreased after extinction, and was repotentiated after reconditioning. Cell-by-cell analysis revealed that among the LA neurons that displayed potentiated responses after initial fear conditioning, some exhibited weakened CS responses after extinction (extinction-susceptible), whereas others remained potentiated (extinction-resistant). The majority of extinction-susceptible neurons exhibited strong potentiation after reconditioning, suggesting that this distinct subpopulation (reversible fear neurons) encodes updated CS-unconditioned stimulus (US) association strength. Interestingly, these reversible fear neurons displayed larger, more rapid potentiation during reconditioning compared with the initial conditioning, providing a neural correlate of savings after extinction. In contrast, the extinction-resistant fear neurons did not show further increases after reconditioning, suggesting that this subpopulation encodes persistent fear memory representing the original CS-US association. This longitudinal report on LA neuronal activity during reversible fear learning suggests the existence of distinct populations encoding various facets of fear memory and provides insight into the neuronal mechanisms of fear memory modulation.
Collapse
Affiliation(s)
- Bobae An
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Ingie Hong
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Sukwoo Choi
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| |
Collapse
|
14
|
Bensoussan L, Duclos Y, Rossi-Durand C. Modulation of human motoneuron activity by a mental arithmetic task. Hum Mov Sci 2012; 31:999-1013. [PMID: 23159444 DOI: 10.1016/j.humov.2012.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 02/06/2012] [Accepted: 02/15/2012] [Indexed: 10/27/2022]
Abstract
This study aimed to determine whether the performance of a mental task affects motoneuron activity. To this end, the tonic discharge pattern of wrist extensor motor units was analyzed in healthy subjects while they were required to maintain a steady wrist extension force and to concurrently perform a mental arithmetic (MA) task. A shortening of the mean inter-spike interval (ISI) and a decrease in ISI variability occurred when MA task was superimposed to the motor task. Aloud and silent MA affected equally the rate and variability of motoneuron discharge. Increases in surface EMG activity and force level were consistent with the modulation of the motor unit discharge rate. Trial-by-trial analysis of the characteristics of motor unit firing revealed that performing MA increases activation of wrist extensor SMU. It is suggested that increase in muscle spindle afferent activity, resulting from fusimotor drive activation by MA, may have contributed to the increase in synaptic inputs to motoneurons during the mental task performance, likely together with enhancement in the descending drive. The finding that a mental task affects motoneuron activity could have consequences in assessment of motor disabilities and in rehabilitation in motor pathologies.
Collapse
Affiliation(s)
- Laurent Bensoussan
- Pôle de Médecine Physique et de Réadaptation, Aix-Marseille Université, Assistance publique des Hopitaux de Marseille, CHU Timone, Marseille, France
| | | | | |
Collapse
|
15
|
Guillot A, Di Rienzo F, Macintyre T, Moran A, Collet C. Imagining is Not Doing but Involves Specific Motor Commands: A Review of Experimental Data Related to Motor Inhibition. Front Hum Neurosci 2012; 6:247. [PMID: 22973214 PMCID: PMC3433680 DOI: 10.3389/fnhum.2012.00247] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 08/10/2012] [Indexed: 12/12/2022] Open
Abstract
There is now compelling evidence that motor imagery (MI) and actual movement share common neural substrate. However, the question of how MI inhibits the transmission of motor commands into the efferent pathways in order to prevent any movement is largely unresolved. Similarly, little is known about the nature of the electromyographic activity that is apparent during MI. In addressing these gaps in the literature, the present paper argues that MI includes motor execution commands for muscle contractions which are blocked at some level of the motor system by inhibitory mechanisms. We first assemble data from neuroimaging studies that demonstrate that the neural networks mediating MI and motor performance are not totally overlapping, thereby highlighting potential differences between MI and actual motor execution. We then review MI data indicating the presence of subliminal muscular activity reflecting the intrinsic characteristics of the motor command as well as increased corticomotor excitability. The third section not only considers the inhibitory mechanisms involved during MI but also examines how the brain resolves the problem of issuing the motor command for action while supervising motor inhibition when people engage in voluntary movement during MI. The last part of the paper draws on imagery research in clinical contexts to suggest that some patients move while imagining an action, although they are not aware of such movements. In particular, experimental data from amputees as well as from patients with Parkinson’s disease are discussed. We also review recent studies based on comparing brain activity in tetraplegic patients with that from healthy matched controls that provide insights into inhibitory processes during MI. We conclude by arguing that based on available evidence, a multifactorial explanation of motor inhibition during MI is warranted.
Collapse
Affiliation(s)
- Aymeric Guillot
- Centre de Recherche et d'Innovation sur le Sport (EA 647), équipe Performance Motrice, Mentale et du Matériel, Université de Lyon, Université Claude Bernard Lyon 1 Villeurbanne, France
| | | | | | | | | |
Collapse
|
16
|
Alouche SR, Sant'Anna GN, Biagioni G, Ribeiro-do-Valle LE. Influence of cueing on the preparation and execution of untrained and trained complex motor responses. Braz J Med Biol Res 2012; 45:425-35. [PMID: 22473319 PMCID: PMC3854281 DOI: 10.1590/s0100-879x2012007500053] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 03/23/2012] [Indexed: 11/22/2022] Open
Abstract
This study investigated the influence of cueing on the performance of untrained and trained complex motor responses. Healthy adults responded to a visual target by performing four sequential movements (complex response) or a single movement (simple response) of their middle finger. A visual cue preceded the target by an interval of 300, 1000, or 2000 ms. In Experiment 1, the complex and simple responses were not previously trained. During the testing session, the complex response pattern varied on a trial-by-trial basis following the indication provided by the visual cue. In Experiment 2, the complex response and the simple response were extensively trained beforehand. During the testing session, the trained complex response pattern was performed in all trials. The latency of the untrained and trained complex responses decreased from the short to the medium and long cue-target intervals. The latency of the complex response was longer than that of the simple response, except in the case of the trained responses and the long cue-target interval. These results suggest that the preparation of untrained complex responses cannot be completed in advance, this being possible, however, for trained complex responses when enough time is available. The duration of the 1st submovement, 1st pause and 2nd submovement of the untrained and the trained complex responses increased from the short to the long cue-target interval, suggesting that there is an increase of online programming of the response possibly related to the degree of certainty about the moment of target appearance.
Collapse
Affiliation(s)
- S R Alouche
- Departamento de Fisioterapia, Universidade Cidade de São Paulo, Brasil
| | | | | | | |
Collapse
|
17
|
Thomaschke R, Wagener A, Kiesel A, Hoffmann J. The specificity of temporal expectancy: Evidence from a variable foreperiod paradigm. Q J Exp Psychol (Hove) 2011; 64:2289-300. [DOI: 10.1080/17470218.2011.616212] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In speeded choice tasks with variable foreperiods (FPs), individuals behaviourally adapt to various frequency manipulations. Adaptations have been shown to frequencies of different stimulus–response events, to frequencies of different foreperiods, and to frequencies of different event–foreperiod combinations. We have investigated how participants adapt to a situation where all three frequency manipulations are done simultaneously. Three variable foreperiod experiments are reported. In Experiment 1, one target (the peak distributed target) appeared particularly frequently after one particular FP (the peak foreperiod), while another target was less frequent and equally distributed over all foreperiods. In Experiment 2, the equally distributed target was overall more frequent than the peak distributed one. In both experiments, performance advantages for the peak distributed target were specific to the peak foreperiod, and performance advantages at the peak foreperiod were specific to the peak distributed targets. A third experiment showed that, when two differently frequent target are both equally distributed over FPs, the performance distribution over FPs is not significantly different between both targets. Together, the results suggest that participants were able to simultaneously and specifically adapt to frequency manipulations in events, foreperiods, and event–foreperiod combinations.
Collapse
Affiliation(s)
- Roland Thomaschke
- Department of Psychology, Universität Regensburg, Regensburg, Germany
- Department of Psychology, Universität Würzburg, Würzburg, Germany
| | - Annika Wagener
- Department of Psychology, Universität Würzburg, Würzburg, Germany
| | - Andrea Kiesel
- Department of Psychology, Universität Würzburg, Würzburg, Germany
| | - Joachim Hoffmann
- Department of Psychology, Universität Würzburg, Würzburg, Germany
| |
Collapse
|
18
|
Tandonnet C, Davranche K, Meynier C, Burle B, Vidal F, Hasbroucq T. How does temporal preparation speed up response implementation in choice tasks? Evidence for an early cortical activation. Psychophysiology 2011; 49:252-60. [PMID: 22092144 DOI: 10.1111/j.1469-8986.2011.01301.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 08/17/2011] [Indexed: 11/28/2022]
Abstract
We investigated the influence of temporal preparation on information processing. Single-pulse transcranial magnetic stimulation (TMS) of the primary motor cortex was delivered during a between-hand choice task. The time interval between the warning and the imperative stimulus varied across blocks of trials was either optimal (500 ms) or nonoptimal (2500 ms) for participants' performance. Silent period duration was shorter prior to the first evidence of response selection for the optimal condition. Amplitude of the motor evoked potential specific to the responding hand increased earlier for the optimal condition. These results revealed an early release of cortical inhibition and a faster integration of the response selection-related inputs to the corticospinal pathway when temporal preparation is better. Temporal preparation may induce cortical activation prior to response selection that speeds up the implementation of the selected response.
Collapse
Affiliation(s)
- Christophe Tandonnet
- Laboratoire de Neurobiologie de la Cognition, Aix-Marseille Université and Centre national de la recherche scientifique, Marseille, France.
| | | | | | | | | | | |
Collapse
|
19
|
Li X, Luo F, Shi L, Woodward DJ, Chang J. Ensemble neural activity of the frontal cortical basal ganglia system predicts reaction time task performance in rats. Neurosci Res 2011; 71:149-60. [PMID: 21781993 DOI: 10.1016/j.neures.2011.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 06/13/2011] [Accepted: 06/30/2011] [Indexed: 01/08/2023]
Abstract
The question pursued in this study was when neural activity appears in the cortico-basal ganglia system that could predict alternate behavioral responses in a reaction time (RT) task. In this protocol, rats first performed a nose poke to initiate a trial, depressed a lever when presented, and then released the lever after a tone cue. Multiple-channel, single-unit recordings (up to 62 units) were obtained simultaneously from the prefrontal cortex, the dorsal medial striatum, the globus pallidus, and the substantia nigra pars reticulata in a single rat during a session. Results indicated that (1) global alterations of neural activity appeared in clusters, which was associated with different behavioral components and observed in each of the targeted areas; (2) small independent subsets of neurons responded differently between error (lever was released before tone presentation) and correct trials (lever was released within 0.5s after tone onset) during these behavioral episodes; (3) significant correlations between RTs and single units activities were found in the early preparation phases of the task. The results reveal that complex early preparatory activity exists several seconds before the final movements in a RT task, which may determine executive functions leading to rapid decoding of alternate behavioral performances.
Collapse
Affiliation(s)
- Xianghong Li
- Neuroscience Research Institute, Peking University, 38 Xueyuan Road, Beijing, China
| | | | | | | | | |
Collapse
|
20
|
Response specific temporal expectancy: Evidence from a variable foreperiod paradigm. Atten Percept Psychophys 2011; 73:2309-22. [DOI: 10.3758/s13414-011-0179-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
The scope and precision of specific temporal expectancy: evidence from a variable foreperiod paradigm. Atten Percept Psychophys 2011; 73:953-64. [DOI: 10.3758/s13414-010-0079-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Cohen O, Sherman E, Zinger N, Perlmutter S, Prut Y. Getting ready to move: transmitted information in the corticospinal pathway during preparation for movement. Curr Opin Neurobiol 2010; 20:696-703. [PMID: 20926287 PMCID: PMC3153449 DOI: 10.1016/j.conb.2010.09.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 09/06/2010] [Accepted: 09/06/2010] [Indexed: 11/20/2022]
Abstract
Corticospinal interactions are considered to play a key role in executing voluntary movements. Nonetheless several different studies have shown directly and indirectly that these interactions take place long before movement starts, when preparation for forthcoming movements dominates. When motor-related parameters are continuously processed in several premotor cortical sites, segmental circuitry is directly exposed to this processing via descending pathways which originate from these sites in parallel to descending fibers that derive from primary motor cortex. Recent studies have highlighted the functional role of these interactions in priming downstream elements for the ensuing motor actions. Time-resolved analysis has further emphasized the dynamic properties of pre-movement preparatory activity.
Collapse
Affiliation(s)
- Oren Cohen
- The Hebrew University, Hadassah Medical School, IMRIC, P.O. Box 12272, Jerusalem 91120 ISRAEL
| | - Efrat Sherman
- The Hebrew University, Hadassah Medical School, IMRIC, P.O. Box 12272, Jerusalem 91120 ISRAEL
| | - Nofya Zinger
- The Hebrew University, Hadassah Medical School, IMRIC, P.O. Box 12272, Jerusalem 91120 ISRAEL
| | - Steve Perlmutter
- Department of Physiology & Biophysics and the Washington National Primate Research Center, Box 357330, University of Washington, Seattle, Washington 98195, USA
| | - Yifat Prut
- The Hebrew University, Hadassah Medical School, IMRIC, P.O. Box 12272, Jerusalem 91120 ISRAEL
- The Interdisciplinary Center for Neural Computation
| |
Collapse
|
23
|
Soto O, Valls-Solé J, Kumru H. Paired-pulse transcranial magnetic stimulation during preparation for simple and choice reaction time tasks. J Neurophysiol 2010; 104:1392-400. [PMID: 20592122 DOI: 10.1152/jn.00620.2009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Motor preparation for execution of both simple and choice reaction time tasks (SRT and CRT) involves enhancement of corticospinal excitability (CE). However, motor preparation also implies changes in inhibitory control that have thus far been much less studied. Short-interval intracortical inhibition (SICI) has been shown to decrease before CE increases. Therefore we reasoned that, if SICI contributes to inhibitory control of voluntary movement during the preparatory phase, it would be larger in CRT than in SRT because of the need to keep the movement unreleased until the uncertainty resolves on which task is required. We measured changes in SICI and in CE at different time points preceding motor reaction in normal subjects. Single-pulse transcranial magnetic stimulation (spTMS) and paired-pulse transcranial magnetic stimulation (ppTMS) produced time-dependent changes in both SRT and CRT, with shortening when applied close to the presentation of the imperative signal ("early") and lengthening when applied near the expected reaction ("late"). In addition, at all stimulation time points, reaction time was shorter with ppTMS than that with spTMS, but there was no consistent association between the amount of SICI and reaction time changes. At early stimulation time points, CE was reduced in CRT but not in SRT. However, SICI in CRT was not different from SICI in SRT. At late stimulation time points, SICI decreased just before enhancement of CE. Our findings indicate that inhibitory circuits other than SICI are responsible for setting the level of CE at earlier parts of the reaction time period. Although the decrease in SICI may contribute to the increase in CE at the last part of the premotor period, the two phenomena are not dependent on each other.
Collapse
Affiliation(s)
- Oscar Soto
- Neurology Department, Clínica Teknon, Institut d'Investigació Biomèdica August Pi i Sunyer, Centro de Investigación Biomèdica en Red de Enfermedades Neurodegenerativas, Universitat de Barcelona, Barcelona, Spain
| | | | | |
Collapse
|
24
|
Abstract
Behavior arises from a constant competition between potential actions. For example, movements performed unimanually require selecting one hand rather than the other. Corticospinal (CS) excitability of the nonselected hand is typically decreased prior to movement initiation, suggesting that response selection may involve mechanisms that inhibit nonselected candidate movements. To examine this hypothesis, participants performed a reaction time task, responding with the left, right, or both indexes. Transcranial magnetic stimulation was applied over the right primary motor cortex (M1) to induce motor-evoked potentials (MEPs) in a left hand muscle at various stages during response preparation. To vary the time of response selection, an imperative signal was preceded by a preparatory cue that was either informative or uninformative. Left MEPs decreased following the cue. Surprisingly, this decrease was greater when an informative cue indicated that the response might require the left hand than when it indicated a right hand response. In the uninformative condition, we did not observe additional attenuation of left MEP after an imperative indicating a right hand response. These results argue against the "deselection" hypothesis. Rather, CS suppression seems to arise from "impulse control" mechanisms that ensure that responses associated with potentially selected actions are not initiated prematurely.
Collapse
Affiliation(s)
- Julie Duque
- Department of Psychology, University of California, Berkeley, CA 94720, USA.
| | | |
Collapse
|
25
|
van Elswijk G, Schot WD, Stegeman DF, Overeem S. Changes in corticospinal excitability and the direction of evoked movements during motor preparation: a TMS study. BMC Neurosci 2008; 9:51. [PMID: 18559096 PMCID: PMC2453131 DOI: 10.1186/1471-2202-9-51] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Accepted: 06/17/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Preparation of the direction of a forthcoming movement has a particularly strong influence on both reaction times and neuronal activity in the primate motor cortex. Here, we aimed to find direct neurophysiologic evidence for the preparation of movement direction in humans. We used single-pulse transcranial magnetic stimulation (TMS) to evoke isolated thumb-movements, of which the direction can be modulated experimentally, for example by training or by motor tasks. Sixteen healthy subjects performed brisk concentric voluntary thumb movements during a reaction time task in which the required movement direction was precued. We assessed whether preparation for the thumb movement lead to changes in the direction of TMS-evoked movements and to changes in amplitudes of motor-evoked potentials (MEPs) from the hand muscles. RESULTS When the required movement direction was precued early in the preparatory interval, reaction times were 50 ms faster than when precued at the end of the preparatory interval. Over time, the direction of the TMS-evoked thumb movements became increasingly variable, but it did not turn towards the precued direction. MEPs from the thumb muscle (agonist) were differentially modulated by the direction of the precue, but only in the late phase of the preparatory interval and thereafter. MEPs from the index finger muscle did not depend on the precued direction and progressively decreased during the preparatory interval. CONCLUSION Our data show that the human corticospinal movement representation undergoes progressive changes during motor preparation. These changes are accompanied by inhibitory changes in corticospinal excitability, which are muscle specific and depend on the prepared movement direction. This inhibition might indicate a corticospinal braking mechanism that counteracts any preparatory motor activation.
Collapse
Affiliation(s)
- Gijs van Elswijk
- Department of Clinical Neurophysiology, Radboud University Nijmegen Medical Centre, The Netherlands.
| | | | | | | |
Collapse
|
26
|
Approximate entropy of motoneuron firing patterns during a motor preparation task. J Neurosci Methods 2008; 172:231-5. [PMID: 18573536 DOI: 10.1016/j.jneumeth.2008.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 04/23/2008] [Accepted: 05/01/2008] [Indexed: 11/21/2022]
Abstract
The aim of this study was to test whether approximate entropy (ApEn) analysis provides a suitable method of detecting differences induced by a motor preparation task in time-ordered inter-spike intervals (ISIs) recorded in tonically firing motoneurons. Unlike classical methods of analyzing neuronal discharge variability, in which serial order is no taken into account, the approximate entropy (ApEn) was proposed by Pincus [Pincus SM. Approximate entropy as a measure of system complexity. Proc Natl Acad Sci USA 1991;88:2297-301] to analyze ordered series. ApEn statistic is a number assigned to an ordered series, where higher values correspond to greater serial irregularity. In the present study, the activity of 31 single motor units (SMUs) was recorded in human extensor carpi radialis muscles and the ISI durations were analyzed during the performance of a pre-cueing reaction time motor task involving a 3-s preparatory period. ApEn values were computed for each SMU during three steps of the preparatory period and during the preceding control period. Lower ApEn values, were found during preparatory period. The decrease in ApEn values, i.e., the increase in serial regularity, was monotonic from the control to the end of the preparatory period. These results show that ApEn model-independent statistics are a relevant means of detecting changes related to motor preparation in the regularity of time-ordered inter-spike intervals (ISIs).
Collapse
|