1
|
Dong H, Liu C, Qin M. The intervention effect of exercise on the attention of patients with depression: a systematic review. Front Psychol 2025; 16:1536262. [PMID: 40357475 PMCID: PMC12066460 DOI: 10.3389/fpsyg.2025.1536262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 04/08/2025] [Indexed: 05/15/2025] Open
Abstract
Objective This paper aims to systematically evaluate the intervention effect of exercise on the attention of patients with depression. Methods The randomized controlled trials of exercise intervention on the attention of patients with depression in six databases were retrieved by computer, and the quality of the included literature was evaluated by the PEDro scale. The meta-analysis, subgroup analysis, publication bias test, and sensitivity analysis were performed by Stata 17.0, and the quality of evidence was evaluated by GRADEpro. Results A total of 11 literature involving 924 patients with depression were included. The results showed that exercise could improve the attention of patients with depression (Hedge's g = 0.17, p = 0.01), exercise intensity (p = 0.00) had a regulatory effect on the intervention effect, and exercise form (p = 0.77), exercise duration (p = 0.58) and exercise cycle (p = 0.66) had no regulatory effect on the intervention effect. Conclusion Exercise can improve the attention of patients with depression, among which moderate intensity has the best effect. This study has been registered on the international prospective register of systematic reviews Prospero (CRD4202477699).
Collapse
Affiliation(s)
- Haijun Dong
- Department of Physical Education, University of Shanghai for Science and Technology, Shanghai, China
| | - Cong Liu
- School of Physical Education, Shanghai University of Sport, Shanghai, China
| | - Man Qin
- School of Sports and Health, Shanghai Linxin Accounting and Finance University, Shanghai, China
| |
Collapse
|
2
|
Beaume JB, Di Domenico H, Bowen M, Hintzy F, Millet GY, Pageaux B, Debevec T, Rupp T. Neuromuscular Fatigue Induced by Cycling at a Fixed Level of Perceived Effort: Effects of Different Purported Hypoxic Methods. Scand J Med Sci Sports 2025; 35:e70021. [PMID: 39910013 DOI: 10.1111/sms.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 02/07/2025]
Abstract
We compared neuromuscular fatigue induced by cycling at a fixed perceived effort in normoxic condition (NOR) and three purported hypoxia modalities: systemic hypoxia (SyH, FiO2 = 0.13), blood flow restriction (BFR, 50% arterial occlusion pressure) and airflow restriction mask (ARM, calibrated to ~3500 m). Seventeen healthy young participants cycled for 20 min at a self-selected power output corresponding to a hard effort (15/20, Borg scale) on an innovative cycle ergometer allowing immediate neuromuscular evaluation. Isometric maximum voluntary contraction of the knee extensors (IMVC), central (voluntary activation, VA) and peripheral fatigue were measured before and every 5 min during cycling. Power output, peripheral oxygen saturation (SpO2), quadriceps oxygenation (near-infrared spectroscopy, TSI) and pain were assessed throughout cycling. Power output was lower in BFR and SyH compared to NOR and ARM and was lower in BFR compared to SyH. SpO2 was reduced only in SyH (mean 77% ± 4%). In all conditions, IMVC decreased from minute 5 and subsequently plateaued (~-10% to -20%), except in BFR, wherein it further declined to -40% ± 14% at minute 20 in the presence of lowered VA and exacerbated muscle pain compared to other conditions. Muscle TSI was further decreased in SyH compared to other conditions. Our results confirm the inability of ARM to induce hypoxia. Compared to other conditions, BFR showed a greater reduction in IMVC and VA, in the presence of a higher quadriceps pain and no greater muscle deoxygenation. These results underline the psychophysiological impact of quadriceps pain on both maximal and submaximal motor output.
Collapse
Affiliation(s)
- Jean-Baptiste Beaume
- Inter-University Laboratory of Human Movement Sciences, University Savoie Mont-Blanc, Chambéry, France
| | - Hervé Di Domenico
- Inter-University Laboratory of Human Movement Sciences, University Savoie Mont-Blanc, Chambéry, France
| | - Maximilien Bowen
- Inter-University Laboratory of Human Movement Sciences, University Savoie Mont-Blanc, Chambéry, France
| | - Frédérique Hintzy
- Inter-University Laboratory of Human Movement Sciences, University Savoie Mont-Blanc, Chambéry, France
| | - Guillaume Y Millet
- Inter-University Laboratory of Human Movement Sciences, UJM Saint-Etienne, Saint-Etienne, France
| | - Benjamin Pageaux
- École de Kinésiologie et Des Sciences de l'Activité Physique (EKSAP), Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, Québec, Canada
- Centre Interdisciplinaire de Recherche Sur le Cerveau et l'Apprentissage (CIRCA), Montréal, Québec, Canada
| | - Tadej Debevec
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Thomas Rupp
- Inter-University Laboratory of Human Movement Sciences, University Savoie Mont-Blanc, Chambéry, France
| |
Collapse
|
3
|
Megaritis D, Echevarria C, Vogiatzis I. Respiratory and locomotor muscle blood flow measurements using near-infrared spectroscopy and indocyanine green dye in health and disease. Chron Respir Dis 2024; 21:14799731241246802. [PMID: 38590151 PMCID: PMC11003331 DOI: 10.1177/14799731241246802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/13/2024] [Accepted: 03/21/2024] [Indexed: 04/10/2024] Open
Abstract
Measuring respiratory and locomotor muscle blood flow during exercise is pivotal for understanding the factors limiting exercise tolerance in health and disease. Traditional methods to measure muscle blood flow present limitations for exercise testing. This article reviews a method utilising near-infrared spectroscopy (NIRS) in combination with the light-absorbing tracer indocyanine green dye (ICG) to simultaneously assess respiratory and locomotor muscle blood flow during exercise in health and disease. NIRS provides high spatiotemporal resolution and can detect chromophore concentrations. Intravenously administered ICG binds to albumin and undergoes rapid metabolism, making it suitable for repeated measurements. NIRS-ICG allows calculation of local muscle blood flow based on the rate of ICG accumulation in the muscle over time. Studies presented in this review provide evidence of the technical and clinical validity of the NIRS-ICG method in quantifying respiratory and locomotor muscle blood flow. Over the past decade, use of this method during exercise has provided insights into respiratory and locomotor muscle blood flow competition theory and the effect of ergogenic aids and pharmacological agents on local muscle blood flow distribution in COPD. Originally, arterial blood sampling was required via a photodensitometer, though the method has subsequently been adapted to provide a local muscle blood flow index using venous cannulation. In summary, the significance of the NIRS-ICG method is that it provides a minimally invasive tool to simultaneously assess respiratory and locomotor muscle blood flow at rest and during exercise in health and disease to better appreciate the impact of ergogenic aids or pharmacological treatments.
Collapse
Affiliation(s)
- Dimitrios Megaritis
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University Newcastle, Newcastle Upon Tyne, UK
| | - Carlos Echevarria
- Respiratory department, The Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
- ICM, Newcastle University, Newcastle Upon Tyne, UK
| | - Ioannis Vogiatzis
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University Newcastle, Newcastle Upon Tyne, UK
| |
Collapse
|
4
|
Cherouveim ED, Miliotis PG, Koskolou MD, Dipla K, Vrabas IS, Geladas ND. The Effect of Skeletal Muscle Oxygenation on Hemodynamics, Cerebral Oxygenation and Activation, and Exercise Performance during Incremental Exercise to Exhaustion in Male Cyclists. BIOLOGY 2023; 12:981. [PMID: 37508410 PMCID: PMC10376807 DOI: 10.3390/biology12070981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023]
Abstract
This study aimed to elucidate whether muscle blood flow restriction during maximal exercise is associated with alterations in hemodynamics, cerebral oxygenation, cerebral activation, and deterioration of exercise performance in male participants. Thirteen healthy males, cyclists (age 33 ± 2 yrs., body mass: 78.6 ± 2.5 kg, and body mass index: 25.57 ± 0.91 kg·m-1), performed a maximal incremental exercise test on a bicycle ergometer in two experimental conditions: (a) with muscle blood flow restriction through the application of thigh cuffs inflated at 120 mmHg (with cuffs, WC) and (b) without restriction (no cuffs, NC). Exercise performance significantly deteriorated with muscle blood flow restriction, as evidenced by the reductions in V˙O2max (-17 ± 2%, p < 0.001), peak power output (-28 ± 2%, p < 0.001), and time to exhaustion (-28 ± 2%, p < 0.001). Muscle oxygenated hemoglobin (Δ[O2Hb]) during exercise declined more in the NC condition (p < 0.01); however, at exhaustion, the magnitude of muscle oxygenation and muscle deoxygenation were similar between conditions (p > 0.05). At maximal effort, lower cerebral deoxygenated hemoglobin (Δ[HHb]) and cerebral total hemoglobin (Δ[THb]) were observed in WC (p < 0.001), accompanied by a lower cardiac output, heart rate, and stroke volume vs. the NC condition (p < 0.01), whereas systolic blood pressure, rating of perceived exertion, and cerebral activation (as assessed by electroencephalography (EEG) activity) were similar (p > 0.05) between conditions at task failure, despite marked differences in exercise duration, maximal aerobic power output, and V˙O2max. In conclusion, in trained cyclists, muscle blood flow restriction during an incremental cycling exercise test significantly limited exercise performance. Exercise intolerance with muscle blood flow restriction was mainly associated with attenuated cardiac responses, despite cerebral activation reaching similar maximal levels as without muscle blood flow restriction.
Collapse
Affiliation(s)
- Evgenia D Cherouveim
- Division of Sports Medicine and Biology of Exercise, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, 17237 Athens, Greece
| | - Panagiotis G Miliotis
- Division of Sports Medicine and Biology of Exercise, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, 17237 Athens, Greece
| | - Maria D Koskolou
- Division of Sports Medicine and Biology of Exercise, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, 17237 Athens, Greece
| | - Konstantina Dipla
- Laboratory of Exercise Physiology and Biochemistry, School of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, 62122 Serres, Greece
| | - Ioannis S Vrabas
- Laboratory of Exercise Physiology and Biochemistry, School of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, 62122 Serres, Greece
| | - Nickos D Geladas
- Division of Sports Medicine and Biology of Exercise, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, 17237 Athens, Greece
| |
Collapse
|
5
|
Chroboczek M, Kujach S, Łuszczyk M, Soya H, Laskowski R. Exercise-Induced Elevated BDNF Concentration Seems to Prevent Cognitive Impairment after Acute Exposure to Moderate Normobaric Hypoxia among Young Men. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3629. [PMID: 36834322 PMCID: PMC9961746 DOI: 10.3390/ijerph20043629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Memory impairment, reduced learning ability, decreased concentration, and psychomotor performance can be all signs of deleterious impact of hypoxia on cognitive functioning. In turn, physical exercise can improve performance and enhance cognitive functions. The purpose of this study was to investigate whether the potential positive effects of exercise performed under normobaric hypoxia can counteract the negative effects of hypoxia on cognitive function, and whether these changes correlate with brain-derived neurotrophic factor (BDNF) concentrations. Seventeen healthy subjects participated in a crossover study where they performed two sessions of single breathing bouts combined with moderate intensity exercise under two conditions: normoxia (NOR EX) and normobaric hypoxia (NH EX). To assess cognitive function, Stroop test was applied. There were no significant differences in any part of the Stroop interference test regardless of the conditions (NOR, NH), despite a statistical decrease in SpO2 (p < 0.0001) under normobaric hypoxic conditions. In addition, a statistical increase (p < 0.0001) in BDNF concentration was observed after both conditions. Acute exercise under normobaric hypoxia did not impair cognitive function despite a significant decrease in SpO2. Exercise in such conditions may offset the negative effects of hypoxia alone on cognitive function. This may be related to the significant increase in BDNF concentration and, as a consequence, positively affect the executive functions.
Collapse
Affiliation(s)
- Maciej Chroboczek
- Department of Physiology, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland
| | - Sylwester Kujach
- Department of Physiology, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland
| | - Marcin Łuszczyk
- Department of Physiology, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland
| | - Hideaki Soya
- Sports Neuroscience Division, Advanced Research Initiative for Human High Performance, Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba 305-8574, Japan
| | - Radosław Laskowski
- Department of Physiology, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Department of Sports Neuroscience, Advanced Research Initiative for Human High Performance (ARIHHP), Faculty of Health and Sports Sciences, University of Tsukuba, Tsukuba 305-8574, Japan
| |
Collapse
|
6
|
Mou H, Fang Q, Tian S, Qiu F. Effects of acute exercise with different modalities on working memory in men with high and low aerobic fitness. Physiol Behav 2023; 258:114012. [PMID: 36341835 DOI: 10.1016/j.physbeh.2022.114012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/05/2022]
Abstract
OBJECTIVES This study aimed to determine the effects of high-intensity interval exercise (HIIE) and moderate-intensity continuous exercise (MICE) on working memory in individuals with high and low aerobic fitness. DESIGN The protocol adopted a between-subjects crossover design. METHODS Forty healthy male college students (mean age = 19.59 ± 1.00 years) were assigned to high fitness (n = 20) or low fitness (n = 20) groups based on their estimated maximum oxygen consumption (VO2max) in the 20 m shuttle run test. All participants were instructed to engage in three acute exercise interventions (10 min HIIE, 20 min HIIE, 20 min MICE) and a reading control intervention on separate days in a randomized order. A spatial 2-back task was performed before and after each intervention to assess working memory. RESULTS Analyses of the 2-back task performance revealed that the working memory of high and low fitness participants benefited from different modalities of acute exercise. Specifically, reaction time in the 2-back task was significantly shorter after 20 min HIIE compared to pre-exercise in high fitness participants, whereas low fitness participants had significantly faster reaction time in the 2-back task after 20 min MICE and 10 min HIIE relative to pre-exercise. CONCLUSIONS The effects of acute aerobic exercise on working memory are modulated by a combination of exercise modality and aerobic fitness. This finding has important implications for providing experimental evidence that participants choose appropriate exercise to undertake based on their level of aerobic fitness to improve cognitive performance.
Collapse
Affiliation(s)
- Hong Mou
- Department of Physical Education, Qingdao University, Qingdao, 266071, China
| | - Qun Fang
- Department of Physical Education, Qingdao University, Qingdao, 266071, China
| | - Shudong Tian
- Department of Physical Education, Qingdao University, Qingdao, 266071, China
| | - Fanghui Qiu
- Department of Physical Education, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
7
|
Janicijevic D, Miras-Moreno S, Pérez Castilla A, Vera J, Redondo B, Jiménez R, García-Ramos A. Association of military-specific reaction time performance with physical fitness and visual skills. PeerJ 2022; 10:e14007. [PMID: 36068867 PMCID: PMC9441139 DOI: 10.7717/peerj.14007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/14/2022] [Indexed: 01/19/2023] Open
Abstract
Background The aim of the present study was to explore whether military-specific reaction time (RT) test performance is affected by individuals' physical and visual skills. Method In a single testing session, the military-specific Simple and Go, No-Go RT, aerobic power (20-m Multistage Shuttle Run test), maximal upper- and lower-body mechanical capacities (bench press and squat against different loads), and visual skills (multiple object tracking and dynamic visual acuity) of 30 young men (15 active-duty military personnel and 15 sport science students) were evaluated. Results The main findings revealed that the Simple RT and Go, No-Go RT presented (1) with aerobic power non-significant small correlations in military personnel (r = -0.39 and -0.35, respectively) and non-significant negligible correlations in sport science students (r = -0.10 and 0.06, respectively), (2) inconsistent and generally non-significant correlations with the maximal mechanical capacities of the upper- and lower-body muscles (r range = -0.10, 0.67 and -0.27, 0.48, respectively), (3) non-significant correlations with visual skills (r magnitude ≥ 0.58) with the only exception of the Go, No-Go RT that was significantly correlated to all visual variables in the group of students (i.e., students who achieved better results during visual tests had shorter RT; r magnitude ≥ 0.58), and (4) none of the physical and visual variables significantly predicted the Simple RT or Go, No-Go RT. Conclusion Altogether, these results indicate that military-specific RT performance is generally independent of physical and visual skills in both military personnel and active university students.
Collapse
Affiliation(s)
- Danica Janicijevic
- Faculty of Sports Science, Ningbo University, Ningbo, China,Research Academy of Human Biomechanics, The Affiliated Hospital of Medical School of Ningbo University, Ningbo University, Ningbo, China,University of Belgrade, Faculty of Sport and Physical Education, The Research Centre, Belgrade, Serbia
| | - Sergio Miras-Moreno
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Alejandro Pérez Castilla
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain
| | - Jesus Vera
- CLARO (Clinical and Laboratory Applications of Research in Optometry) Research Group, Department of Optics, Faculty of Sciences, University of Granada, Granada, Spain
| | - Beatriz Redondo
- CLARO (Clinical and Laboratory Applications of Research in Optometry) Research Group, Department of Optics, Faculty of Sciences, University of Granada, Granada, Spain
| | - Raimundo Jiménez
- CLARO (Clinical and Laboratory Applications of Research in Optometry) Research Group, Department of Optics, Faculty of Sciences, University of Granada, Granada, Spain
| | - Amador García-Ramos
- Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain,Department of Sports Sciences and Physical Conditioning, Faculty of Education, Universidad Católica de la Santísima Concepción, Concepción, Chile
| |
Collapse
|
8
|
Rupp T, Saugy JJ, Bourdillon N, Millet GP. Brain-muscle interplay during endurance self-paced exercise in normobaric and hypobaric hypoxia. Front Physiol 2022; 13:893872. [PMID: 36091393 PMCID: PMC9453479 DOI: 10.3389/fphys.2022.893872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/27/2022] [Indexed: 11/30/2022] Open
Abstract
Purpose: Hypoxia is one major environmental factor, supposed to mediate central motor command as well as afferent feedbacks at rest and during exercise. By using a comparison of normobaric (NH) and hypobaric (HH) hypoxia with the same ambient pressure in oxygen, we examined the potential differences on the cerebrovascular and muscular regulation interplay during a self-paced aerobic exercise. Methods: Sixteen healthy subjects performed three cycling time-trials (250 kJ) in three conditions: HH, NH and normobaric normoxia (NN) after 24 h of exposure. Cerebral and muscular oxygenation were assessed by near-infrared spectroscopy, cerebral blood flow by Doppler ultrasound system. Gas exchanges, peripheral oxygen saturation, power output and associated pacing strategies were also continuously assessed. Results: The cerebral oxygen delivery was lower in hypoxia than in NN but decreased similarly in both hypoxic conditions. Overall performance and pacing were significantly more down-regulated in HH versus NH, in conjunction with more impaired systemic (e.g. saturation and cerebral blood flow) and prefrontal cortex oxygenation during exercise. Conclusions: The difference in pacing was likely the consequence of a complex interplay between systemic alterations and cerebral oxygenation observed in HH compared to NH, aiming to maintain an equivalent cerebral oxygen delivery despite higher adaptive cost (lower absolute power output for the same relative exercise intensity) in HH compared to NH.
Collapse
Affiliation(s)
- Thomas Rupp
- LIBM, Inter-university Laboratory of Human Movement Science, University Savoie Mont Blanc, Chambéry, France
| | - Jonas J. Saugy
- ISSUL, Faculty of Biology and Medicine, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Bourdillon
- ISSUL, Faculty of Biology and Medicine, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Grégoire P. Millet
- ISSUL, Faculty of Biology and Medicine, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
- *Correspondence: Grégoire P. Millet,
| |
Collapse
|
9
|
Vrinceanu T, Blanchette CA, Intzandt B, Lussier M, Pothier K, Vu TTM, Nigam A, Bosquet L, Karelis AD, Li KZH, Berryman N, Bherer L. A Comparison of the Effect of Physical Activity and Cognitive Training on Dual-Task Performance in Older Adults. J Gerontol B Psychol Sci Soc Sci 2022; 77:1069-1079. [PMID: 34865009 PMCID: PMC9159062 DOI: 10.1093/geronb/gbab216] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVES Studies suggest that cognitive training and physical activity can improve age-related deficits in dual-task performances. However, both of these interventions have never been compared in the same study. This article investigates the improvement in dual-task performance in 2 types of exercise training groups and a cognitive training group and explores if there are specific dual-task components that are more sensitive or more likely to improve following each type of training. METHODS Seventy-eight healthy inactive participants older than the age of 60 (M = 69.98, SD = 5.56) were randomized to one of three 12-week training programs: aerobic training (AET) = 26, gross motor abilities (GMA) = 27, and cognition (COG) = 25. Before and after the training program, the participants underwent physical fitness tests, and cognitive evaluations involving a computerized cognitive dual task. The AET consisted of high- and low-intensity aerobic training, the GMA of full-body exercises focusing on agility, balance, coordination, and stretching, and the COG of tablet-based exercises focusing on executive functions. RESULTS Repeated-measures analysis of variance on reaction time data revealed a group × time interaction (F(2,75) = 11.91, p < .01) with COG having the greatest improvement, followed by a significant improvement in the GMA group. Secondary analysis revealed the COG to also improve the intraindividual variability in reaction time (F(1,24) = 8.62, p < .01), while the GMA improved the dual-task cost (F(1,26) = 12.74, p < .01). DISCUSSION The results show that physical and cognitive training can help enhance dual-task performance by improving different aspects of the task, suggesting that different mechanisms are in play.
Collapse
Affiliation(s)
- Tudor Vrinceanu
- Department of Medicine, University of Montréal, Montréal, Quebec, Canada
- Research Centre, Montreal Heart Institute, Montréal, Quebec, Canada
| | - Caroll-Ann Blanchette
- Department of Medicine, University of Montréal, Montréal, Quebec, Canada
- Research Centre, Montreal Heart Institute, Montréal, Quebec, Canada
| | - Brittany Intzandt
- Research Centre, Montreal Heart Institute, Montréal, Quebec, Canada
- School of Graduate Studies, Concordia University, Montreal, Quebec, Canada
| | - Maxime Lussier
- Research Centre, Institut Universitaire de Gériatrie de Montréal, Montréal, Quebec, Canada
- Rehabilitation Science, Faculty of Medicine, University of Montréal, Montréal, Quebec, Canada
| | - Kristell Pothier
- Research Centre, Institut Universitaire de Gériatrie de Montréal, Montréal, Quebec, Canada
- EA 2114, Psychologie des Âges de la Vie et Adaptation, University of Tours, Tours, France
| | - Thien Tuong Minh Vu
- Department of Medicine, University of Montréal, Montréal, Quebec, Canada
- Research Centre, Centre hospitalier de l’Université de Montréal, Montréal, Quebec, Canada
| | - Anil Nigam
- Department of Medicine, University of Montréal, Montréal, Quebec, Canada
- Research Centre, Montreal Heart Institute, Montréal, Quebec, Canada
| | - Laurent Bosquet
- Laboratoire MOVE (EA6314), Université de Poitiers, Faculté des sciences du sport, Poitiers, France
- Ecole de kinésiologie et des sciences de l’activité physique, Faculté de médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Antony D Karelis
- Research Centre, Institut Universitaire de Gériatrie de Montréal, Montréal, Quebec, Canada
- Département des Sciences de l’Activité Physique, Université du Québec à Montréal, Montréal, Quebec, Canada
| | - Karen Z H Li
- PERFORM Centre, Concordia University, Montréal, Quebec, Canada
- Department of Psychology, Concordia University, Montreal, Quebec, Canada
| | - Nicolas Berryman
- Research Centre, Institut Universitaire de Gériatrie de Montréal, Montréal, Quebec, Canada
- Département des Sciences de l’Activité Physique, Université du Québec à Montréal, Montréal, Quebec, Canada
| | - Louis Bherer
- Department of Medicine, University of Montréal, Montréal, Quebec, Canada
- Research Centre, Montreal Heart Institute, Montréal, Quebec, Canada
| |
Collapse
|
10
|
Mou H, Tian S, Fang Q, Qiu F. The Immediate and Sustained Effects of Moderate-Intensity Continuous Exercise and High-Intensity Interval Exercise on Working Memory. Front Psychol 2022; 13:766679. [PMID: 35242075 PMCID: PMC8887601 DOI: 10.3389/fpsyg.2022.766679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 01/27/2022] [Indexed: 12/22/2022] Open
Abstract
This study investigated the immediate and delayed effects of moderate-intensity continuous exercise (MICE) and high-intensity interval exercise (HIIE) on working memory. Fifty healthy young adults (mean age = 19.96 ± 1.03 years) engaged in (1) a MICE session, 20 min of continuous running on a treadmill at an intensity of 40–59% of heart rate reserve (HRR); (2) a HIIE session, 10 sets of 1 min running at an intensity of 90% HRR, interspersed by 1 min self-paced walking at 50% HRR; and (3) a control session, resting in a chair and reading books for 24 min. A spatial 2-back task was performed to assess working memory before, immediately after and 30 min after each intervention. Reaction time in the 2-back task was significantly reduced immediately after both MICE and HIIE interventions. The enhanced working memory associated with HIIE sustained for 30 min after the exercise, whereas the beneficial effects associated with MICE returned to the pre-exercise level at 30 min after the exercise. These results suggest that although both MICE and HIIE enhance working memory in young adults, the positive effect sustains longer in HIIE than that in MICE. The current study extends the existing knowledge base by suggesting that improvements in working memory with HIIE last longer than with MICE.
Collapse
Affiliation(s)
- Hong Mou
- Department of Physical Education, Qingdao University, Qingdao, China
| | - Shudong Tian
- Department of Physical Education, Qingdao University, Qingdao, China
| | - Qun Fang
- Department of Physical Education, Qingdao University, Qingdao, China
| | - Fanghui Qiu
- Department of Physical Education, Qingdao University, Qingdao, China
| |
Collapse
|
11
|
Goulart CDL, Caruso FR, de Araújo ASG, de Moura SCG, Catai AM, Agostoni P, Mendes RG, Arena R, Borghi-Silva A. Can Non-invasive Ventilation Modulate Cerebral, Respiratory, and Peripheral Muscle Oxygenation During High-Intensity Exercise in Patients With COPD-HF? Front Cardiovasc Med 2022; 8:772650. [PMID: 35174218 PMCID: PMC8841720 DOI: 10.3389/fcvm.2021.772650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/29/2021] [Indexed: 11/21/2022] Open
Abstract
Aim To evaluate the effect of non-invasive positive pressure ventilation (NIPPV) on (1) metabolic, ventilatory, and hemodynamic responses; and (2) cerebral (Cox), respiratory, and peripheral oxygenation when compared with SHAM ventilation during the high-intensity exercise in patients with coexisting chronic obstructive pulmonary disease (COPD) and heart failure (HF). Methods and Results On separate days, patients performed incremental cardiopulmonary exercise testing and two constant-work rate tests receiving NIPPV or controlled ventilation (SHAM) (the bilevel mode—Astral 150) in random order until the limit of tolerance (Tlim). During exercise, oxyhemoglobin (OxyHb+Mb) and deoxyhemoglobin (DeoxyHb+Mb) were assessed using near-infrared spectroscopy (Oxymon, Artinis Medical Systems, Einsteinweg, The Netherlands). NIPPV associated with high-intensity exercise caused a significant increase in exercise tolerance, peak oxygen consumption (V·O2 in mlO2·kg−1·min−1), minute ventilation peak (V·E in ml/min), peak peripheral oxygen saturation (SpO2, %), and lactate/tlim (mmol/s) when compared with SHAM ventilation. In cerebral, respiratory, and peripheral muscles, NIPPV resulted in a lower drop in OxyHb+Mb (p < 0.05) and an improved deoxygenation response DeoxyHb+Mb (p < 0.05) from the half of the test (60% of Tlim) when compared with SHAM ventilation. Conclusion Non-invasive positive pressure ventilation during constant work-rate exercise led to providing the respiratory muscle unloading with greater oxygen supply to the peripheral muscles, reducing muscle fatigue, and sustaining longer exercise time in patients with COPD-HF.
Collapse
Affiliation(s)
- Cássia da Luz Goulart
- Cardiopulmonary Physiotherapy Laboratory, Physiotherapy Department, Federal University of Sao Carlos, UFSCar, Sao Carlos, Brazil
| | - Flávia Rossi Caruso
- Cardiopulmonary Physiotherapy Laboratory, Physiotherapy Department, Federal University of Sao Carlos, UFSCar, Sao Carlos, Brazil
| | - Adriana Sanches Garcia de Araújo
- Cardiopulmonary Physiotherapy Laboratory, Physiotherapy Department, Federal University of Sao Carlos, UFSCar, Sao Carlos, Brazil
| | | | - Aparecida Maria Catai
- Cardiovascular Physical Therapy Laboratory, Physiotherapy Department, Federal University of São Carlos, Sao Carlos, Brazil
| | - Piergiuseppe Agostoni
- Cardiovascular Section, Department of Clinical Sciences and Community Health, Centro Cardiologico Monzino, University of Milano, Milan, Italy
| | - Renata Gonçalves Mendes
- Cardiopulmonary Physiotherapy Laboratory, Physiotherapy Department, Federal University of Sao Carlos, UFSCar, Sao Carlos, Brazil
| | - Ross Arena
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Audrey Borghi-Silva
- Cardiopulmonary Physiotherapy Laboratory, Physiotherapy Department, Federal University of Sao Carlos, UFSCar, Sao Carlos, Brazil
- *Correspondence: Audrey Borghi-Silva
| |
Collapse
|
12
|
Travers G, Kippelen P, Trangmar SJ, González-Alonso J. Physiological Function during Exercise and Environmental Stress in Humans-An Integrative View of Body Systems and Homeostasis. Cells 2022; 11:383. [PMID: 35159193 PMCID: PMC8833916 DOI: 10.3390/cells11030383] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/26/2022] Open
Abstract
Claude Bernard's milieu intérieur (internal environment) and the associated concept of homeostasis are fundamental to the understanding of the physiological responses to exercise and environmental stress. Maintenance of cellular homeostasis is thought to happen during exercise through the precise matching of cellular energetic demand and supply, and the production and clearance of metabolic by-products. The mind-boggling number of molecular and cellular pathways and the host of tissues and organ systems involved in the processes sustaining locomotion, however, necessitate an integrative examination of the body's physiological systems. This integrative approach can be used to identify whether function and cellular homeostasis are maintained or compromised during exercise. In this review, we discuss the responses of the human brain, the lungs, the heart, and the skeletal muscles to the varying physiological demands of exercise and environmental stress. Multiple alterations in physiological function and differential homeostatic adjustments occur when people undertake strenuous exercise with and without thermal stress. These adjustments can include: hyperthermia; hyperventilation; cardiovascular strain with restrictions in brain, muscle, skin and visceral organs blood flow; greater reliance on muscle glycogen and cellular metabolism; alterations in neural activity; and, in some conditions, compromised muscle metabolism and aerobic capacity. Oxygen supply to the human brain is also blunted during intense exercise, but global cerebral metabolism and central neural drive are preserved or enhanced. In contrast to the strain seen during severe exercise and environmental stress, a steady state is maintained when humans exercise at intensities and in environmental conditions that require a small fraction of the functional capacity. The impact of exercise and environmental stress upon whole-body functions and homeostasis therefore depends on the functional needs and differs across organ systems.
Collapse
Affiliation(s)
- Gavin Travers
- The European Astronaut Centre, The European Space Agency, Linder Höhe, 51147 Cologne, Germany;
| | - Pascale Kippelen
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge UB8 3PH, UK;
- Division of Sport, Health and Exercise Sciences, Department of Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Steven J. Trangmar
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK;
| | - José González-Alonso
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge UB8 3PH, UK;
- Division of Sport, Health and Exercise Sciences, Department of Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| |
Collapse
|
13
|
Fan JL, Wu TY, Lovering AT, Nan L, Bang WL, Kayser B. Differential Brain and Muscle Tissue Oxygenation Responses to Exercise in Tibetans Compared to Han Chinese. Front Physiol 2021; 12:617954. [PMID: 33716766 PMCID: PMC7943468 DOI: 10.3389/fphys.2021.617954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/18/2021] [Indexed: 11/13/2022] Open
Abstract
The Tibetans’ better aerobic exercise capacity at altitude remains ill-understood. We tested the hypothesis that Tibetans display better muscle and brain tissue oxygenation during exercise in hypoxia. Using near-infrared spectrometry (NIRS) to provide indices of tissue oxygenation, we measured oxy- and deoxy-hemoglobin ([O2Hb] and [HHb], respectively) responses of the vastus lateralis muscle and the right prefrontal cortex in ten Han Chinese and ten Tibetans during incremental cycling to exhaustion in a pressure-regulated chamber at simulated sea-level (air at 1 atm: normobaric normoxia) and 5,000 m (air at 0.5 atm: hypobaric hypoxia). Hypoxia reduced aerobic capacity by ∼22% in both groups (d = 0.8, p < 0.001 vs. normoxia), while Tibetans consistently outperformed their Han Chinese counterpart by ∼32% in normoxia and hypoxia (d = 1.0, p = 0.008). We found cerebral [O2Hb] was higher in Tibetans at normoxic maximal effort compared Han (p = 0.001), while muscle [O2Hb] was not different (p = 0.240). Hypoxic exercise lowered muscle [O2Hb] in Tibetans by a greater extent than in Han (interaction effect: p < 0.001 vs. normoxic exercise). Muscle [O2Hb] was lower in Tibetans when compared to Han during hypoxic exercise (d = 0.9, p = 0.003), but not during normoxic exercise (d = 0.4, p = 0.240). Muscle [HHb] was not different between the two groups during normoxic and hypoxic exercise (p = 0.778). Compared to Han, our findings revealed a higher brain tissue oxygenation in Tibetans during maximal exercise in normoxia, but lower muscle tissue oxygenation during exercise in hypoxia. This would suggest that the Tibetans privileged oxygenation of the brain at the expense of that of the muscle.
Collapse
Affiliation(s)
- Jui-Lin Fan
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Tian Yi Wu
- Research Center for High Altitude Medicine, Tibet University Medical College, Lhasa, China.,National Key Laboratory of High Altitude Medicine, Xining, China
| | - Andrew T Lovering
- Department of Human Physiology, University of Oregon, Eugene, OR, United States
| | - Liya Nan
- National Key Laboratory of High Altitude Medicine, Xining, China
| | - Wang Liang Bang
- National Key Laboratory of High Altitude Medicine, Xining, China
| | - Bengt Kayser
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
14
|
Costa VAB, Midgley AW, Carroll S, Astorino TA, de Paula T, Farinatti P, Cunha FA. Is a verification phase useful for confirming maximal oxygen uptake in apparently healthy adults? A systematic review and meta-analysis. PLoS One 2021; 16:e0247057. [PMID: 33596256 PMCID: PMC7888616 DOI: 10.1371/journal.pone.0247057] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 01/30/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The 'verification phase' has emerged as a supplementary procedure to traditional maximal oxygen uptake (VO2max) criteria to confirm that the highest possible VO2 has been attained during a cardiopulmonary exercise test (CPET). OBJECTIVE To compare the highest VO2 responses observed in different verification phase procedures with their preceding CPET for confirmation that VO2max was likely attained. METHODS MEDLINE (accessed through PubMed), Web of Science, SPORTDiscus, and Cochrane (accessed through Wiley) were searched for relevant studies that involved apparently healthy adults, VO2max determination by indirect calorimetry, and a CPET on a cycle ergometer or treadmill that incorporated an appended verification phase. RevMan 5.3 software was used to analyze the pooled effect of the CPET and verification phase on the highest mean VO2. Meta-analysis effect size calculations incorporated random-effects assumptions due to the diversity of experimental protocols employed. I2 was calculated to determine the heterogeneity of VO2 responses, and a funnel plot was used to check the risk of bias, within the mean VO2 responses from the primary studies. Subgroup analyses were used to test the moderator effects of sex, cardiorespiratory fitness, exercise modality, CPET protocol, and verification phase protocol. RESULTS Eighty studies were included in the systematic review (total sample of 1,680 participants; 473 women; age 19-68 yr.; VO2max 3.3 ± 1.4 L/min or 46.9 ± 12.1 mL·kg-1·min-1). The highest mean VO2 values attained in the CPET and verification phase were similar in the 54 studies that were meta-analyzed (mean difference = 0.03 [95% CI = -0.01 to 0.06] L/min, P = 0.15). Furthermore, the difference between the CPET and verification phase was not affected by any of the potential moderators such as verification phase intensity (P = 0.11), type of recovery utilized (P = 0.36), VO2max verification criterion adoption (P = 0.29), same or alternate day verification procedure (P = 0.21), verification-phase duration (P = 0.35), or even according to sex, cardiorespiratory fitness level, exercise modality, and CPET protocol (P = 0.18 to P = 0.71). The funnel plot indicated that there was no significant publication bias. CONCLUSIONS The verification phase seems a robust procedure to confirm that the highest possible VO2 has been attained during a ramp or continuous step-incremented CPET. However, given the high concordance between the highest mean VO2 achieved in the CPET and verification phase, findings from the current study would question its necessity in all testing circumstances. PROSPERO REGISTRATION ID CRD42019123540.
Collapse
Affiliation(s)
- Victor A. B. Costa
- Graduate Program in Exercise Science and Sports, University of Rio de Janeiro State, Rio de Janeiro, Brazil
- Laboratory of Physical Activity and Health Promotion, University of Rio de Janeiro State, Rio de Janeiro, Brazil
| | - Adrian W. Midgley
- Department of Sport and Physical Activity, Edge Hill University, Ormskirk, Lancashire, England
| | - Sean Carroll
- Department of Sport, Health and Exercise Science, University of Hull, Hull, England
| | - Todd A. Astorino
- Department of Kinesiology, California State University, San Marcos, California, United States of America
| | - Tainah de Paula
- Department of Clinical Medicine, Clinics of Hypertension and Associated Metabolic Diseases, University of Rio de Janeiro State, Rio de Janeiro, Brazil
| | - Paulo Farinatti
- Graduate Program in Exercise Science and Sports, University of Rio de Janeiro State, Rio de Janeiro, Brazil
- Laboratory of Physical Activity and Health Promotion, University of Rio de Janeiro State, Rio de Janeiro, Brazil
| | - Felipe A. Cunha
- Graduate Program in Exercise Science and Sports, University of Rio de Janeiro State, Rio de Janeiro, Brazil
- Laboratory of Physical Activity and Health Promotion, University of Rio de Janeiro State, Rio de Janeiro, Brazil
- * E-mail: ,
| |
Collapse
|
15
|
Beć KB, Grabska J, Huck CW. Near-Infrared Spectroscopy in Bio-Applications. Molecules 2020; 25:E2948. [PMID: 32604876 PMCID: PMC7357077 DOI: 10.3390/molecules25122948] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 11/17/2022] Open
Abstract
Near-infrared (NIR) spectroscopy occupies a specific spot across the field of bioscience and related disciplines. Its characteristics and application potential differs from infrared (IR) or Raman spectroscopy. This vibrational spectroscopy technique elucidates molecular information from the examined sample by measuring absorption bands resulting from overtones and combination excitations. Recent decades brought significant progress in the instrumentation (e.g., miniaturized spectrometers) and spectral analysis methods (e.g., spectral image processing and analysis, quantum chemical calculation of NIR spectra), which made notable impact on its applicability. This review aims to present NIR spectroscopy as a matured technique, yet with great potential for further advances in several directions throughout broadly understood bio-applications. Its practical value is critically assessed and compared with competing techniques. Attention is given to link the bio-application potential of NIR spectroscopy with its fundamental characteristics and principal features of NIR spectra.
Collapse
Affiliation(s)
- Krzysztof B. Beć
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 80/82, CCB-Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria;
| | | | - Christian W. Huck
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 80/82, CCB-Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria;
| |
Collapse
|
16
|
Ando S, Komiyama T, Sudo M, Higaki Y, Ishida K, Costello JT, Katayama K. The interactive effects of acute exercise and hypoxia on cognitive performance: A narrative review. Scand J Med Sci Sports 2019; 30:384-398. [PMID: 31605635 DOI: 10.1111/sms.13573] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/09/2019] [Accepted: 10/04/2019] [Indexed: 12/13/2022]
Abstract
Acute moderate intensity exercise has been shown to improve cognitive performance. In contrast, hypoxia is believed to impair cognitive performance. The detrimental effects of hypoxia on cognitive performance are primarily dependent on the severity and duration of exposure. In this review, we describe how acute exercise under hypoxia alters cognitive performance, and propose that the combined effects of acute exercise and hypoxia on cognitive performance are mainly determined by interaction among exercise intensity and duration, the severity of hypoxia, and duration of exposure to hypoxia. We discuss the physiological mechanism(s) of the interaction and suggest that alterations in neurotransmitter function, cerebral blood flow, and possibly cerebral metabolism are the primary candidates that determine cognitive performance when acute exercise is combined with hypoxia. Furthermore, acclimatization appears to counteract impaired cognitive performance during prolonged exposure to hypoxia although the precise physiological mechanism(s) responsible for this amelioration remain to be elucidated. This review has implications for sporting, occupational, and recreational activities at terrestrial high altitude where cognitive performance is essential. Further studies are required to understand physiological mechanisms that determine cognitive performance when acute exercise is performed in hypoxia.
Collapse
Affiliation(s)
- Soichi Ando
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan
| | - Takaaki Komiyama
- Center for Education in Liberal Arts and Sciences, Osaka University, Osaka, Japan
| | - Mizuki Sudo
- Meiji Yasuda Life Foundation of Health and Welfare, Tokyo, Japan
| | - Yasuki Higaki
- Faculty of Sports Science, Fukuoka University, Fukuoka, Japan
| | - Koji Ishida
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan
| | - Joseph T Costello
- Extreme Environments Laboratory, Department of Sport and Exercise Science, University of Portsmouth, Portsmouth, UK
| | - Keisho Katayama
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan
| |
Collapse
|
17
|
Raberin A, Meric H, Mucci P, Lopez Ayerbe J, Durand F. Muscle and cerebral oxygenation during exercise in athletes with exercise-induced hypoxemia: A comparison between sea level and acute moderate hypoxia. Eur J Sport Sci 2019; 20:803-812. [PMID: 31526237 DOI: 10.1080/17461391.2019.1669717] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The objective of the present study was to evaluate the influence of exercise-induced hypoxemia (EIH) on muscle and cerebral oxygenation responses during maximal exercise in normoxia and in acute moderate hypoxia (fraction of inspired oxygen: 15.3%, 2400 m). EIH was defined as a drop in hemoglobin saturation of at least 4% for at least three consecutive minutes during maximal exercise at sea level. Twenty-five athletes performed incremental treadmill tests to assess maximal oxygen consumption (VO2max) in normoxia and in hypoxia. Oxygenation of the vastus lateralis muscle and the left prefrontal cortex of the brain was monitored using near-infrared spectroscopy. During the normoxic test, 15 athletes exhibited EIH; they displayed a larger change in muscle levels of oxyhemoglobin (ΔO2Hb) (p = 0.04) and a greater change in cerebral levels of deoxyhemoglobin (ΔHHb) (p = 0.02) than athletes without EIH (NEIH group). During the hypoxic test, muscle ΔO2Hb was lower in the EIH group than in the NEIH group (p = 0.03). At VO2max, hypoxia was associated with a smaller cerebral ΔO2Hb in both groups, and a greater cerebral ΔHHb compared to normoxia in the NEIH group only (p = 0.02). No intergroup differences in changes in muscle oxygenation were observed. The severity of O2 arterial desaturation was negatively correlated with changes in total muscle hemoglobin in normoxia (r = -0.48, p = 0.01), and positively correlated with the cerebral ΔHHb in normoxia (r = 0.45, p = 0.02). The occurrence of EIH at sea level was associated with specific muscle and cerebral oxygenation responses to exercise under both normoxia and moderate hypoxia.
Collapse
Affiliation(s)
- Antoine Raberin
- LEPSA, EA 4604, Université de Perpignan Via Domitia, Font Romeu, France
| | - Henri Meric
- LEPSA, EA 4604, Université de Perpignan Via Domitia, Font Romeu, France
| | - Patrick Mucci
- Univ. Lille, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Lille, France
| | | | - Fabienne Durand
- LEPSA, EA 4604, Université de Perpignan Via Domitia, Font Romeu, France
| |
Collapse
|
18
|
Vandekerckhove K, Coomans I, Moerman A, Panzer J, De Groote K, De Wilde H, Bove T, François K, De Wolf D, Boone J. Differences in cerebral and muscle oxygenation patterns during exercise in children with univentricular heart after Fontan operation compared to healthy peers. Int J Cardiol 2019; 290:86-92. [PMID: 31133431 DOI: 10.1016/j.ijcard.2019.05.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 04/02/2019] [Accepted: 05/17/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND We assess whether the lower exercise tolerance in children with univentricular heart (UVH) after Fontan operation is associated with altered peripheral muscular and cerebral tissue oxygenation. METHODS 18 children with UVH and 20 healthy subjects performed an incremental ramp exercise test. Changes in the cerebral and muscular pattern of oxygenated (O2Hb) and deoxygenated hemoglobin (HHb) and local tissue oxygenation (TOI) were analyzed by means of Near Infrared Spectroscopy (NIRS). Correlations between arterial saturation during exercise and tissue oxygenation were evaluated. RESULTS In UVH, maximal oxygen consumption (VO2peak/kg, 28.9 ± 7.9 vs. 46.3 ± 11.9 ml/min/kg, P < 0.001), heart rate (HRpeak, 168 ± 13 vs. 193 ± 12 bpm, P < 0.001) and load (Ppeak, 73 ± 19 vs. 133 ± 68 W, P < 0.001) were lower, VE/VCO2 slope was higher (34.5 ± 5.9 vs. 27.1 ± 3.9, P < 0.001). A faster and steeper course up to the same level of HHb and absent increase in O2Hb was seen at cerebral level in UVH; tissue oxygenation index (TOI) demonstrated a steady decrease from the start of exercise. At the muscular level, HHb curve has a similar pattern compared to controls, with an early cessation. O2Hb has a similar pattern, but with early discontinuation at a higher O2Hb-level. Muscular TOI has the same course throughout exercise, starting from a lower level. Lower arterial saturation and higher age correlated with lower VO2peak; higher amplitude of muscular TOI and lower amplitude cerebral TOI correlated with higher VO2peak. CONCLUSION Children after Fontan procedure have different oxygenation mechanisms at muscular and cerebral level. This reflects a different balance between O2 supply to O2 demand which might contribute to the reduced exercise tolerance in this patient population.
Collapse
Affiliation(s)
| | - Ilse Coomans
- Department of Pediatric Cardiology, Ghent University Hospital, Ghent, Belgium
| | - Annelies Moerman
- Department of Anesthesiology, Ghent University Hospital, Ghent, Belgium
| | - Joseph Panzer
- Department of Pediatric Cardiology, Ghent University Hospital, Ghent, Belgium
| | - Katya De Groote
- Department of Pediatric Cardiology, Ghent University Hospital, Ghent, Belgium
| | - Hans De Wilde
- Department of Pediatric Cardiology, Ghent University Hospital, Ghent, Belgium
| | - Thierry Bove
- Department of Cardiac Surgery, Ghent University Hospital, Ghent, Belgium
| | - Katrien François
- Department of Cardiac Surgery, Ghent University Hospital, Ghent, Belgium
| | - Daniel De Wolf
- Department of Pediatric Cardiology, Ghent University Hospital, Ghent, Belgium
| | - Jan Boone
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
19
|
Netz Y. Is There a Preferred Mode of Exercise for Cognition Enhancement in Older Age?-A Narrative Review. Front Med (Lausanne) 2019; 6:57. [PMID: 30984760 PMCID: PMC6450219 DOI: 10.3389/fmed.2019.00057] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 03/05/2019] [Indexed: 01/01/2023] Open
Abstract
The aim of this review is to examine the moderating effect of the mode of exercise on the exercise-cognition relationship. Is one mode of exercise more efficient in enhancing cognition than the other? For example, is aerobic exercise preferable over balance training? Based on official guidelines for old age, exercise modes include aerobic activity, strength (resistance) training, flexibility, balance, and coordination. In relation to cognition, these exercise modes are further divided into two categories: physical training—aerobic and strength, and motor training—balance, coordination, and flexibility. The physical training activities are repetitive and automatic in nature, and require high metabolic energy and relatively low neuromuscular effort. The motor activities involve high neuromuscular demands and relatively low metabolic demands. In addition, there are specific movement skills that require more neuromuscular effort (e.g., Tai Chi), and sometimes also greater metabolic demands (e.g., tennis). Selected studies examining the effect of various modes of exercise on cognition contend that both training categories affect neuroplasticity, and consequently cognitive functioning. However, there are two main differences between them: (1) Physical training affects cognition via improvement in cardiovascular fitness, whereas motor training affects cognition directly; (2) Physical training affects neuroplasticity and cognition in a global manner, while motor training is task-specific in increasing brain neuroplasticity and in affecting cognition. Examining the underpinnings of these pathways reveals that there is a difference in the underlying forces behind the two training categories. In the physical training category, it is the intensity of training that enhances neuroplasticity and consequently improves cognition, while in the motor activities it is the task complexity that increases neuroplasticity, which improves cognition. Dual-task training, which includes cognitive demands in addition to physical or motor activity, has proven more effective in improving cognitive functioning than a single task. The implications are that if all training components traditionally recommended by official bodies—physical as well as motor training—are efficient in enhancing cognition, then we merely have to emphasize the inclusion of all exercise modes in our routine exercise regimen for physical as well as cognitive health in advanced age.
Collapse
Affiliation(s)
- Yael Netz
- The Academic College at Wingate, Netanya, Israel
| |
Collapse
|
20
|
Liao YH, Mündel T, Yang YT, Wei CC, Tsai SC. Effects of periodic carbohydrate ingestion on endurance and cognitive performances during a 40-km cycling time-trial under normobaric hypoxia in well-trained triathletes. J Sports Sci 2019; 37:1805-1815. [PMID: 30897031 DOI: 10.1080/02640414.2019.1595338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The purpose of this study was to examine CHO ingestion on a cognitive task using a field-simulated time-trial (TT) under hypoxia in well-trained triathletes. Ten male triathletes (age: 22.1 ± 1.1 years; VO2max: 59.4 ± 1.4 ml/kg/min) participated in this double-blind/crossover/counter-balanced design study. Participants completed 3 TT trials: 1) normoxic placebo (NPLA; FiO2 = 20.9%), 2) hypoxic placebo (HPLA; FiO2 = 16.3%), and 3) hypoxic CHO (HCHO; 6% CHO provided as 2 ml/kg/15 min; FiO2 = 16.3%). During the TT, physiological responses (SpO2, HR, RPE, and blood glucose/lactate), cognitive performance, and cerebral haemodynamics were measured. Hypoxia reduced TT performance by ~3.5-4% (p < 0.05), but CHO did not affect TT performance under hypoxia. For the cognitive task, CHO slightly preserved exercise-induced cognitive reaction speed but did not affect response accuracy during hypoxic exercise. However, CHO did not preserve the decreased Hb-Diff (cerebral blood flow, CBF) and increased HHb in the prefrontal lobe (p < 0.05) during hypoxic exercise, and CHO failed to preserve hypoxia-suppressed prefrontal CBF and tissue oxygen saturation. In conclusion, the present study demonstrates that CHO is effective in sustaining reaction speed for a cognitive task but not promoting TT performance during hypoxic exercise, which would be important for strategy-/decision-making when athletes compete at moderate high-altitude.
Collapse
Affiliation(s)
- Yi-Hung Liao
- a Department of Exercise and Health Science , National Taipei University of Nursing and Health Sciences , Taipei , Taiwan
| | - Toby Mündel
- b School of Sport, Exercise and Nutrition , Massey University , Palmerston North , New Zealand
| | - Yan-Ting Yang
- a Department of Exercise and Health Science , National Taipei University of Nursing and Health Sciences , Taipei , Taiwan
| | - Chen-Chan Wei
- c Department of Aquatics , University of Taipei , Taipei , Taiwan
| | - Shiow-Chwen Tsai
- d Institute of Sports Sciences , University of Taipei , Taipei , Taiwan
| |
Collapse
|
21
|
The effect of severe and moderate hypoxia on exercise at a fixed level of perceived exertion. Eur J Appl Physiol 2019; 119:1213-1224. [PMID: 30820661 PMCID: PMC6469630 DOI: 10.1007/s00421-019-04111-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 02/21/2019] [Indexed: 02/08/2023]
Abstract
Purpose The purpose of this study was to determine the primary cues regulating perceived effort and exercise performance using a fixed-RPE protocol in severe and moderate hypoxia. Methods Eight male participants (26 ± 6 years, 76.3 ± 8.6 kg, 178.5 ± 3.6 cm, 51.4 ± 8.0 mL kg− 1 min− 1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot {V}$$\end{document}V˙O2max) completed three exercise trials in environmental conditions of severe hypoxia (FIO2 0.114), moderate hypoxia (FIO2 0.152), and normoxia (FIO2 0.202). They were instructed to continually adjust their power output to maintain a perceived effort (RPE) of 16, exercising until power output declined to 80% of the peak 30-s power output achieved. Results Exercise time was reduced (severe hypoxia 428 ± 210 s; moderate hypoxia 1044 ± 384 s; normoxia 1550 ± 590 s) according to a reduction in FIO2 (P < 0.05). The rate of oxygen desaturation during the first 3 min of exercise was accelerated in severe hypoxia (− 5.3 ± 2.8% min− 1) relative to moderate hypoxia (− 2.5 ± 1.0% min− 1) and normoxia (− 0.7 ± 0.3% min− 1). Muscle tissue oxygenation did not differ between conditions (P > 0.05). Minute ventilation increased at a faster rate according to a decrease in FIO2 (severe hypoxia 27.6 ± 6.6; moderate hypoxia 21.8 ± 3.9; normoxia 17.3 ± 3.9 L min− 1). Moderate-to-strong correlations were identified between breathing frequency (r = − 0.718, P < 0.001), blood oxygen saturation (r = 0.611, P = 0.002), and exercise performance. Conclusions The primary cues for determining perceived effort relate to progressive arterial hypoxemia and increases in ventilation.
Collapse
|
22
|
Holanda MA, Alves-de-Almeida M, Lima JW, Taunay TC, Gondim FA, P.R.Cavalcanti R, Mont’Alverne FJ, Sousa NDS, Oliveira MF, Pereira ED. Short-term effects of non-invasive ventilation on cerebral blood flow and cognitive function in COPD. Respir Physiol Neurobiol 2018; 258:53-59. [DOI: 10.1016/j.resp.2018.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/23/2018] [Accepted: 05/28/2018] [Indexed: 11/17/2022]
|
23
|
Mourot L. Limitation of Maximal Heart Rate in Hypoxia: Mechanisms and Clinical Importance. Front Physiol 2018; 9:972. [PMID: 30083108 PMCID: PMC6064954 DOI: 10.3389/fphys.2018.00972] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/02/2018] [Indexed: 12/17/2022] Open
Abstract
The use of exercise intervention in hypoxia has grown in popularity amongst patients, with encouraging results compared to similar intervention in normoxia. The prescription of exercise for patients largely rely on heart rate recordings (percentage of maximal heart rate (HRmax) or heart rate reserve). It is known that HRmax decreases with high altitude and the duration of the stay (acclimatization). At an altitude typically chosen for training (2,000-3,500 m) conflicting results have been found. Whether or not this decrease exists or not is of importance since the results of previous studies assessing hypoxic training based on HR may be biased due to improper intensity. By pooling the results of 86 studies, this literature review emphasizes that HRmax decreases progressively with increasing hypoxia. The dose–response is roughly linear and starts at a low altitude, but with large inter-study variabilities. Sex or age does not seem to be a major contributor in the HRmax decline with altitude. Rather, it seems that the greater the reduction in arterial oxygen saturation, the greater the reduction in HRmax, due to an over activity of the parasympathetic nervous system. Only a few studies reported HRmax at sea/low level and altitude with patients. Altogether, due to very different experimental design, it is difficult to draw firm conclusions in these different clinical categories of people. Hence, forthcoming studies in specific groups of patients are required to properly evaluate (1) the HRmax change during acute hypoxia and the contributing factors, and (2) the physiological and clinical effects of exercise training in hypoxia with adequate prescription of exercise training intensity if based on heart rate.
Collapse
Affiliation(s)
- Laurent Mourot
- EA 3920 Prognostic Markers and Regulatory Factors of Cardiovascular Diseases and Exercise Performance, Health, Innovation Platform, University of Franche-Comté, Besançon, France.,Tomsk Polytechnic University, Tomsk, Russia
| |
Collapse
|
24
|
Twomey R, Wrightson J, Fletcher H, Avraam S, Ross E, Dekerle J. Exercise-induced Fatigue in Severe Hypoxia after an Intermittent Hypoxic Protocol. Med Sci Sports Exerc 2018; 49:2422-2432. [PMID: 28708702 DOI: 10.1249/mss.0000000000001371] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
PURPOSE Exercise-induced central fatigue is alleviated after acclimatization to high altitude. The adaptations underpinning this effect may also be induced with brief, repeated exposures to severe hypoxia. The purpose of this study was to determine whether (i) exercise tolerance in severe hypoxia would be improved after an intermittent hypoxic (IH) protocol and (ii) exercise-induced central fatigue would be alleviated after an IH protocol. METHODS Nineteen recreationally active men were randomized into two groups who completed ten 2-h exposures in severe hypoxia (IH: partial pressure of inspired O2 82 mm Hg; n = 11) or normoxia (control; n = 8). Seven sessions involved cycling for 30 min at 25% peak power (W˙peak) in IH and at a matched heart rate in normoxia. Participants performed baseline constant-power cycling to task failure in severe hypoxia (TTF-Pre). After the intervention, the cycling trial was repeated (TTF-Post). Before and after exercise, responses to transcranial magnetic stimulation and supramaximal femoral nerve stimulation were obtained to assess central and peripheral contributions to neuromuscular fatigue. RESULTS From pre- to postexercise in TTF-Pre, maximal voluntary contraction (MVC), cortical voluntary activation (VATMS), and potentiated twitch force (Qtw,pot) decreased in both groups (all P < 0.05). After IH, TTF-Post was improved (535 ± 213 s vs 713 ± 271 s, P < 0.05) and an additional isotime trial was performed. After the IH intervention only, the reduction in MVC and VATMS was attenuated at isotime (P < 0.05). No differences were observed in the control group. CONCLUSIONS Whole-body exercise tolerance in severe hypoxia was prolonged after a protocol of IH. This may be related to an alleviation of the central contribution to neuromuscular fatigue.
Collapse
Affiliation(s)
- Rosie Twomey
- 1Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, CANADA; 2Centre for Sport and Exercise Science and Medicine, University of Brighton, Eastbourne, UNITED KINGDOM; and 3English Institute of Sport, Bisham Abbey National Sports Centre, Marlow, UNITED KINGDOM
| | | | | | | | | | | |
Collapse
|
25
|
Trangmar SJ, Chiesa ST, Kalsi KK, Secher NH, González-Alonso J. Whole body hyperthermia, but not skin hyperthermia, accelerates brain and locomotor limb circulatory strain and impairs exercise capacity in humans. Physiol Rep 2017; 5:5/2/e13108. [PMID: 28108645 PMCID: PMC5269410 DOI: 10.14814/phy2.13108] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 12/26/2022] Open
Abstract
Cardiovascular strain and hyperthermia are thought to be important factors limiting exercise capacity in heat‐stressed humans, however, the contribution of elevations in skin (Tsk) versus whole body temperatures on exercise capacity has not been characterized. To ascertain their relationships with exercise capacity, blood temperature (TB), oxygen uptake (V̇O2), brain perfusion (MCA Vmean), locomotor limb hemodynamics, and hematological parameters were assessed during incremental cycling exercise with elevated skin (mild hyperthermia; HYPmild), combined core and skin temperatures (moderate hyperthermia; HYPmod), and under control conditions. Both hyperthermic conditions increased Tsk versus control (6.2 ± 0.2°C; P < 0.001), however, only HYPmod increased resting TB, leg blood flow and cardiac output (Q̇), but not MCA Vmean. Throughout exercise, Tsk remained elevated in both hyperthermic conditions, whereas only TB was greater in HYPmod. At exhaustion, oxygen uptake and exercise capacity were reduced in HYPmod in association with lower leg blood flow, MCA Vmean and mean arterial pressure (MAP), but similar maximal heart rate and TB. The attenuated brain and leg perfusion with hyperthermia was associated with a plateau in MCA and two‐legged vascular conductance (VC). Mechanistically, the falling MCA VC was coupled to reductions in PaCO2, whereas the plateau in leg vascular conductance was related to markedly elevated plasma [NA] and a plateau in plasma ATP. These findings reveal that whole‐body hyperthermia, but not skin hyperthermia, compromises exercise capacity in heat‐stressed humans through the early attenuation of brain and active muscle blood flow.
Collapse
Affiliation(s)
- Steven J Trangmar
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge, United Kingdom
| | - Scott T Chiesa
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge, United Kingdom
| | - Kameljit K Kalsi
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge, United Kingdom
| | - Niels H Secher
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge, United Kingdom.,The Copenhagen Muscle Research Centre, Department of Anaesthesia, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - José González-Alonso
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
26
|
Jubeau M, Rupp T, Temesi J, Perrey S, Wuyam B, Millet GY, Verges S. Neuromuscular Fatigue during Prolonged Exercise in Hypoxia. Med Sci Sports Exerc 2017; 49:430-439. [PMID: 27753741 DOI: 10.1249/mss.0000000000001118] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE Prolonged cycling exercise performance in normoxia is limited because of both peripheral and central neuromuscular impairments. It has been reported that cerebral perturbations are greater during short-duration exercise in hypoxia compared with normoxia. The purpose of this study was to test the hypothesis that central deficits are accentuated in hypoxia compared with normoxia during prolonged (three bouts of 80 min separated by 25 min) whole-body exercise at the same relative intensity. METHODS Ten subjects performed two sessions consisting of three 80-min cycling bouts at 45% of their relative maximal aerobic power in normoxia and hypoxia (FiO2 = 0.12). Before exercise and after each bout, maximal voluntary force, voluntary activation assessed with nerve stimulation and transcranial magnetic stimulation, corticospinal excitability (motor evoked potential), intracortical inhibition (cortical silent period), and electrical (M-wave) and contractile (twitch and doublet peak forces) properties of the knee extensors were measured. Prefrontal and motor cortical oxygenation was also recorded during each cycling bout in both conditions. RESULTS A significant but similar force reduction (≈-22%) was observed at the end of exercise in normoxia and hypoxia. The modifications of voluntary activation assessed with transcranial magnetic stimulation and nerve stimulation, motor evoked potential, cortical silent period, and M-wave were also similar in both conditions. However, cerebral oxygenation was reduced in hypoxia compared with normoxia. CONCLUSION These findings show that when performed at the same relative low intensity, prolonged exercise does not induce greater supraspinal fatigue in hypoxia compared with normoxia. Despite lower absolute exercise intensities in hypoxia, reduced brain O2 availability might contribute to similar amounts of central fatigue compared with normoxia.
Collapse
Affiliation(s)
- Marc Jubeau
- 1Laboratory HP2, Grenoble Alpes University, Grenoble, FRANCE; 2INSERM U1042, Grenoble, FRANCE; 3Laboratory "Movement, Interactions, Performance" (EA 4334), Faculty of Sport Sciences, University of Nantes, Nantes, FRANCE; 4Inter-university Laboratory of Human Movement Biology, University Savoie Mont Blanc, Chambéry, FRANCE; 5Inter-university Laboratory of Human Movement Biology, University of Lyon, UJM-Saint-Etienne, Saint-Etienne, FRANCE; 6Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, CANADA; and 7EuroMov, University of Montpellier, FRANCE
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Acute exercise has been demonstrated to improve cognitive function. In contrast, severe hypoxia can impair cognitive function. Hence, cognitive function during exercise under severe hypoxia may be determined by the balance between the beneficial effects of exercise and the detrimental effects of severe hypoxia. However, the physiological factors that determine cognitive function during exercise under hypoxia remain unclear. Here, we examined the combined effects of acute exercise and severe hypoxia on cognitive function and identified physiological factors that determine cognitive function during exercise under severe hypoxia. The participants completed cognitive tasks at rest and during moderate exercise under either normoxic or severe hypoxic conditions. Peripheral oxygen saturation, cerebral oxygenation, and middle cerebral artery velocity were continuously monitored. Cerebral oxygen delivery was calculated as the product of estimated arterial oxygen content and cerebral blood flow. On average, cognitive performance improved during exercise under both normoxia and hypoxia, without sacrificing accuracy. However, under hypoxia, cognitive improvements were attenuated for individuals exhibiting a greater decrease in peripheral oxygen saturation. Cognitive performance was not associated with other physiological parameters. Taken together, the present results suggest that arterial desaturation attenuates cognitive improvements during exercise under hypoxia.
Collapse
|
28
|
Ulrich S, Hasler ED, Müller-Mottet S, Keusch S, Furian M, Latshang TD, Schneider S, Saxer S, Bloch KE. Mechanisms of Improved Exercise Performance under Hyperoxia. Respiration 2017; 93:90-98. [PMID: 28068656 DOI: 10.1159/000453620] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/18/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The impact of hyperoxia on exercise limitation is still incompletely understood. OBJECTIVES We investigated to which extent breathing hyperoxia enhances the exercise performance of healthy subjects and which physiologic mechanisms are involved. METHODS A total of 32 healthy volunteers (43 ± 15 years, 12 women) performed 4 bicycle exercise tests to exhaustion with ramp and constant-load protocols (at 75% of the maximal workload [Wmax] on FiO2 0.21) on separate occasions while breathing ambient (FiO2 0.21) or oxygen-enriched air (FiO2 0.50) in a random, blinded order. Workload, endurance, gas exchange, pulse oximetry (SpO2), and cerebral (CTO) and quadriceps muscle tissue oxygenation (QMTO) were measured. RESULTS During the final 15 s of ramp exercising with FiO2 0.50, Wmax (mean ± SD 270 ± 80 W), SpO2 (99 ± 1%), and CTO (67 ± 9%) were higher and the Borg CR10 Scale dyspnea score was lower (4.8 ± 2.2) than the corresponding values with FiO2 0.21 (Wmax 257 ± 76 W, SpO2 96 ± 3%, CTO 61 ± 9%, and Borg CR10 Scale dyspnea score 5.7 ± 2.6, p < 0.05, all comparisons). In constant-load exercising with FiO2 0.50, endurance was longer than with FiO2 0.21 (16 min 22 s ± 7 min 39 s vs. 10 min 47 s ± 5 min 58 s). With FiO2 0.50, SpO2 (99 ± 0%) and QMTO (69 ± 8%) were higher than the corresponding isotime values to end-exercise with FiO2 0.21 (SpO2 96 ± 4%, QMTO 66 ± 9%), while minute ventilation was lower in hyperoxia (82 ± 18 vs. 93 ± 23 L/min, p < 0.05, all comparisons). CONCLUSION In healthy subjects, hyperoxia increased maximal power output and endurance. It improved arterial, cerebral, and muscle tissue oxygenation, while minute ventilation and dyspnea perception were reduced. The findings suggest that hyperoxia enhanced cycling performance through a more efficient pulmonary gas exchange and a greater availability of oxygen to muscles and the brain (cerebral motor and sensory neurons).
Collapse
Affiliation(s)
- Silvia Ulrich
- Pulmonary Clinic, University Hospital Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Auger H, Bherer L, Boucher É, Hoge R, Lesage F, Dehaes M. Quantification of extra-cerebral and cerebral hemoglobin concentrations during physical exercise using time-domain near infrared spectroscopy. BIOMEDICAL OPTICS EXPRESS 2016; 7:3826-3842. [PMID: 27867696 PMCID: PMC5102543 DOI: 10.1364/boe.7.003826] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/23/2016] [Accepted: 08/28/2016] [Indexed: 05/10/2023]
Abstract
Fitness is known to have beneficial effects on brain anatomy and function. However, the understanding of mechanisms underlying immediate and long-term neurophysiological changes due to exercise is currently incomplete due to the lack of tools to investigate brain function during physical activity. In this study, we used time-domain near infrared spectroscopy (TD-NIRS) to quantify and discriminate extra-cerebral and cerebral hemoglobin concentrations and oxygen saturation (SO2) in young adults at rest and during incremental intensity exercise. In extra-cerebral tissue, an increase in deoxy-hemoglobin (HbR) and a decrease in SO2 were observed while only cerebral HbR increased at high intensity exercise. Results in extra-cerebral tissue are consistent with thermoregulatory mechanisms to dissipate excess heat through skin blood flow, while cerebral changes are in agreement with cerebral blood flow (CBF) redistribution mechanisms to meet oxygen demand in activated regions during exercise. No significant difference was observed in oxy- (HbO2) and total hemoglobin (HbT). In addition HbO2, HbR and HbT increased with subject's peak power output (equivalent to the maximum oxygen volume consumption; VO2 peak) supporting previous observations of increased total mass of red blood cells in trained individuals. Our results also revealed known gender differences with higher hemoglobin in men. Our approach in quantifying both extra-cerebral and cerebral absolute hemoglobin during exercise may help to better interpret past and future continuous-wave NIRS studies that are prone to extra-cerebral contamination and allow a better understanding of acute cerebral changes due to physical exercise.
Collapse
Affiliation(s)
- Héloïse Auger
- Institute of Biomedical Engineering, Université de Montréal, Montréal, QC,
Canada
- Centre Hospitalier Universitaire Sainte-Justine, Montréal, QC,
Canada
| | - Louis Bherer
- Institut Universitaire de Gériatrie de Montréal, Montréal, QC,
Canada
- PERFORM Centre, Concordia University, Montréal, QC,
Canada
| | - Étienne Boucher
- Centre Hospitalier Universitaire Sainte-Justine, Montréal, QC,
Canada
| | - Richard Hoge
- Institut Universitaire de Gériatrie de Montréal, Montréal, QC,
Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC,
Canada
| | - Frédéric Lesage
- Institute of Biomedical Engineering, Université de Montréal, Montréal, QC,
Canada
- Department of Electrical Engineering, École Polytechnique de Montréal, Montréal, QC,
Canada
| | - Mathieu Dehaes
- Institute of Biomedical Engineering, Université de Montréal, Montréal, QC,
Canada
- Centre Hospitalier Universitaire Sainte-Justine, Montréal, QC,
Canada
- Department of Radiology, Radio-Oncology and Nuclear Medicine, Université de Montréal, Montréal, QC,
Canada
| |
Collapse
|
30
|
Boone J, Vandekerckhove K, Coomans I, Prieur F, Bourgois JG. An integrated view on the oxygenation responses to incremental exercise at the brain, the locomotor and respiratory muscles. Eur J Appl Physiol 2016; 116:2085-2102. [PMID: 27613650 DOI: 10.1007/s00421-016-3468-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/31/2016] [Indexed: 12/26/2022]
Abstract
In the past two decades oxygenation responses to incremental ramp exercise, measured non-invasively by means of near-infrared spectroscopy at different locations in the body, have advanced the insights on the underpinning mechanisms of the whole-body pulmonary oxygen uptake ([Formula: see text]) response. In healthy subjects the complex oxygenation responses at the level of locomotor and respiratory muscles, and brain were simplified and quantified by the detection of breakpoints as a deviation in the ongoing response pattern as work rate increases. These breakpoints were located in a narrow intensity range between 75 and 90 % of the maximal [Formula: see text] and were closely related to traditionally determined thresholds in pulmonary gas exchange (respiratory compensation point), blood lactate measurements (maximal lactate steady state), and critical power. Therefore, it has been assumed that these breakpoints in the oxygenation patterns at different sites in the body might be equivalent and could, therefore, be used interchangeably. In the present review the typical oxygenation responses (at locomotor and respiratory muscle level, and cerebral level) are described and a possible framework is provided showing the physiological events that might link the breakpoints at different body sites with the thresholds determined from pulmonary gas exchange and blood lactate measurements. However, despite a possible physiological association, several arguments prevent the current practical application of these breakpoints measured at a single site as markers of exercise intensity making it highly questionable whether measurements of the oxygenation response at one single site can be used as a reflection of whole-body responses to different exercise intensities.
Collapse
Affiliation(s)
- Jan Boone
- Department of Movement and Sport Sciences, Ghent University, Watersportlaan 2, 9000, Ghent, Belgium.
- Center of Sports Medicine, Ghent University Hospital, Ghent, Belgium.
| | | | - Ilse Coomans
- Department of Pediatric Cardiology, Ghent University Hospital, Ghent, Belgium
| | - Fabrice Prieur
- CIAMS, Univ Paris-Sud, Université Paris Saclay, 91405, Orsay Cedex, France
- CIAMS Université d'Orléans, 45067, Orléans, France
| | - Jan G Bourgois
- Department of Movement and Sport Sciences, Ghent University, Watersportlaan 2, 9000, Ghent, Belgium
- Center of Sports Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
31
|
Dobashi S, Horiuchi M, Endo J, Kiuchi M, Koyama K. Cognitive Function and Cerebral Oxygenation During Prolonged Exercise Under Hypoxia in Healthy Young Males. High Alt Med Biol 2016; 17:214-221. [PMID: 27584683 DOI: 10.1089/ham.2016.0036] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Dobashi, Shohei, Masahiro Horiuchi, Junko Endo, Masataka Kiuchi, and Katsuhiro Koyama. Cognitive function and cerebral oxygenation during prolonged exercise under hypoxia in healthy young males. High Alt Med Biol. 17:214-221, 2016.-The present study examined the effect of prolonged hypoxic exercise on cognitive function. Eight healthy male volunteers were required to complete exercise trials (four 30-minute cycling sessions with a 15-minute rest interval) at an intensity corresponding to 50% of their altitude-adjusted peak oxygen uptake under two different conditions: normoxia (room air at 400 m) and hypoxia (fraction of inspired oxygen: 0.141). Cognitive function was evaluated before, during, and 60 minutes after completion of the exercise trial. The color-word Stroop task (CWST) was used to assess cognitive function, with regard to the number of achievements, accuracy rate, and the number of correct responses made within 60 seconds. Cerebral oxygenation was monitored throughout the experimental period using near-infrared spectroscopy. The accuracy rate did not significantly differ between the two trials. A significant reduction in the number of correct responses during simple CWST tasks was detected in the hypoxic condition 60 minutes after exercise (p < 0.05), wherein a significant correlation was identified between reduced task performance on simple CWST and cerebral oxygenation (p < 0.01). These results demonstrate that prolonged exercise under hypoxic conditions induces a reduction in cerebral oxygenation partly associated with impairment of cognitive function.
Collapse
Affiliation(s)
- Shohei Dobashi
- 1 Integrated Graduate School Department of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi , Kofu, Japan
| | - Masahiro Horiuchi
- 2 Division of Human Environmental Science, Mt. Fuji Research Institute , Fujiyoshida, Japan
| | - Junko Endo
- 2 Division of Human Environmental Science, Mt. Fuji Research Institute , Fujiyoshida, Japan
| | - Masataka Kiuchi
- 3 Graduate School Department of Education, University of Yamanashi , Kofu, Japan
| | - Katsuhiro Koyama
- 4 Graduate School Department of Interdisciplinary Research, University of Yamanashi , Kofu, Japan
| |
Collapse
|
32
|
Lefferts WK, Babcock MC, Tiss MJ, Ives SJ, White CN, Brutsaert TD, Heffernan KS. Effect of hypoxia on cerebrovascular and cognitive function during moderate intensity exercise. Physiol Behav 2016; 165:108-18. [PMID: 27402021 DOI: 10.1016/j.physbeh.2016.07.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 07/03/2016] [Accepted: 07/07/2016] [Indexed: 12/25/2022]
Abstract
Exercise in hypoxia places added demands on the brain and cerebrovasculature that can impact cognitive function. The purpose of this study was to investigate the effect of acute hypoxia on cerebrovascular hemodynamics, markers of neuro-steroidal modulation and brain-blood barrier (BBB) integrity, and cognition during exercise. Thirty healthy participants (21±4yrs., BMI 24.0±2.6kg∙m(-2); 15 men) were randomized to both a≈2.5h normoxic (FiO2 20.0%) and hypoxic (FiO2 12.5%) condition on two separate days. After 1.25h, participants underwent 10min of exercise-alone (cycling at 55% HRmax) and 15min of exercise+cognitive testing. Prefrontal cortex (PFC) tissue oxygenation and middle cerebral artery (MCA) mean blood velocity (MnV) were measured using near-infrared spectroscopy and transcranial Doppler respectively at rest, during exercise-alone, and during exercise+cognitive testing. Salivary levels of dehydroepiandosterone [DHEA], DHEA-sulfate [DHEAS]) and neuron specific enolase (NSE) were measured pre and post exercise. Cognition was assessed using standard metrics of accuracy and reaction time (RT), and advanced metrics from drift-diffusion modeling across memory recognition, N-Back and Flanker tasks. MCA MnV increased from rest to exercise (p<0.01) and was unchanged with addition of cognitive testing during exercise in both normoxia and hypoxia. PFC oxygenation increased during exercise (p<0.05) and was further increased with addition of cognitive challenge in normoxia but decreased during exercise in hypoxia (p<0.05) with further reductions occurring with addition of cognitive tasks (p<0.05). DHEA and NSE increased and decreased post-exercise, respectively, in both normoxia and hypoxia (p<0.01). Accuracy on cognitive tasks was similar in normoxia compared to hypoxia, while RT was slower in hypoxia vs normoxia across memory recognition (p<0.01) and Flanker tasks (p=0.04). Drift-diffusion modeling suggested changes in memory RT were due to increases in caution (p<0.01). Overall cognitive performance is maintained during exercise in hypoxia concomitant with slower RT in select cognitive tasks and reduced oxygenation in the PFC. These changes were accompanied by slight increases in neuro-steroidal modulation but appear independent of changes in NSE, a biomarker of BBB integrity. Maintained accuracy and select increases in RT during hypoxic exercise may be related behavioral changes in caution.
Collapse
|
33
|
Keramidas ME, Kölegård R, Mekjavic IB, Eiken O. PlanHab: hypoxia exaggerates the bed-rest-induced reduction in peak oxygen uptake during upright cycle ergometry. Am J Physiol Heart Circ Physiol 2016; 311:H453-64. [PMID: 27342877 DOI: 10.1152/ajpheart.00304.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/20/2016] [Indexed: 11/22/2022]
Abstract
The study examined the effects of hypoxia and horizontal bed rest, separately and in combination, on peak oxygen uptake (V̇o2 peak) during upright cycle ergometry. Ten male lowlanders underwent three 21-day confinement periods in a counterbalanced order: 1) normoxic bed rest [NBR; partial pressure of inspired O2 (PiO2 ) = 133.1 ± 0.3 mmHg]; 2) hypoxic bed rest (HBR; PiO2 = 90.0 ± 0.4 mmHg), and 3) hypoxic ambulation (HAMB; PiO2 = 90.0 ± 0.4 mmHg). Before and after each confinement, subjects performed two incremental-load trials to exhaustion, while inspiring either room air (AIR), or a hypoxic gas (HYPO; PiO2 = 90.0 ± 0.4 mmHg). Changes in regional oxygenation of the vastus lateralis muscle and the frontal cerebral cortex were monitored with near-infrared spectroscopy. Cardiac output (CO) was recorded using a bioimpedance method. The AIR V̇o2 peak was decreased by both HBR (∼13.5%; P ≤ 0.001) and NBR (∼8.6%; P ≤ 0.001), with greater drop after HBR (P = 0.01). The HYPO V̇o2 peak was also reduced by HBR (-9.7%; P ≤ 0.001) and NBR (-6.1%; P ≤ 0.001). Peak CO was lower after both bed-rest interventions, and especially after HBR (HBR: ∼13%, NBR: ∼7%; P ≤ 0.05). Exercise-induced alterations in muscle and cerebral oxygenation were blunted in a similar manner after both bed-rest confinements. No changes were observed in HAMB. Hence, the bed-rest-induced decrease in V̇o2 peak was exaggerated by hypoxia, most likely due to a reduction in convective O2 transport, as indicated by the lower peak values of CO.
Collapse
Affiliation(s)
- Michail E Keramidas
- Department of Environmental Physiology, Swedish Aerospace Physiology Center, School of Technology and Health, Royal Institute of Technology, Stockholm, Sweden;
| | - Roger Kölegård
- Department of Environmental Physiology, Swedish Aerospace Physiology Center, School of Technology and Health, Royal Institute of Technology, Stockholm, Sweden
| | - Igor B Mekjavic
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia; and Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Ola Eiken
- Department of Environmental Physiology, Swedish Aerospace Physiology Center, School of Technology and Health, Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
34
|
Fan JL, Kayser B. Fatigue and Exhaustion in Hypoxia: The Role of Cerebral Oxygenation. High Alt Med Biol 2016; 17:72-84. [DOI: 10.1089/ham.2016.0034] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Jui-Lin Fan
- Centre for Translational Physiology, University of Otago, Wellington, New Zealand
- Department of Surgery & Anaesthesia, University of Otago, Wellington, New Zealand
| | - Bengt Kayser
- Institute of Sports Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
35
|
Cerebral and Muscle Tissue Oxygenation During Incremental Cycling in Male Adolescents Measured by Time-Resolved Near-Infrared Spectroscopy. Pediatr Exerc Sci 2016; 28:275-85. [PMID: 26451845 PMCID: PMC4826640 DOI: 10.1123/pes.2015-0037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Near-infrared spectroscopy has long been used to measure tissue-specific O2 dynamics in exercise, but most published data have used continuous wave devices incapable of quantifying absolute Hemoglobin (Hb) concentrations. We used time-resolved near-infrared spectroscopy to study exercising muscle (Vastus Lateralis, VL) and prefrontal cortex (PFC) Hb oxygenation in 11 young males (15.3 ± 2.1 yrs) performing incremental cycling until exhaustion (peak VO2 = 42.7 ± 6.1 ml/min/kg, mean peak power = 181 ± 38 W). Time-resolved near-infrared spectroscopy measurements of reduced scattering (μs´) and absorption (μa) at three wavelengths (759, 796, and 833 nm) were used to calculate concentrations of oxyHb ([HbO2]), deoxy Hb ([HbR]), total Hb ([THb]), and O2 saturation (stO2). In PFC, significant increases were observed in both [HbO2] and [HbR] during intense exercise. PFC stO2% remained stable until 80% of total exercise time, then dropped (-2.95%, p = .0064). In VL, stO2% decreased until peak time (-6.8%, p = .01). Segmented linear regression identified thresholds for PFC [HbO2], [HbR], VL [THb]. There was a strong correlation between timing of second ventilatory threshold and decline in PFC [HbO2] (r = .84). These findings show that time-resolved near-infrared spectroscopy can be used to study physiological threshold phenomena in children during maximal exercise, providing insight into tissue specific hemodynamics and metabolism.
Collapse
|
36
|
Keramidas ME, Stavrou NAM, Kounalakis SN, Eiken O, Mekjavic IB. Severe hypoxia during incremental exercise to exhaustion provokes negative post-exercise affects. Physiol Behav 2016; 156:171-6. [PMID: 26802281 DOI: 10.1016/j.physbeh.2016.01.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 11/09/2015] [Accepted: 01/19/2016] [Indexed: 10/22/2022]
Abstract
The post-exercise emotional response is mainly dependent on the intensity of the exercise performed; moderate exercise causes positive feelings, whereas maximal exercise may prompt negative affects. Acute hypoxia impairs peak O2 uptake (V̇O2peak), resulting in a shift to a lower absolute intensity at the point of exhaustion. Hence, the purpose of the study was to examine whether a severe hypoxic stimulus would influence the post-exercise affective state in healthy lowlanders performing an incremental exercise to exhaustion. Thirty-six male lowlanders performed, in a counter-balanced order and separated by a 48-h interval, two incremental exercise trials to exhaustion to determine their V̇O2peak, while they were breathing either room air (AIR; FiO2: 0.21), or a hypoxic gas mixture (HYPO; FiO2: 0.12). Before and immediately after each trial, subjects were requested to complete two questionnaires, based on how they felt at that particular moment: (i) the Profile of Mood States-Short Form, and (ii) the Activation Deactivation Adjective Check List. During the post-exercise phase, they also completed the Multidimensional Fatigue Inventory. V̇O2peak was significantly lower in the HYPO than the AIR trial (~15%; p<0.001). Still, after the HYPO trial, energy, calmness and motivation were markedly impaired, whereas tension, confusion, and perception of physical and general fatigue were exaggerated (p≤0.05). Accordingly, present findings suggest that an incremental exercise to exhaustion performed in severe hypoxia provokes negative post-exercise emotions, induces higher levels of perceived fatigue and decreases motivation; the affective responses coincide with the comparatively lower V̇O2peak than that achieved in normoxic conditions.
Collapse
Affiliation(s)
- Michail E Keramidas
- Department of Environmental Physiology, Swedish Aerospace Physiology Center, School of Technology and Health, Royal Institute of Technology, Stockholm, Sweden; Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia.
| | - Nektarios A M Stavrou
- Exercise and Sport Science Department, ASPETAR Orthopaedic and Sports Medicine Hospital, Doha, Qatar; Faculty of Physical Education and Sport Science, University of Athens, Athens, Greece
| | - Stylianos N Kounalakis
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Ola Eiken
- Department of Environmental Physiology, Swedish Aerospace Physiology Center, School of Technology and Health, Royal Institute of Technology, Stockholm, Sweden
| | - Igor B Mekjavic
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
37
|
Van Thienen R, Hespel P. Enhanced muscular oxygen extraction in athletes exaggerates hypoxemia during exercise in hypoxia. J Appl Physiol (1985) 2015; 120:351-61. [PMID: 26607244 DOI: 10.1152/japplphysiol.00210.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 11/22/2015] [Indexed: 01/11/2023] Open
Abstract
High rate of muscular oxygen utilization facilitates the development of hypoxemia during exercise at altitude. Because endurance training stimulates oxygen extraction capacity, we investigated whether endurance athletes are at higher risk to developing hypoxemia and thereby acute mountain sickness symptoms during exercise at simulated high altitude. Elite athletes (ATL; n = 8) and fit controls (CON; n = 7) cycled for 20 min at 100 W (EX100W), as well as performed an incremental maximal oxygen consumption test (EXMAX) in normobaric hypoxia (0.107 inspired O2 fraction) or normoxia (0.209 inspired O2 fraction). Cardiorespiratory responses, arterial Po2 (PaO2), and oxygenation status in m. vastus lateralis [tissue oxygenation index (TOIM)] and frontal cortex (TOIC) by near-infrared spectroscopy, were measured. Muscle O2 uptake rate was estimated from change in oxyhemoglobin concentration during a 10-min arterial occlusion in m. gastrocnemius. Maximal oxygen consumption in normoxia was 70 ± 2 ml·min(-1·)kg(-1) in ATL vs. 43 ± 2 ml·min(-1·)kg(-1) in CON, and in hypoxia decreased more in ATL (-41%) than in CON (-25%, P < 0.05). Both in normoxia at PaO2 of ∼95 Torr, and in hypoxia at PaO2 of ∼35 Torr, muscle O2 uptake was twofold higher in ATL than in CON (0.12 vs. 0.06 ml·min(-1)·100 g(-1); P < 0.05). During EX100W in hypoxia, PaO2 dropped to lower (P < 0.05) values in ATL (27.6 ± 0.7 Torr) than in CON (33.5 ± 1.0 Torr). During EXMAX, but not during EX100W, TOIM was ∼15% lower in ATL than in CON (P < 0.05). TOIC was similar between the groups at any time. This study shows that maintenance of high muscular oxygen extraction rate at very low circulating PaO2 stimulates the development of hypoxemia during submaximal exercise in hypoxia in endurance-trained individuals. This effect may predispose to premature development of acute mountain sickness symptoms during exercise at altitude.
Collapse
Affiliation(s)
- Ruud Van Thienen
- Exercise Physiology Research Group, Department of Kinesiology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Peter Hespel
- Exercise Physiology Research Group, Department of Kinesiology, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
38
|
Wilson MH, Imray CHE. The cerebral venous system and hypoxia. J Appl Physiol (1985) 2015; 120:244-50. [PMID: 26294747 DOI: 10.1152/japplphysiol.00327.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 08/13/2015] [Indexed: 01/24/2023] Open
Abstract
Most hypobaric hypoxia studies have focused on oxygen delivery and therefore cerebral blood inflow. Few have studied venous outflow. However, the volume of blood entering and leaving the skull (∼700 ml/min) is considerably greater than cerebrospinal fluid production (0.35 ml/min) or edema formation rates and slight imbalances of in- and outflow have considerable effects on intracranial pressure. This dynamic phenomenon is not necessarily appreciated in the currently taught static "Monro-Kellie" doctrine, which forms the basis of the "Tight-Fit" hypothesis thought to underlie high altitude headache, acute mountain sickness, and high altitude cerebral edema. Investigating both sides of the cerebral circulation was an integral part of the 2007 Xtreme Everest Expedition. The results of the relevant studies performed as part of and subsequent to this expedition are reviewed here. The evidence from recent studies suggests a relative venous outflow insufficiency is an early step in the pathogenesis of high altitude headache. Translation of knowledge gained from high altitude studies is important. Many patients in a critical care environment develop hypoxemia akin to that of high altitude exposure. An inability to drain the hypoxemic induced increase in cerebral blood flow could be an underappreciated regulatory mechanism of intracranial pressure.
Collapse
Affiliation(s)
- Mark H Wilson
- The Centre for Altitude, Space and Extreme Environment Medicine, University College London, London, United Kingdom; The Birmingham Medical Research Expeditionary Society, Queen Elizabeth Hospital, Edgbaston, Birmingham, United Kingdom; Imperial Neurotrauma Centre, Imperial College, St Mary's Hospital, London, United Kingdom; Institute of Pre-Hospital Care, London's Air Ambulance, Royal London Hospital, Whitechapel, United Kingdom; and
| | - Christopher H E Imray
- The Centre for Altitude, Space and Extreme Environment Medicine, University College London, London, United Kingdom; The Birmingham Medical Research Expeditionary Society, Queen Elizabeth Hospital, Edgbaston, Birmingham, United Kingdom; Department of Surgery, Warwick Medical School, UHCW NHS Trust, Warwick, United Kingdom
| |
Collapse
|
39
|
Hamilton GF, Rhodes JS. Exercise Regulation of Cognitive Function and Neuroplasticity in the Healthy and Diseased Brain. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 135:381-406. [PMID: 26477923 DOI: 10.1016/bs.pmbts.2015.07.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Regular exercise broadly enhances physical and mental health throughout the lifespan. Animal models have provided us with the tools to gain a better understanding of the underlying biochemical, physiological, and morphological mechanisms through which exercise exerts its beneficial cognitive effects. One brain region in particular, the hippocampus, is especially responsive to exercise. It is critically involved in learning and memory and is one of two regions in the mammalian brain that continues to generate new neurons throughout life. Exercise prevents the decline of the hippocampus from aging and ameliorates many neurodegenerative diseases, in part by increasing adult hippocampal neurogenesis but also by activating a multitude of molecular mechanisms that promote brain health. In this chapter, we first describe some rodent models used to study effects of exercise on the brain. Then we review the rodent work focusing on the mechanisms behind which exercise improves cognition and brain health in both the normal and the diseased brain, with emphasis on the hippocampus.
Collapse
Affiliation(s)
- Gilian F Hamilton
- Department of Psychology, The Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
| | - Justin S Rhodes
- Department of Psychology, The Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
40
|
Kim CH, Ryan EJ, Seo Y, Peacock C, Gunstad J, Muller MD, Ridgel AL, Glickman EL. Low intensity exercise does not impact cognitive function during exposure to normobaric hypoxia. Physiol Behav 2015; 151:24-8. [PMID: 26160408 DOI: 10.1016/j.physbeh.2015.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/16/2015] [Accepted: 07/02/2015] [Indexed: 11/30/2022]
Abstract
Exposure to hypoxia is associated with cognitive impairment, mediated by cerebral deoxygenation. This can be problematic for individuals who perform mental tasks at high altitude. Eight healthy men completed two experimental trials consisting of 5h of exposure to normobaric hypoxia (12.5% O2). In one of the experimental trials (Hypoxia) subjects remained resting in a seated position the entire 5h; in the other experimental trial (Hypoxia and Exercise) subjects rested 2h, cycled for 1h at constant wattage (workload equivalent to 50% of altitude adjusted VO2max), then rested the last 2h. Cerebral oxygenation was measured continuously via near-infrared spectroscopy and cognitive performance was assessed by Trail Making Test A and B. Cerebral oxygenation and cognitive performance both were impaired during exposure to hypoxia. In the Hypoxia and Exercise trial, subjects experienced further declinations in cerebral oxygenation without concomitant decreases in cognitive function. These data demonstrate that cognitive function declines during exposure to normobaric hypoxia and this decline is not exacerbated by low intensity exercise.
Collapse
Affiliation(s)
- Chul-Ho Kim
- Exercise Physiology, School of Health Sciences, Kent State University, Kent, OH, USA; Human Integrative and Environmental Physiology, Mayo Clinic, Rochester, MN, USA.
| | - Edward J Ryan
- Exercise Physiology, School of Health Sciences, Kent State University, Kent, OH, USA; Department of Exercise Science, Chatham University, Pittsburgh, PA, USA
| | - Yongsuk Seo
- Exercise Physiology, School of Health Sciences, Kent State University, Kent, OH, USA
| | - Corey Peacock
- Exercise Physiology, School of Health Sciences, Kent State University, Kent, OH, USA
| | - John Gunstad
- Department of Psychology, Kent State University, Kent, OH, USA
| | - Matthew D Muller
- Exercise Physiology, School of Health Sciences, Kent State University, Kent, OH, USA; Penn State Heart & Vascular Institute, Penn State University College of Medicine, Hershey, PA, USA
| | - Angela L Ridgel
- Exercise Physiology, School of Health Sciences, Kent State University, Kent, OH, USA
| | - Ellen L Glickman
- Exercise Physiology, School of Health Sciences, Kent State University, Kent, OH, USA
| |
Collapse
|
41
|
Baker WB, Parthasarathy AB, Ko TS, Busch DR, Abramson K, Tzeng SY, Mesquita RC, Durduran T, Greenberg JH, Kung DK, Yodh AG. Pressure modulation algorithm to separate cerebral hemodynamic signals from extracerebral artifacts. NEUROPHOTONICS 2015; 2:035004. [PMID: 26301255 PMCID: PMC4524732 DOI: 10.1117/1.nph.2.3.035004] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 07/01/2015] [Indexed: 05/18/2023]
Abstract
We introduce and validate a pressure measurement paradigm that reduces extracerebral contamination from superficial tissues in optical monitoring of cerebral blood flow with diffuse correlation spectroscopy (DCS). The scheme determines subject-specific contributions of extracerebral and cerebral tissues to the DCS signal by utilizing probe pressure modulation to induce variations in extracerebral blood flow. For analysis, the head is modeled as a two-layer medium and is probed with long and short source-detector separations. Then a combination of pressure modulation and a modified Beer-Lambert law for flow enables experimenters to linearly relate differential DCS signals to cerebral and extracerebral blood flow variation without a priori anatomical information. We demonstrate the algorithm's ability to isolate cerebral blood flow during a finger-tapping task and during graded scalp ischemia in healthy adults. Finally, we adapt the pressure modulation algorithm to ameliorate extracerebral contamination in monitoring of cerebral blood oxygenation and blood volume by near-infrared spectroscopy.
Collapse
Affiliation(s)
- Wesley B. Baker
- University of Pennsylvania, Department of Physics and Astronomy, 3231 Walnut Street, Philadelphia, Pennsylvania 19104, United States
- Address all correspondence to: Wesley B. Baker, E-mail:
| | - Ashwin B. Parthasarathy
- University of Pennsylvania, Department of Physics and Astronomy, 3231 Walnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Tiffany S. Ko
- University of Pennsylvania, Department of Physics and Astronomy, 3231 Walnut Street, Philadelphia, Pennsylvania 19104, United States
| | - David R. Busch
- University of Pennsylvania, Department of Physics and Astronomy, 3231 Walnut Street, Philadelphia, Pennsylvania 19104, United States
- Children’s Hospital of Philadelphia, Division of Neurology, 3401 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, United States
| | - Kenneth Abramson
- University of Pennsylvania, Department of Physics and Astronomy, 3231 Walnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Shih-Yu Tzeng
- University of Pennsylvania, Department of Physics and Astronomy, 3231 Walnut Street, Philadelphia, Pennsylvania 19104, United States
- National Cheng Kung University, Department of Photonics, No. 1, University Road, Tainan City 701, Taiwan
| | - Rickson C. Mesquita
- University of Campinas, Institute of Physics, 777 R. Sergio Buarque de Holanda, Campinas 13083-859, Brazil
| | - Turgut Durduran
- ICFO-Institut de Ciències Fotòniques, Mediterranean Technology Park, Av. Carl Friedrich Gauss 3, Castelldefels (Barcelona) 08860, Spain
| | - Joel H. Greenberg
- University of Pennsylvania, Department of Neurology, 3450 Hamilton Walk, Philadelphia, Pennsylvania 19104, United States
| | - David K. Kung
- Hospital of the University of Pennsylvania, Department of Neurosurgery, 3400 Spruce Street, Philadelphia, Pennsylvania 19104, United States
| | - Arjun G. Yodh
- University of Pennsylvania, Department of Physics and Astronomy, 3231 Walnut Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
42
|
The influence of a mild thermal challenge and severe hypoxia on exercise performance and serum BDNF. Eur J Appl Physiol 2015; 115:2135-48. [DOI: 10.1007/s00421-015-3193-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 05/21/2015] [Indexed: 01/27/2023]
|
43
|
Role of obesity on cerebral hemodynamics and cardiorespiratory responses in healthy men during repetitive incremental lifting. Eur J Appl Physiol 2015; 115:1905-17. [DOI: 10.1007/s00421-015-3171-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 04/07/2015] [Indexed: 01/08/2023]
|
44
|
Aerobic fitness influences cerebral oxygenation response to maximal exercise in healthy subjects. Respir Physiol Neurobiol 2015; 205:53-60. [DOI: 10.1016/j.resp.2014.10.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 10/13/2014] [Accepted: 10/14/2014] [Indexed: 11/22/2022]
|
45
|
Woodside JDS, Gutowski M, Fall L, James PE, McEneny J, Young IS, Ogoh S, Bailey DM. Systemic oxidative-nitrosative-inflammatory stress during acute exercise in hypoxia; implications for microvascular oxygenation and aerobic capacity. Exp Physiol 2014; 99:1648-62. [DOI: 10.1113/expphysiol.2014.081265] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- John D. S. Woodside
- Vascular Physiology Unit; Institute of Cardiovascular Science; University College London; London UK
| | - Mariusz Gutowski
- Institute of Biochemistry and Cell Biology; Shanghai Institute for Biological Sciences; Chinese Academy of Sciences; Shanghai China
| | - Lewis Fall
- Neurovascular Research Laboratory; Faculty of Life Sciences and Education; University of South Wales; Pontypridd UK
| | - Philip E. James
- Wales Heart Research Institute; Cardiff University School of Medicine; Heath Park Cardiff Pontypridd UK
| | - Jane McEneny
- Centre for Public Health; Nutrition and Metabolism Group; Queen's University Belfast; Belfast UK
| | - Ian S. Young
- Centre for Public Health; Nutrition and Metabolism Group; Queen's University Belfast; Belfast UK
| | - Shigehiko Ogoh
- Department of Biomedical Engineering; Toyo University; Kawagoe-Shi Saitama Japan
| | - Damian M. Bailey
- Neurovascular Research Laboratory; Faculty of Life Sciences and Education; University of South Wales; Pontypridd UK
| |
Collapse
|
46
|
Baker WB, Parthasarathy AB, Busch DR, Mesquita RC, Greenberg JH, Yodh AG. Modified Beer-Lambert law for blood flow. BIOMEDICAL OPTICS EXPRESS 2014; 5:4053-75. [PMID: 25426330 PMCID: PMC4242038 DOI: 10.1364/boe.5.004053] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/14/2014] [Accepted: 10/15/2014] [Indexed: 05/18/2023]
Abstract
We develop and validate a Modified Beer-Lambert law for blood flow based on diffuse correlation spectroscopy (DCS) measurements. The new formulation enables blood flow monitoring from temporal intensity autocorrelation function data taken at single or multiple delay-times. Consequentially, the speed of the optical blood flow measurement can be substantially increased. The scheme facilitates blood flow monitoring of highly scattering tissues in geometries wherein light propagation is diffusive or non-diffusive, and it is particularly well-suited for utilization with pressure measurement paradigms that employ differential flow signals to reduce contributions of superficial tissues.
Collapse
Affiliation(s)
- Wesley B. Baker
- Dept. Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104,
USA
| | | | - David R. Busch
- Dept. Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104,
USA
- Div. of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104,
USA
| | - Rickson C. Mesquita
- Institute of Physics, University of Campinas, Campinas, SP 13083-859,
Brazil
| | - Joel H. Greenberg
- Dept. Neurology, University of Pennsylvania, Philadelphia, PA 19104,
USA
| | - A. G. Yodh
- Dept. Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104,
USA
| |
Collapse
|
47
|
Bauermeister S, Bunce D. Aerobic Fitness and Intraindividual Reaction Time Variability in Middle and Old Age. J Gerontol B Psychol Sci Soc Sci 2014; 71:431-8. [DOI: 10.1093/geronb/gbu152] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 09/23/2014] [Indexed: 11/14/2022] Open
|
48
|
Hartmann SE, Leigh R, Poulin MJ. Cerebrovascular responses to submaximal exercise in women with COPD. BMC Pulm Med 2014; 14:99. [PMID: 24898136 PMCID: PMC4065610 DOI: 10.1186/1471-2466-14-99] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 03/28/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND COPD patients have decreased physical fitness, and have an increased risk of vascular disease. In the general population, fitness is positively associated with resting cerebral blood flow velocity, however, little is known about the cerebrovascular response during exercise particularly in COPD patients. We hypothesized that COPD patients would have lower cerebral blood flow during exercise secondary to decreased physical fitness and underlying vascular disease. METHODS Cardiopulmonary exercise testing was conducted in 11 women with GOLD stage I-II COPD, and 11 healthy controls to assess fitness. Cerebro- and cardio-vascular responses were compared between groups during two steady-state exercise tests (50% peak O2 consumption and 30 W). The main outcome variable was peak middle cerebral artery blood flow velocity (VP) during exercise using transcranial Doppler ultrasonography. RESULTS Physical fitness was decreased in COPD patients. VP was comparable between COPD and controls (25 ± 22% versus 15 ± 13%, respectively; P > 0.05) when exercising at the same relative intensity, despite patients having higher blood pressure and greater arterial desaturation. However, VP was elevated in COPD (31 ± 26% versus 13 ± 10%; P ≤ 0.05) when exercising at the same workload as controls. CONCLUSIONS Our results are contradictory to our a-priori hypothesis, suggesting that during matched intensity exercise, cerebral blood flow velocity is similar between COPD and controls. However, exercise at a modestly greater workload imposes a large physical demand to COPD patients, resulting in increased CBF compared to controls. Normal activities of daily living may therefore impose a large cerebrovascular demand in COPD patients, consequently reducing their cerebrovascular reserve capacity.
Collapse
Affiliation(s)
| | | | - Marc J Poulin
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
49
|
The effect of adding CO2 to hypoxic inspired gas on cerebral blood flow velocity and breathing during incremental exercise. PLoS One 2013; 8:e81130. [PMID: 24278389 PMCID: PMC3836745 DOI: 10.1371/journal.pone.0081130] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 10/09/2013] [Indexed: 11/19/2022] Open
Abstract
Hypoxia increases the ventilatory response to exercise, which leads to hyperventilation-induced hypocapnia and subsequent reduction in cerebral blood flow (CBF). We studied the effects of adding CO2 to a hypoxic inspired gas on CBF during heavy exercise in an altitude naïve population. We hypothesized that augmented inspired CO2 and hypoxia would exert synergistic effects on increasing CBF during exercise, which would improve exercise capacity compared to hypocapnic hypoxia. We also examined the responsiveness of CO2 and O2 chemoreception on the regulation ventilation (E) during incremental exercise. We measured middle cerebral artery velocity (MCAv; index of CBF), E, end-tidal PCO2, respiratory compensation threshold (RC) and ventilatory response to exercise (E slope) in ten healthy men during incremental cycling to exhaustion in normoxia and hypoxia (FIO2 = 0.10) with and without augmenting the fraction of inspired CO2 (FICO2). During exercise in normoxia, augmenting FICO2 elevated MCAv throughout exercise and lowered both RC onset andE slope below RC (P<0.05). In hypoxia, MCAv and E slope below RC during exercise were elevated, while the onset of RC occurred at lower exercise intensity (P<0.05). Augmenting FICO2 in hypoxia increased E at RC (P<0.05) but no difference was observed in RC onset, MCAv, or E slope below RC (P>0.05). The E slope above RC was unchanged with either hypoxia or augmented FICO2 (P>0.05). We found augmenting FICO2 increased CBF during sub-maximal exercise in normoxia, but not in hypoxia, indicating that the ‘normal’ cerebrovascular response to hypercapnia is blunted during exercise in hypoxia, possibly due to an exhaustion of cerebral vasodilatory reserve. This finding may explain the lack of improvement of exercise capacity in hypoxia with augmented CO2. Our data further indicate that, during exercise below RC, chemoreception is responsive, while above RC the ventilatory response to CO2 is blunted.
Collapse
|
50
|
Fan JL, Bourdillon N, Kayser B. Effect of end-tidal CO2 clamping on cerebrovascular function, oxygenation, and performance during 15-km time trial cycling in severe normobaric hypoxia: the role of cerebral O2 delivery. Physiol Rep 2013; 1:e00066. [PMID: 24303142 PMCID: PMC3835019 DOI: 10.1002/phy2.66] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 07/25/2013] [Accepted: 07/29/2013] [Indexed: 11/17/2022] Open
Abstract
During heavy exercise, hyperventilation-induced hypocapnia leads to cerebral vasoconstriction, resulting in a reduction in cerebral blood flow (CBF). A reduction in CBF would impair cerebral O2 delivery and potentially account for reduced exercise performance in hypoxia. We tested the hypothesis that end-tidal Pco2 (PETCO2) clamping in hypoxic exercise would prevent the hypocapnia-induced reduction in CBF during heavy exercise, thus improving exercise performance. We measured PETCO2, middle cerebral artery velocity (MCAv; index of CBF), prefrontal cerebral cortex oxygenation (cerebral O2Hb; index of cerebral oxygenation), cerebral O2 delivery (DO2), and leg muscle oxygenation (muscle O2Hb) in 10 healthy men (age 27 ± 7 years; VO2max 63.3 ± 6.6 mL/kg/min; mean ± SD) during simulated 15-km time trial cycling (TT) in normoxia and hypoxia (FIO2 = 0.10) with and without CO2 clamping. During exercise, hypoxia elevated MCAv and lowered cerebral O2Hb, cerebral DO2, and muscle O2Hb (P < 0.001). CO2 clamping elevated PETCO2 and MCAv during exercise in both normoxic and hypoxic conditions (P < 0.001 and P = 0.024), but had no effect on either cerebral and muscle O2Hb (P = 0.118 and P = 0.124). Nevertheless, CO2 clamping elevated cerebral DO2 during TT in both normoxic and hypoxic conditions (P < 0.001). CO2 clamping restored cerebral DO2 to normoxic values during TT in hypoxia and tended to have a greater effect on TT performance in hypoxia compared to normoxia (P = 0.097). However, post hoc analysis revealed no effect of CO2 clamping on TT performance either in normoxia (P = 0.588) or in hypoxia (P = 0.108). Our findings confirm that the hyperventilation-induced hypocapnia and the subsequent drop in cerebral oxygenation are unlikely to be the cause of the reduced endurance exercise performance in hypoxia.
Collapse
Affiliation(s)
- Jui-Lin Fan
- Institute of Sports Sciences, Faculty of Biology and Medicine, University of Lausanne Lausanne, Switzerland ; Lemanic Doctoral School of Neuroscience, University of Lausanne Lausanne, Switzerland
| | | | | |
Collapse
|