1
|
Justs KA, Latner Nee Riboul DV, Oliva CD, Arab Y, Bonassi GG, Mahneva O, Crill S, Sempertegui S, Kirchman PA, Fily Y, Macleod GT. Optimal Neuromuscular Performance Requires Motor Neuron Phosphagen Kinases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.18.643998. [PMID: 40166281 PMCID: PMC11956927 DOI: 10.1101/2025.03.18.643998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Phosphagen systems are crucial for muscle bioenergetics - rapidly regenerating ATP to support the high metabolic demands of intense musculoskeletal activity. However, their roles in motor neurons that drive muscle contraction have received little attention. Here, we knocked down expression of the primary phosphagen kinase [Arginine Kinase 1; ArgK1] in Drosophila larval motor neurons and assessed the impact on presynaptic energy metabolism and neurotransmission in situ . Fluorescent metabolic probes showed a deficit in presynaptic energy metabolism and some glycolytic compensation. Glycolytic compensation was revealed through a faster elevation in lactate at high firing frequencies, and the accumulation of pyruvate subsequent to firing. Our performance assays included two tests of endurance: enforced cycles of presynaptic calcium pumping, and, separately, enforced body-wall contractions for extended periods. Neither test of endurance revealed deficits when ArgK1 was knocked down. The only performance deficits were detected at firing frequencies that approached, or exceeded, twice the firing frequencies recorded during fictive locomotion, where both electrophysiology and SynaptopHluorin imaging showed an inability to sustain neurotransmitter release. Our computational modeling of presynaptic bioenergetics indicates that the phosphagen system's contribution to motor neuron performance is likely through the removal of ADP in microdomains close to sites of ATP hydrolysis, rather than the provision of a deeper reservoir of ATP. Taken together, these data demonstrate that, as in muscle fibers, motor neurons rely on phosphagen systems during activity that imposes intense energetic demands.
Collapse
|
2
|
Pertici I, D'Angelo D, Vecellio Reane D, Reconditi M, Morotti I, Putignano E, Napoli D, Rastelli G, Gherardi G, De Mario A, Rizzuto R, Boncompagni S, Baroncelli L, Linari M, Caremani M, Raffaello A. Creatine transporter (SLC6A8) knockout mice exhibit reduced muscle performance, disrupted mitochondrial Ca 2+ homeostasis, and severe muscle atrophy. Cell Death Dis 2025; 16:99. [PMID: 39952955 PMCID: PMC11828924 DOI: 10.1038/s41419-025-07381-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/17/2024] [Accepted: 01/22/2025] [Indexed: 02/17/2025]
Abstract
Creatine (Cr) is essential for cellular energy homeostasis, particularly in muscle and brain tissues. Creatine Transporter Deficiency (CTD), an X-linked disorder caused by mutations in the SLC6A8 gene, disrupts Cr transport, leading to intellectual disability, speech delay, autism, epilepsy, and various non-neurological symptoms. In addition to neurological alterations, Creatine Transporter knockout (CrT-/y) mice exhibit severe muscle atrophy and functional impairments. This study provides the first characterization of the skeletal muscle phenotype in CrT-/y mice, revealing profound ultrastructural abnormalities accompanied by reduced fiber cross-sectional area and muscle performance. Notably, mitochondria are involved, as evidenced by disrupted cristae, increased mitochondrial size, impaired Ca2+ uptake, reduced membrane potential and ATP production. Mechanistically, the expression of atrophy-specific E3 ubiquitin ligases and suppression of the IGF1-Akt/PKB pathway, regulated by mitochondrial Ca2+ levels, further support the atrophic phenotype. These findings highlight the profound impact of Cr deficiency on skeletal muscle, emphasizing the need for targeted therapeutic strategies to address both the neurological and peripheral manifestations of CTD. Understanding the underlying mechanisms, particularly mitochondrial dysfunction, could lead to novel interventions for this disorder.
Collapse
Affiliation(s)
- Irene Pertici
- PhysioLab (Department of Biology and Department of Experimental and Clinical Medicine), University of Florence, Florence, Italy
| | - Donato D'Angelo
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Denis Vecellio Reane
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum Munich, Munich, Germany
| | - Massimo Reconditi
- PhysioLab (Department of Biology and Department of Experimental and Clinical Medicine), University of Florence, Florence, Italy
| | - Ilaria Morotti
- PhysioLab (Department of Biology and Department of Experimental and Clinical Medicine), University of Florence, Florence, Italy
| | - Elena Putignano
- Institute of Neuroscience, National Research Council (CNR), Pisa, Italy
| | - Debora Napoli
- Institute of Neuroscience, National Research Council (CNR), Pisa, Italy
| | - Giorgia Rastelli
- Center for Advanced Studies and Technology, Department of Neuroscience, Imaging, and Clinical Sciences, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Gaia Gherardi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Agnese De Mario
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- National Center of Gene Therapy and RNA-based Drugs, Padova, Italy
| | - Simona Boncompagni
- Center for Advanced Studies and Technology, Department of Neuroscience, Imaging, and Clinical Sciences, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Laura Baroncelli
- Institute of Neuroscience, National Research Council (CNR), Pisa, Italy
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Marco Linari
- PhysioLab (Department of Biology and Department of Experimental and Clinical Medicine), University of Florence, Florence, Italy
| | - Marco Caremani
- PhysioLab (Department of Biology and Department of Experimental and Clinical Medicine), University of Florence, Florence, Italy.
| | - Anna Raffaello
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
- Myology Center (CIR-Myo), University of Padua, Padua, Italy.
| |
Collapse
|
3
|
Birkedal R, Branovets J, Vendelin M. Compartmentalization in cardiomyocytes modulates creatine kinase and adenylate kinase activities. FEBS Lett 2024; 598:2623-2640. [PMID: 39112921 DOI: 10.1002/1873-3468.14994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/03/2024] [Accepted: 07/21/2024] [Indexed: 11/12/2024]
Abstract
Intracellular molecules are transported by motor proteins or move by diffusion resulting from random molecular motion. Cardiomyocytes are packed with structures that are crucial for function, but also confine the diffusional spaces, providing cells with a means to control diffusion. They form compartments in which local concentrations are different from the overall, average concentrations. For example, calcium and cyclic AMP are highly compartmentalized, allowing these versatile second messengers to send different signals depending on their location. In energetic compartmentalization, the ratios of AMP and ADP to ATP are different from the average ratios. This is important for the performance of ATPases fuelling cardiac excitation-contraction coupling and mechanical work. A recent study suggested that compartmentalization modulates the activity of creatine kinase and adenylate kinase in situ. This could have implications for energetic signaling through, for example, AMP-activated kinase. It highlights the importance of taking compartmentalization into account in our interpretation of cellular physiology and developing methods to assess local concentrations of AMP and ADP to enhance our understanding of compartmentalization in different cell types.
Collapse
Affiliation(s)
- Rikke Birkedal
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Estonia
| | - Jelena Branovets
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Estonia
| | - Marko Vendelin
- Laboratory of Systems Biology, Department of Cybernetics, Tallinn University of Technology, Estonia
| |
Collapse
|
4
|
Lygate CA. Maintaining energy provision in the heart: the creatine kinase system in ischaemia-reperfusion injury and chronic heart failure. Clin Sci (Lond) 2024; 138:491-514. [PMID: 38639724 DOI: 10.1042/cs20230616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/25/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
The non-stop provision of chemical energy is of critical importance to normal cardiac function, requiring the rapid turnover of ATP to power both relaxation and contraction. Central to this is the creatine kinase (CK) phosphagen system, which buffers local ATP levels to optimise the energy available from ATP hydrolysis, to stimulate energy production via the mitochondria and to smooth out mismatches between energy supply and demand. In this review, we discuss the changes that occur in high-energy phosphate metabolism (i.e., in ATP and phosphocreatine) during ischaemia and reperfusion, which represents an acute crisis of energy provision. Evidence is presented from preclinical models that augmentation of the CK system can reduce ischaemia-reperfusion injury and improve functional recovery. Energetic impairment is also a hallmark of chronic heart failure, in particular, down-regulation of the CK system and loss of adenine nucleotides, which may contribute to pathophysiology by limiting ATP supply. Herein, we discuss the evidence for this hypothesis based on preclinical studies and in patients using magnetic resonance spectroscopy. We conclude that the correlative evidence linking impaired energetics to cardiac dysfunction is compelling; however, causal evidence from loss-of-function models remains equivocal. Nevertheless, proof-of-principle studies suggest that augmentation of CK activity is a therapeutic target to improve cardiac function and remodelling in the failing heart. Further work is necessary to translate these findings to the clinic, in particular, a better understanding of the mechanisms by which the CK system is regulated in disease.
Collapse
Affiliation(s)
- Craig A Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, United Kingdom
| |
Collapse
|
5
|
Gupta A. Cardiac 31P MR spectroscopy: development of the past five decades and future vision-will it be of diagnostic use in clinics? Heart Fail Rev 2023; 28:485-532. [PMID: 36427161 DOI: 10.1007/s10741-022-10287-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 11/27/2022]
Abstract
In the past five decades, the use of the magnetic resonance (MR) technique for cardiovascular diseases has engendered much attention and raised the opportunity that the technique could be useful for clinical applications. MR has two arrows in its quiver: One is magnetic resonance imaging (MRI), and the other is magnetic resonance spectroscopy (MRS). Non-invasively, highly advanced MRI provides unique and profound information about the anatomical changes of the heart. Excellently developed MRS provides irreplaceable and insightful evidence of the real-time biochemistry of cardiac metabolism of underpinning diseases. Compared to MRI, which has already been successfully applied in routine clinical practice, MRS still has a long way to travel to be incorporated into routine diagnostics. Considering the exceptional potential of 31P MRS to measure the real-time metabolic changes of energetic molecules qualitatively and quantitatively, how far its powerful technique should be waited before a successful transition from "bench-to-bedside" is enticing. The present review highlights the seminal studies on the chronological development of cardiac 31P MRS in the past five decades and the future vision and challenges to incorporating it for routine diagnostics of cardiovascular disease.
Collapse
Affiliation(s)
- Ashish Gupta
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow, 226014, India.
| |
Collapse
|
6
|
Ghosh S, Guglielmi G, Orfanidis I, Spill F, Hickey A, Hanssen E, Rajagopal V. Effects of altered cellular ultrastructure on energy metabolism in diabetic cardiomyopathy: an in silico study. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210323. [PMID: 36189807 PMCID: PMC9527921 DOI: 10.1098/rstb.2021.0323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/09/2022] [Indexed: 11/12/2022] Open
Abstract
Diabetic cardiomyopathy is a leading cause of heart failure in diabetes. At the cellular level, diabetic cardiomyopathy leads to altered mitochondrial energy metabolism and cardiomyocyte ultrastructure. We combined electron microscopy (EM) and computational modelling to understand the impact of diabetes-induced ultrastructural changes on cardiac bioenergetics. We collected transverse micrographs of multiple control and type I diabetic rat cardiomyocytes using EM. Micrographs were converted to finite-element meshes, and bioenergetics was simulated over them using a biophysical model. The simulations also incorporated depressed mitochondrial capacity for oxidative phosphorylation (OXPHOS) and creatine kinase (CK) reactions to simulate diabetes-induced mitochondrial dysfunction. Analysis of micrographs revealed a 14% decline in mitochondrial area fraction in diabetic cardiomyocytes, and an irregular arrangement of mitochondria and myofibrils. Simulations predicted that this irregular arrangement, coupled with the depressed activity of mitochondrial CK enzymes, leads to large spatial variation in adenosine diphosphate (ADP)/adenosine triphosphate (ATP) ratio profile of diabetic cardiomyocytes. However, when spatially averaged, myofibrillar ADP/ATP ratios of a cardiomyocyte do not change with diabetes. Instead, average concentration of inorganic phosphate rises by 40% owing to lower mitochondrial area fraction and dysfunction in OXPHOS. These simulations indicate that a disorganized cellular ultrastructure negatively impacts metabolite transport in diabetic cardiomyopathy. This article is part of the theme issue 'The cardiomyocyte: new revelations on the interplay between architecture and function in growth, health, and disease'.
Collapse
Affiliation(s)
- Shouryadipta Ghosh
- CSIRO Data61, Commonwealth Scientific and Industrial Research Organisation, Research Way, Clayton, VIC 3168, Australia
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
| | - Giovanni Guglielmi
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
- School of Mathematics, University of Birmingham, Edgbaston B15 2TS, UK
| | - Ioannis Orfanidis
- Health Data Specialists, Grand Canal Docklands, Dublin D02 VK08, Republic of Ireland
| | - Fabian Spill
- School of Mathematics, University of Birmingham, Edgbaston B15 2TS, UK
| | - Anthony Hickey
- School of Biological Sciences, University of Auckland, Auckland, NZ 1042, New Zealand
| | - Eric Hanssen
- Ian Holmes Imaging Center and Department of Biochemistry and Pharmacology, Bio21 Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Vijay Rajagopal
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
7
|
Eylem CC, Reçber T, Waris M, Kır S, Nemutlu E. State-of-the-art GC-MS approaches for probing central carbon metabolism. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
8
|
Eylem CC, Baysal İ, Erikci A, Yabanoglu-Ciftci S, Zhang S, Kır S, Terzic A, Dzeja P, Nemutlu E. Gas chromatography-mass spectrometry based 18O stable isotope labeling of Krebs cycle intermediates. Anal Chim Acta 2021; 1154:338325. [PMID: 33736808 DOI: 10.1016/j.aca.2021.338325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/07/2021] [Accepted: 02/11/2021] [Indexed: 11/16/2022]
Abstract
New technologies permit determining metabolomic profiles of human diseases by fingerprinting metabolites levels. However, to fully understand metabolomic phenotypes, metabolite levels and turnover rates are necessary to know. Krebs cycle is the major hub of energy metabolism and cell signaling. Traditionally, 13C stable isotope labeled substrates were used to track the carbon turnover rates in Krebs cycle metabolites. In this study, for the first time we introduce H2[18O] based stable isotope marker that permit tracking oxygen exchange rates in separate segments of Krebs cycle. The chromatographic and non-chromatographic parameters were systematically tested on the effect of labeling ratio of Krebs cycle mediators to increase selectivity and sensitivity of the method. We have developed a rapid, precise, and robust GC-MS method for determining the percentage of 18O incorporation to Krebs cycle metabolites. The developed method was applied to track the cancer-induced shift in the Krebs cycle dynamics of Caco-2 cells as compared to the control FHC cells revealing Warburg effects in Caco-2 cells. We demonstrate that unique information could be obtained using this newly developed 18O-labeling analytical technology by following the oxygen exchange rates of Krebs cycle metabolites. Thus, 18O-labeling of Krebs cycle metabolites expands the arsenal of techniques for monitoring the dynamics of cellular metabolism. Moreover, the developed method will allow to apply the 18O-labeling technique to numerous other metabolic pathways where oxygen exchange with water takes place.
Collapse
Affiliation(s)
- Cemil Can Eylem
- Hacettepe University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Turkey.
| | - İpek Baysal
- Hacettepe University, Hacettepe University, Vocational School of Health Services, Ankara, Turkey.
| | - Acelya Erikci
- Lokman Hekim University, Faculty of Pharmacy, Department of Biochemistry, Ankara, Turkey.
| | | | - Song Zhang
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.
| | - Sedef Kır
- Hacettepe University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Turkey.
| | - Andre Terzic
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.
| | - Petras Dzeja
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.
| | - Emirhan Nemutlu
- Hacettepe University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Turkey.
| |
Collapse
|
9
|
Zervou S, McAndrew DJ, Whittington HJ, Lake HA, Park KC, Cha KM, Ostrowski PJ, Eykyn TR, Schneider JE, Neubauer S, Lygate CA. Subtle Role for Adenylate Kinase 1 in Maintaining Normal Basal Contractile Function and Metabolism in the Murine Heart. Front Physiol 2021; 12:623969. [PMID: 33867998 PMCID: PMC8044416 DOI: 10.3389/fphys.2021.623969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/15/2021] [Indexed: 11/22/2022] Open
Abstract
Aims Adenylate kinase 1 (AK1) catalyses the reaction 2ADP ↔ ATP + AMP, extracting extra energy under metabolic stress and promoting energetic homeostasis. We hypothesised that increased AK1 activity would have negligible effects at rest, but protect against ischaemia/reperfusion (I/R) injury. Methods and Results Cardiac-specific AK1 overexpressing mice (AK1-OE) had 31% higher AK1 activity (P = 0.009), with unchanged total creatine kinase and citrate synthase activities. Male AK1-OE exhibited mild in vivo dysfunction at baseline with lower LV pressure, impaired relaxation, and contractile reserve. LV weight was 19% higher in AK1-OE males due to higher tissue water content in the absence of hypertrophy or fibrosis. AK1-OE hearts had significantly raised creatine, unaltered total adenine nucleotides, and 20% higher AMP levels (P = 0.05), but AMP-activated protein kinase was not activated (P = 0.85). 1H-NMR revealed significant differences in LV metabolite levels compared to wild-type, with aspartate, tyrosine, sphingomyelin, cholesterol all elevated, whereas taurine and triglycerides were significantly lower. Ex vivo global no-flow I/R, caused four-of-seven AK1-OE hearts to develop terminal arrhythmia (cf. zero WT), yet surviving AK1-OE hearts had improved functional recovery. However, AK1-OE did not influence infarct size in vivo and arrhythmias were only observed ex vivo, probably as an artefact of adenine nucleotide loss during cannulation. Conclusion Modest elevation of AK1 may improve functional recovery following I/R, but has unexpected impact on LV weight, function and metabolite levels under basal resting conditions, suggesting a more nuanced role for AK1 underpinning myocardial energy homeostasis and not just as a response to stress.
Collapse
Affiliation(s)
- Sevasti Zervou
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom.,British Heart Foundation Centre for Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Debra J McAndrew
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom.,British Heart Foundation Centre for Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Hannah J Whittington
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom.,British Heart Foundation Centre for Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Hannah A Lake
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom.,British Heart Foundation Centre for Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Kyung Chan Park
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom.,British Heart Foundation Centre for Research Excellence, University of Oxford, Oxford, United Kingdom.,Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Kuan Minn Cha
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom.,British Heart Foundation Centre for Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Philip J Ostrowski
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom.,British Heart Foundation Centre for Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Thomas R Eykyn
- British Heart Foundation Centre for Research Excellence, King's College London, St. Thomas Hospital, London, United Kingdom
| | - Jürgen E Schneider
- Experimental and Preclinical Imaging Centre (ePIC), Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Stefan Neubauer
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom.,British Heart Foundation Centre for Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Craig A Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom.,British Heart Foundation Centre for Research Excellence, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
10
|
Branovets J, Karro N, Barsunova K, Laasmaa M, Lygate CA, Vendelin M, Birkedal R. Cardiac expression and location of hexokinase changes in a mouse model of pure creatine deficiency. Am J Physiol Heart Circ Physiol 2021; 320:H613-H629. [PMID: 33337958 DOI: 10.1152/ajpheart.00188.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 11/10/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023]
Abstract
Creatine kinase (CK) is considered the main phosphotransfer system in the heart, important for overcoming diffusion restrictions and regulating mitochondrial respiration. It is substrate limited in creatine-deficient mice lacking l-arginine:glycine amidinotransferase (AGAT) or guanidinoacetate N-methyltranferase (GAMT). Our aim was to determine the expression, activity, and mitochondrial coupling of hexokinase (HK) and adenylate kinase (AK), as these represent alternative energy transfer systems. In permeabilized cardiomyocytes, we assessed how much endogenous ADP generated by HK, AK, or CK stimulated mitochondrial respiration and how much was channeled to mitochondria. In whole heart homogenates, and cytosolic and mitochondrial fractions, we measured the activities of AK, CK, and HK. Lastly, we assessed the expression of the major HK, AK, and CK isoforms. Overall, respiration stimulated by HK, AK, and CK was ∼25, 90, and 80%, respectively, of the maximal respiration rate, and ∼20, 0, and 25%, respectively, was channeled to the mitochondria. The activity, distribution, and expression of HK, AK, and CK did not change in GAMT knockout (KO) mice. In AGAT KO mice, we found no changes in AK, but we found a higher HK activity in the mitochondrial fraction, greater expression of HK I, but a lower stimulation of respiration by HK. Our findings suggest that mouse hearts depend less on phosphotransfer systems to facilitate ADP flux across the mitochondrial membrane. In AGAT KO mice, which are a model of pure creatine deficiency, the changes in HK may reflect changes in metabolism as well as influence mitochondrial regulation and reactive oxygen species production.NEW & NOTEWORTHY In creatine-deficient AGAT-/- and GAMT-/- mice, the myocardial creatine kinase system is substrate limited. It is unknown whether subcellular localization and mitochondrial ADP channeling by hexokinase and adenylate kinase may compensate as alternative phosphotransfer systems. Our results show no changes in adenylate kinase, which is the main alternative to creatine kinase in heart. However, we found increased expression and activity of hexokinase I in AGAT-/- cardiomyocytes. This could affect mitochondrial regulation and reactive oxygen species production.
Collapse
Affiliation(s)
- Jelena Branovets
- Laboratory of Systems Biology, Institute of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Niina Karro
- Laboratory of Systems Biology, Institute of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Karina Barsunova
- Laboratory of Systems Biology, Institute of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Martin Laasmaa
- Laboratory of Systems Biology, Institute of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Craig A Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Marko Vendelin
- Laboratory of Systems Biology, Institute of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| | - Rikke Birkedal
- Laboratory of Systems Biology, Institute of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
11
|
Reçber T, Nemutlu E, Beksaç K, Aksoy S, Kır S. Optimization and validation of a HILIC-LC-ESI-MS/MS method for the simultaneous analysis of targeted metabolites: Cross validation of untargeted metabolomic studies for early diagnosis of breast cancer. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Vihinen M. Functional effects of protein variants. Biochimie 2020; 180:104-120. [PMID: 33164889 DOI: 10.1016/j.biochi.2020.10.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022]
Abstract
Genetic and other variations frequently affect protein functions. Scientific articles can contain confusing descriptions about which function or property is affected, and in many cases the statements are pure speculation without any experimental evidence. To clarify functional effects of protein variations of genetic or non-genetic origin, a systematic conceptualisation and framework are introduced. This framework describes protein functional effects on abundance, activity, specificity and affinity, along with countermeasures, which allow cells, tissues and organisms to tolerate, avoid, repair, attenuate or resist (TARAR) the effects. Effects on abundance discussed include gene dosage, restricted expression, mis-localisation and degradation. Enzymopathies, effects on kinetics, allostery and regulation of protein activity are subtopics for the effects of variants on activity. Variation outcomes on specificity and affinity comprise promiscuity, specificity, affinity and moonlighting. TARAR mechanisms redress variations with active and passive processes including chaperones, redundancy, robustness, canalisation and metabolic and signalling rewiring. A framework for pragmatic protein function analysis and presentation is introduced. All of the mechanisms and effects are described along with representative examples, most often in relation to diseases. In addition, protein function is discussed from evolutionary point of view. Application of the presented framework facilitates unambiguous, detailed and specific description of functional effects and their systematic study.
Collapse
Affiliation(s)
- Mauno Vihinen
- Department of Experimental Medical Science, BMC B13, Lund University, SE-22 184, Lund, Sweden.
| |
Collapse
|
13
|
Piquereau J, Veksler V, Novotova M, Ventura-Clapier R. Energetic Interactions Between Subcellular Organelles in Striated Muscles. Front Cell Dev Biol 2020; 8:581045. [PMID: 33134298 PMCID: PMC7561670 DOI: 10.3389/fcell.2020.581045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/15/2020] [Indexed: 01/12/2023] Open
Abstract
Adult striated muscle cells present highly organized structure with densely packed intracellular organelles and a very sparse cytosol accounting for only few percent of cell volume. These cells have a high and fluctuating energy demand that, in continuously working oxidative muscles, is fulfilled mainly by oxidative metabolism. ATP produced by mitochondria should be directed to the main energy consumers, ATPases of the excitation-contraction system; at the same time, ADP near ATPases should rapidly be eliminated. This is achieved by phosphotransfer kinases, the most important being creatine kinase (CK). Specific CK isoenzymes are located in mitochondria and in close proximity to ATPases, forming efficient energy shuttle between these structures. In addition to phosphotransfer kinases, ATP/ADP can be directly channeled between mitochondria co-localized with ATPases in a process called “direct adenine nucleotide channeling, DANC.” This process is highly plastic so that inactivation of the CK system increases the participation of DANC to energy supply owing to the rearrangement of cell structure. The machinery for DANC is built during postnatal development in parallel with the increase in mitochondrial mass, organization, and complexification of the cell structure. Disorganization of cell architecture remodels the mitochondrial network and decreases the efficacy of DANC, showing that this process is intimately linked to cardiomyocyte structure. Accordingly, in heart failure, disorganization of the cell structure along with decrease in mitochondrial mass reduces the efficacy of DANC and together with alteration of the CK shuttle participates in energetic deficiency contributing to contractile failure.
Collapse
Affiliation(s)
- Jérôme Piquereau
- Université Paris-Saclay, Inserm, UMR-S 1180, Châtenay-Malabry, France
| | - Vladimir Veksler
- Université Paris-Saclay, Inserm, UMR-S 1180, Châtenay-Malabry, France
| | - Marta Novotova
- Department of Cellular Cardiology, Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | | |
Collapse
|
14
|
Peterzan MA, Lewis AJM, Neubauer S, Rider OJ. Non-invasive investigation of myocardial energetics in cardiac disease using 31P magnetic resonance spectroscopy. Cardiovasc Diagn Ther 2020; 10:625-635. [PMID: 32695642 DOI: 10.21037/cdt-20-275] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cardiac metabolism and function are intrinsically linked. High-energy phosphates occupy a central and obligate position in cardiac metabolism, coupling oxygen and substrate fuel delivery to the myocardium with external work. This insight underlies the widespread clinical use of ischaemia testing. However, other deficits in high-energy phosphate metabolism (not secondary to supply-demand mismatch of oxygen and substrate fuels) may also be documented, and are of particular interest when found in the context of structural heart disease. This review introduces the scope of deficits in high-energy phosphate metabolism that may be observed in the myocardium, how to assess for them, and how they might be interpreted.
Collapse
Affiliation(s)
- Mark A Peterzan
- University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Andrew J M Lewis
- University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Stefan Neubauer
- University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Oliver J Rider
- University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
15
|
Klepinin A, Zhang S, Klepinina L, Rebane-Klemm E, Terzic A, Kaambre T, Dzeja P. Adenylate Kinase and Metabolic Signaling in Cancer Cells. Front Oncol 2020; 10:660. [PMID: 32509571 PMCID: PMC7248387 DOI: 10.3389/fonc.2020.00660] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/08/2020] [Indexed: 12/23/2022] Open
Abstract
A hallmark of cancer cells is the ability to rewire their bioenergetics and metabolic signaling circuits to fuel their uncontrolled proliferation and metastasis. Adenylate kinase (AK) is the critical enzyme in the metabolic monitoring of cellular adenine nucleotide homeostasis. It also directs AK→ AMP→ AMPK signaling controlling cell cycle and proliferation, and ATP energy transfer from mitochondria to distribute energy among cellular processes. The significance of AK isoform network in the regulation of a variety of cellular processes, which include cell differentiation and motility, is rapidly growing. Adenylate kinase 2 (AK2) isoform, localized in intermembrane and intra-cristae space, is vital for mitochondria nucleotide exchange and ATP export. AK2 deficiency disrupts cell energetics, causes severe human diseases, and is embryonically lethal in mice, signifying the importance of catalyzed phosphotransfer in cellular energetics. Suppression of AK phosphotransfer and AMP generation in cancer cells and consequently signaling through AMPK could be an important factor in the initiation of cancerous transformation, unleashing uncontrolled cell cycle and growth. Evidence also builds up that shift in AK isoforms is used later by cancer cells for rewiring energy metabolism to support their high proliferation activity and tumor progression. As cell motility is an energy-consuming process, positioning of AK isoforms to increased energy consumption sites could be an essential factor to incline cancer cells to metastases. In this review, we summarize recent advances in studies of the significance of AK isoforms involved in cancer cell metabolism, metabolic signaling, metastatic potential, and a therapeutic target.
Collapse
Affiliation(s)
- Aleksandr Klepinin
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Song Zhang
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Ljudmila Klepinina
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Egle Rebane-Klemm
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Andre Terzic
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Tuuli Kaambre
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Petras Dzeja
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
16
|
Toleikis A, Trumbeckaite S, Liobikas J, Pauziene N, Kursvietiene L, Kopustinskiene DM. Fatty Acid Oxidation and Mitochondrial Morphology Changes as Key Modulators of the Affinity for ADP in Rat Heart Mitochondria. Cells 2020; 9:E340. [PMID: 32024170 PMCID: PMC7072426 DOI: 10.3390/cells9020340] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 01/16/2023] Open
Abstract
Fatty acids are the main respiratory substrates important for cardiac function, and their oxidation is altered during various chronic disorders. We investigated the mechanism of fatty acid-oxidation-induced changes and their relations with mitochondrial morphology and ADP/ATP carrier conformation on the kinetics of the regulation of mitochondrial respiration in rat skinned cardiac fibers. Saturated and unsaturated, activated and not activated, long and medium chain, fatty acids similarly decreased the apparent KmADP. Addition of 5% dextran T-70 to mimic the oncotic pressure of the cellular cytoplasm markedly increased the low apparent KmADP value of mitochondria in cardiac fibers respiring on palmitoyl-l-carnitine or octanoyl-l-carnitine, but did not affect the high apparent KmADP of mitochondria respiring on pyruvate and malate. Electron microscopy revealed that palmitoyl-l-carnitine oxidation-induced changes in the mitochondrial ultrastructure (preventable by dextran) are similar to those induced by carboxyatractyloside. Our data suggest that a fatty acid oxidation-induced conformational change of the adenosine diphosphate (ADP)/adenosine triphosphate (ATP) carrier (M-state to C-state, condensed to orthodox mitochondria) may affect the oxidative phosphorylation affinity for ADP.
Collapse
Affiliation(s)
- Adolfas Toleikis
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu 4, LT-50161 Kaunas, Lithuania; (A.T.); (S.T.); (J.L.)
| | - Sonata Trumbeckaite
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu 4, LT-50161 Kaunas, Lithuania; (A.T.); (S.T.); (J.L.)
- Department of Pharmacognosy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50166 Kaunas, Lithuania
| | - Julius Liobikas
- Neuroscience Institute, Lithuanian University of Health Sciences, Eiveniu 4, LT-50161 Kaunas, Lithuania; (A.T.); (S.T.); (J.L.)
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 4, LT-50161 Kaunas, Lithuania;
| | - Neringa Pauziene
- Institute of Anatomy, Lithuanian University of Health Sciences, Mickeviciaus 9, LT-44307 Kaunas, Lithuania;
| | - Lolita Kursvietiene
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 4, LT-50161 Kaunas, Lithuania;
| | - Dalia M. Kopustinskiene
- Institute of Pharmaceutical Technologies, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
| |
Collapse
|
17
|
Tepp K, Puurand M, Timohhina N, Aid-Vanakova J, Reile I, Shevchuk I, Chekulayev V, Eimre M, Peet N, Kadaja L, Paju K, Käämbre T. Adaptation of striated muscles to Wolframin deficiency in mice: Alterations in cellular bioenergetics. Biochim Biophys Acta Gen Subj 2020; 1864:129523. [PMID: 31935437 DOI: 10.1016/j.bbagen.2020.129523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Wolfram syndrome (WS), caused by mutations in WFS1 gene, is a multi-targeting disease affecting multiple organ systems. Wolframin is localized in the membrane of the endoplasmic reticulum (ER), influencing Ca2+ metabolism and ER interaction with mitochondria, but the exact role of the protein remains unclear. In this study we aimed to characterize alterations in energy metabolism in the cardiac and in the oxidative and glycolytic skeletal muscles in Wfs1-deficiency. METHODS Alterations in the bioenergetic profiles in the cardiac and skeletal muscles of Wfs1-knock-out (KO) male mice and their wild type male littermates were determined using high resolution respirometry, quantitative RT-PCR, NMR spectroscopy, and immunofluorescence confocal microscopy. RESULTS Oxygen consumption without ATP synthase activation (leak) was significantly higher in the glycolytic muscles of Wfs1 KO mice compared to wild types. ADP-stimulated respiration with glutamate and malate was reduced in the Wfs1-deficient cardiac as well as oxidative and glycolytic skeletal muscles. CONCLUSIONS Wfs1-deficiency in both cardiac and skeletal muscles results in functional alterations of energy transport from mitochondria to ATP-ases. There was a substrate-dependent decrease in the maximal Complex I -linked respiratory capacity of the electron transport system in muscles of Wfs1 KO mice. Moreover, in cardiac and gastrocnemius white muscles a decrease in the function of one pathway were balanced by the increase in the activity of the parallel pathway. GENERAL SIGNIFICANCE This work provides new insights to the muscle involvement at early stages of metabolic syndrome like WS as well as developing glucose intolerance.
Collapse
Affiliation(s)
- Kersti Tepp
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia.
| | - Marju Puurand
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Natalja Timohhina
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Jekaterina Aid-Vanakova
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Indrek Reile
- Laboratory of Chemical Physics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Igor Shevchuk
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Vladimir Chekulayev
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Margus Eimre
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411 Tartu, Estonia
| | - Nadežda Peet
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411 Tartu, Estonia
| | - Lumme Kadaja
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411 Tartu, Estonia
| | - Kalju Paju
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411 Tartu, Estonia
| | - Tuuli Käämbre
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| |
Collapse
|
18
|
Bortoluzzi VT, Brust L, Preissler T, de Franceschi ID, Wannmacher CMD. Creatine plus pyruvate supplementation prevents oxidative stress and phosphotransfer network disturbances in the brain of rats subjected to chemically-induced phenylketonuria. Metab Brain Dis 2019; 34:1649-1660. [PMID: 31352540 DOI: 10.1007/s11011-019-00472-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 07/14/2019] [Indexed: 12/13/2022]
Abstract
Phenylketonuria (PKU) is the most common inborn error of amino acid metabolism. Usually diagnosed within the first month of birth, it is essential that the patient strictly follow the dietary restriction of natural protein intake. Otherwise, PKU impacts the development of the brain severely and may result in microcephaly, epilepsy, motor deficits, intellectual disability, and psychiatric and behavioral disorders. The neuropathology associated with PKU includes defects of myelination, insufficient synthesis of monoamine neurotransmitters, amino acid imbalance across the blood-brain barrier, and involves intermediary metabolic pathways supporting energy homeostasis and antioxidant defenses in the brain. Considering that the production of reactive oxygen species (ROS) is inherent to energy metabolism, we investigated the association of creatine+pyruvate (Cr + Pyr), both energy substrates with antioxidants properties, as a possible treatment to mitigate oxidative stress and phosphotransfer network impairment elicited in the brain of young Wistar rats by chemically-induced PKU. We induced PKU through the administration of α-methyl-L-phenylalanine and phenylalanine for 7 days, with and without Cr + Pyr supplementation, until postpartum day 14. The cotreatment with Cr + Pyr administered concurrently with PKU induction prevented ROS formation and part of the alterations observed in antioxidants defenses and phosphotransfer network enzymes in the cerebral cortex, hippocampus, and cerebellum. If such prevention also occurs in PKU patients, supplementing the phenylalanine-restricted diet with antioxidants and energetic substrates might be beneficial to these patients.
Collapse
Affiliation(s)
- Vanessa Trindade Bortoluzzi
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, Porto Alegre, RS, CEP 90.035-003, Brazil.
| | - Letícia Brust
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, Porto Alegre, RS, CEP 90.035-003, Brazil
| | - Thales Preissler
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, Porto Alegre, RS, CEP 90.035-003, Brazil
| | - Itiane Diehl de Franceschi
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, Porto Alegre, RS, CEP 90.035-003, Brazil
| | - Clovis Milton Duval Wannmacher
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, Porto Alegre, RS, CEP 90.035-003, Brazil
| |
Collapse
|
19
|
Faller KME, Atzler D, McAndrew DJ, Zervou S, Whittington HJ, Simon JN, Aksentijevic D, Ten Hove M, Choe CU, Isbrandt D, Casadei B, Schneider JE, Neubauer S, Lygate CA. Impaired cardiac contractile function in arginine:glycine amidinotransferase knockout mice devoid of creatine is rescued by homoarginine but not creatine. Cardiovasc Res 2019; 114:417-430. [PMID: 29236952 PMCID: PMC5982714 DOI: 10.1093/cvr/cvx242] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 12/08/2017] [Indexed: 01/09/2023] Open
Abstract
Aims Creatine buffers cellular adenosine triphosphate (ATP) via the creatine kinase reaction. Creatine levels are reduced in heart failure, but their contribution to pathophysiology is unclear. Arginine:glycine amidinotransferase (AGAT) in the kidney catalyses both the first step in creatine biosynthesis as well as homoarginine (HA) synthesis. AGAT-/- mice fed a creatine-free diet have a whole body creatine-deficiency. We hypothesized that AGAT-/- mice would develop cardiac dysfunction and rescue by dietary creatine would imply causality. Methods and results Withdrawal of dietary creatine in AGAT-/- mice provided an estimate of myocardial creatine efflux of ∼2.7%/day; however, in vivo cardiac function was maintained despite low levels of myocardial creatine. Using AGAT-/- mice naïve to dietary creatine we confirmed absence of phosphocreatine in the heart, but crucially, ATP levels were unchanged. Potential compensatory adaptations were absent, AMPK was not activated and respiration in isolated mitochondria was normal. AGAT-/- mice had rescuable changes in body water and organ weights suggesting a role for creatine as a compatible osmolyte. Creatine-naïve AGAT-/- mice had haemodynamic impairment with low LV systolic pressure and reduced inotropy, lusitropy, and contractile reserve. Creatine supplementation only corrected systolic pressure despite normalization of myocardial creatine. AGAT-/- mice had low plasma HA and supplementation completely rescued all other haemodynamic parameters. Contractile dysfunction in AGAT-/- was confirmed in Langendorff perfused hearts and in creatine-replete isolated cardiomyocytes, indicating that HA is necessary for normal cardiac function. Conclusions Our findings argue against low myocardial creatine per se as a major contributor to cardiac dysfunction. Conversely, we show that HA deficiency can impair cardiac function, which may explain why low HA is an independent risk factor for multiple cardiovascular diseases.
Collapse
Affiliation(s)
- Kiterie M E Faller
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence at the University of Oxford and the Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Dorothee Atzler
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence at the University of Oxford and the Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK.,German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Institute for Cardiovascular Prevention (IPEK), Pettenkoferstraße 8a & 9, 80336 Munich, Germany.,Walther-Straub Institute of Pharmacology and Toxicology, Ludwig Maximilians University, Goethestrasse 33, 80336 Munich, Germany
| | - Debra J McAndrew
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence at the University of Oxford and the Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Sevasti Zervou
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence at the University of Oxford and the Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Hannah J Whittington
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence at the University of Oxford and the Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Jillian N Simon
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence at the University of Oxford and the Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Dunja Aksentijevic
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence at the University of Oxford and the Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Michiel Ten Hove
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence at the University of Oxford and the Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Chi-Un Choe
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Dirk Isbrandt
- Experimental Neurophysiology, German Center for Neurodegenerative Diseases (DZNE), 53175 Bonn, Germany.,The Institute for Molecular and Behavioral Neuroscience, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Barbara Casadei
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence at the University of Oxford and the Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Jurgen E Schneider
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence at the University of Oxford and the Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK.,Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Stefan Neubauer
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence at the University of Oxford and the Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Craig A Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, BHF Centre of Research Excellence at the University of Oxford and the Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| |
Collapse
|
20
|
Giusti L, Molinaro A, Alessandrì MG, Boldrini C, Ciregia F, Lacerenza S, Ronci M, Urbani A, Cioni G, Mazzoni MR, Pizzorusso T, Lucacchini A, Baroncelli L. Brain mitochondrial proteome alteration driven by creatine deficiency suggests novel therapeutic venues for creatine deficiency syndromes. Neuroscience 2019; 409:276-289. [PMID: 31029731 DOI: 10.1016/j.neuroscience.2019.03.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/09/2019] [Accepted: 03/12/2019] [Indexed: 01/15/2023]
Abstract
Creatine (Cr) is a small metabolite with a central role in energy metabolism and mitochondrial function. Creatine deficiency syndromes are inborn errors of Cr metabolism causing Cr depletion in all body tissues and particularly in the nervous system. Patient symptoms involve intellectual disability, language and behavioral disturbances, seizures and movement disorders suggesting that brain cells are particularly sensitive to Cr depletion. Cr deficiency was found to affect metabolic activity and structural abnormalities of mitochondrial organelles; however a detailed analysis of molecular mechanisms linking Cr deficit, energy metabolism alterations and brain dysfunction is still missing. Using a proteomic approach we evaluated the proteome changes of the brain mitochondrial fraction induced by the deletion of the Cr transporter (CrT) in developing mutant mice. We found a marked alteration of the mitochondrial proteomic landscape in the brain of CrT deficient mice, with the overexpression of many proteins involved in energy metabolism and response to oxidative stress. Moreover, our data suggest possible abnormalities of dendritic spines, synaptic function and plasticity, network excitability and neuroinflammatory response. Intriguingly, the alterations occurred in coincidence with the developmental onset of neurological symptoms. Thus, cerebral mitochondrial alterations could represent an early response to Cr deficiency that could be targeted for therapeutic intervention.
Collapse
Affiliation(s)
- Laura Giusti
- Department of Clinical and Experimental Medicine, University of Pisa, I-56126, Pisa, Italy; School of Pharmacy, University of Camerino, I-62032 Camerino, Italy
| | - Angelo Molinaro
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, I-50135, Florence, Italy; Institute of Neuroscience, National Research Council (CNR), I-56124, Pisa, Italy
| | - Maria Grazia Alessandrì
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, I-56128 Pisa, Italy
| | - Claudia Boldrini
- Department of Pharmacy, University of Pisa, I-56126, Pisa, Italy
| | - Federica Ciregia
- Department of Pharmacy, University of Pisa, I-56126, Pisa, Italy; Department of Rheumatology, GIGA Research, Centre Hospitalier Universitaire (CHU) de Liège, B-4000, Liège, Belgium
| | - Serena Lacerenza
- Department of Pharmacy, University of Pisa, I-56126, Pisa, Italy
| | - Maurizio Ronci
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, I-66100, Chieti, Italy
| | - Andrea Urbani
- Institute of Biochemistry and Clinical Chemistry, Catholic university of the sacred heart, I-00168, Rome, Italy
| | - Giovanni Cioni
- Department of Clinical and Experimental Medicine, University of Pisa, I-56126, Pisa, Italy; Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, I-56128 Pisa, Italy
| | | | - Tommaso Pizzorusso
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, I-50135, Florence, Italy; Institute of Neuroscience, National Research Council (CNR), I-56124, Pisa, Italy
| | - Antonio Lucacchini
- Department of Clinical and Experimental Medicine, University of Pisa, I-56126, Pisa, Italy
| | - Laura Baroncelli
- Institute of Neuroscience, National Research Council (CNR), I-56124, Pisa, Italy; Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, I-56128 Pisa, Italy.
| |
Collapse
|
21
|
Chen F, Zhu K, Chen L, Ouyang L, Chen C, Gu L, Jiang Y, Wang Z, Lin Z, Zhang Q, Shao X, Dai J, Zhao Y. Protein target identification of ginsenosides in skeletal muscle tissues: discovery of natural small-molecule activators of muscle-type creatine kinase. J Ginseng Res 2019; 44:461-474. [PMID: 32372868 PMCID: PMC7195589 DOI: 10.1016/j.jgr.2019.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/19/2019] [Accepted: 02/27/2019] [Indexed: 12/15/2022] Open
Abstract
Background Ginseng effectively reduces fatigue in both animal models and clinical trials. However, the mechanism of action is not completely understood, and its molecular targets remain largely unknown. Methods By screening for proteins that interact with the primary components of ginseng (ginsenosides) in an affinity chromatography assay, we have identified muscle-type creatine kinase (CK-MM) as a potential target in skeletal muscle tissues. Results Biolayer interferometry analysis showed that ginsenoside metabolites, instead of parent ginsenosides, had direct interaction with recombinant human CK-MM. Subsequently, 20(S)-protopanaxadiol (PPD), which is a ginsenoside metabolite and displayed the strongest interaction with CK-MM in the study, was selected as a representative to confirm direct binding and its biological importance. Biolayer interferometry kinetics analysis and isothermal titration calorimetry assay demonstrated that PPD specifically bound to human CK-MM. Moreover, the mutation of key amino acids predicted by molecular docking decreased the affinity between PPD and CK-MM. The direct binding activated CK-MM activity in vitro and in vivo, which increased the levels of tissue phosphocreatine and strengthened the function of the creatine kinase/phosphocreatine system in skeletal muscle, thus buffering cellular ATP, delaying exercise-induced lactate accumulation, and improving exercise performance in mice. Conclusion Our results suggest a cellular target and an initiating molecular event by which ginseng reduces fatigue. All these findings indicate PPD as a small molecular activator of CK-MM, which can help in further developing better CK-MM activators based on the dammarane-type triterpenoid structure.
Collapse
Affiliation(s)
- Feiyan Chen
- Department of Pathology and Pathophysiology, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, China
- Research Center, Basic Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Kexuan Zhu
- Department of Pathology and Pathophysiology, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, China
- Hanlin College, Nanjing University of Chinese Medicine, Taizhou, China
| | - Lin Chen
- Department of Physiology, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, China
| | - Liufeng Ouyang
- Department of Pathology and Pathophysiology, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, China
- Laboratory of Pathological Sciences, College of Medicine, Yan'an University, Yan'an, China
| | - Cuihua Chen
- Research Center, Basic Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ling Gu
- Research Center, Basic Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yucui Jiang
- Research Center, Basic Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhongli Wang
- School of Nursing, Jiujiang University, Jiujiang, China
| | - Zixuan Lin
- Department of Pathology and Pathophysiology, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qiang Zhang
- Department of Pathology and Pathophysiology, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiao Shao
- Department of Pathology and Pathophysiology, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianguo Dai
- Department of Pathology and Pathophysiology, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yunan Zhao
- Department of Pathology and Pathophysiology, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, China
- Research Center, Basic Medical College, Nanjing University of Chinese Medicine, Nanjing, China
- Corresponding author. Department of Pathology and Pathophysiology, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, 210046, China.
| |
Collapse
|
22
|
Intracellular Energy-Transfer Networks and High-Resolution Respirometry: A Convenient Approach for Studying Their Function. Int J Mol Sci 2018; 19:ijms19102933. [PMID: 30261663 PMCID: PMC6213097 DOI: 10.3390/ijms19102933] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/19/2018] [Accepted: 09/21/2018] [Indexed: 12/21/2022] Open
Abstract
Compartmentalization of high-energy phosphate carriers between intracellular micro-compartments is a phenomenon that ensures efficient energy use. To connect these sites, creatine kinase (CK) and adenylate kinase (AK) energy-transfer networks, which are functionally coupled to oxidative phosphorylation (OXPHOS), could serve as important regulators of cellular energy fluxes. Here, we introduce how selective permeabilization of cellular outer membrane and high-resolution respirometry can be used to study functional coupling between CK or AK pathways and OXPHOS in different cells and tissues. Using the protocols presented here the ability of creatine or adenosine monophosphate to stimulate OXPHOS through CK and AK reactions, respectively, is easily observable and quantifiable. Additionally, functional coupling between hexokinase and mitochondria can be investigated by monitoring the effect of glucose on respiration. Taken together, high-resolution respirometry in combination with permeabilization is a convenient approach for investigating energy-transfer networks in small quantities of cells and tissues in health and in pathology.
Collapse
|
23
|
Abstract
Isoforms of creatine kinase (CK) generate and use phosphocreatine, a concentrated and highly diffusible cellular "high energy" intermediate, for the main purpose of energy buffering and transfer in order to maintain cellular energy homeostasis. The mitochondrial CK isoform (mtCK) localizes to the mitochondrial intermembrane and cristae space, where it assembles into peripherally membrane-bound, large cuboidal homooctamers. These are part of proteolipid complexes wherein mtCK directly interacts with cardiolipin and other anionic phospholipids, as well as with the VDAC channel in the outer membrane. This leads to a stabilization and cross-linking of inner and outer mitochondrial membrane, forming so-called contact sites. Also the adenine nucleotide translocator of the inner membrane can be recruited into these proteolipid complexes, probably mediated by cardiolipin. The complexes have functions mainly in energy transfer to the cytosol and stimulation of oxidative phosphorylation, but also in restraining formation of reactive oxygen species and apoptosis. In vitro evidence indicates a putative role of mtCK in mitochondrial phospholipid distribution, and most recently a role in thermogenesis has been proposed. This review summarizes the essential structural and functional data of these mtCK complexes and describes in more detail the more recent advances in phospholipid interaction, thermogenesis, cancer and evolution of mtCK.
Collapse
|
24
|
Bruno C, Patin F, Bocca C, Nadal-Desbarats L, Bonnier F, Reynier P, Emond P, Vourc'h P, Joseph-Delafont K, Corcia P, Andres CR, Blasco H. The combination of four analytical methods to explore skeletal muscle metabolomics: Better coverage of metabolic pathways or a marketing argument? J Pharm Biomed Anal 2017; 148:273-279. [PMID: 29059617 DOI: 10.1016/j.jpba.2017.10.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 01/11/2023]
Abstract
OBJECTIVES Metabolomics is an emerging science based on diverse high throughput methods that are rapidly evolving to improve metabolic coverage of biological fluids and tissues. Technical progress has led researchers to combine several analytical methods without reporting the impact on metabolic coverage of such a strategy. The objective of our study was to develop and validate several analytical techniques (mass spectrometry coupled to gas or liquid chromatography and nuclear magnetic resonance) for the metabolomic analysis of small muscle samples and evaluate the impact of combining methods for more exhaustive metabolite covering. DESIGN AND METHODS We evaluated the muscle metabolome from the same pool of mouse muscle samples after 2 metabolite extraction protocols. Four analytical methods were used: targeted flow injection analysis coupled with mass spectrometry (FIA-MS/MS), gas chromatography coupled with mass spectrometry (GC-MS), liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS), and nuclear magnetic resonance (NMR) analysis. We evaluated the global variability of each compound i.e., analytical (from quality controls) and extraction variability (from muscle extracts). We determined the best extraction method and we reported the common and distinct metabolites identified based on the number and identity of the compounds detected with low analytical variability (variation coefficient<30%) for each method. Finally, we assessed the coverage of muscle metabolic pathways obtained. RESULTS Methanol/chloroform/water and water/methanol were the best extraction solvent for muscle metabolome analysis by NMR and MS, respectively. We identified 38 metabolites by nuclear magnetic resonance, 37 by FIA-MS/MS, 18 by GC-MS, and 80 by LC-HRMS. The combination led us to identify a total of 132 metabolites with low variability partitioned into 58 metabolic pathways, such as amino acid, nitrogen, purine, and pyrimidine metabolism, and the citric acid cycle. This combination also showed that the contribution of GC-MS was low when used in combination with other mass spectrometry methods and nuclear magnetic resonance to explore muscle samples. CONCLUSION This study reports the validation of several analytical methods, based on nuclear magnetic resonance and several mass spectrometry methods, to explore the muscle metabolome from a small amount of tissue, comparable to that obtained during a clinical trial. The combination of several techniques may be relevant for the exploration of muscle metabolism, with acceptable analytical variability and overlap between methods However, the difficult and time-consuming data pre-processing, processing, and statistical analysis steps do not justify systematically combining analytical methods.
Collapse
Affiliation(s)
- C Bruno
- CHRU de Tours, Laboratoire de Biochimie et Biologie Moléculaire, Tours, France; UMR INSERM U930, Université François Rabelais de Tours, France
| | - F Patin
- CHRU de Tours, Laboratoire de Biochimie et Biologie Moléculaire, Tours, France; UMR INSERM U930, Université François Rabelais de Tours, France
| | - C Bocca
- Institut MITOVASC, CNRS 6015, INSERM U1083, Université d'Angers, Angers, France
| | | | - F Bonnier
- Université François-Rabelais de Tours, Faculté de Pharmacie, EA 6295 Nanomédicaments et Nanosondes, Tours, France
| | - P Reynier
- Institut MITOVASC, CNRS 6015, INSERM U1083, Université d'Angers, Angers, France
| | - P Emond
- UMR INSERM U930, Université François Rabelais de Tours, France
| | - P Vourc'h
- CHRU de Tours, Laboratoire de Biochimie et Biologie Moléculaire, Tours, France; UMR INSERM U930, Université François Rabelais de Tours, France
| | - K Joseph-Delafont
- CHRU de Tours, Laboratoire de Biochimie et Biologie Moléculaire, Tours, France
| | - P Corcia
- UMR INSERM U930, Université François Rabelais de Tours, France; Centre de Ressources et de Compétences SLA, CHU Tours, France; Fédération des Centres de Ressources et de Compétences de Tours et Limoges, Litorals, France
| | - C R Andres
- CHRU de Tours, Laboratoire de Biochimie et Biologie Moléculaire, Tours, France; UMR INSERM U930, Université François Rabelais de Tours, France
| | - H Blasco
- CHRU de Tours, Laboratoire de Biochimie et Biologie Moléculaire, Tours, France; UMR INSERM U930, Université François Rabelais de Tours, France.
| |
Collapse
|
25
|
Powers SK. Exercise: Teaching myocytes new tricks. J Appl Physiol (1985) 2017; 123:460-472. [PMID: 28572498 DOI: 10.1152/japplphysiol.00418.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 05/26/2017] [Accepted: 05/28/2017] [Indexed: 12/31/2022] Open
Abstract
Endurance exercise training promotes numerous cellular adaptations in both cardiac myocytes and skeletal muscle fibers. For example, exercise training fosters changes in mitochondrial function due to increased mitochondrial protein expression and accelerated mitochondrial turnover. Additionally, endurance exercise training alters the abundance of numerous cytosolic and mitochondrial proteins in both cardiac and skeletal muscle myocytes, resulting in a protective phenotype in the active fibers; this exercise-induced protection of cardiac and skeletal muscle fibers is often referred to as "exercise preconditioning." As few as 3-5 consecutive days of endurance exercise training result in a preconditioned cardiac phenotype that is sheltered against ischemia-reperfusion-induced injury. Similarly, endurance exercise training results in preconditioned skeletal muscle fibers that are resistant to a variety of stresses (e.g., heat stress, exercise-induced oxidative stress, and inactivity-induced atrophy). Many studies have probed the mechanisms responsible for exercise-induced preconditioning of cardiac and skeletal muscle fibers; these studies are important, because they provide an improved understanding of the biochemical mechanisms responsible for exercise-induced preconditioning, which has the potential to lead to innovative pharmacological therapies aimed at minimizing stress-induced injury to cardiac and skeletal muscle. This review summarizes the development of exercise-induced protection of cardiac myocytes and skeletal muscle fibers and highlights the putative mechanisms responsible for exercise-induced protection in the heart and skeletal muscles.
Collapse
Affiliation(s)
- Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| |
Collapse
|
26
|
Tepp K, Puurand M, Timohhina N, Adamson J, Klepinin A, Truu L, Shevchuk I, Chekulayev V, Kaambre T. Changes in the mitochondrial function and in the efficiency of energy transfer pathways during cardiomyocyte aging. Mol Cell Biochem 2017; 432:141-158. [PMID: 28293876 DOI: 10.1007/s11010-017-3005-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/04/2017] [Indexed: 12/11/2022]
Abstract
The role of mitochondria in alterations that take place in the muscle cell during healthy aging is a matter of debate during recent years. Most of the studies in bioenergetics have a focus on the model of isolated mitochondria, while changes in the crosstalk between working myofibrils and mitochondria in senescent cardiomyocytes have been less studied. The aim of our research was to investigate the modifications in the highly regulated ATP production and energy transfer systems in heart cells in old rat cardiomyocytes. The results of our work demonstrated alterations in the diffusion restrictions of energy metabolites, manifested by changes in the apparent Michaelis-Menten constant of mitochondria to exogenous ADP. The creatine kinase (CK) phosphotransfer pathway efficiency declines significantly in senescence. The ability of creatine to stimulate OXPHOS as well as to increase the affinity of mitochondria for ADP is falling and the most critical decline is already in the 1-year group (middle-age model in rats). Also, a moderate decrease in the adenylate kinase phosphotransfer system was detected. The importance of glycolysis increases in senescence, while the hexokinase activity does not change during healthy aging. The main result of our study is that the decline in the heart muscle performance is not caused by the changes in the respiratory chain complexes activity but mainly by the decrease in the energy transfer efficiency, especially by the CK pathway.
Collapse
Affiliation(s)
- Kersti Tepp
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia.
| | - Marju Puurand
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
| | - Natalja Timohhina
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
| | - Jasper Adamson
- Laboratory of Chemical Physics, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Aleksandr Klepinin
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
| | - Laura Truu
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
| | - Igor Shevchuk
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
| | - Vladimir Chekulayev
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
| | - Tuuli Kaambre
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia.,School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia
| |
Collapse
|
27
|
Tepp K, Timohhina N, Puurand M, Klepinin A, Chekulayev V, Shevchuk I, Kaambre T. Bioenergetics of the aging heart and skeletal muscles: Modern concepts and controversies. Ageing Res Rev 2016; 28:1-14. [PMID: 27063513 DOI: 10.1016/j.arr.2016.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 04/01/2016] [Accepted: 04/04/2016] [Indexed: 01/03/2023]
Abstract
Age-related alterations in the bioenergetics of the heart and oxidative skeletal muscle tissues are of crucial influence on their performance. Until now the prevailing concept of aging was the mitochondrial theory, the increased production of reactive oxygen species, mediated by deficiency in the activity of respiratory chain complexes. However, studies with mitochondria in situ have presented results which, to some extent, disagree with previous ones, indicating that the mitochondrial theory of aging may be overestimated. The studies reporting age-related decline in mitochondrial function were performed using mainly isolated mitochondria. Measurements on this level are not able to take into account the system level properties. The relevant information can be obtained only from appropriate studies using cells or tissue fibers. The functional interactions between the components of Intracellular Energetic Unit (ICEU) regulate the energy production and consumption in oxidative muscle cells. The alterations of these interactions in ICEU should be studied in order to find a more effective protocol to decelerate the age-related changes taking place in the energy metabolism. In this article, an overview is given of the present theories and controversies of causes of age-related alterations in bioenergetics. Also, branches of study, which need more emphasis, are indicated.
Collapse
Affiliation(s)
- Kersti Tepp
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia.
| | - Natalja Timohhina
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Marju Puurand
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Aleksandr Klepinin
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Vladimir Chekulayev
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Igor Shevchuk
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Tuuli Kaambre
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; Faculty of Science, Tallinn University, Narva mnt. 25, 10120, Estonia
| |
Collapse
|
28
|
VDAC electronics: 3. VDAC-Creatine kinase-dependent generation of the outer membrane potential in respiring mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1411-8. [DOI: 10.1016/j.bbamem.2016.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/07/2016] [Accepted: 04/08/2016] [Indexed: 01/08/2023]
|
29
|
Bagur R, Tanguy S, Foriel S, Grichine A, Sanchez C, Pernet-Gallay K, Kaambre T, Kuznetsov AV, Usson Y, Boucher F, Guzun R. The impact of cardiac ischemia/reperfusion on the mitochondria-cytoskeleton interactions. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1159-71. [PMID: 26976332 DOI: 10.1016/j.bbadis.2016.03.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 02/18/2016] [Accepted: 03/10/2016] [Indexed: 12/15/2022]
Abstract
Cardiac ischemia-reperfusion (IR) injury compromises mitochondrial oxidative phosphorylation (OxPhos) and compartmentalized intracellular energy transfer via the phosphocreatine/creatine kinase (CK) network. The restriction of ATP/ADP diffusion at the level of the mitochondrial outer membrane (MOM) is an essential element of compartmentalized energy transfer. In adult cardiomyocytes, the MOM permeability to ADP is regulated by the interaction of voltage-dependent anion channel with cytoskeletal proteins, particularly with β tubulin II. The IR-injury alters the expression and the intracellular arrangement of cytoskeletal proteins. The objective of the present study was to investigate the impact of IR on the intracellular arrangement of β tubulin II and its effect on the regulation of mitochondrial respiration. Perfused rat hearts were subjected to total ischemia (for 20min (I20) and 45min (I45)) or to ischemia followed by 30min of reperfusion (I20R and I45R groups). High resolution respirometry and fluorescent confocal microscopy were used to study respiration, β tubulin II and mitochondrial arrangements in cardiac fibers. The results of these experiments evidence a heterogeneous response of mitochondria to IR-induced damage. Moreover, the intracellular rearrangement of β tubulin II, which in the control group colocalized with mitochondria, was associated with increased apparent affinity of OxPhos for ADP, decreased regulation of respiration by creatine without altering mitochondrial CK activity and the ratio between octameric to dimeric isoenzymes. The results of this study allow us to highlight changes of mitochondrial interactions with cytoskeleton as one of the possible mechanisms underlying cardiac IR injury.
Collapse
Affiliation(s)
- Rafaela Bagur
- University Grenoble Alpes, Laboratory of Fundamental and Applied Bioenergetics, INSERM U1055, Grenoble, France; University Grenoble Alpes, TIMC-IMAG, CNRS, UMR5525, Grenoble, France
| | - Stéphane Tanguy
- University Grenoble Alpes, TIMC-IMAG, CNRS, UMR5525, Grenoble, France
| | - Sarah Foriel
- University Grenoble Alpes, Laboratory of Fundamental and Applied Bioenergetics, INSERM U1055, Grenoble, France
| | - Alexei Grichine
- University Grenoble Alpes, Life Science Imaging - In Vitro Platform, IAB, INSERM CRI U823, Grenoble, France
| | - Caroline Sanchez
- University Grenoble Alpes, TIMC-IMAG, CNRS, UMR5525, Grenoble, France
| | - Karin Pernet-Gallay
- INSERM, U836, F-38000, Grenoble, France; University Grenoble Alpes, GIN, F-38000 Grenoble, France
| | - Tuuli Kaambre
- National Institute of Chemical Physics and Biophysics, Laboratory of Bioenergetics, Tallinn, Estonia
| | - Andrey V Kuznetsov
- Innsbruck Medical University, Cardiac Surgery Research Laboratory, Innsbruck A-6020, Austria
| | - Yves Usson
- University Grenoble Alpes, TIMC-IMAG, CNRS, UMR5525, Grenoble, France
| | - François Boucher
- University Grenoble Alpes, TIMC-IMAG, CNRS, UMR5525, Grenoble, France
| | - Rita Guzun
- University Grenoble Alpes, Laboratory of Fundamental and Applied Bioenergetics, INSERM U1055, Grenoble, France; Hospital of the University Grenoble Alpes, Department Thorax (EFCR), France.
| |
Collapse
|
30
|
Nemutlu E, Gupta A, Zhang S, Viqar M, Holmuhamedov E, Terzic A, Jahangir A, Dzeja P. Decline of Phosphotransfer and Substrate Supply Metabolic Circuits Hinders ATP Cycling in Aging Myocardium. PLoS One 2015; 10:e0136556. [PMID: 26378442 PMCID: PMC4574965 DOI: 10.1371/journal.pone.0136556] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/04/2015] [Indexed: 12/24/2022] Open
Abstract
Integration of mitochondria with cytosolic ATP-consuming/ATP-sensing and substrate supply processes is critical for muscle bioenergetics and electrical activity. Whether age-dependent muscle weakness and increased electrical instability depends on perturbations in cellular energetic circuits is unknown. To define energetic remodeling of aged atrial myocardium we tracked dynamics of ATP synthesis-utilization, substrate supply, and phosphotransfer circuits through adenylate kinase (AK), creatine kinase (CK), and glycolytic/glycogenolytic pathways using 18O stable isotope-based phosphometabolomic technology. Samples of intact atrial myocardium from adult and aged rats were subjected to 18O-labeling procedure at resting basal state, and analyzed using the 18O-assisted HPLC-GC/MS technique. Characteristics for aging atria were lower inorganic phosphate Pi[18O], γ-ATP[18O], β-ADP[18O], and creatine phosphate CrP[18O] 18O-labeling rates indicating diminished ATP utilization-synthesis and AK and CK phosphotransfer fluxes. Shift in dynamics of glycolytic phosphotransfer was reflected in the diminished G6P[18O] turnover with relatively constant glycogenolytic flux or G1P[18O] 18O-labeling. Labeling of G3P[18O], an indicator of G3P-shuttle activity and substrate supply to mitochondria, was depressed in aged myocardium. Aged atrial myocardium displayed reduced incorporation of 18O into second (18O2), third (18O3), and fourth (18O4) positions of Pi[18O] and a lower Pi[18O]/γ-ATP[18 O]-labeling ratio, indicating delayed energetic communication and ATP cycling between mitochondria and cellular ATPases. Adrenergic stress alleviated diminished CK flux, AK catalyzed β-ATP turnover and energetic communication in aging atria. Thus, 18O-assisted phosphometabolomics uncovered simultaneous phosphotransfer through AK, CK, and glycolytic pathways and G3P substrate shuttle deficits hindering energetic communication and ATP cycling, which may underlie energetic vulnerability of aging atrial myocardium.
Collapse
Affiliation(s)
- Emirhan Nemutlu
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Anu Gupta
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Song Zhang
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Maria Viqar
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Ekhson Holmuhamedov
- Center for Integrative Research on Cardiovascular Aging (CIRCA), Aurora University of Wisconsin Medical Group, Aurora Health Care, Milwaukee, Wisconsin, United States of America
| | - Andre Terzic
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Arshad Jahangir
- Center for Integrative Research on Cardiovascular Aging (CIRCA), Aurora University of Wisconsin Medical Group, Aurora Health Care, Milwaukee, Wisconsin, United States of America
- * E-mail: (PD); (AJ)
| | - Petras Dzeja
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail: (PD); (AJ)
| |
Collapse
|
31
|
Nemutlu E, Zhang S, Xu YZ, Terzic A, Zhong L, Dzeja PD, Cha YM. Cardiac resynchronization therapy induces adaptive metabolic transitions in the metabolomic profile of heart failure. J Card Fail 2015; 21:460-9. [PMID: 25911126 DOI: 10.1016/j.cardfail.2015.04.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 01/20/2015] [Accepted: 04/10/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND Heart failure (HF) is associated with ventricular dyssynchrony and energetic inefficiency, which can be alleviated by cardiac resynchronization therapy (CRT). The aim of this study was to determine the metabolomic signature in HF and its prognostic value regarding the response to CRT. METHODS AND RESULTS This prospective study consisted of 24 patients undergoing CRT for advanced HF and 10 control patients who underwent catheter ablation for supraventricular arrhythmia but not CRT. Blood samples were collected before and 3 months after CRT. Metabolomic profiling of plasma samples was performed with the use of gas chromatography-mass spectrometry and nuclear magnetic resonance. The plasma metabolomic profile was altered in the HF patients, with a distinct panel of metabolites, including Krebs cycle and lipid, amino acid, and nucleotide metabolism. CRT improved the metabolomic profile. The succinate-glutamate ratio, an index of Krebs cycle activity, improved from 0.58 ± 0.13 to 2.84 ± 0.60 (P < .05). The glucose-palmitate ratio, an indicator of the balance between glycolytic and fatty acid metabolism, increased from 0.96 ± 0.05 to 1.54 ± 0.09 (P < .01). Compared with nonresponders to CRT, responders had a distinct baseline plasma metabolomic profile, including higher isoleucine, phenylalanine, leucine, glucose, and valine levels and lower glutamate levels at baseline (P < .05). CONCLUSIONS CRT improves the plasma metabolomic profile of HF patients, indicating harmonization of myocardial energy substrate metabolism. CRT responders may have a favorable metabolomic profile as a potential biomarker for predicting CRT outcome.
Collapse
Affiliation(s)
- Emirhan Nemutlu
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota; Departments of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota; Department of Analytical Chemistry, Faculty of Pharmacy, University of Hacettepe, Ankara, Turkey
| | - Song Zhang
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota; Departments of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Yi-Zhou Xu
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Andre Terzic
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota; Departments of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Li Zhong
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Petras D Dzeja
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota; Departments of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Yong-Mei Cha
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
32
|
Guzun R, Kaambre T, Bagur R, Grichine A, Usson Y, Varikmaa M, Anmann T, Tepp K, Timohhina N, Shevchuk I, Chekulayev V, Boucher F, Dos Santos P, Schlattner U, Wallimann T, Kuznetsov AV, Dzeja P, Aliev M, Saks V. Modular organization of cardiac energy metabolism: energy conversion, transfer and feedback regulation. Acta Physiol (Oxf) 2015; 213:84-106. [PMID: 24666671 DOI: 10.1111/apha.12287] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/23/2013] [Accepted: 03/16/2014] [Indexed: 12/19/2022]
Abstract
To meet high cellular demands, the energy metabolism of cardiac muscles is organized by precise and coordinated functioning of intracellular energetic units (ICEUs). ICEUs represent structural and functional modules integrating multiple fluxes at sites of ATP generation in mitochondria and ATP utilization by myofibrillar, sarcoplasmic reticulum and sarcolemma ion-pump ATPases. The role of ICEUs is to enhance the efficiency of vectorial intracellular energy transfer and fine tuning of oxidative ATP synthesis maintaining stable metabolite levels to adjust to intracellular energy needs through the dynamic system of compartmentalized phosphoryl transfer networks. One of the key elements in regulation of energy flux distribution and feedback communication is the selective permeability of mitochondrial outer membrane (MOM) which represents a bottleneck in adenine nucleotide and other energy metabolite transfer and microcompartmentalization. Based on the experimental and theoretical (mathematical modelling) arguments, we describe regulation of mitochondrial ATP synthesis within ICEUs allowing heart workload to be linearly correlated with oxygen consumption ensuring conditions of metabolic stability, signal communication and synchronization. Particular attention was paid to the structure-function relationship in the development of ICEU, and the role of mitochondria interaction with cytoskeletal proteins, like tubulin, in the regulation of MOM permeability in response to energy metabolic signals providing regulation of mitochondrial respiration. Emphasis was given to the importance of creatine metabolism for the cardiac energy homoeostasis.
Collapse
Affiliation(s)
- R. Guzun
- Laboratory of Fundamental and Applied Bioenergetics; INSERM U1055; Joseph Fourier University; Grenoble France
- Department of Rehabilitation and Physiology; University Hospital; Grenoble France
| | - T. Kaambre
- Laboratory of Bioenergetics; National Institute of Chemical Physics and Biophysics; Tallinn Estonia
| | - R. Bagur
- Laboratory of Fundamental and Applied Bioenergetics; INSERM U1055; Joseph Fourier University; Grenoble France
- Experimental, Theoretical and Applied Cardio-Respiratory Physiology; Laboratory TIMC-IMAG; UMR5525; Joseph Fourier University; Grenoble France
| | - A. Grichine
- Life Science Imaging - In Vitro Platform; IAB CRI INSERM U823; Joseph Fourier University; Grenoble France
| | - Y. Usson
- Experimental, Theoretical and Applied Cardio-Respiratory Physiology; Laboratory TIMC-IMAG; UMR5525; Joseph Fourier University; Grenoble France
| | - M. Varikmaa
- Laboratory of Bioenergetics; National Institute of Chemical Physics and Biophysics; Tallinn Estonia
| | - T. Anmann
- Laboratory of Bioenergetics; National Institute of Chemical Physics and Biophysics; Tallinn Estonia
| | - K. Tepp
- Laboratory of Bioenergetics; National Institute of Chemical Physics and Biophysics; Tallinn Estonia
| | - N. Timohhina
- Laboratory of Bioenergetics; National Institute of Chemical Physics and Biophysics; Tallinn Estonia
| | - I. Shevchuk
- Laboratory of Bioenergetics; National Institute of Chemical Physics and Biophysics; Tallinn Estonia
| | - V. Chekulayev
- Laboratory of Bioenergetics; National Institute of Chemical Physics and Biophysics; Tallinn Estonia
| | - F. Boucher
- Experimental, Theoretical and Applied Cardio-Respiratory Physiology; Laboratory TIMC-IMAG; UMR5525; Joseph Fourier University; Grenoble France
| | - P. Dos Santos
- University of Bordeaux Segalen; INSERM U1045; Bordeaux France
| | - U. Schlattner
- Laboratory of Fundamental and Applied Bioenergetics; INSERM U1055; Joseph Fourier University; Grenoble France
| | - T. Wallimann
- Emeritus; Biology Department; ETH; Zurich Switzerland
| | - A. V. Kuznetsov
- Cardiac Surgery Research Laboratory; Department of Heart Surgery; Innsbruck Medical University; Innsbruck Austria
| | - P. Dzeja
- Division of Cardiovascular Diseases; Department of Medicine; Mayo Clinic; Rochester MN USA
| | - M. Aliev
- Institute of Experimental Cardiology; Cardiology Research Center; Moscow Russia
| | - V. Saks
- Laboratory of Fundamental and Applied Bioenergetics; INSERM U1055; Joseph Fourier University; Grenoble France
| |
Collapse
|
33
|
Venter G, Polling S, Pluk H, Venselaar H, Wijers M, Willemse M, Fransen JAM, Wieringa B. Submembranous recruitment of creatine kinase B supports formation of dynamic actin-based protrusions of macrophages and relies on its C-terminal flexible loop. Eur J Cell Biol 2014; 94:114-27. [PMID: 25538032 DOI: 10.1016/j.ejcb.2014.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 11/05/2014] [Accepted: 11/06/2014] [Indexed: 12/20/2022] Open
Abstract
Subcellular partitioning of creatine kinase contributes to the formation of patterns in intracellular ATP distribution and the fuelling of cellular processes with a high and sudden energy demand. We have previously shown that brain-type creatine kinase (CK-B) accumulates at the phagocytic cup in macrophages where it is involved in the compartmentalized generation of ATP for actin remodeling. Here, we report that CK-B catalytic activity also helps in the formation of protrusive ruffle structures which are actin-dependent and abundant on the surface of both unstimulated and LPS-activated macrophages. Recruitment of CK-B to these structures occurred transiently and inhibition of the enzyme's catalytic activity with cyclocreatine led to a general smoothening of surface morphology as visualized by scanning electron microscopy. Comparison of the dynamics of distribution of YFP-tagged CK-mutants and isoforms by live imaging revealed that amino acid residues in the C-terminal segment (aa positions 323-330) that forms one of the protein's two mobile loops are involved in partitioning over inner regions of the cytosol and nearby sites where membrane protrusions occur during induction of phagocytic cup formation. Although wt CK-B, muscle-type CK (CK-M), and a catalytically dead CK-B-E232Q mutant with intact loop region were normally recruited from the cytosolic pool, no dynamic transition to the phagocytic cup area was seen for the CK-homologue arginine kinase and a CK-B-D326A mutant protein. Bioinformatics analysis helped us to predict that conformational flexibility of the C-terminal loop, independent of conformational changes induced by substrate binding or catalytic activity, is likely involved in exposing the enzyme for binding at or near the sites of membrane protrusion formation.
Collapse
Affiliation(s)
- Gerda Venter
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Saskia Polling
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Helma Pluk
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Hanka Venselaar
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Mietske Wijers
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Marieke Willemse
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Jack A M Fransen
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Bé Wieringa
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
34
|
Powers SK, Smuder AJ, Kavazis AN, Quindry JC. Mechanisms of exercise-induced cardioprotection. Physiology (Bethesda) 2014; 29:27-38. [PMID: 24382869 DOI: 10.1152/physiol.00030.2013] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Myocardial ischemia-reperfusion (IR) injury can cause ventricular cell death and is a major pathological event leading to morbidity and mortality in those with coronary artery disease. Interestingly, as few as five bouts of exercise on consecutive days can rapidly produce a cardiac phenotype that resists IR-induced myocardial injury. This review summarizes the development of exercise-induced cardioprotection and the mechanisms responsible for this important adaptive response.
Collapse
Affiliation(s)
- Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida; and
| | | | | | | |
Collapse
|
35
|
The role of tubulin in the mitochondrial metabolism and arrangement in muscle cells. J Bioenerg Biomembr 2014; 46:421-34. [PMID: 25209018 DOI: 10.1007/s10863-014-9579-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/02/2014] [Indexed: 12/19/2022]
Abstract
Tubulin, a well-known component of the microtubule in the cytoskeleton, has an important role in the transport and positioning of mitochondria in a cell type dependent manner. This review describes different functional interactions of tubulin with cellular protein complexes and its functional interaction with the mitochondrial outer membrane. Tubulin is present in oxidative as well as glycolytic type muscle cells, but the kinetics of the in vivo regulation of mitochondrial respiration in these muscle types is drastically different. The interaction between VDAC and tubulin is probably influenced by such factors as isoformic patterns of VDAC and tubulin, post-translational modifications of tubulin and phosphorylation of VDAC. Important factor of the selective permeability of VDAC is the mitochondrial creatine kinase pathway which is present in oxidative cells, but is inactive or missing in glycolytic muscle and cancer cells. As the tubulin-VDAC interaction reduces the permeability of the channel by adenine nucleotides, energy transfer can then take place effectively only through the mitochondrial creatine kinase/phosphocreatine pathway. Therefore, closure of VDAC by tubulin may be one of the reasons of apoptosis in cells without the creatine kinase pathway. An important question in tubulin regulated interactions is whether other proteins are interacting with tubulin. The functional interaction may be direct, through other proteins like plectins, or influenced by simultaneous interaction of other complexes with VDAC.
Collapse
|
36
|
Esterhammer R, Klug G, Wolf C, Mayr A, Reinstadler S, Feistritzer HJ, Metzler B, Schocke MFH. Cardiac high-energy phosphate metabolism alters with age as studied in 196 healthy males with the help of 31-phosphorus 2-dimensional chemical shift imaging. PLoS One 2014; 9:e97368. [PMID: 24940736 PMCID: PMC4062408 DOI: 10.1371/journal.pone.0097368] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/18/2014] [Indexed: 11/26/2022] Open
Abstract
Recently published studies have elucidated alterations of mitochondrial oxidative metabolism during ageing. The intention of the present study was to evaluate the impact of ageing on cardiac high-energy phosphate metabolism and cardiac function in healthy humans. 31-phosphorus 2-dimensional chemical shift imaging (31P 2D CSI) and echocardiography were performed in 196 healthy male volunteers divided into groups of 20 to 40 years (I, n = 43), 40 to 60 years (II, n = 123) and >60 years (III, n = 27) of age. Left ventricular PCr/β-ATP ratio, myocardial mass (MM), ejection fraction and E/A ratio were assessed. Mean PCr/β-ATP ratios were significantly different among the three groups of volunteers (I, 2.10±0.37; II, 1.77±0.37; III, 1.45±0.28; all p<0.001). PCr/β-ATP ratios were inversely related to age (r2 = −0.25; p<0.001) with a decrease from 2.65 by 0.02 per year of ageing. PCr/β-ATP ratios further correlated with MM (r = −0.371; p<0.001) and E/A ratios (r = 0.213; p<0.02). Moreover, E/A ratios (r = −0.502, p<0.001), MM (r = 0.304, p<0.001), glucose-levels (r = 0.157, p<0.05) and systolic blood pressure (r = 0.224, p<0.005) showed significant correlations with age. The ejection fraction did not significantly differ between the groups. This study shows that cardiac PCr/β-ATP ratios decrease moderately with age indicating an impairment of mitochondrial oxidative metabolism due to age. Furthermore, MM increases, and E/A ratio decreases with age. Both correlate with left-ventricular PCr/β-ATP ratios. The findings of the present study confirm numerous experimental studies showing an impairment of cardiac mitochondrial function with age.
Collapse
Affiliation(s)
- Regina Esterhammer
- Department of Radiology, Medical University Innsbruck, Innsbruck, Austria
| | - Gert Klug
- Department of Internal Medicine III, Division of Cardiology, Medical University Innsbruck, Innsbruck, Austria
| | - Christian Wolf
- Department of Radiology, Medical University Innsbruck, Innsbruck, Austria
- Department of Radiology, District Hospital Reutte, Ehenbichl, Austria
| | - Agnes Mayr
- Department of Radiology, Medical University Innsbruck, Innsbruck, Austria
| | - Sebastian Reinstadler
- Department of Internal Medicine III, Division of Cardiology, Medical University Innsbruck, Innsbruck, Austria
| | - Hans-Josef Feistritzer
- Department of Internal Medicine III, Division of Cardiology, Medical University Innsbruck, Innsbruck, Austria
| | - Bernhard Metzler
- Department of Internal Medicine III, Division of Cardiology, Medical University Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
37
|
Saks V, Schlattner U, Tokarska-Schlattner M, Wallimann T, Bagur R, Zorman S, Pelosse M, Santos PD, Boucher F, Kaambre T, Guzun R. Systems Level Regulation of Cardiac Energy Fluxes Via Metabolic Cycles: Role of Creatine, Phosphotransfer Pathways, and AMPK Signaling. SYSTEMS BIOLOGY OF METABOLIC AND SIGNALING NETWORKS 2014. [DOI: 10.1007/978-3-642-38505-6_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
Adenylate Kinase Isoform Network: A Major Hub in Cell Energetics and Metabolic Signaling. SYSTEMS BIOLOGY OF METABOLIC AND SIGNALING NETWORKS 2014. [DOI: 10.1007/978-3-642-38505-6_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
39
|
Nemutlu E, Zhang S, Juranic NO, Terzic A, Macura S, Dzeja P. 18O-assisted dynamic metabolomics for individualized diagnostics and treatment of human diseases. Croat Med J 2013; 53:529-34. [PMID: 23275318 PMCID: PMC3541579 DOI: 10.3325/cmj.2012.53.529] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Technological innovations and translation of basic discoveries to clinical practice drive advances in medicine. Today's innovative technologies enable comprehensive screening of the genome, transcriptome, proteome, and metabolome. The detailed knowledge, converged in the integrated "omics" (genomics, transcriptomics, proteomics, and metabolomics), holds an immense potential for understanding mechanism of diseases, facilitating their early diagnostics, selecting personalized therapeutic strategies, and assessing their effectiveness. Metabolomics is the newest "omics" approach aimed to analyze large metabolite pools. The next generation of metabolomic screening requires technologies for high throughput and robust monitoring of metabolite levels and their fluxes. In this regard, stable isotope 18O-based metabolite tagging technology expands quantitative measurements of metabolite levels and turnover rates to all metabolites that include water as a reactant, most notably phosphometabolites. The obtained profiles and turnover rates are sensitive indicators of energy and metabolic imbalances like the ones created by genetic deficiencies, myocardial ischemia, heart failure, neurodegenerative disorders, etc. Here we describe and discuss briefly the potential use of dynamic phosphometabolomic platform for disease diagnostics currently under development at Mayo Clinic.
Collapse
Affiliation(s)
- Emirhan Nemutlu
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, 200 1st Street SW, Rochester, Minnesota 55905, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Affiliation(s)
- Heinrich Taegtmeyer
- The University of Texas Medical School at Houston, Department of Internal Medicine, Division of Cardiology, Houston, Texas
| | - Joanne S. Ingwall
- Professor of Medicine (Physiology), Emerita, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
41
|
Xiong Q, Ye L, Zhang P, Lepley M, Tian J, Li J, Zhang L, Swingen C, Vaughan JT, Kaufman DS, Zhang J. Functional consequences of human induced pluripotent stem cell therapy: myocardial ATP turnover rate in the in vivo swine heart with postinfarction remodeling. Circulation 2013; 127:997-1008. [PMID: 23371930 DOI: 10.1161/circulationaha.112.000641] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The use of cells derived from human induced pluripotent stem cells as cellular therapy for myocardial injury has yet to be examined in a large-animal model. METHODS AND RESULTS Immunosuppressed Yorkshire pigs were assigned to 1 of 3 groups: A myocardial infarction group (MI group; distal left anterior descending coronary artery ligation and reperfusion; n=13); a cell-treatment group (MI with 4×10(6) vascular cells derived from human induced pluripotent stem cells administered via a fibrin patch; n=14); and a normal group (n=15). At 4 weeks, left ventricular structural and functional abnormalities were less pronounced in hearts in the cell-treated group than in MI hearts (P<0.05), and these improvements were accompanied by declines in scar size (10.4±1.6% versus 8.3±1.1%, MI versus cell-treatment group, P<0.05). The cell-treated group displayed a significant increase in vascular density and blood flow (0.83±0.11 and 1.05±0.13 mL·min(-1)·g(-1), MI versus cell-treatment group, P<0.05) in the periscar border zone (BZ), which was accompanied by improvements in systolic thickening fractions (infarct zone, -10±7% versus 5±5%; BZ, 7±4% versus 23±6%; P<0.05). Transplantation of vascular cells derived from human induced pluripotent stem cells stimulated c-kit(+) cell recruitment to BZ and the rate of bromodeoxyuridine incorporation in both c-kit(+) cells and cardiomyocytes (P<0.05). Using a magnetic resonance spectroscopic saturation transfer technique, we found that the rate of ATP hydrolysis in BZ of MI hearts was severely reduced, and the severity of this reduction was linearly related to the severity of the elevations of wall stresses (r=0.82, P<0.05). This decline in BZ ATP utilization was markedly attenuated in the cell-treatment group. CONCLUSIONS Transplantation of vascular cells derived from human induced pluripotent stem cells mobilized endogenous progenitor cells into the BZ, attenuated regional wall stress, stimulated neovascularization, and improved BZ perfusion, which in turn resulted in marked increases in BZ contractile function and ATP turnover rate.
Collapse
Affiliation(s)
- Qiang Xiong
- Division of Cardiology, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Roosimaa M, Põdramägi T, Kadaja L, Ruusalepp A, Paju K, Puhke R, Eimre M, Orlova E, Piirsoo A, Peet N, Gellerich FN, Seppet E. Dilation of human atria: increased diffusion restrictions for ADP, overexpression of hexokinase 2 and its coupling to oxidative phosphorylation in cardiomyocytes. Mitochondrion 2012; 13:399-409. [PMID: 23268198 DOI: 10.1016/j.mito.2012.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 12/13/2012] [Accepted: 12/17/2012] [Indexed: 12/14/2022]
Abstract
Cardiac energy metabolism with emphasis on mitochondria was addressed in atrial tissue from patients with overload-induced atrial dilation. Structural remodeling of dilated (D) atria manifested as intracellular accumulation of fibrillar aggregates, lipofuscin, signs of myolysis and autophagy. Despite impaired complex I dependent respiration and increased diffusion restriction for ADP, no changes regarding adenylate and creatine kinase occurred. We observed 7-fold overexpression of HK2 gene in D atria with concomitant 2-fold greater activation of mitochondrial oxygen consumption by glucose, which might represent an adaption to increased energy requirements and impaired mitochondrial function by effectively joining glycolysis and oxidative phosphorylation.
Collapse
Affiliation(s)
- Mart Roosimaa
- Institute of Biomedicine, Faculty of Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Schryer DW, Peterson P, Illaste A, Vendelin M. Sensitivity analysis of flux determination in heart by H₂ ¹⁸O -provided labeling using a dynamic Isotopologue model of energy transfer pathways. PLoS Comput Biol 2012; 8:e1002795. [PMID: 23236266 PMCID: PMC3516558 DOI: 10.1371/journal.pcbi.1002795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 08/09/2012] [Indexed: 11/21/2022] Open
Abstract
To characterize intracellular energy transfer in the heart, two organ-level methods have frequently been employed: inversion and saturation transfer, and dynamic labeling. Creatine kinase (CK) fluxes obtained by following oxygen labeling have been considerably smaller than the fluxes determined by saturation transfer. It has been proposed that dynamic labeling determines net flux through CK shuttle, whereas saturation transfer measures total unidirectional flux. However, to our knowledge, no sensitivity analysis of flux determination by oxygen labeling has been performed, limiting our ability to compare flux distributions predicted by different methods. Here we analyze oxygen labeling in a physiological heart phosphotransfer network with active CK and adenylate kinase (AdK) shuttles and establish which fluxes determine the labeling state. A mathematical model consisting of a system of ordinary differential equations was composed describing enrichment in each phosphoryl group and inorganic phosphate. By varying flux distributions in the model and calculating the labeling, we analyzed labeling sensitivity to different fluxes in the heart. We observed that the labeling state is predominantly sensitive to total unidirectional CK and AdK fluxes and not to net fluxes. We conclude that measuring dynamic incorporation of into the high-energy phosphotransfer network in heart does not permit unambiguous determination of energetic fluxes with a higher magnitude than the ATP synthase rate when the bidirectionality of fluxes is taken into account. Our analysis suggests that the flux distributions obtained using dynamic labeling, after removing the net flux assumption, are comparable with those from inversion and saturation transfer. In heart, the movement of energy metabolites between force-producing myosin, other ATPases, and mitochondria is vital for its function and closely related to heart pathologies. In addition to diffusion, transport of ATP, ADP, Pi, and phosphocreatine occurs along parallel pathways such as the adenylate kinase and creatine kinase shuttles. Two organ-level methods have been developed to study the relative flux through these pathways. However, their results differ. It was recently demonstrated that studies often suffer from the exclusion of compartmentation from their metabolic models. One study overcame this limitation by using compartmental models and statistical methods on multiple experiments. Here, we analyzed the sensitivity of the other method - dynamic labeling of phosphoryl groups and inorganic phosphate. For that, we composed a mathematical model tracking enrichment of the metabolites and evaluated sensitivity of labeling to different flux distribution scenarios. Our study shows that the dynamic method provides a measure of total flux, and not net flux as presumed previously, making the fluxes predicted from both methods consistent. Importantly, conclusions derived on the basis of labeling analysis, particularly those regarding the net flux through the shuttles in control and pathological cases, need to be reevaluated.
Collapse
Affiliation(s)
| | | | | | - Marko Vendelin
- Laboratory of Systems Biology, Institute of Cybernetics, Tallinn University of Technology, Tallinn, Estonia
- * E-mail:
| |
Collapse
|
44
|
Aon MA, Cortassa S. Mitochondrial network energetics in the heart. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2012; 4:599-613. [PMID: 22899654 DOI: 10.1002/wsbm.1188] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
At the core of eukaryotic aerobic life, mitochondrial function like 'hubs' in the web of energetic and redox processes in cells. In the heart, these networks-extending beyond the complex connectivity of biochemical circuit diagrams and apparent morphology-exhibit collective dynamics spanning several spatiotemporal levels of organization, from the cell, to the tissue, and the organ. The network function of mitochondria, i.e., mitochondrial network energetics, represents an advantageous behavior. Its coordinated action, under normal physiology, provides robustness despite failure in a few nodes, and improves energy supply toward a swiftly changing demand. Extensive diffuse loops, encompassing mitochondrial-cytoplasmic reaction/transport networks, control and regulate energy supply and demand in the heart. Under severe energy crises, the network behavior of mitochondria and associated glycolytic and other metabolic networks collapse, thereby triggering fatal arrhythmias.
Collapse
Affiliation(s)
- Miguel A Aon
- Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA.
| | | |
Collapse
|
45
|
Lygate CA, Medway DJ, Ostrowski PJ, Aksentijevic D, Sebag-Montefiore L, Hunyor I, Zervou S, Schneider JE, Neubauer S. Chronic creatine kinase deficiency eventually leads to congestive heart failure, but severity is dependent on genetic background, gender and age. Basic Res Cardiol 2012; 107:276. [PMID: 22760499 PMCID: PMC3442167 DOI: 10.1007/s00395-012-0276-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 06/02/2012] [Accepted: 06/13/2012] [Indexed: 11/22/2022]
Abstract
The creatine kinase (CK) energy transport and buffering system supports cardiac function at times of high demand and is impaired in the failing heart. Mice deficient in muscle- and mitochondrial-CK (M/Mt-CK−/−) have previously been described, but exhibit an unexpectedly mild phenotype of compensated left ventricular (LV) hypertrophy. We hypothesised that heart failure would develop with age and performed echocardiography and LV haemodynamics at 1 year. Since all previous studies have utilised mice with a mixed genetic background, we backcrossed for >10 generations on to C57BL/6, and repeated the in vivo investigations. Male M/Mt-CK−/− mice on the mixed genetic background developed congestive heart failure as evidenced by significantly elevated end-diastolic pressure, impaired contractility, LV dilatation, hypertrophy and pulmonary congestion. Female mice were less severely affected, only showing trends for these parameters. After backcrossing, M/Mt-CK−/− mice had LV dysfunction consisting of impaired isovolumetric pressure changes and reduced contractile reserve, but did not develop congestive heart failure. Body weight was lower in knockout mice as a consequence of reduced total body fat. LV weight was not significantly elevated in relation to other internal organs and gene expression of LVH markers was normal, suggesting an absence of hypertrophy. In conclusion, the consequences of CK deficiency are highly dependent on genetic modifiers, gender and age. However, the observation that a primary defect in CK can, under the right conditions, result in heart failure suggests that impaired CK activity in the failing heart could contribute to disease progression.
Collapse
Affiliation(s)
- Craig A Lygate
- Department of Cardiovascular Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Affiliation(s)
- Jianyi Jay Zhang
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| |
Collapse
|
47
|
Nemutlu E, Juranic N, Zhang S, Ward LE, Dutta T, Nair KS, Terzic A, Macura S, Dzeja PP. Electron spray ionization mass spectrometry and 2D 31P NMR for monitoring 18O/16O isotope exchange and turnover rates of metabolic oligophosphates. Anal Bioanal Chem 2012; 403:697-706. [PMID: 22427058 PMCID: PMC3349359 DOI: 10.1007/s00216-012-5899-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 02/22/2012] [Accepted: 02/24/2012] [Indexed: 12/25/2022]
Abstract
A new method was here developed for the determination of (18)O-labeling ratios in metabolic oligophosphates, such as ATP, at different phosphoryl moieties (α-, β-, and γ-ATP) using sensitive and rapid electrospray ionization mass spectrometry (ESI-MS). The ESI-MS-based method for monitoring of (18)O/(16)O exchange was validated with gas chromatography-mass spectrometry and 2D (31)P NMR correlation spectroscopy, the current standard methods in labeling studies. Significant correlation was found between isotopomer selective 2D (31)P NMR spectroscopy and isotopomer less selective ESI-MS method. Results demonstrate that ESI-MS provides a robust analytical platform for simultaneous determination of levels, (18)O-labeling kinetics and turnover rates of α-, β-, and γ-phosphoryls in ATP molecule. Such method is advantageous for large scale dynamic phosphometabolomic profiling of metabolic networks and acquiring information on the status of probed cellular energetic system.
Collapse
Affiliation(s)
- Emirhan Nemutlu
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Hacettepe, 06100 Ankara, Turkey
| | - Nenad Juranic
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
- Analytical NMR Core Facility, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Song Zhang
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Lawrence E. Ward
- CTSA Metabolomic Core Facility, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Tumpa Dutta
- CTSA Metabolomic Core Facility, Mayo Clinic, Rochester, Minnesota 55905, USA
- Division of Endocrinology and Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - K. Sreekumaran Nair
- CTSA Metabolomic Core Facility, Mayo Clinic, Rochester, Minnesota 55905, USA
- Division of Endocrinology and Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Andre Terzic
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Slobodan Macura
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
- Analytical NMR Core Facility, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Petras P. Dzeja
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| |
Collapse
|
48
|
|
49
|
Nemutlu E, Zhang S, Gupta A, Juranic NO, Macura SI, Terzic A, Jahangir A, Dzeja P. Dynamic phosphometabolomic profiling of human tissues and transgenic models by 18O-assisted ³¹P NMR and mass spectrometry. Physiol Genomics 2012; 44:386-402. [PMID: 22234996 DOI: 10.1152/physiolgenomics.00152.2011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Next-generation screening of disease-related metabolomic phenotypes requires monitoring of both metabolite levels and turnover rates. Stable isotope (18)O-assisted (31)P nuclear magnetic resonance (NMR) and mass spectrometry uniquely allows simultaneous measurement of phosphometabolite levels and turnover rates in tissue and blood samples. The (18)O labeling procedure is based on the incorporation of one (18)O into P(i) from [(18)O]H(2)O with each act of ATP hydrolysis and the distribution of (18)O-labeled phosphoryls among phosphate-carrying molecules. This enables simultaneous recording of ATP synthesis and utilization, phosphotransfer fluxes through adenylate kinase, creatine kinase, and glycolytic pathways, as well as mitochondrial substrate shuttle, urea and Krebs cycle activity, glycogen turnover, and intracellular energetic communication. Application of expanded (18)O-labeling procedures has revealed significant differences in the dynamics of G-6-P[(18)O] (glycolysis), G-3-P[(18)O] (substrate shuttle), and G-1-P[(18)O] (glycogenolysis) between human and rat atrial myocardium. In human atria, the turnover of G-3-P[(18)O], which defects are associated with the sudden death syndrome, was significantly higher indicating a greater importance of substrate shuttling to mitochondria. Phosphometabolomic profiling of transgenic hearts deficient in adenylate kinase (AK1-/-), which altered levels and mutations are associated to human diseases, revealed a stress-induced shift in metabolomic profile with increased CrP[(18)O] and decreased G-1-P[(18)O] metabolic dynamics. The metabolomic profile of creatine kinase M-CK/ScCKmit-/--deficient hearts is characterized by a higher G-6-[(18)O]P turnover rate, G-6-P levels, glycolytic capacity, γ/β-phosphoryl of GTP[(18)O] turnover, as well as β-[(18)O]ATP and β-[(18)O]ADP turnover, indicating altered glycolytic, guanine nucleotide, and adenylate kinase metabolic flux. Thus, (18)O-assisted gas chromatography-mass spectrometry and (31)P NMR provide a suitable platform for dynamic phosphometabolomic profiling of the cellular energetic system enabling prediction and diagnosis of metabolic diseases states.
Collapse
Affiliation(s)
- Emirhan Nemutlu
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Guzun R, Gonzalez-Granillo M, Karu-Varikmaa M, Grichine A, Usson Y, Kaambre T, Guerrero-Roesch K, Kuznetsov A, Schlattner U, Saks V. Regulation of respiration in muscle cells in vivo by VDAC through interaction with the cytoskeleton and MtCK within Mitochondrial Interactosome. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:1545-54. [PMID: 22244843 DOI: 10.1016/j.bbamem.2011.12.034] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 12/26/2011] [Accepted: 12/29/2011] [Indexed: 01/06/2023]
Abstract
This review describes the recent experimental data on the importance of the VDAC-cytoskeleton interactions in determining the mechanisms of energy and metabolite transfer between mitochondria and cytoplasm in cardiac cells. In the intermembrane space mitochondrial creatine kinase connects VDAC with adenine nucleotide translocase and ATP synthase complex, on the cytoplasmic side VDAC is linked to cytoskeletal proteins. Applying immunofluorescent imaging and Western blot analysis we have shown that β2-tubulin coexpressed with mitochondria is highly important for cardiac muscle cells mitochondrial metabolism. Since it has been shown by Rostovtseva et al. that αβ-heterodimer of tubulin binds to VDAC and decreases its permeability, we suppose that the β-tubulin subunit is bound on the cytoplasmic side and α-tubulin C-terminal tail is inserted into VDAC. Other cytoskeletal proteins, such as plectin and desmin may be involved in this process. The result of VDAC-cytoskeletal interactions is selective restriction of the channel permeability for adenine nucleotides but not for creatine or phosphocreatine that favors energy transfer via the phosphocreatine pathway. In some types of cancer cells these interactions are altered favoring the hexokinase binding and thus explaining the Warburg effect of increased glycolytic lactate production in these cells. This article is part of a Special Issue entitled: VDAC structure, function, and regulation of mitochondrial metabolism.
Collapse
Affiliation(s)
- Rita Guzun
- INSERM U1055, Laboratory of Fundamental and Applied Bioenergetics, Joseph Fourier University, Grenoble, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|