1
|
Tangutur A, Cai Y, Seay EG, Thaler ER, Keenan BT, Dedhia RC. The Effect of Surgical Therapy for Obstructive Sleep Apnea on Blood Pressure and Peripheral Arterial Tonometry. Otolaryngol Head Neck Surg 2024; 171:286-294. [PMID: 38509834 DOI: 10.1002/ohn.718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/18/2024] [Accepted: 02/17/2024] [Indexed: 03/22/2024]
Abstract
OBJECTIVE To determine the effect of upper airway surgery on cardiovascular function in patients with obstructive sleep apnea (OSA). STUDY DESIGN A prospective, self-controlled study from 2018 to 2023. SETTING Two academic medical centers. METHODS Seventy-four patients underwent surgery for OSA, including: tonsillectomy, adenoidectomy, epiglottidectomy, modified uvulopalatopharyngoplasty, maxillary expansion, and maxillomandibular advancement. Twenty-four-hour ambulatory blood pressure (BP), peripheral arterial tonometry (PAT)-based home sleep study, and sleep-related patient-reported outcomes (PROs) were captured preoperatively and at 6 months postoperatively. Paired T-tests evaluated changes in outcomes after surgery. RESULTS Forty-one patients successfully completed preoperative and postoperative assessments. Patients were generally middle-aged (43.8 ± 12.5 years), obese (BMI 33.0 ± 5.8 kg/m2), male (68%), White (71%), and had severe OSA (apnea-hypopnea index [AHI] 33.9 ± 29.5 events/h). The 4% oxygen desaturation index (ODI) decreased from 30.7 ± 27.1 to 12.2 ± 13.6 events/h (P < .01) after surgery. There was no significant difference in 24-h BP following surgery, though clinically meaningful reductions in nocturnal systolic (-1.95 [-5.34, 1.45] mmHg) and nocturnal diastolic (-2.30 [-5.11, 0.52] mmHg) blood pressure were observed. Stratified analysis showed patients undergoing skeletal surgery (n = 17) demonstrated larger average reductions compared to those undergoing soft tissue surgery in nocturnal systolic (-4.12 [-7.72, -0.51] vs -0.10 [-5.78, 5.58] mmHg) and nocturnal diastolic (-3.94 [-7.90, 0.01] vs -0.90 [-5.11, 3.31] mmHg) pressures. No meaningful changes were observed in PAT Autonomic Index (PAI) measurements. CONCLUSION Surgical therapy for OSA did not demonstrate statistically significant improvements in 24-h BP. However, clinically meaningful reductions in nocturnal BP were observed, particularly in skeletal surgery patients, supporting the need for larger studies of cardiovascular outcomes following OSA surgery.
Collapse
Affiliation(s)
- Akshay Tangutur
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yi Cai
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Everett G Seay
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Erica R Thaler
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Brendan T Keenan
- Department of Medicine, Division of Sleep Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Raj C Dedhia
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Medicine, Division of Sleep Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Andersen ML, Gozal D, Pires GN, Tufik S. Exploring the potential relationships among obstructive sleep apnea, erectile dysfunction, and gut microbiota: a narrative review. Sex Med Rev 2023; 12:76-86. [PMID: 37385976 DOI: 10.1093/sxmrev/qead026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 07/01/2023]
Abstract
INTRODUCTION Poor sleep quality is closely associated with comorbidities affecting a multitude of organ systems. Among the sleep disorders in the population, there has recently been an increase in the prevalence of obstructive sleep apnea (OSA), which has particularly affected men. The intermittent hypoxia and sleep fragmentation associated with OSA can result in the manifestation or aggravation of a number of pathophysiologic conditions, including the impairment of reproductive function in men and women. In this context, erectile dysfunction (ED) is of particular concern. Other consequences of OSA are changes in the gastrointestinal microbiota, with the resultant dysbiosis having potentially harmful consequences that promote downstream exacerbation of various comorbidities. OBJECTIVES This narrative review aims to explore the potential relationships among ED, gut microbiota, and OSA. METHODS A search of the relevant literature was performed in the PubMed, Embase, Medline, and Web of Science databases. RESULTS Sleep is important for regulating the body's functions, and sleep deprivation can negatively affect health. OSA can damage organic functions, including reproductive function, and can lead to ED. Restoring the microbiota and improving sleep can help to improve sexual function or reverse ED and enhance other associated conditions mediated through the gut-brain axis relationship. Probiotics and prebiotics can be used as supportive strategies in the prevention and treatment of OSA, as they help to reduce systemic inflammation and improve intestinal barrier function. CONCLUSION A good diet, a healthy lifestyle, and proper bowel function are essential in controlling depression and several other pathologies. Modulating the gut microbiota through probiotics and prebiotics can provide a viable strategy for developing new therapeutic options in treating many conditions. A better understanding of these a priori unrelated phenomena would foster our understanding of the effects of OSA on human fertility and how changes in gut microbiota may play a role.
Collapse
Affiliation(s)
- Monica Levy Andersen
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, 04024-002, Brazil
| | - David Gozal
- Department of Child Health and the Child Health Research Institute, University of Missouri School of Medicine, Columbia, MO 65212, United States
| | - Gabriel Natan Pires
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, 04024-002, Brazil
| | - Sergio Tufik
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, 04024-002, Brazil
| |
Collapse
|
3
|
Advances in Molecular Pathology of Obstructive Sleep Apnea. Molecules 2022; 27:molecules27238422. [PMID: 36500515 PMCID: PMC9739159 DOI: 10.3390/molecules27238422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Obstructive sleep apnea (OSA) is a common syndrome that features a complex etiology and set of mechanisms. Here we summarized the molecular pathogenesis of OSA, especially the prospective mechanism of upper? airway dilator fatigue and the current breakthroughs. Additionally, we also introduced the molecular mechanism of OSA in terms of related studies on the main signaling pathways and epigenetics alterations, such as microRNA, long non-coding RNA, and DNA methylation. We also reviewed small molecular compounds, which are potential targets for gene regulations in the future, that are involved in the regulation of OSA. This review will be beneficial to point the way for OSA research within the next decade.
Collapse
|
4
|
Pan Y, Lu Y, Zhou JD, Wang CX, Wang JQ, Fukunaga A, Yodoi J, Tian H. Prospect of thioredoxin as a possibly effective tool to combat OSAHS. Sleep Breath 2022; 27:421-429. [DOI: 10.1007/s11325-022-02640-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022]
|
5
|
Waltz X, Beaudin AE, Belaidi E, Raneri J, Pépin JL, Pialoux V, Hanly PJ, Verges S, Poulin MJ. Impact of obstructive sleep apnea and intermittent hypoxia on blood rheology - a translational study. Eur Respir J 2021; 58:13993003.00352-2021. [PMID: 33863746 DOI: 10.1183/13993003.00352-2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/08/2021] [Indexed: 11/05/2022]
Abstract
RATIONALE Hemorheological alterations are reported in obstructive sleep apnea (OSA) and reversed with continuous positive airway pressure (CPAP), observations potentially explained by intermittent hypoxia (IH)-induced oxidative stress. OBJECTIVE To investigate whether IH causes hemorheological alterations viaoxidative stress. METHODS Wistar rats were exposed to normoxia (n=7) or IH (n=8) for 14 days. Twenty-three moderate-to-severe OSA patients were assessed at three time points: baseline, after randomisation to either 2 weeks of nocturnal oxygen (n=13) or no treatment (n=10), and after 1-month of CPAP treatment (n=17). Further, an OSA-free control group (n=13) was assessed at baseline and after time-matched follow-up. MEASUREMENTS We measured hemorheological parameters [hematocrit, blood viscosity, plasma viscosity (rats only), erythrocyte aggregation and deformability (humans only)] and redox balance (SOD, GPX, protein oxidation [AOPP] and lipid peroxidation [MDA]). We also tested erythrocytes hemorheological sensitivity to reactive oxygen species (ROS) in our human participants using the oxidant t-butyl hydroperoxide (TBHP). RESULTS In rats, IH increased blood viscosity by increasing hematocrit without altering erythrocytes hemorheological properties. IH also reduced SOD activity and increased AOPP. In humans, baseline hemorheological properties were similar between patients and controls, and properties were unaltered following oxygen and CPAP, except erythrocyte deformability was reduced following oxygen therapy. Redox balance was comparable between patients and controls. At baseline, TBHP induced a greater reduction of erythrocyte deformability in patients while CPAP reduced TBHP-induced increase in aggregation strength. CONCLUSION IH and OSA per se do not cause hemorheological alterations despite the presence of oxidative stress or higher sensitivity to ROS, respectively.
Collapse
Affiliation(s)
- Xavier Waltz
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Laboratoire HP2, Grenoble Alpes University, INSERM, CHU Grenoble Alpes, Grenoble, France.,Contributed equally to this work
| | - Andrew E Beaudin
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Contributed equally to this work
| | - Elise Belaidi
- Laboratoire HP2, Grenoble Alpes University, INSERM, CHU Grenoble Alpes, Grenoble, France
| | - Jill Raneri
- Sleep Centre, Foothills Medical Centre, Calgary, AB, Canada
| | - Jean-Louis Pépin
- Laboratoire HP2, Grenoble Alpes University, INSERM, CHU Grenoble Alpes, Grenoble, France
| | - Vincent Pialoux
- Laboratoire Interuniversitaire de Biologie de la Motricité, University of Lyon, Lyon, France
| | - Patrick J Hanly
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Sleep Centre, Foothills Medical Centre, Calgary, AB, Canada
| | - Samuel Verges
- Laboratoire HP2, Grenoble Alpes University, INSERM, CHU Grenoble Alpes, Grenoble, France.,Contributed equally to this work
| | - Marc J Poulin
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada .,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.,Contributed equally to this work
| |
Collapse
|
6
|
Warland J, Dorrian J, Morrison JL, O'Brien LM. Maternal sleep during pregnancy and poor fetal outcomes: A scoping review of the literature with meta-analysis. Sleep Med Rev 2018; 41:197-219. [PMID: 29910107 DOI: 10.1016/j.smrv.2018.03.004] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/14/2018] [Accepted: 03/20/2018] [Indexed: 01/15/2023]
Abstract
There is a wealth of evidence to say that sleep impacts maternal health during pregnancy, however, little has been published on fetal health and maternal sleep. This scoping review summarises current literature on maternal sleep including sleep disordered breathing, sleep quality, sleep duration and supine sleep position, as these relate to fetal outcomes specifically birth weight, growth, preterm birth and stillbirth. An overall interpretation of the studies evaluated shows that events occurring during maternal sleep such as obstructive sleep apnea, sleep disruption and sleep position may have a negative effect on the fetus resulting in altered growth, gestational length and even death. These effects are biologically and physically plausible. In conclusion, there is limited and often conflicting information on maternal sleep and fetal outcomes. However, existing evidence suggests that this is an important area for future research. This area is ripe for investigation if there is to be reduction in the physical, emotional, and financial burden of poor fetal outcomes related to maternal sleep.
Collapse
Affiliation(s)
- Jane Warland
- Mother's Babies and Families Research Group, School of Nursing and Midwifery, University of South Australia, Adelaide, 5001, SA, Australia.
| | - Jillian Dorrian
- Behaviour-Brain-Body Research Centre, School of Psychology, Social Work and Social Policy, University of South Australia, Adelaide, SA, 5001, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, 5001, Australia
| | - Louise M O'Brien
- Sleep Disorders Center and Department of Obstetrics & Gynecology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
7
|
Beaudin AE, Waltz X, Hanly PJ, Poulin MJ. Impact of obstructive sleep apnoea and intermittent hypoxia on cardiovascular and cerebrovascular regulation. Exp Physiol 2017; 102:743-763. [PMID: 28439921 DOI: 10.1113/ep086051] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/19/2017] [Indexed: 01/06/2023]
Abstract
NEW FINDINGS What is the topic of this review? This review examines the notion that obstructive sleep apnoea (OSA) and intermittent hypoxia (IH) have hormetic effects on vascular health. What advances does it highlight? Clinical (OSA patient) and experimental animal and human models report that IH is detrimental to vascular regulation. However, mild IH and, by extension, mild OSA also have physiological and clinical benefits. This review highlights clinical and experimental animal and human data linking OSA and IH to vascular disease and discusses how hormetic effects of OSA and IH relate to OSA severity, IH intensity and duration, and patient/subject age. Obstructive sleep apnoea (OSA) is associated with increased risk of cardiovascular and cerebrovascular disease, a consequence attributed in part to chronic intermittent hypoxia (IH) resulting from repetitive apnoeas during sleep. Although findings from experimental animal, and human, models have shown that IH is detrimental to vascular regulation, the severity of IH used in many of these animal studies [e.g. inspired fraction of oxygen (FI,O2) = 2-3%; oxygen desaturation index = 120 events h-1 ] is considerably greater than that observed in the majority of patients with OSA. This may also explain disparities between animal and recently developed human models of IH, where IH severity is, by necessity, less severe (e.g. FI,O2 = 10-12%; oxygen desaturation index = 15-30 events h-1 ). In this review, we highlight the current knowledge regarding the impact of OSA and IH on cardiovascular and cerebrovascular regulation. In addition, we critically discuss the recent notion that OSA and IH may have hormetic effects on vascular health depending on conditions such as OSA severity, IH intensity and duration, and age. In general, data support an independent causal link between OSA and vascular disease, particularly for patients with severe OSA. However, the data are equivocal for older OSA patients and patients with mild OSA, because advanced age and short-duration, low-intensity IH have been reported to provide a degree of protection against IH and ischaemic events such as myocardial infarction and stroke, respectively. Overall, additional studies are needed to investigate the beneficial/detrimental effects of mild OSA on the various vascular beds.
Collapse
Affiliation(s)
- Andrew E Beaudin
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Xavier Waltz
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Laboratoire HP2, U1042, INSERM, Université Grenoble Alpes, Grenoble, France
| | - Patrick J Hanly
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Sleep Centre, Foothills Medical Centre, Calgary, AB, Canada
| | - Marc J Poulin
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
8
|
Morgan BJ, Adrian R, Wang ZY, Bates ML, Dopp JM. Chronic intermittent hypoxia alters ventilatory and metabolic responses to acute hypoxia in rats. J Appl Physiol (1985) 2016; 120:1186-95. [PMID: 26917692 DOI: 10.1152/japplphysiol.00015.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 02/22/2016] [Indexed: 12/18/2022] Open
Abstract
We determined the effects of chronic exposure to intermittent hypoxia (CIH) on chemoreflex control of ventilation in conscious animals. Adult male Sprague-Dawley rats were exposed to CIH [nadir oxygen saturation (SpO2), 75%; 15 events/h; 10 h/day] or normoxia (NORM) for 21 days. We assessed the following responses to acute, graded hypoxia before and after exposures: ventilation (V̇e, via barometric plethysmography), V̇o2 and V̇co2 (analysis of expired air), heart rate (HR), and SpO2 (pulse oximetry via neck collar). We quantified hypoxia-induced chemoreceptor sensitivity by calculating the stimulus-response relationship between SpO2 and the ventilatory equivalent for V̇co2 (linear regression). An additional aim was to determine whether CIH causes proliferation of carotid body glomus cells (using bromodeoxyuridine). CIH exposure increased the slope of the V̇e/V̇co2/SpO2 relationship and caused hyperventilation in normoxia. Bromodeoxyuridine staining was comparable in CIH and NORM. Thus our CIH paradigm augmented hypoxic chemosensitivity without causing glomus cell proliferation.
Collapse
Affiliation(s)
- Barbara J Morgan
- John Rankin Laboratory of Pulmonary Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin; Department of Orthopedics and Rehabilitation, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin;
| | - Russell Adrian
- John Rankin Laboratory of Pulmonary Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin; Department of Orthopedics and Rehabilitation, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Zun-Yi Wang
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin
| | - Melissa L Bates
- Department of Health and Human Physiology, College of Liberal Arts and Sciences, University of Iowa, Iowa City, Iowa; and
| | - John M Dopp
- Pharmacy Practice Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
9
|
Quintero M, Olea E, Conde SV, Obeso A, Gallego-Martin T, Gonzalez C, Monserrat JM, Gómez-Niño A, Yubero S, Agapito T. Age protects from harmful effects produced by chronic intermittent hypoxia. J Physiol 2016; 594:1773-90. [PMID: 26752660 DOI: 10.1113/jp270878] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 01/06/2016] [Indexed: 12/23/2022] Open
Abstract
Obstructive sleep apnoea (OSA) affects an estimated 3–7% of the adult population, the frequency doubling at ages >60–65 years. As it evolves, OSA becomes frequently associated with cardiovascular, metabolic and neuropsychiatric pathologies defining OSA syndrome (OSAS). Exposing experimental animals to chronic intermittent hypoxia (CIH) can be used as a model of the recurrent hypoxic and O2 desaturation patterns observed in OSA patients. CIH is an important OSA event triggering associated pathologies; CIH induces carotid body (CB)-driven exaggerated sympathetic tone and overproduction of reactive oxygen species, related to the pathogenic mechanisms of associated pathologies observed in OSAS. Aiming to discover why OSAS is clinically less conspicuous in aged patients, the present study compares CIH effects in young (3–4 months) and aged (22–24 months) rats. To define potential distinctive patterns of these pathogenic mechanisms, mean arterial blood pressure as the final CIH outcome was measured. In young rats, CIH augmented CB sensory responses to hypoxia, decreased hypoxic ventilation and augmented sympathetic activity (plasma catecholamine levels and renal artery content and synthesis rate). An increased brainstem integration of CB sensory input as a trigger of sympathetic activity is suggested. CIH also caused an oxidative status decreasing aconitase/fumarase ratio and superoxide dismutase activity. In aged animals, CIH minimally affected CB responses, ventilation and sympathetic-related parameters leaving redox status unaltered. In young animals, CIH caused hypertension and in aged animals, whose baseline blood pressure was augmented, CIH did not augment it further. Plausible mechanisms of the differences and potential significance of these findings for the diagnosis and therapy of OSAS are discussed.
Collapse
Affiliation(s)
- M Quintero
- Department of Biochemistry and Molecular Biology and Physiology, School of Medicine, University of Valladolid and IBGM/CSIC, Valladolid, Spain.,CIBERES, Instituto de Salud Carlos III, Madrid, Spain
| | - E Olea
- Department of Biochemistry and Molecular Biology and Physiology, School of Medicine, University of Valladolid and IBGM/CSIC, Valladolid, Spain.,CIBERES, Instituto de Salud Carlos III, Madrid, Spain
| | - S V Conde
- Chronic Diseases Research Center (CEDOC), Nova Medical School, Faculdade de Ciências Médicas, University of Nova Lisboa, Lisbon, Portugal
| | - A Obeso
- Department of Biochemistry and Molecular Biology and Physiology, School of Medicine, University of Valladolid and IBGM/CSIC, Valladolid, Spain.,CIBERES, Instituto de Salud Carlos III, Madrid, Spain
| | - T Gallego-Martin
- Department of Biochemistry and Molecular Biology and Physiology, School of Medicine, University of Valladolid and IBGM/CSIC, Valladolid, Spain.,CIBERES, Instituto de Salud Carlos III, Madrid, Spain
| | - C Gonzalez
- Department of Biochemistry and Molecular Biology and Physiology, School of Medicine, University of Valladolid and IBGM/CSIC, Valladolid, Spain.,CIBERES, Instituto de Salud Carlos III, Madrid, Spain
| | - J M Monserrat
- Laboratori de la Son, Pneumologia, Hospital Clínic-IDIBAPS, Barcelona, Spain.,CIBERES, Instituto de Salud Carlos III, Madrid, Spain
| | - A Gómez-Niño
- Department of Cell Biology, Histology and Pharmacology, School of Medicine, University of Valladolid and IBGM/CSIC, Valladolid, Spain.,CIBERES, Instituto de Salud Carlos III, Madrid, Spain
| | - S Yubero
- Department of Biochemistry and Molecular Biology and Physiology, School of Medicine, University of Valladolid and IBGM/CSIC, Valladolid, Spain.,CIBERES, Instituto de Salud Carlos III, Madrid, Spain
| | - T Agapito
- Department of Biochemistry and Molecular Biology and Physiology, School of Medicine, University of Valladolid and IBGM/CSIC, Valladolid, Spain.,CIBERES, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
10
|
de Lima FFF, Mazzotti DR, Tufik S, Bittencourt L. The role inflammatory response genes in obstructive sleep apnea syndrome: a review. Sleep Breath 2015. [DOI: 10.1007/s11325-015-1226-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
11
|
Abstract
Obstructive sleep apnoea syndrome (OSAS) is a common clinical condition in which the throat narrows or collapses repeatedly during sleep, causing obstructive sleep apnoea events. The syndrome is particularly prevalent in middle-aged and older adults. The mechanism by which the upper airway collapses is not fully understood but is multifactorial and includes obesity, craniofacial changes, alteration in upper airway muscle function, pharyngeal neuropathy and fluid shift towards the neck. The direct consequences of the collapse are intermittent hypoxia and hypercapnia, recurrent arousals and increase in respiratory efforts, leading to secondary sympathetic activation, oxidative stress and systemic inflammation. Excessive daytime sleepiness is a burden for the majority of patients. OSAS is also associated with cardiovascular co-morbidities, including hypertension, arrhythmias, stroke, coronary heart disease, atherosclerosis and overall increased cardiovascular mortality, as well as metabolic dysfunction. Whether treating sleep apnoea can fully reverse its chronic consequences remains to be established in adequately designed studies. Continuous positive airway pressure (CPAP) is the primary treatment modality in patients with severe OSAS, whereas oral appliances are also widely used in mild to moderate forms. Finally, combining different treatment modalities such as CPAP and weight control is beneficial, but need to be evaluated in randomized controlled trials. For an illustrated summary of this Primer, visit: http://go.nature.com/Lwc6te.
Collapse
|
12
|
Stradling JR, Schwarz EI, Schlatzer C, Manuel AR, Lee R, Antoniades C, Kohler M. Biomarkers of oxidative stress following continuous positive airway pressure withdrawal: data from two randomised trials. Eur Respir J 2015; 46:1065-71. [PMID: 26022961 DOI: 10.1183/09031936.00023215] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 04/10/2015] [Indexed: 11/05/2022]
Abstract
There is conflicting evidence whether intermittent hypoxia in obstructive sleep apnoea (OSA) influences oxidative stress. We hypothesised that withdrawal of continuous positive airway pressure (CPAP) from patients with OSA would raise markers of oxidative stress.59 patients with CPAP-treated moderate-to-severe OSA (oxygen desaturation index (ODI) >20 events·h(-1)) were randomised 1:1 to either stay on CPAP (n=30) or change to sham CPAP (n=29) for 2 weeks. Using samples from two similar studies at two sites, we measured early morning blood malondialdehyde (MDA, a primary outcome in one study and a secondary outcome in the other), lipid hydroperoxides, total antioxidant capacity, superoxide generation from mononuclear cells and urinary F2-isoprostane. We also measured superoxide dismutase as a marker of hypoxic preconditioning. "Treatment" effects (sham CPAP versus CPAP) were calculated via linear regression.Sham CPAP provoked moderate-to-severe OSA (mean ODI 46 events·h(-1)), but blood markers of oxidative stress did not change significantly (MDA "treatment" effect (95% CI) -0.02 (-0.23 to +0.19) μmol·L(-1)). Urinary F2-isoprostane fell significantly by ~30% (-0.26 (-0.42 to -0.10) ng·mL(-1)) and superoxide dismutase increased similarly (+0.17 (+0.02 to +0.30) ng·mL(-1)).We found no direct evidence of increased oxidative stress in patients experiencing a return of their moderate-to-severe OSA. The fall in urinary F2-isoprostane and rise in superoxide dismutase implies that hypoxic preconditioning may have reduced oxidative stress.
Collapse
Affiliation(s)
- John R Stradling
- Oxford Centre for Respiratory Medicine and NIHR Oxford Biomedical Research Centre, Churchill Hospital Campus, Oxford University, Oxford, UK
| | - Esther I Schwarz
- Sleep Disorders Centre and Pulmonary Division, University Hospital of Zurich, Zurich, Switzerland
| | - Christian Schlatzer
- Sleep Disorders Centre and Pulmonary Division, University Hospital of Zurich, Zurich, Switzerland
| | - Ari R Manuel
- Oxford Centre for Respiratory Medicine and NIHR Oxford Biomedical Research Centre, Churchill Hospital Campus, Oxford University, Oxford, UK
| | - Regent Lee
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Campus, University of Oxford, Oxford, UK
| | - Charalambos Antoniades
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Campus, University of Oxford, Oxford, UK
| | - Malcolm Kohler
- Sleep Disorders Centre and Pulmonary Division, University Hospital of Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Lavie L. Oxidative stress in obstructive sleep apnea and intermittent hypoxia – Revisited – The bad ugly and good: Implications to the heart and brain. Sleep Med Rev 2015; 20:27-45. [DOI: 10.1016/j.smrv.2014.07.003] [Citation(s) in RCA: 428] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 07/13/2014] [Accepted: 07/14/2014] [Indexed: 12/14/2022]
|
14
|
Olea E, Agapito MT, Gallego-Martin T, Rocher A, Gomez-Niño A, Obeso A, Gonzalez C, Yubero S. Intermittent hypoxia and diet-induced obesity: effects on oxidative status, sympathetic tone, plasma glucose and insulin levels, and arterial pressure. J Appl Physiol (1985) 2014; 117:706-19. [DOI: 10.1152/japplphysiol.00454.2014] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Obstructive sleep apnea (OSA) consists of sleep-related repetitive obstructions of upper airways that generate episodes of recurrent or intermittent hypoxia (IH). OSA commonly generates cardiovascular and metabolic pathologies defining the obstructive sleep apnea syndrome (OSAS). Literature usually links OSA-associated pathologies to IH episodes that would cause an oxidative status and a carotid body-mediated sympathetic hyperactivity. Because cardiovascular and metabolic pathologies in obese patients and those with OSAS are analogous, we used models (24-wk-old Wistar rats) of IH (applied from weeks 22 to 24) and diet-induced obesity (O; animals fed a high-fat diet from weeks 12 to 24) to define the effect of each individual maneuver and their combination on the oxidative status and sympathetic tone of animals, and to quantify cardiovascular and metabolic parameters and their deviation from normality. We found that IH and O cause an oxidative status (increased lipid peroxides and diminished activities of superoxide dismutases), an inflammatory status (augmented C-reactive protein and nuclear factor kappa-B activation), and sympathetic hyperactivity (augmented plasma and renal artery catecholamine levels and synthesis rate); combined treatments worsened those alterations. IH and O augmented liver lipid content and plasma cholesterol, triglycerides, leptin, glycemia, insulin levels, and HOMA index, and caused hypertension; most of these parameters were aggravated when IH and O were combined. IH diminished ventilatory response to hypoxia, and hypercapnia and O created a restrictive ventilatory pattern; a combination of treatments led to restrictive hypoventilation. Data demonstrate that IH and O cause comparable metabolic and cardiovascular pathologies via misregulation of the redox status and sympathetic hyperactivity.
Collapse
Affiliation(s)
- Elena Olea
- Department of Biochemistry and Molecular Biology and Physiology, University of Valladolid, School of Medicine, Vallodolid, Spain; and Institute of Molecular Biology and Genetics, CIBER Enfermedades Respiratorias, CIBERES, Institute of Salud Carlos III, Vallodolid, Spain
| | - Maria Teresa Agapito
- Department of Biochemistry and Molecular Biology and Physiology, University of Valladolid, School of Medicine, Vallodolid, Spain; and Institute of Molecular Biology and Genetics, CIBER Enfermedades Respiratorias, CIBERES, Institute of Salud Carlos III, Vallodolid, Spain
| | - Teresa Gallego-Martin
- Department of Biochemistry and Molecular Biology and Physiology, University of Valladolid, School of Medicine, Vallodolid, Spain; and Institute of Molecular Biology and Genetics, CIBER Enfermedades Respiratorias, CIBERES, Institute of Salud Carlos III, Vallodolid, Spain
| | - Asuncion Rocher
- Department of Biochemistry and Molecular Biology and Physiology, University of Valladolid, School of Medicine, Vallodolid, Spain; and Institute of Molecular Biology and Genetics, CIBER Enfermedades Respiratorias, CIBERES, Institute of Salud Carlos III, Vallodolid, Spain
| | - Angela Gomez-Niño
- Department of Biochemistry and Molecular Biology and Physiology, University of Valladolid, School of Medicine, Vallodolid, Spain; and Institute of Molecular Biology and Genetics, CIBER Enfermedades Respiratorias, CIBERES, Institute of Salud Carlos III, Vallodolid, Spain
| | - Ana Obeso
- Department of Biochemistry and Molecular Biology and Physiology, University of Valladolid, School of Medicine, Vallodolid, Spain; and Institute of Molecular Biology and Genetics, CIBER Enfermedades Respiratorias, CIBERES, Institute of Salud Carlos III, Vallodolid, Spain
| | - Constancio Gonzalez
- Department of Biochemistry and Molecular Biology and Physiology, University of Valladolid, School of Medicine, Vallodolid, Spain; and Institute of Molecular Biology and Genetics, CIBER Enfermedades Respiratorias, CIBERES, Institute of Salud Carlos III, Vallodolid, Spain
| | - Sara Yubero
- Department of Biochemistry and Molecular Biology and Physiology, University of Valladolid, School of Medicine, Vallodolid, Spain; and Institute of Molecular Biology and Genetics, CIBER Enfermedades Respiratorias, CIBERES, Institute of Salud Carlos III, Vallodolid, Spain
| |
Collapse
|
15
|
Quintero M, Gonzalez-Martin MDC, Vega-Agapito V, Gonzalez C, Obeso A, Farré R, Agapito T, Yubero S. The effects of intermittent hypoxia on redox status, NF-κB activation, and plasma lipid levels are dependent on the lowest oxygen saturation. Free Radic Biol Med 2013; 65:1143-1154. [PMID: 24002010 DOI: 10.1016/j.freeradbiomed.2013.08.180] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 08/01/2013] [Accepted: 08/23/2013] [Indexed: 12/11/2022]
Abstract
Obstructive sleep apnea syndrome (OSAS) is described as repetitive obstructions of the upper airways during sleep, causing concomitant episodes of systemic hypoxia and associated cardiovascular and metabolic pathologies. The mechanisms generating these pathologies are controversial. Because recurrent hypoxia is the element of inadequate respiration that leads to the pathology, experimental models of OSAS consist in the exposure of the animals to intermittent hypoxia (IH) by cycling O2 percentages in their habitats. A proposed mechanism linking the IH of OSAS to pathologies is the increased production of reactive oxygen species (ROS). However, it has been argued that many patients seem to lack oxidative stress and that, to augment ROS in IH animals, intense hypoxia, seldom encountered in patients, has to be applied. To solve the controversy, we have exposed rats to two intensities of IH (cycles of 10 or 5% O2, 40s, and then 21% O2, 80s; 8h/day, 15 days). We then measured reduced and oxidized glutathione and lipid peroxide levels, aconitase and fumarase activities, and ROS-disposal enzyme activity in liver, brain, and lung. Liver levels of nuclear NF-κB-p65 and plasma C-reactive protein (CRP), as well as lipid levels, were also assessed. Lowest hemoglobin saturations were 91.7 ± 0.8 and 73.5 ± 1.4%. IH caused tissue-specific oxidative stress related to hypoxic intensity. Nuclear NF-κB-p65 and lipid content in the liver and CRP in the plasma all increased with IH intensity, as did both plasma triglycerides and cholesterol. We conclude that IH, even of moderate intensity, causes oxidative stress probably related to the pathologies encountered in OSAS patients.
Collapse
Affiliation(s)
- Miguel Quintero
- Institute of Molecular Biology and Genetics, CSIC, Department of Biochemistry and Molecular Biology and Physiology, School of Medicine, University of Valladolid, 47005 Valladolid, Spain
| | - María Del Carmen Gonzalez-Martin
- Institute of Molecular Biology and Genetics, CSIC, Department of Biochemistry and Molecular Biology and Physiology, School of Medicine, University of Valladolid, 47005 Valladolid, Spain
| | - Victoria Vega-Agapito
- Institute of Molecular Biology and Genetics, CSIC, Department of Biochemistry and Molecular Biology and Physiology, School of Medicine, University of Valladolid, 47005 Valladolid, Spain
| | - Constancio Gonzalez
- Institute of Molecular Biology and Genetics, CSIC, Department of Biochemistry and Molecular Biology and Physiology, School of Medicine, University of Valladolid, 47005 Valladolid, Spain; CIBER Enfermedades Respiratorias, Institute of Salud Carlos III, 28029 Madrid, Spain
| | - Ana Obeso
- Institute of Molecular Biology and Genetics, CSIC, Department of Biochemistry and Molecular Biology and Physiology, School of Medicine, University of Valladolid, 47005 Valladolid, Spain; CIBER Enfermedades Respiratorias, Institute of Salud Carlos III, 28029 Madrid, Spain
| | - Ramon Farré
- CIBER Enfermedades Respiratorias, Institute of Salud Carlos III, 28029 Madrid, Spain; Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona-IDIBAPS, Barcelona, Spain
| | - Teresa Agapito
- Institute of Molecular Biology and Genetics, CSIC, Department of Biochemistry and Molecular Biology and Physiology, School of Medicine, University of Valladolid, 47005 Valladolid, Spain; CIBER Enfermedades Respiratorias, Institute of Salud Carlos III, 28029 Madrid, Spain
| | - Sara Yubero
- Institute of Molecular Biology and Genetics, CSIC, Department of Biochemistry and Molecular Biology and Physiology, School of Medicine, University of Valladolid, 47005 Valladolid, Spain; CIBER Enfermedades Respiratorias, Institute of Salud Carlos III, 28029 Madrid, Spain.
| |
Collapse
|
16
|
Garcia AJ, Koschnitzky JE, Dashevskiy T, Ramirez JM. Cardiorespiratory coupling in health and disease. Auton Neurosci 2013; 175:26-37. [PMID: 23497744 DOI: 10.1016/j.autneu.2013.02.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 01/21/2013] [Accepted: 02/08/2013] [Indexed: 10/27/2022]
Abstract
Cardiac and respiratory activities are intricately linked both functionally as well as anatomically through highly overlapping brainstem networks controlling these autonomic physiologies that are essential for survival. Cardiorespiratory coupling (CRC) has many potential benefits creating synergies that promote healthy physiology. However, when such coupling deteriorates autonomic dysautonomia may ensue. Unfortunately there is still an incomplete mechanistic understanding of both normal and pathophysiological interactions that respectively give rise to CRC and cardiorespiratory dysautonomia. Moreover, there is also a need for better quantitative methods to assess CRC. This review addresses the current understanding of CRC by discussing: (1) the neurobiological basis of respiratory sinus arrhythmia (RSA); (2) various disease states involving cardiorespiratory dysautonomia; and (3) methodologies measuring heart rate variability and RSA.
Collapse
Affiliation(s)
- Alfredo J Garcia
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | | | | | | |
Collapse
|
17
|
Arterial health is related to obstructive sleep apnea severity and improves with CPAP treatment. Sleep Med Rev 2012; 17:3-5. [PMID: 23219181 DOI: 10.1016/j.smrv.2012.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 11/02/2012] [Indexed: 12/28/2022]
|
18
|
Kohler M, Stradling JR. Rebuttal from Malcolm Kohler and John R. Stradling. J Physiol 2012. [DOI: 10.1113/jphysiol.2012.235234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
19
|
|