1
|
Wu M, Chen JH. CFTR dysfunction leads to defective bacterial eradication on cystic fibrosis airways. Front Physiol 2024; 15:1385661. [PMID: 38699141 PMCID: PMC11063615 DOI: 10.3389/fphys.2024.1385661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/04/2024] [Indexed: 05/05/2024] Open
Abstract
Dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel by genetic mutations causes the inherited disease cystic fibrosis (CF). CF lung disease that involves multiple disorders of epithelial function likely results from loss of CFTR function as an anion channel conducting chloride and bicarbonate ions and its function as a cellular regulator modulating the activity of membrane and cytosol proteins. In the absence of CFTR activity, abundant mucus accumulation, bacterial infection and inflammation characterize CF airways, in which inflammation-associated tissue remodeling and damage gradually destroys the lung. Deciphering the link between CFTR dysfunction and bacterial infection in CF airways may reveal the pathogenesis of CF lung disease and guide the development of new treatments. Research efforts towards this goal, including high salt, low volume, airway surface liquid acidosis and abnormal mucus hypotheses are critically reviewed.
Collapse
Affiliation(s)
| | - Jeng-Haur Chen
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| |
Collapse
|
2
|
Zajac M, Lepissier A, Dréano E, Chevalier B, Hatton A, Kelly-Aubert M, Guidone D, Planelles G, Edelman A, Girodon E, Hinzpeter A, Crambert G, Pranke I, Galietta LJV, Sermet-Gaudelus I. Putting bicarbonate on the spot: pharmacological insights for CFTR correction in the airway epithelium. Front Pharmacol 2023; 14:1293578. [PMID: 38149052 PMCID: PMC10750368 DOI: 10.3389/fphar.2023.1293578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/17/2023] [Indexed: 12/28/2023] Open
Abstract
Introduction: Cystic fibrosis (CF) is caused by defective Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) proteins. CFTR controls chloride (Cl-) and bicarbonate (HCO3 -) transport into the Airway Surface Liquid (ASL). We investigated the impact of F508del-CFTR correction on HCO3 - secretion by studying transepithelial HCO3 - fluxes. Methods: HCO3 - secretion was measured by pH-stat technique in primary human respiratory epithelial cells from healthy subjects (WT) and people with CF (pwCF) carrying at least one F508del variant. Its changes after CFTR modulation by the triple combination VX445/661/770 and in the context of TNF-α+IL-17 induced inflammation were correlated to ASL pH and transcriptional levels of CFTR and other HCO3 - transporters of airway epithelia such as SLC26A4 (Pendrin), SLC26A9 and NBCe1. Results: CFTR-mediated HCO3 - secretion was not detected in F508del primary human respiratory epithelial cells. It was rescued up to ∼ 80% of the WT level by VX-445/661/770. In contrast, TNF-α+IL-17 normalized transepithelial HCO3 - transport and increased ASL pH. This was related to an increase in SLC26A4 and CFTR transcript levels. VX-445/661/770 induced an increase in pH only in the context of inflammation. Effects on HCO3 - transport were not different between F508del homozygous and F508del compound heterozygous CF airway epithelia. Conclusion: Our studies show that correction of F508del-CFTR HCO3 - is not sufficient to buffer acidic ASL and inflammation is a key regulator of HCO3 - secretion in CF airways. Prediction of the response to CFTR modulators by theratyping should take into account airway inflammation.
Collapse
Affiliation(s)
- Miroslaw Zajac
- INSERM U1151, Institut Necker Enfants Malades, Paris, France
- Université de Paris-Cité, Paris, France
- Centre de Référence Maladie Rare Pour La Mucoviscidose et Maladies de CFTR, Hôpital Necker Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Agathe Lepissier
- INSERM U1151, Institut Necker Enfants Malades, Paris, France
- Université de Paris-Cité, Paris, France
- Centre de Référence Maladie Rare Pour La Mucoviscidose et Maladies de CFTR, Hôpital Necker Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Elise Dréano
- INSERM U1151, Institut Necker Enfants Malades, Paris, France
- Université de Paris-Cité, Paris, France
- Centre de Référence Maladie Rare Pour La Mucoviscidose et Maladies de CFTR, Hôpital Necker Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Benoit Chevalier
- INSERM U1151, Institut Necker Enfants Malades, Paris, France
- Université de Paris-Cité, Paris, France
- Centre de Référence Maladie Rare Pour La Mucoviscidose et Maladies de CFTR, Hôpital Necker Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Aurélie Hatton
- INSERM U1151, Institut Necker Enfants Malades, Paris, France
- Université de Paris-Cité, Paris, France
- Centre de Référence Maladie Rare Pour La Mucoviscidose et Maladies de CFTR, Hôpital Necker Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Mairead Kelly-Aubert
- INSERM U1151, Institut Necker Enfants Malades, Paris, France
- Université de Paris-Cité, Paris, France
- Centre de Référence Maladie Rare Pour La Mucoviscidose et Maladies de CFTR, Hôpital Necker Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Daniela Guidone
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | | | - Aleksander Edelman
- INSERM U1151, Institut Necker Enfants Malades, Paris, France
- Université de Paris-Cité, Paris, France
- Centre de Référence Maladie Rare Pour La Mucoviscidose et Maladies de CFTR, Hôpital Necker Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Emmanuelle Girodon
- Université de Paris-Cité, Paris, France
- Service de Médecine Génomique des Maladies de Système et d’Organe, Hôpital Cochin, Paris, France
| | - Alexandre Hinzpeter
- INSERM U1151, Institut Necker Enfants Malades, Paris, France
- Université de Paris-Cité, Paris, France
- Centre de Référence Maladie Rare Pour La Mucoviscidose et Maladies de CFTR, Hôpital Necker Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Gilles Crambert
- U1138/CNRS ERL 8228, Centre de Recherche des Cordeliers, Paris, France
| | - Iwona Pranke
- INSERM U1151, Institut Necker Enfants Malades, Paris, France
- Université de Paris-Cité, Paris, France
- Centre de Référence Maladie Rare Pour La Mucoviscidose et Maladies de CFTR, Hôpital Necker Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | | | - Isabelle Sermet-Gaudelus
- INSERM U1151, Institut Necker Enfants Malades, Paris, France
- Université de Paris-Cité, Paris, France
- Centre de Référence Maladie Rare Pour La Mucoviscidose et Maladies de CFTR, Hôpital Necker Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
- European Reference Network for Rare Diseases, Frankfurt, Belgium
| |
Collapse
|
3
|
Bicarbonate Effects on Antibacterial Immunity and Mucus Glycobiology in the Cystic Fibrosis Lung: A Review With Selected Experimental Observations. INFECTIOUS MICROBES & DISEASES 2022; 4:103-110. [PMID: 36793929 PMCID: PMC9928163 DOI: 10.1097/im9.0000000000000101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The primary defect in cystic fibrosis (CF) is abnormal chloride and bicarbonate transport in the cystic fibrosis transmembrane conductance regulator (CFTR) epithelial ion channel. The apical surface of the respiratory tract is lined by an airway surface liquid layer (ASL) composed of mucin comprising mainly MUC5A and MUC5B glycoproteins. ASL homeostasis depends on sodium bicarbonate secretion into the airways and secretion deficits alter mucus properties leading to airway obstruction, inflammation, and infections. Downstream effects of abnormal ion transport in the lungs include altered intrinsic immune defenses. We observed that neutrophils killed Pseudomonas aeruginosa more efficiently when it had been exposed to sodium bicarbonate, and formation of neutrophil extracellular traps (NETs) by neutrophils was augmented in the presence of increasing bicarbonate concentrations. Physiological levels of bicarbonate sensitized P. aeruginosa to the antimicrobial peptide cathelicidin LL-37, which is present in both lung ASL and in NETs. Sodium bicarbonate has various uses in clinical medicine and in the care of CF patients, and could be further explored as a therapeutic adjunct against Pseudomonas infections.
Collapse
|
4
|
Zajac M, Dreano E, Edwards A, Planelles G, Sermet-Gaudelus I. Airway Surface Liquid pH Regulation in Airway Epithelium Current Understandings and Gaps in Knowledge. Int J Mol Sci 2021; 22:3384. [PMID: 33806154 PMCID: PMC8037888 DOI: 10.3390/ijms22073384] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 12/22/2022] Open
Abstract
Knowledge on the mechanisms of acid and base secretion in airways has progressed recently. The aim of this review is to summarize the known mechanisms of airway surface liquid (ASL) pH regulation and their implication in lung diseases. Normal ASL is slightly acidic relative to the interstitium, and defects in ASL pH regulation are associated with various respiratory diseases, such as cystic fibrosis. Basolateral bicarbonate (HCO3-) entry occurs via the electrogenic, coupled transport of sodium (Na+) and HCO3-, and, together with carbonic anhydrase enzymatic activity, provides HCO3- for apical secretion. The latter mainly involves CFTR, the apical chloride/bicarbonate exchanger pendrin and paracellular transport. Proton (H+) secretion into ASL is crucial to maintain its relative acidity compared to the blood. This is enabled by H+ apical secretion, mainly involving H+/K+ ATPase and vacuolar H+-ATPase that carry H+ against the electrochemical potential gradient. Paracellular HCO3- transport, the direction of which depends on the ASL pH value, acts as an ASL protective buffering mechanism. How the transepithelial transport of H+ and HCO3- is coordinated to tightly regulate ASL pH remains poorly understood, and should be the focus of new studies.
Collapse
Affiliation(s)
- Miroslaw Zajac
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences, 02-776 Warsaw, Poland;
| | - Elise Dreano
- Institut Necker Enfants Malades, INSERM U1151, 75015 Paris, France;
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, 75006 Paris, France;
| | - Aurelie Edwards
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA;
| | - Gabrielle Planelles
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, 75006 Paris, France;
- Laboratoire de Physiologie rénale et Tubulopathies, CNRS ERL 8228, 75006 Paris, France
| | - Isabelle Sermet-Gaudelus
- Institut Necker Enfants Malades, INSERM U1151, 75015 Paris, France;
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, 75006 Paris, France;
- Centre de Référence Maladies Rares, Mucoviscidose et Maladies de CFTR, Hôpital Necker Enfants Malades, 75015 Paris, France
- Clinical Trial Network, European Cystic Fibrosis Society, BT2 Belfast, Ireland
- European Respiratory Network Lung, 75006 Paris, France
| |
Collapse
|
5
|
Trampert DC, van de Graaf SFJ, Jongejan A, Oude Elferink RPJ, Beuers U. Hepatobiliary acid-base homeostasis: Insights from analogous secretory epithelia. J Hepatol 2021; 74:428-441. [PMID: 33342564 DOI: 10.1016/j.jhep.2020.10.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/03/2020] [Accepted: 10/19/2020] [Indexed: 12/14/2022]
Abstract
Many epithelia secrete bicarbonate-rich fluid to generate flow, alter viscosity, control pH and potentially protect luminal and intracellular structures from chemical stress. Bicarbonate is a key component of human bile and impaired biliary bicarbonate secretion is associated with liver damage. Major efforts have been undertaken to gain insight into acid-base homeostasis in cholangiocytes and more can be learned from analogous secretory epithelia. Extrahepatic examples include salivary and pancreatic duct cells, duodenocytes, airway and renal epithelial cells. The cellular machinery involved in acid-base homeostasis includes carbonic anhydrase enzymes, transporters of the solute carrier family, and intra- and extracellular pH sensors. This pH-regulatory system is orchestrated by protein-protein interactions, the establishment of an electrochemical gradient across the plasma membrane and bicarbonate sensing of the intra- and extracellular compartment. In this review, we discuss conserved principles identified in analogous secretory epithelia in the light of current knowledge on cholangiocyte physiology. We present a framework for cholangiocellular acid-base homeostasis supported by expression analysis of publicly available single-cell RNA sequencing datasets from human cholangiocytes, which provide insights into the molecular basis of pH homeostasis and dysregulation in the biliary system.
Collapse
Affiliation(s)
- David C Trampert
- Amsterdam UMC, University of Amsterdam, Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Meibergdreef 9, Amsterdam, the Netherlands
| | - Stan F J van de Graaf
- Amsterdam UMC, University of Amsterdam, Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Meibergdreef 9, Amsterdam, the Netherlands
| | - Aldo Jongejan
- Amsterdam UMC, University of Amsterdam, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Meibergdreef 9, Amsterdam, the Netherlands
| | - Ronald P J Oude Elferink
- Amsterdam UMC, University of Amsterdam, Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Meibergdreef 9, Amsterdam, the Netherlands
| | - Ulrich Beuers
- Amsterdam UMC, University of Amsterdam, Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Meibergdreef 9, Amsterdam, the Netherlands.
| |
Collapse
|
6
|
Grebert C, Becq F, Vandebrouck C. Phospholipase C controls chloride-dependent short-circuit current in human bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol 2020; 320:L205-L219. [PMID: 33236921 DOI: 10.1152/ajplung.00437.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chloride secretion by airway epithelial cells is primordial for water and ion homeostasis and airways surface prevention of infections. This secretion is impaired in several human diseases, including cystic fibrosis, a genetic pathology due to CFTR gene mutations leading to chloride channel defects. A potential therapeutic approach is aiming at increasing chloride secretion either by correcting the mutated CFTR itself or by stimulating non-CFTR chloride channels at the plasma membrane. Here, we studied the role of phospholipase C in regulating the transepithelial chloride secretion in human airway epithelial 16HBE14o- and CFBE cells over-expressing wild type (WT)- or F508del-CFTR. Western blot analysis shows expression of the three endogenous phospholipase C (PLC) isoforms, namely, PLCδ1, PLCγ1, and PLCβ3 in 16HBE14o- cells. In 16HBE14o- cells, we performed Ussing chamber experiments after silencing each of these PLC isoforms or using the PLC inhibitor U73122 or its inactive analogue U73343. Our results show the involvement of PLCβ3 and PLCγ1 in CFTR-dependent short-circuit current activated by forskolin, but not of PLCδ1. In CFBE-WT CFTR and corrected CFBE-F508del CFTR cells, PLCβ3 silencing also inhibits CFTR-dependent current activated by forskolin and UTP-activated calcium-dependent chloride channels (CaCC). Our study supports the importance of PLC in maintaining CFTR-dependent chloride secretion over time, getting maximal CFTR-dependent current and increasing CaCC activation in bronchial epithelial cells.
Collapse
Affiliation(s)
- Chloé Grebert
- Laboratoire Signalisation et Transports Ioniques Membranaires, Université de Poitiers, Poitiers, France
| | - Frédéric Becq
- Laboratoire Signalisation et Transports Ioniques Membranaires, Université de Poitiers, Poitiers, France
| | - Clarisse Vandebrouck
- Laboratoire Signalisation et Transports Ioniques Membranaires, Université de Poitiers, Poitiers, France
| |
Collapse
|
7
|
Shin DH, Kim M, Kim Y, Jun I, Jung J, Nam JH, Cheng MH, Lee MG. Bicarbonate permeation through anion channels: its role in health and disease. Pflugers Arch 2020; 472:1003-1018. [PMID: 32621085 DOI: 10.1007/s00424-020-02425-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/19/2020] [Accepted: 06/26/2020] [Indexed: 12/31/2022]
Abstract
Many anion channels, frequently referred as Cl- channels, are permeable to different anions in addition to Cl-. As the second-most abundant anion in the human body, HCO3- permeation via anion channels has many important physiological roles. In addition to its classical role as an intracellular pH regulator, HCO3- also controls the activity and stability of dissolved proteins in bodily fluids such as saliva, pancreatic juice, intestinal fluid, and airway surface liquid. Moreover, HCO3- permeation through these channels affects membrane potentials that are the driving forces for transmembrane transport of solutes and water in epithelia and affect neuronal excitability in nervous tissue. Consequently, aberrant HCO3- transport via anion channels causes a number of human diseases in respiratory, gastrointestinal, genitourinary, and neuronal systems. Notably, recent studies have shown that the HCO3- permeabilities of several anion channels are not fixed and can be altered by cellular stimuli, findings which may have both physiological and pathophysiological significance. In this review, we summarize recent progress in understanding the molecular mechanisms and the physiological roles of HCO3- permeation through anion channels. We hope that the present discussions can stimulate further research into this very important topic, which will provide the basis for human disorders associated with aberrant HCO3- transport.
Collapse
Affiliation(s)
- Dong Hoon Shin
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Minjae Kim
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Yonjung Kim
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Ikhyun Jun
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, South Korea
- The Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Jinsei Jung
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, South Korea
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Joo Hyun Nam
- Department of Physiology, Dongguk University College of Medicine, 123 Dongdae-ro, Kyungju, 780-714, Republic of Korea
| | - Mary Hongying Cheng
- Department of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Min Goo Lee
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, South Korea.
| |
Collapse
|
8
|
Carrageta DF, Bernardino RL, Alves MG, Oliveira PF. CFTR regulation of aquaporin-mediated water transport. VITAMINS AND HORMONES 2020; 112:163-177. [PMID: 32061340 DOI: 10.1016/bs.vh.2019.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel responsible for the direct transport of bicarbonate and chloride. CFTR-dependent ionic transport is crucial for pH regulation and fluid homeodynamics among epithelial surfaces. Particularly, CFTR performs an essential role in the male reproductive tract, which requires a tight regulation of water and electrolytes in order to produce healthy spermatozoa. The absence or malfunction of CFTR results in cystic fibrosis, the most common lethal disease among Caucasians, that is characterized by an impaired fluid and ionic homeostasis in the whole organism. Due to the wide expression and importance of CFTR, the male reproductive tract is highly affected by cystic fibrosis, resulting in male infertility. Although CFTR is not permeable to water, this protein acts as a regulator of other protein channels, such as aquaporins. In fact, CFTR acts as a molecular partner of aquaporins in epithelial cells, regulating fluid homeodynamics. Herein, up-to-date data concerning the regulation of aquaporin-mediated water transport by CFTR will be discussed, highlighting the role of both channels in the male reproductive tract.
Collapse
Affiliation(s)
- David F Carrageta
- Department of Microscopy, Laboratory of Cell Biology, Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Raquel L Bernardino
- Department of Microscopy, Laboratory of Cell Biology, Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Marco G Alves
- Department of Microscopy, Laboratory of Cell Biology, Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Pedro F Oliveira
- Department of Microscopy, Laboratory of Cell Biology, Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal; Department of Genetics, Faculty of Medicine, University of Porto, Porto, Portugal; i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.
| |
Collapse
|
9
|
Kim D, Huang J, Billet A, Abu-Arish A, Goepp J, Matthes E, Tewfik MA, Frenkiel S, Hanrahan JW. Pendrin Mediates Bicarbonate Secretion and Enhances Cystic Fibrosis Transmembrane Conductance Regulator Function in Airway Surface Epithelia. Am J Respir Cell Mol Biol 2020; 60:705-716. [PMID: 30742493 DOI: 10.1165/rcmb.2018-0158oc] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Bicarbonate facilitates mucin unpacking and bacterial killing; however, its transport mechanisms in the airways are not well understood. cAMP stimulates anion efflux through the cystic fibrosis (CF) transmembrane conductance regulator (CFTR; ABCC7) anion channel, and this is defective in CF. The anion exchanger pendrin (SLC26A4) also mediates HCO3- efflux and is upregulated by proinflammatory cytokines. Here, we examined pendrin and CFTR expression and their contributions to HCO3- secretion by human nasal and bronchial epithelia. In native tissue, both proteins were most abundant at the apical pole of ciliated surface cells with little expression in submucosal glands. In well-differentiated primary nasal and bronchial cell cultures, IL-4 dramatically increased pendrin mRNA levels and apical immunostaining. Exposure to low-Cl- apical solution caused intracellular alkalinization (ΔpHi) that was enhanced fourfold by IL-4 pretreatment. ΔpHi was unaffected by 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS) or CFTR inhibitor CFTRinh-172, but was reduced by adenoviral shRNA targeting pendrin. Forskolin increased ΔpHi, and this stimulation was prevented by CFTRinh-172, implicating CFTR, yet forskolin only increased ΔpHi after pendrin expression had been induced by IL-4. The dependence of ΔpHi on pendrin suggests there is minimal electrical coupling between Cl- and HCO3- fluxes and that CFTR activation increases anion exchange-mediated HCO3- influx. Conversely, inducing pendrin expression increased forskolin-stimulated, CFTRinh-172-sensitive current by approximately twofold in epithelial and nonepithelial cells. We conclude that pendrin mediates most HCO3- secretion across airway surface epithelium during inflammation and enhances electrogenic Cl- secretion via CFTR, as described for other SLC26A transporters.
Collapse
Affiliation(s)
- Dusik Kim
- 1 Department of Physiology and.,2 Cystic Fibrosis Translational Research Centre, McGill University, Montréal, Québec, Canada; and
| | - Junwei Huang
- 1 Department of Physiology and.,2 Cystic Fibrosis Translational Research Centre, McGill University, Montréal, Québec, Canada; and
| | - Arnaud Billet
- 1 Department of Physiology and.,2 Cystic Fibrosis Translational Research Centre, McGill University, Montréal, Québec, Canada; and
| | - Asmahan Abu-Arish
- 1 Department of Physiology and.,2 Cystic Fibrosis Translational Research Centre, McGill University, Montréal, Québec, Canada; and
| | - Julie Goepp
- 1 Department of Physiology and.,2 Cystic Fibrosis Translational Research Centre, McGill University, Montréal, Québec, Canada; and
| | - Elizabeth Matthes
- 1 Department of Physiology and.,2 Cystic Fibrosis Translational Research Centre, McGill University, Montréal, Québec, Canada; and
| | - Marc A Tewfik
- 2 Cystic Fibrosis Translational Research Centre, McGill University, Montréal, Québec, Canada; and.,3 Department of Otolaryngology-Head and Neck Surgery and
| | - Saul Frenkiel
- 2 Cystic Fibrosis Translational Research Centre, McGill University, Montréal, Québec, Canada; and.,3 Department of Otolaryngology-Head and Neck Surgery and
| | - John W Hanrahan
- 1 Department of Physiology and.,2 Cystic Fibrosis Translational Research Centre, McGill University, Montréal, Québec, Canada; and.,4 Research Institute, McGill University Health Centre, Montréal, Québec, Canada
| |
Collapse
|
10
|
Airway surface liquid acidification initiates host defense abnormalities in Cystic Fibrosis. Sci Rep 2019; 9:6516. [PMID: 31019198 PMCID: PMC6482305 DOI: 10.1038/s41598-019-42751-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 04/03/2019] [Indexed: 12/14/2022] Open
Abstract
Cystic fibrosis (CF) is caused by defective Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein. Morbidity is mainly due to early airway infection. We hypothesized that S. aureus clearance during the first hours of infection was impaired in CF human Airway Surface Liquid (ASL) because of a lowered pH. The ASL pH of human bronchial epithelial cell lines and primary respiratory cells from healthy controls (WT) and patients with CF was measured with a pH microelectrode. The antimicrobial capacity of airway cells was studied after S. aureus apical infection by counting surviving bacteria. ASL was significantly more acidic in CF than in WT respiratory cells. This was consistent with a defect in bicarbonate secretion involving CFTR and SLC26A4 (pendrin) and a persistent proton secretion by ATP12A. ASL demonstrated a defect in S. aureus clearance which was improved by pH normalization. Pendrin inhibition in WT airways recapitulated the CF airway defect and increased S. aureus proliferation. ATP12A inhibition by ouabain decreased bacterial proliferation. Antimicrobial peptides LL-37 and hBD1 demonstrated a pH-dependent activity. Normalizing ASL pH might improve innate airway defense in newborns with CF during onset of S. aureus infection. Pendrin activation and ATP12A inhibition could represent novel therapeutic strategies to normalize pH in CF airways.
Collapse
|
11
|
Massip-Copiz MM, Santa-Coloma TA. Extracellular pH and lung infections in cystic fibrosis. Eur J Cell Biol 2018; 97:402-410. [PMID: 29933921 DOI: 10.1016/j.ejcb.2018.06.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/01/2018] [Accepted: 06/12/2018] [Indexed: 12/11/2022] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive disease caused by CFTR mutations. It is characterized by high NaCl concentration in sweat and the production of a thick and sticky mucus, occluding secretory ducts, intestine and airways, accompanied by chronic inflammation and infections of the lungs. This causes a progressive and lethal decline in lung function. Therefore, finding the mechanisms driving the high susceptibility to lung infections has been a key issue. For decades the prevalent hypothesis was that a reduced airway surface liquid (ASL) volume and composition, and the consequent increased mucus concentration (dehydration), create an environment favoring infections. However, a few years ago, in a pig model of CF, the Na+/K+ concentrations and the ASL volume were found intact. Immediately a different hypothesis arose, postulating a reduced ASL pH as the cause for the increased susceptibility to infections, due to a diminished bicarbonate secretion through CFTR. Noteworthy, a recent report found normal ASL pH values in CF children and in cultured primary airway cells, challenging the ASL pH hypothesis. On the other hand, recent evidences revitalized the hypothesis of a reduced ASL secretion. Thus, the role of the ASL pH in the CF is still a controversial matter. In this review we discuss the basis that sustain the role of CFTR in modulating the extracellular pH, and the recent results sustaining the different points of view. Finding the mechanisms of CFTR signaling that determine the susceptibility to infections is crucial to understand the pathophysiology of CF and related lung diseases.
Collapse
Affiliation(s)
- María Macarena Massip-Copiz
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED UCA-CONICET), The National Scientific and Technical Research Council (CONICET), and School of Medical Sciences, The Pontifical Catholic University of Argentina (UCA), Buenos Aires, Argentina
| | - Tomás Antonio Santa-Coloma
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED UCA-CONICET), The National Scientific and Technical Research Council (CONICET), and School of Medical Sciences, The Pontifical Catholic University of Argentina (UCA), Buenos Aires, Argentina.
| |
Collapse
|
12
|
Huang J, Kim D, Shan J, Abu‐Arish A, Luo Y, Hanrahan JW. Most bicarbonate secretion by Calu-3 cells is mediated by CFTR and independent of pendrin. Physiol Rep 2018; 6:e13641. [PMID: 29536650 PMCID: PMC5849580 DOI: 10.14814/phy2.13641] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 02/10/2018] [Accepted: 02/12/2018] [Indexed: 11/24/2022] Open
Abstract
Bicarbonate plays an important role in airway host defense, however, its transport mechanisms remain uncertain. Here we examined the relative contributions of the anion channel CFTR (cystic fibrosis transmembrane conductance regulator, ABCC7) and the anion exchanger pendrin (SLC26A4) to HCO3- secretion by the human airway cell line Calu-3. Pendrin and CFTR were both detected in parental Calu-3 cells, although mRNA and protein expression appeared higher for CFTR than for pendrin. Targeting pendrin transcripts with lentiviral shRNA reduced pendrin detection by immunofluorescence staining but did not alter the rates of HCO3- or fluid secretion, HCO3- transport under pH-stat conditions, or net HCO3- flux across basolaterally permeabilized monolayers. Intracellular pH varied with step changes in apical Cl- and HCO3- concentrations in control and pendrin knockdown Calu-3 cells, but not in CFTR deficient cells. Exposure to the proinflammatory cytokine IL-4, which strongly upregulates pendrin expression in airway surface epithelia, had little effect on Calu-3 pendrin expression and did not alter fluid or HCO3- secretion. Similar results were obtained using air-liquid interface and submerged cultures, although CFTR and pendrin mRNA expression were both lower when cells were cultured under submerged conditions. While the conclusions cannot be extrapolated to other airway epithelia, the present results demonstrate that most HCO3- secretion by Calu-3 cells is mediated by CFTR.
Collapse
Affiliation(s)
- Junwei Huang
- Department of PhysiologyMcGill UniversityMontréalQuébecCanada
- Cystic Fibrosis Translational Research CenterMcGill UniversityMontréalQuébecCanada
- Present address:
AbbVie Bioresearch CenterAbbVie Inc.381 Plantation St.WorcesterMA01605
| | - Dusik Kim
- Department of PhysiologyMcGill UniversityMontréalQuébecCanada
- Cystic Fibrosis Translational Research CenterMcGill UniversityMontréalQuébecCanada
| | - Jiajie Shan
- Department of PhysiologyMcGill UniversityMontréalQuébecCanada
- Cystic Fibrosis Translational Research CenterMcGill UniversityMontréalQuébecCanada
- Present address:
School of MedicineSouth China University of TechnologyGuangzhou University TownPanyu DistrictGuangzhouChina
| | - Asmahan Abu‐Arish
- Department of PhysiologyMcGill UniversityMontréalQuébecCanada
- Cystic Fibrosis Translational Research CenterMcGill UniversityMontréalQuébecCanada
| | - Yishan Luo
- Department of PhysiologyMcGill UniversityMontréalQuébecCanada
- Cystic Fibrosis Translational Research CenterMcGill UniversityMontréalQuébecCanada
| | - John W. Hanrahan
- Department of PhysiologyMcGill UniversityMontréalQuébecCanada
- Cystic Fibrosis Translational Research CenterMcGill UniversityMontréalQuébecCanada
- Research Institute‐McGill University Health CentreMontréalQuébecCanada
| |
Collapse
|
13
|
Yin J, Tse CM, Avula LR, Singh V, Foulke-Abel J, de Jonge HR, Donowitz M. Molecular Basis and Differentiation-Associated Alterations of Anion Secretion in Human Duodenal Enteroid Monolayers. Cell Mol Gastroenterol Hepatol 2018; 5:591-609. [PMID: 29930980 PMCID: PMC6009799 DOI: 10.1016/j.jcmgh.2018.02.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 02/05/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Human enteroids present a novel tool to study human intestinal ion transport physiology and pathophysiology. The present study describes the contributions of Cl- and HCO3- secretion to total cyclic adenosine monophosphate (cAMP)-stimulated electrogenic anion secretion in human duodenal enteroid monolayers and the relevant changes after differentiation. METHODS Human duodenal enteroids derived from 4 donors were grown as monolayers and differentiated by a protocol that includes the removal of Wnt3A, R-spondin1, and SB202190 for 5 days. The messenger RNA level and protein expression of selected ion transporters and carbonic anhydrase isoforms were determined by quantitative real-time polymerase chain reaction and immunoblotting, respectively. Undifferentiated and differentiated enteroid monolayers were mounted in the Ussing chamber/voltage-current clamp apparatus, using solutions that contained as well as lacked Cl- and HCO3-/CO2, to determine the magnitude of forskolin-induced short-circuit current change and its sensitivity to specific inhibitors that target selected ion transporters and carbonic anhydrase(s). RESULTS Differentiation resulted in a significant reduction in the messenger RNA level and protein expression of cystic fibrosis transmembrane conductance regulator, (CFTR) Na+/K+/2Cl- co-transporter 1 (NKCC1), and potassium channel, voltage gated, subfamily E, regulatory subunit 3 (KCNE3); and, conversely, increase of down-regulated-in-adenoma (DRA), electrogenic Na+/HCO3- co-transporter 1 (NBCe1), carbonic anhydrase 2 (CA2), and carbonic anhydrase 4 (CA4). Both undifferentiated and differentiated enteroids showed active cAMP-stimulated anion secretion that included both Cl- and HCO3- secretion as the magnitude of total active anion secretion was reduced after the removal of extracellular Cl- or HCO3-/CO2. The magnitude of total anion secretion in differentiated enteroids was approximately 33% of that in undifferentiated enteroids, primarily owing to the reduction in Cl- secretion with no significant change in HCO3- secretion. Anion secretion was consistently lower but detectable in differentiated enteroids compared with undifferentiated enteroids in the absence of extracellular Cl- or HCO3-/CO2. Inhibiting CFTR, NKCC1, carbonic anhydrase(s), cAMP-activated K+ channel(s), and Na+/K+-adenosine triphosphatase reduced cAMP-stimulated anion secretion in both undifferentiated and differentiated enteroids. CONCLUSIONS Human enteroids recapitulate anion secretion physiology of small intestinal epithelium. Enteroid differentiation is associated with significant alterations in the expression of several ion transporters and carbonic anhydrase isoforms, leading to a reduced but preserved anion secretory phenotype owing to markedly reduced Cl- secretion but no significant change in HCO3- secretion.
Collapse
Key Words
- AE2, anion exchanger 2
- Bicarbonate Secretion
- CA, carbonic anhydrase
- CFTR, cystic fibrosis transmembrane conductance regulator
- Chloride Secretion
- DRA
- DRA, down-regulated-in-adenoma
- Ion Transport
- Isc, short-circuit current
- KRB, Krebs–Ringer bicarbonate
- NBC, Na+/HCO3- co-transporter
- NBCe1, electrogenic Na+/HCO3- co-transporter 1
- NHE, Na+/H+ exchanger
- NKCC1, Na+/K+/2Cl- co-transporter 1
- SDS, sodium dodecyl sulfate
- SITS, 4-Acetamido-4′-isothiocyanato-2,2′-stilbenedisulfonic acid disodium salt hydrate
- TER, transepithelial electrical resistance
- cAMP, cyclic adenosine monophosphate
- mRNA, messenger ribonucleic acid
- qRT-PCR, quantitative real-time polymerase chain reaction
- ΔIsc, change in short-circuit current
Collapse
Affiliation(s)
- Jianyi Yin
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Chung-Ming Tse
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Leela Rani Avula
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Varsha Singh
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jennifer Foulke-Abel
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hugo R. de Jonge
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mark Donowitz
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland,Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland,Correspondence Address correspondence to: Mark Donowitz, MD, Johns Hopkins University School of Medicine, 720 Rutland Avenue, 925 Ross Research Building, Baltimore, Maryland 21205. fax: (410) 955-9677.
| |
Collapse
|
14
|
Sellers ZM, Illek B, Figueira MF, Hari G, Joo NS, Sibley E, Souza-Menezes J, Morales MM, Fischer H, Wine JJ. Impaired PGE2-stimulated Cl- and HCO3- secretion contributes to cystic fibrosis airway disease. PLoS One 2017; 12:e0189894. [PMID: 29281691 PMCID: PMC5744969 DOI: 10.1371/journal.pone.0189894] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 12/04/2017] [Indexed: 12/15/2022] Open
Abstract
Background Airway mucociliary clearance (MCC) is an important defense mechanism against pulmonary infections and is compromised in cystic fibrosis (CF). Cl- and HCO3- epithelial transport are integral to MCC. During pulmonary infections prostaglandin E2 (PGE2) production is abundant. Aim To determine the effect of PGE2 on airway Cl- and HCO3- secretion and MCC in normal and CF airways. Methods We examined PGE2 stimulated MCC, Cl- and HCO3- secretion using ferret trachea, human bronchial epithelial cell cultures (CFBE41o- with wildtype CFTR (CFBE41 WT) or homozygous F508del CFTR (CFBE41 CF) and human normal bronchial submucosal gland cell line (Calu-3) in Ussing chambers with or without pH-stat. Results PGE2 stimulated MCC in a dose-dependent manner and was partially impaired by CFTRinh-172. PGE2-stimulated Cl- current in ferret trachea was partially inhibited by CFTRinh-172, with niflumic acid eliminating the residual current. CFBE41 WT cell monolayers produced a robust Cl- and HCO3- secretory response to PGE2, both of which were completely inhibited by CFTRinh-172. CFBE41 CF cells exhibited no response to PGE2. In Calu-3 cells, PGE2 stimulated Cl- and HCO3- secretion. Cl- secretion was partially inhibited by CFTRinh-172, with additional inhibition by niflumic acid. HCO3- secretion was completely inhibited by CFTRinh-172. Conclusions PGE2 stimulates bronchotracheal MCC and this response is decreased in CF. In CF airway, PGE2-stimulated Cl- and HCO3- conductance is impaired and may contribute to decreased MCC. There remains a CFTR-independent Cl- current in submucosal glands, which if exploited, could represent a means of improving airway Cl- secretion and MCC in CF.
Collapse
Affiliation(s)
- Zachary M. Sellers
- Division of Pediatric Gastroenterology, Hepatolfifogy, and Nutrition, Stanford University, Palo Alto, CA, United States of America
- Cystic Fibrosis Research Laboratory, Stanford University, Palo Alto, CA, United States of America
- * E-mail:
| | - Beate Illek
- Children’s Hospital Oakland Research Institute, Oakland, CA, United States of America
| | - Miriam Frankenthal Figueira
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Core for Ecology and Socio Environmental Development, Federal University of Rio de Janeiro, Macaé, RJ, Brazil
| | - Gopika Hari
- Children’s Hospital Oakland Research Institute, Oakland, CA, United States of America
| | - Nam Soo Joo
- Cystic Fibrosis Research Laboratory, Stanford University, Palo Alto, CA, United States of America
| | - Eric Sibley
- Division of Pediatric Gastroenterology, Hepatolfifogy, and Nutrition, Stanford University, Palo Alto, CA, United States of America
| | - Jackson Souza-Menezes
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Core for Ecology and Socio Environmental Development, Federal University of Rio de Janeiro, Macaé, RJ, Brazil
| | - Marcelo M. Morales
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Horst Fischer
- Children’s Hospital Oakland Research Institute, Oakland, CA, United States of America
| | - Jeffrey J. Wine
- Cystic Fibrosis Research Laboratory, Stanford University, Palo Alto, CA, United States of America
| |
Collapse
|
15
|
CK2 is a key regulator of SLC4A2-mediated Cl -/HCO 3- exchange in human airway epithelia. Pflugers Arch 2017; 469:1073-1091. [PMID: 28455748 PMCID: PMC5554290 DOI: 10.1007/s00424-017-1981-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/27/2017] [Accepted: 04/10/2017] [Indexed: 12/17/2022]
Abstract
Transepithelial bicarbonate secretion by human airway submucosal glands and surface epithelial cells is crucial to maintain the pH-sensitive innate defence mechanisms of the lung. cAMP agonists stimulate HCO3- secretion via coordinated increases in basolateral HCO3- influx and accumulation, as well as CFTR-dependent HCO3- efflux at the luminal membrane of airway epithelial cells. Here, we investigated the regulation of a basolateral located, DIDS-sensitive, Cl-/HCO3- exchanger, anion exchanger 2 (AE2; SLC4A2) which is postulated to act as an acid loader, and therefore potential regulator of HCO3- secretion, in human airway epithelial cells. Using intracellular pH measurements performed on Calu-3 cells, we demonstrate that the activity of the basolateral Cl-/HCO3- exchanger was significantly downregulated by cAMP agonists, via a PKA-independent mechanism and also required Ca2+ and calmodulin under resting conditions. AE2 contains potential phosphorylation sites by a calmodulin substrate, protein kinase CK2, and we demonstrated that AE2 activity was reduced in the presence of CK2 inhibition. Moreover, CK2 inhibition abolished the activity of AE2 in primary human nasal epithelia. Studies performed on mouse AE2 transfected into HEK-293T cells confirmed almost identical Ca2+/calmodulin and CK2 regulation to that observed in Calu-3 and primary human nasal cells. Furthermore, mouse AE2 activity was reduced by genetic knockout of CK2, an effect which was rescued by exogenous CK2 expression. Together, these findings are the first to demonstrate that CK2 is a key regulator of Cl--dependent HCO3- export at the serosal membrane of human airway epithelial cells.
Collapse
|
16
|
Abstract
Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene that encodes a chloride channel located in the apical membrane of epithelia cells. The cAMP signaling pathway and protein phosphorylation are known to be primary controlling mechanisms for channel function. In this study, we present an alternative activation pathway that involves calcium-activated calmodulin binding of the intrinsically disordered regulatory (R) region of CFTR. Beyond their potential therapeutic value, these data provide insights into the intersection of calcium signaling with control of ion homeostasis and the ways in which the local CFTR microdomain organizes itself. Cystic fibrosis results from mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel, leading to defective apical chloride transport. Patients also experience overactivation of inflammatory processes, including increased calcium signaling. Many investigations have described indirect effects of calcium signaling on CFTR or other calcium-activated chloride channels; here, we investigate the direct response of CFTR to calmodulin-mediated calcium signaling. We characterize an interaction between the regulatory region of CFTR and calmodulin, the major calcium signaling molecule, and report protein kinase A (PKA)-independent CFTR activation by calmodulin. We describe the competition between calmodulin binding and PKA phosphorylation and the differential effects of this competition for wild-type CFTR and the major F508del mutant, hinting at potential therapeutic strategies. Evidence of CFTR binding to isolated calmodulin domains/lobes suggests a mechanism for the role of CFTR as a molecular hub. Together, these data provide insights into how loss of active CFTR at the membrane can have additional consequences besides impaired chloride transport.
Collapse
|
17
|
Saint-Criq V, Gray MA. Role of CFTR in epithelial physiology. Cell Mol Life Sci 2016; 74:93-115. [PMID: 27714410 PMCID: PMC5209439 DOI: 10.1007/s00018-016-2391-y] [Citation(s) in RCA: 287] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 12/20/2022]
Abstract
Salt and fluid absorption and secretion are two processes that are fundamental to epithelial function and whole body fluid homeostasis, and as such are tightly regulated in epithelial tissues. The CFTR anion channel plays a major role in regulating both secretion and absorption in a diverse range of epithelial tissues, including the airways, the GI and reproductive tracts, sweat and salivary glands. It is not surprising then that defects in CFTR function are linked to disease, including life-threatening secretory diarrhoeas, such as cholera, as well as the inherited disease, cystic fibrosis (CF), one of the most common life-limiting genetic diseases in Caucasian populations. More recently, CFTR dysfunction has also been implicated in the pathogenesis of acute pancreatitis, chronic obstructive pulmonary disease (COPD), and the hyper-responsiveness in asthma, underscoring its fundamental role in whole body health and disease. CFTR regulates many mechanisms in epithelial physiology, such as maintaining epithelial surface hydration and regulating luminal pH. Indeed, recent studies have identified luminal pH as an important arbiter of epithelial barrier function and innate defence, particularly in the airways and GI tract. In this chapter, we will illustrate the different operational roles of CFTR in epithelial function by describing its characteristics in three different tissues: the airways, the pancreas, and the sweat gland.
Collapse
Affiliation(s)
- Vinciane Saint-Criq
- Epithelial Research Group, Institute for Cell and Molecular Biosciences, University Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH UK
| | - Michael A. Gray
- Epithelial Research Group, Institute for Cell and Molecular Biosciences, University Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH UK
| |
Collapse
|
18
|
Turner MJ, Saint-Criq V, Patel W, Ibrahim SH, Verdon B, Ward C, Garnett JP, Tarran R, Cann MJ, Gray MA. Hypercapnia modulates cAMP signalling and cystic fibrosis transmembrane conductance regulator-dependent anion and fluid secretion in airway epithelia. J Physiol 2015; 594:1643-61. [PMID: 26574187 PMCID: PMC4799982 DOI: 10.1113/jp271309] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/05/2015] [Indexed: 12/20/2022] Open
Abstract
Hypercapnia is clinically defined as an arterial blood partial pressure of CO2 of above 40 mmHg and is a feature of chronic lung disease. In previous studies we have demonstrated that hypercapnia modulates agonist-stimulated cAMP levels through effects on transmembrane adenylyl cyclase activity. In the airways, cAMP is known to regulate cystic fibrosis transmembrane conductance regulator (CFTR)-mediated anion and fluid secretion, which contributes to airway surface liquid homeostasis. The aim of the current work was to investigate if hypercapnia could modulate cAMP-regulated ion and fluid transport in human airway epithelial cells. We found that acute exposure to hypercapnia significantly reduced forskolin-stimulated elevations in intracellular cAMP as well as both adenosine- and forskolin-stimulated increases in CFTR-dependent transepithelial short-circuit current, in polarised cultures of Calu-3 human airway cells. This CO2 -induced reduction in anion secretion was not due to a decrease in HCO3 (-) transport given that neither a change in CFTR-dependent HCO3 (-) efflux nor Na(+) /HCO3 (-) cotransporter-dependent HCO3 (-) influx were CO2 -sensitive. Hypercapnia also reduced the volume of forskolin-stimulated fluid secretion over 24 h, yet had no effect on the HCO3 (-) content of the secreted fluid. Our data reveal that hypercapnia reduces CFTR-dependent, electrogenic Cl(-) and fluid secretion, but not CFTR-dependent HCO3 (-) secretion, which highlights a differential sensitivity of Cl(-) and HCO3 (-) transporters to raised CO2 in Calu-3 cells. Hypercapnia also reduced forskolin-stimulated CFTR-dependent anion secretion in primary human airway epithelia. Based on current models of airways biology, a reduction in fluid secretion, associated with hypercapnia, would be predicted to have important consequences for airways hydration and the innate defence mechanisms of the lungs.
Collapse
Affiliation(s)
- Mark J Turner
- Institute for Cell & Molecular Biosciences, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.,Department of Physiology, McIntyre Medical Sciences Building, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada, H3G 1Y6
| | - Vinciane Saint-Criq
- Institute for Cell & Molecular Biosciences, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Waseema Patel
- Institute for Cell & Molecular Biosciences, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Salam H Ibrahim
- Institute for Cell & Molecular Biosciences, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Bernard Verdon
- Institute for Cell & Molecular Biosciences, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Christopher Ward
- Institute for Cellular Medicine, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - James P Garnett
- Institute for Cell & Molecular Biosciences, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Robert Tarran
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Martin J Cann
- School of Biological and Biomedical Sciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Michael A Gray
- Institute for Cell & Molecular Biosciences, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
19
|
Hong JH, Muhammad E, Zheng C, Hershkovitz E, Alkrinawi S, Loewenthal N, Parvari R, Muallem S. Essential role of carbonic anhydrase XII in secretory gland fluid and HCO3 (-) secretion revealed by disease causing human mutation. J Physiol 2015; 593:5299-312. [PMID: 26486891 DOI: 10.1113/jp271378] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/12/2015] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS Fluid and HCO3 (-) secretion is essential for all epithelia; aberrant secretion is associated with several diseases. Carbonic anhydrase XII (CA12) is the key carbonic anhydrase in epithelial fluid and HCO3 (-) secretion and works by activating the ductal Cl(-) -HCO3 (-) exchanger AE2. Delivery of CA12 to salivary glands increases salivation in mice and of the human mutation CA12(E143K) markedly inhibits it. The human mutation CA12(E143K) causes disease due to aberrant CA12 glycosylation, and misfolding resulting in loss of AE2 activity. ABSTRACT Aberrant epithelial fluid and HCO3 (-) secretion is associated with many diseases. The activity of HCO3 (-) transporters depends of HCO3 (-) availability that is determined by carbonic anhydrases (CAs). Which CAs are essential for epithelial function is unknown. CA12 stands out since the CA12(E143K) mutation causes salt wasting in sweat and dehydration in humans. Here, we report that expression of CA12 and of CA12(E143K) in mice salivary glands respectively increased and prominently inhibited ductal fluid secretion and salivation in vivo. CA12 markedly increases the activity and is the major HCO3 (-) supplier of ductal Cl(-) -HCO3 (-) exchanger AE2, but not of NBCe1-B. The E143K mutation alters CA12 glycosylation at N28 and N80, resulting in retention of the basolateral CA12 in the ER. Knockdown of AE2 and of CA12 inhibited pancreatic and salivary gland ductal AE2 activity and fluid secretion. Accordingly, patients homozygous for the CA12(E143K) mutation have a dry mouth, dry tongue phenotype. These findings reveal an unsuspected prominent role of CA12 in epithelial function, explain the disease and call for caution in the use of CA12 inhibitors in cancer treatment.
Collapse
Affiliation(s)
- Jeong Hee Hong
- Epithelial Signalling and Transport Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA.,Department of Physiology, College of Medicine, Gachon University, 191 Hambakmeoro, Yeonsu-gu, Incheon, 406-799, South Korea
| | - Emad Muhammad
- Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and National Institute for Biotechnology in the Negev, Beer Sheva, Israel
| | - Changyu Zheng
- Epithelial Signalling and Transport Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Eli Hershkovitz
- Pediatric Endocrinology Unit, Soroka Medical Centre and Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Soliman Alkrinawi
- Pediatric Endocrinology Unit, Soroka Medical Centre and Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Neta Loewenthal
- Pediatric Endocrinology Unit, Soroka Medical Centre and Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Ruti Parvari
- Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and National Institute for Biotechnology in the Negev, Beer Sheva, Israel
| | - Shmuel Muallem
- Epithelial Signalling and Transport Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
20
|
Abstract
Submucosal glands contribute to airway surface liquid (ASL), a film that protects all airway surfaces. Glandular mucus comprises electrolytes, water, the gel-forming mucin MUC5B, and hundreds of different proteins with diverse protective functions. Gland volume per unit area of mucosal surface correlates positively with impaction rate of inhaled particles. In human main bronchi, the volume of the glands is ∼ 50 times that of surface goblet cells, but the glands diminish in size and frequency distally. ASL and its trapped particles are removed from the airways by mucociliary transport. Airway glands have a tubuloacinar structure, with a single terminal duct, a nonciliated collecting duct, then branching secretory tubules lined with mucous cells and ending in serous acini. They allow for a massive increase in numbers of mucus-producing cells without replacing surface ciliated cells. Active secretion of Cl(-) and HCO3 (-) by serous cells produces most of the fluid of gland secretions. Glands are densely innervated by tonically active, mutually excitatory airway intrinsic neurons. Most gland mucus is secreted constitutively in vivo, with large, transient increases produced by emergency reflex drive from the vagus. Elevations of [cAMP]i and [Ca(2+)]i coordinate electrolyte and macromolecular secretion and probably occur together for baseline activity in vivo, with cholinergic elevation of [Ca(2+)]i being mainly responsive for transient increases in secretion. Altered submucosal gland function contributes to the pathology of all obstructive diseases, but is an early stage of pathogenesis only in cystic fibrosis.
Collapse
Affiliation(s)
- Jonathan H Widdicombe
- Department of Physiology and Membrane Biology, University of California-Davis, Davis, California; and Department of Psychology and Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California
| | - Jeffrey J Wine
- Department of Physiology and Membrane Biology, University of California-Davis, Davis, California; and Department of Psychology and Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California
| |
Collapse
|
21
|
Garnett JP, Hickman E, Tunkamnerdthai O, Cuthbert AW, Gray MA. Protein phosphatase 1 coordinates CFTR-dependent airway epithelial HCO3- secretion by reciprocal regulation of apical and basolateral membrane Cl(-)-HCO3- exchangers. Br J Pharmacol 2015; 168:1946-60. [PMID: 23215877 DOI: 10.1111/bph.12085] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 11/14/2012] [Accepted: 12/01/2012] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Our recent studies on human airway serous-like Calu-3 cells showed that cAMP agonists stimulated a HCO3(-) rich secretion containing up to 80 mM HCO3(-). This alkaline secretion relied on a coordinated switch in the activity of distinct Cl(-)-HCO3(-) anion exchangers (AE) located at different regions of the cell. At the apical membrane, cAMP agonists activated the electroneutral AE pendrin (SLC26A4), together with cystic fibrosis transmembrane conductance regulator (CFTR), while at the basolateral membrane the agonists inhibited AE2 (SLC4A2). However, the underlying mechanism(s) that orchestrates this cAMP-dependent switch in AE activity has not been elucidated. EXPERIMENTAL APPROACH Apical and basolateral Cl(-)-HCO3(-) exchange was assessed by measuring Cl(-)-dependent changes in intracellular pH (pH(i)). KEY RESULTS We show that protein phosphatase 1 (PP1), together with CFTR, play central roles in this reciprocal regulation of AE activity. Activation of pendrin by cAMP agonists, but not inhibition of the basolateral exchanger, was protein kinase A-dependent. Knocking down CFTR expression, or blocking its activity with GlyH-101, led to incomplete inhibition of the basolateral AE by cAMP, supporting a role for CFTR in this process. Addition of the PP1/2A inhibitor, okadaic acid, but not the PP2A specific inhibitor fostreicin, mimicked the effect of cAMP stimulation. Furthermore, okadaic acid-treated Calu-3 monolayers produced a more alkaline fluid than untreated cells, which was comparable with that produced by cAMP stimulation. CONCLUSIONS AND IMPLICATIONS These results identify PP1 as a novel regulator of AE activity which, in concert with CFTR, coordinates events at both apical and basolateral membranes, crucial for efficient HCO3(-) secretion from Calu-3 cells.
Collapse
Affiliation(s)
- James P Garnett
- Institute for Cell & Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | | | |
Collapse
|
22
|
Thornell IM, Bevensee MO. Regulators of Slc4 bicarbonate transporter activity. Front Physiol 2015; 6:166. [PMID: 26124722 PMCID: PMC4464172 DOI: 10.3389/fphys.2015.00166] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 05/15/2015] [Indexed: 12/11/2022] Open
Abstract
The Slc4 family of transporters is comprised of anion exchangers (AE1-4), Na+-coupled bicarbonate transporters (NCBTs) including electrogenic Na/bicarbonate cotransporters (NBCe1 and NBCe2), electroneutral Na/bicarbonate cotransporters (NBCn1 and NBCn2), and the electroneutral Na-driven Cl-bicarbonate exchanger (NDCBE), as well as a borate transporter (BTR1). These transporters regulate intracellular pH (pHi) and contribute to steady-state pHi, but are also involved in other physiological processes including CO2 carriage by red blood cells and solute secretion/reabsorption across epithelia. Acid-base transporters function as either acid extruders or acid loaders, with the Slc4 proteins moving HCO−3 either into or out of cells. According to results from both molecular and functional studies, multiple Slc4 proteins and/or associated splice variants with similar expected effects on pHi are often found in the same tissue or cell. Such apparent redundancy is likely to be physiologically important. In addition to regulating pHi, a HCO−3 transporter contributes to a cell's ability to fine tune the intracellular regulation of the cotransported/exchanged ion(s) (e.g., Na+ or Cl−). In addition, functionally similar transporters or splice variants with different regulatory profiles will optimize pH physiology and solute transport under various conditions or within subcellular domains. Such optimization will depend on activated signaling pathways and transporter expression profiles. In this review, we will summarize and discuss both well-known and more recently identified regulators of the Slc4 proteins. Some of these regulators include traditional second messengers, lipids, binding proteins, autoregulatory domains, and less conventional regulators. The material presented will provide insight into the diversity and physiological significance of multiple members within the Slc4 gene family.
Collapse
Affiliation(s)
- Ian M Thornell
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham Birmingham, AL, USA
| | - Mark O Bevensee
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham Birmingham, AL, USA ; Nephrology Research and Training Center, University of Alabama at Birmingham Birmingham, AL, USA ; Center of Glial Biology in Medicine, University of Alabama at Birmingham Birmingham, AL, USA ; Civitan International Research Center, University of Alabama at Birmingham Birmingham, AL, USA
| |
Collapse
|
23
|
Wang J, Barbuskaite D, Tozzi M, Giannuzzo A, Sørensen CE, Novak I. Proton Pump Inhibitors Inhibit Pancreatic Secretion: Role of Gastric and Non-Gastric H+/K+-ATPases. PLoS One 2015; 10:e0126432. [PMID: 25993003 PMCID: PMC4436373 DOI: 10.1371/journal.pone.0126432] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 04/02/2015] [Indexed: 02/07/2023] Open
Abstract
The mechanism by which pancreas secretes high HCO3- has not been fully resolved. This alkaline secretion, formed in pancreatic ducts, can be achieved by transporting HCO3- from serosa to mucosa or by moving H+ in the opposite direction. The aim of the present study was to determine whether H+/K+-ATPases are expressed and functional in human pancreatic ducts and whether proton pump inhibitors (PPIs) have effect on those. Here we show that the gastric HKα1 and HKβ subunits (ATP4A; ATP4B) and non-gastric HKα2 subunits (ATP12A) of H+/K+-ATPases are expressed in human pancreatic cells. Pumps have similar localizations in duct cell monolayers (Capan-1) and human pancreas, and notably the gastric pumps are localized on the luminal membranes. In Capan-1 cells, PPIs inhibited recovery of intracellular pH from acidosis. Furthermore, in rats treated with PPIs, pancreatic secretion was inhibited but concentrations of major ions in secretion follow similar excretory curves in control and PPI treated animals. In addition to HCO3-, pancreas also secretes K+. In conclusion, this study calls for a revision of the basic model for HCO3- secretion. We propose that proton transport is driving secretion, and that in addition it may provide a protective pH buffer zone and K+ recirculation. Furthermore, it seems relevant to re-evaluate whether PPIs should be used in treatment therapies where pancreatic functions are already compromised.
Collapse
Affiliation(s)
- Jing Wang
- Department of Biology, Section for Molecular Integrative Physiology, August Krogh Building, University of Copenhagen, Copenhagen, Denmark
| | - Dagne Barbuskaite
- Department of Biology, Section for Molecular Integrative Physiology, August Krogh Building, University of Copenhagen, Copenhagen, Denmark
| | - Marco Tozzi
- Department of Biology, Section for Molecular Integrative Physiology, August Krogh Building, University of Copenhagen, Copenhagen, Denmark
| | - Andrea Giannuzzo
- Department of Biology, Section for Molecular Integrative Physiology, August Krogh Building, University of Copenhagen, Copenhagen, Denmark
| | - Christiane E. Sørensen
- Department of Biology, Section for Molecular Integrative Physiology, August Krogh Building, University of Copenhagen, Copenhagen, Denmark
| | - Ivana Novak
- Department of Biology, Section for Molecular Integrative Physiology, August Krogh Building, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
24
|
Chemical rescue of ΔF508-CFTR in C127 epithelial cells reverses aberrant extracellular pH acidification to wild-type alkalization as monitored by microphysiometry. Biochem Biophys Res Commun 2014; 451:535-40. [DOI: 10.1016/j.bbrc.2014.08.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 08/04/2014] [Indexed: 11/19/2022]
|
25
|
Kim D, Kim J, Burghardt B, Best L, Steward MC. Role of anion exchangers in Cl− and HCO3− secretion by the human airway epithelial cell line Calu-3. Am J Physiol Cell Physiol 2014; 307:C208-19. [DOI: 10.1152/ajpcell.00083.2014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Despite the importance of airway surface liquid pH in the lung's defenses against infection, the mechanism of airway HCO3− secretion remains unclear. Our aim was to assess the contribution of apical and basolateral Cl−/HCO3− exchangers to Cl− and HCO3− transport in the Calu-3 cell line, derived from human airway submucosal glands. Changes in intracellular pH (pHi) were measured following substitution of Cl− with gluconate. Apical Cl− substitution led to an alkalinization in forskolin-stimulated cells, indicative of Cl−/HCO3− exchange. This was unaffected by the anion exchange inhibitor DIDS but inhibited by the CFTR blocker CFTRinh-172, suggesting that the HCO3− influx might occur via CFTR, rather than a solute carrier family 26 (SLC26) exchanger, as recently proposed. The anion selectivity of the recovery process more closely resembled that of CFTR than an SLC26 exchanger, and quantitative RT-PCR showed only low levels of SLC26 exchanger transcripts relative to CFTR and anion exchanger 2 (AE2). For pHi to rise to observed values (∼7.8) through HCO3− entry via CFTR, the apical membrane potential must reverse to at least +20 mV following Cl− substitution; this was confirmed by perforated-patch recordings. Substitution of basolateral Cl− evoked a DIDS-sensitive alkalinization, attributed to Cl−/HCO3− exchange via AE2. This appeared to be abolished in forskolin-stimulated cells but was unmasked by blocking apical efflux of HCO3− via CFTR. We conclude that Calu-3 cells secrete HCO3− predominantly via CFTR, and, contrary to previous reports, the basolateral anion exchanger AE2 remains active during stimulation, providing an important pathway for basolateral Cl− uptake.
Collapse
Affiliation(s)
- Dusik Kim
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Juyeon Kim
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Beáta Burghardt
- Department of Oral Biology, Semmelweis University, Budapest, Hungary; and
| | - Len Best
- Faculty of Medicine and Human Sciences, University of Manchester, Manchester, United Kingdom
| | - Martin C. Steward
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
26
|
Kim D, Liao J, Hanrahan JW. The buffer capacity of airway epithelial secretions. Front Physiol 2014; 5:188. [PMID: 24917822 PMCID: PMC4042063 DOI: 10.3389/fphys.2014.00188] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 04/28/2014] [Indexed: 01/20/2023] Open
Abstract
The pH of airway epithelial secretions influences bacterial killing and mucus properties and is reduced by acidic pollutants, gastric reflux, and respiratory diseases such as cystic fibrosis (CF). The effect of acute acid loads depends on buffer capacity, however the buffering of airway secretions has not been well characterized. In this work we develop a method for titrating micro-scale (30 μl) volumes and use it to study fluid secreted by the human airway epithelial cell line Calu-3, a widely used model for submucosal gland serous cells. Microtitration curves revealed that HCO−3 is the major buffer. Peak buffer capacity (β) increased from 17 to 28 mM/pH during forskolin stimulation, and was reduced by >50% in fluid secreted by cystic fibrosis transmembrane conductance regulator (CFTR)-deficient Calu-3 monolayers, confirming an important role of CFTR in HCO−3 secretion. Back-titration with NaOH revealed non-volatile buffer capacity due to proteins synthesized and released by the epithelial cells. Lysozyme and mucin concentrations were too low to buffer Calu-3 fluid significantly, however model titrations of porcine gastric mucins at concentrations near the sol-gel transition suggest that mucins may contribute to the buffer capacity of ASL in vivo. We conclude that CFTR-dependent HCO−3 secretion and epithelially-derived proteins are the predominant buffers in Calu-3 secretions.
Collapse
Affiliation(s)
- Dusik Kim
- Department of Physiology, McGill University Montréal, QC, Canada
| | - Jie Liao
- Department of Physiology, McGill University Montréal, QC, Canada
| | - John W Hanrahan
- Department of Physiology, McGill University Montréal, QC, Canada ; McGill University Health Centre Research Institute Montréal, QC, Canada
| |
Collapse
|
27
|
Jung J, Lee MG. Role of calcium signaling in epithelial bicarbonate secretion. Cell Calcium 2014; 55:376-84. [PMID: 24598807 DOI: 10.1016/j.ceca.2014.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 02/03/2014] [Accepted: 02/04/2014] [Indexed: 12/24/2022]
Abstract
Transepithelial bicarbonate secretion plays a key role in the maintenance of fluid and protein secretion from epithelial cells and the protection of the epithelial cell surface from various pathogens. Epithelial bicarbonate secretion is mainly under the control of cAMP and calcium signaling. While the physiological roles and molecular mechanisms of cAMP-induced bicarbonate secretion are relatively well defined, those induced by calcium signaling remain poorly understood in most epithelia. The present review summarizes the current status of knowledge on the role of calcium signaling in epithelial bicarbonate secretion. Specifically, this review introduces how cytosolic calcium signaling can increase bicarbonate secretion by regulating membrane transport proteins and how it synergizes with cAMP-induced mechanisms in epithelial cells. In addition, tissue-specific variations in the pancreas, salivary glands, intestines, bile ducts, and airways are discussed. We hope that the present report will stimulate further research into this important topic. These studies will provide the basis for future medicines for a wide spectrum of epithelial disorders including cystic fibrosis, Sjögren's syndrome, and chronic pancreatitis.
Collapse
Affiliation(s)
- Jinsei Jung
- Department of Pharmacology and Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea; Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Min Goo Lee
- Department of Pharmacology and Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea.
| |
Collapse
|
28
|
Novak I, Haanes KA, Wang J. Acid-base transport in pancreas-new challenges. Front Physiol 2013; 4:380. [PMID: 24391597 PMCID: PMC3868914 DOI: 10.3389/fphys.2013.00380] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 12/04/2013] [Indexed: 12/11/2022] Open
Abstract
Along the gastrointestinal tract a number of epithelia contribute with acid or basic secretions in order to aid digestive processes. The stomach and pancreas are the most extreme examples of acid (H(+)) and base (HCO(-) 3) transporters, respectively. Nevertheless, they share the same challenges of transporting acid and bases across epithelia and effectively regulating their intracellular pH. In this review, we will make use of comparative physiology to enlighten the cellular mechanisms of pancreatic HCO(-) 3 and fluid secretion, which is still challenging physiologists. Some of the novel transporters to consider in pancreas are the proton pumps (H(+)-K(+)-ATPases), as well as the calcium-activated K(+) and Cl(-) channels, such as KCa3.1 and TMEM16A/ANO1. Local regulators, such as purinergic signaling, fine-tune, and coordinate pancreatic secretion. Lastly, we speculate whether dys-regulation of acid-base transport contributes to pancreatic diseases including cystic fibrosis, pancreatitis, and cancer.
Collapse
Affiliation(s)
- Ivana Novak
- Department of Biology, University of Copenhagen Copenhagen, Denmark
| | | | - Jing Wang
- Department of Biology, University of Copenhagen Copenhagen, Denmark
| |
Collapse
|
29
|
Billet A, Hanrahan JW. The secret life of CFTR as a calcium-activated chloride channel. J Physiol 2013; 591:5273-8. [PMID: 23959675 PMCID: PMC3936366 DOI: 10.1113/jphysiol.2013.261909] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 08/15/2013] [Indexed: 12/27/2022] Open
Abstract
cAMP-stimulated anion conductance is defective in cystic fibrosis (CF). The regulatory domain of CFTR, the anion channel protein encoded by the CF gene, possesses an unusually high density of consensus sequences for phosphorylation by protein kinase A (14 in a stretch of <200 amino acids). Thus it is not surprising that CFTR is viewed primarily as a cAMP-stimulated anion channel, and most studies have focused on this mode of activation. However, there is growing evidence that CFTR also responds to Ca(2+)-mobilizing secretagogues and contributes substantially to cholinergic and purinergic responses in native tissues. G protein-coupled receptors that signal through Gαq can stimulate CFTR channels by activating Ca(2+)-dependent adenylyl cyclase and tyrosine kinases, and also by inhibiting protein phosphatase type 2A. Here we review evidence for these novel mechanisms of CFTR activation and discuss how they may help explain previous observations.
Collapse
Affiliation(s)
- Arnaud Billet
- J. W. Hanrahan: Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montreal, QC, Canada H3G 1Y6.
| | | |
Collapse
|
30
|
Garnett JP, Turner MJ. Controversies surrounding the role of CFTR in airway bicarbonate secretion. J Physiol 2013; 591:2241-2. [PMID: 23740884 DOI: 10.1113/jphysiol.2013.251199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- James P Garnett
- Division of Biomedical Sciences, St George's, University of London, London, UK.
| | | |
Collapse
|
31
|
Affiliation(s)
- Bruce D Schultz
- Department of Anatomy & Physiology, Kansas State University, Coles Hall Room 228, 1600 Denison Avenue, Manhattan, KS 66506, USA.
| |
Collapse
|
32
|
Gholami K, Muniandy S, Salleh N. In-vivo functional study on the involvement of CFTR, SLC26A6, NHE-1 and CA isoenzymes II and XII in uterine fluid pH, volume and electrolyte regulation in rats under different sex-steroid influence. Int J Med Sci 2013; 10:1121-34. [PMID: 23869188 PMCID: PMC3714388 DOI: 10.7150/ijms.5918] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Accepted: 05/30/2013] [Indexed: 01/13/2023] Open
Abstract
UNLABELLED Precise control of uterine fluid pH, volume and electrolytes is important for the reproductive processes. In this study, we examined the functional involvement of multiple proteins including Cystic Fibrosis Transmembrane Regulator (CFTR), Cl(-)/HCO3 (-) exchanger (SLC26A6), sodium-hydrogen exchanger-1 (NHE-1) and carbonic anhydrase (CA) in the regulation of these uterine fluid parameters. METHODS Adult female WKY rats were divided into intact, non-ovariectomised at different oestrous cycle phases and ovariectomised treated with sex-steroids. Following oestrous phase identification or sex-steroid treatment, in-vivo uterine perfusion was performed with and without the presence of these inhibitors: glibenclamide, DIDS, ACTZ and EIPA. The pH, volume, Cl(-), HCO3 (-) and Na(+) concentrations of the perfusate from different groups were then analyzed. Meanwhile, the expression of CFTR, SLC26A6, NHE-1, CAII and CAXII was visualized by immunohistochemistry (IHC). RESULTS Parallel increase in the pH, volume, Cl(-), HCO3 (-) and Na(+) concentrations was observed at estrus (Es), proestrus (Ps) and following 17β-oestradiol (E) treatment, which was inhibited by glibenclamide, DIDS and ACTZ while parallel reduction in these parameters was observed at diestrus (Ds) and following progesterone (P) treatment which was inhibited by ACTZ and EIPA. CFTR and SLC26A6 expression were up-regulated under E dominance, while NHE-1 expression was up-regulated under P dominance. Meanwhile, CA isoenzymes were expressed under both E and P influence. CONCLUSION CFTR, SLC26A6 and CA were involved in mediating parallel increase in the uterine fluid volume, pH and electrolyte concentration under E while NHE and CA were involved in mediating the reduction of these parameters under P.
Collapse
Affiliation(s)
- Khadijeh Gholami
- Dept of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | | |
Collapse
|
33
|
Huang J, Shan J, Kim D, Liao J, Evagelidis A, Alper SL, Hanrahan JW. Basolateral chloride loading by the anion exchanger type 2: role in fluid secretion by the human airway epithelial cell line Calu-3. J Physiol 2012; 590:5299-316. [PMID: 22802585 DOI: 10.1113/jphysiol.2012.236919] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Anion exchanger type 2 (AE2 or SLC4A2) is an electroneutral Cl(-)/HCO(3)(-) exchanger expressed at the basolateral membrane of many epithelia. It is thought to participate in fluid secretion by airway epithelia. However, the role of AE2 in fluid secretion remains uncertain, due to the lack of specific pharmacological inhibitors, and because it is electrically silent and therefore does not contribute directly to short-circuit current (I(sc)). We have studied the role of AE2 in Cl(-) and fluid secretion by the airway epithelial cell line Calu-3. After confirming expression of its mRNA and protein, a knock-down cell line called AE2-KD was generated by lentivirus-mediated RNA interference in which AE2 mRNA and protein levels were reduced 90%. Suppressing AE2 increased the expression of the cystic fibrosis transmembrane conductance regulator (CFTR) by ∼70% without affecting the levels of NKCC1 (Na(+)-K(+)-2Cl(-) cotransporter) or NBCe1 (Na(+)-nHCO(3)(-) cotransporter). cAMP agonists stimulated fluid secretion by parental Calu-3 and scrambled shRNA cells >6.5-fold. In AE2-KD cells this response was reduced by ∼70%, and the secreted fluid exhibited elevated pH and [HCO(3)(-)] as compared with the control lines. Unstimulated equivalent short-circuit current (I(eq)) was elevated in AE2-KD cells, but the incremental response to forskolin was unaffected. The modest bumetanide-induced reductions in both I(eq) and fluid secretion were more pronounced in AE2-KD cells. Basolateral Cl(-)/HCO(3)(-) exchange measured by basolateral pH-stat in cells with permeabilized apical membranes was abolished in AE2-KD monolayers, and the intracellular alkalinization resulting from basolateral Cl(-) removal was reduced by ∼80% in AE2-KD cells. These results identify AE2 as a major pathway for basolateral Cl(-) loading during cAMP-stimulated secretion of Cl(-) and fluid by Calu-3 cells, and help explain the large bumetanide-insensitive component of fluid secretion reported previously in airway submucosal glands and some other epithelia.
Collapse
Affiliation(s)
- Junwei Huang
- Department of Physiology, McGill University, Montr´eal, QC, Canada
| | | | | | | | | | | | | |
Collapse
|