1
|
Bramlett SN, Fitzmaurice SM, Harbin NH, Yan W, Bandlamudi C, Van Doorn GE, Smith Y, Hepler JR. Regulator of G protein signalling 14 (RGS14) protein expression profile in the adult mouse brain. Eur J Neurosci 2024; 60:7058-7085. [PMID: 39557622 DOI: 10.1111/ejn.16592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/02/2024] [Accepted: 10/20/2024] [Indexed: 11/20/2024]
Abstract
Regulator of G protein signalling 14 (RGS14) is a multifunctional signalling protein that serves as a natural suppressor of synaptic plasticity in the mouse brain. Our previous studies showed that RGS14 is highly expressed in postsynaptic dendrites and spines of pyramidal neurons in hippocampal area CA2 of the developing mouse brain. However, our more recent work with monkey brain shows that RGS14 is found in multiple neuron populations throughout hippocampal area CA1 and CA2, caudate nucleus, putamen, globus pallidus, substantia nigra and amygdala. In the mouse brain, we also have observed RGS14 protein in discrete limbic regions linked to reward behaviour and addiction, including the central amygdala and the nucleus accumbens, but a comprehensive mapping of RGS14 protein expression in the adult mouse brain is lacking. Here, we report that RGS14 is more broadly expressed in mouse brain than previously known. Intense RGS14 staining is observed in specific neuron populations of the hippocampal formation, amygdala, septum, bed nucleus of stria terminalis and ventral striatum/nucleus accumbens. RGS14 is also observed in axon fibre tracts including the dorsal fornix, fimbria, stria terminalis and the ventrohippocampal commissure. Moderate RGS14 staining is observed in various other adjacent regions not previously reported. These findings show that RGS14 is expressed in brain regions that govern aspects of core cognitive functions such as sensory perception, emotion, memory, motivation and execution of actions and suggest that RGS14 may serve to suppress plasticity and filter inputs in these brain regions to set the overall tone on experience-to-action processes.
Collapse
Affiliation(s)
- Sara N Bramlett
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Shana M Fitzmaurice
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Nicholas H Harbin
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Wuji Yan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Charan Bandlamudi
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - G Emme Van Doorn
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Yoland Smith
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Neurology, Emory University School of Medcine, Atlanta, Georgia, USA
| | - John R Hepler
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Chen C, Li S, Zhou Y, Huang H, Lin JT, Wu WF, Qiu YK, Dong W, Wan J, Liu Q, Zheng H, Wu YQ, Zhou CH. Neuronal excitation-inhibition imbalance in the basolateral amygdala is involved in propofol-mediated enhancement of fear memory. Commun Biol 2024; 7:1408. [PMID: 39472670 PMCID: PMC11522401 DOI: 10.1038/s42003-024-07105-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
Posttraumatic stress disorder (PTSD) is associated with glutamatergic neuron hyperactivation in the basolateral amygdala (BLA) brain area, while GABAergic interneurons in the BLA modulate glutamatergic neuron excitability. Studies have shown that propofol exerts its effects through potentiation of the inhibitory neurotransmitter γ-aminobutyric acid. The neuronal mechanism by which propofol anesthesia modulates fear memory is currently unknown. Here, we used optogenetics and chemogenetics to suppress glutamatergic neurons or activate GABAergic interneurons in the BLA to assess alterations in neuronal excitation-inhibition balance and investigate fear memory. The excitability of glutamatergic neurons in the BLA was significantly reduced by the suppression of glutamatergic neurons or activation of GABAergic interneurons, while propofol-mediated enhancement of fear memory was attenuated. We suggest that propofol anesthesia could reduce the excitability of GABAergic neurons through activation of GABAA receptors, subsequently increasing the excitability of glutamatergic neurons in the mice BLA; the effect of propofol on enhancing mice fear memory might be mediated by strengthening glutamatergic neuronal excitability and decreasing the excitability of GABAergic neurons in the BLA; neuronal excitation-inhibition imbalance in the BLA might be important in mediating the enhancement of fear memory induced by propofol.
Collapse
Affiliation(s)
- Chen Chen
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Shuai Li
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yue Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Hui Huang
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Jia-Tao Lin
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Wei-Feng Wu
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Yong-Kang Qiu
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Wei Dong
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Jie Wan
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Qiang Liu
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Hui Zheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yu-Qing Wu
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China.
| | - Cheng-Hua Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
3
|
Bramlett SN, Fitzmaurice SM, Harbin NH, Yan W, Bandlamudi C, Van Doorn GE, Smith Y, Hepler JR. Regulator of G Protein Signaling 14 protein expression profile in the adult mouse brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.22.600169. [PMID: 38979272 PMCID: PMC11230234 DOI: 10.1101/2024.06.22.600169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Regulator of G protein signaling 14 (RGS14) is a multifunctional signaling protein that serves as a natural suppressor of synaptic plasticity in the mouse brain. Our previous studies showed that RGS14 is highly expressed in postsynaptic dendrites and spines of pyramidal neurons in hippocampal area CA2 of the developing mouse brain. However, our more recent work with adult rhesus macaque brain shows that RGS14 is found in multiple neuron populations throughout hippocampal area CA1 and CA2, caudate nucleus, putamen, globus pallidus, substantia nigra, and amygdala in the adult rhesus monkey brain. In the mouse brain, we also have observed RGS14 protein in discrete limbic regions linked to reward behavior and addiction, including the central amygdala and the nucleus accumbens, but a comprehensive mapping of RGS14 protein expression in the adult mouse brain is lacking. Here, we report that RGS14 is more broadly expressed in mouse brain than previously known. Intense RGS14 staining is observed in specific neuron populations of the hippocampal formation, amygdala, septum, bed nucleus of stria terminalis and ventral striatum/nucleus accumbens. RGS14 is also observed in axon fiber tracts including the dorsal fornix, fimbria, stria terminalis, and the ventrohippocampal commissure. Moderate RGS14 staining is observed in various other adjacent regions not previously reported. These findings show that RGS14 is expressed in brain regions that govern aspects of core cognitive functions such as sensory perception, emotion, memory, motivation, and execution of actions, and suggests that RGS14 may serve to suppress plasticity and filter inputs in these brain regions to set the overall tone on experience-to-action processes.
Collapse
|
4
|
Sias AC, Jafar Y, Goodpaster CM, Ramírez-Armenta K, Wrenn TM, Griffin NK, Patel K, Lamparelli AC, Sharpe MJ, Wassum KM. Dopamine projections to the basolateral amygdala drive the encoding of identity-specific reward memories. Nat Neurosci 2024; 27:728-736. [PMID: 38396258 PMCID: PMC11110430 DOI: 10.1038/s41593-024-01586-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
To make adaptive decisions, we build an internal model of the associative relationships in an environment and use it to make predictions and inferences about specific available outcomes. Detailed, identity-specific cue-reward memories are a core feature of such cognitive maps. Here we used fiber photometry, cell-type and pathway-specific optogenetic manipulation, Pavlovian cue-reward conditioning and decision-making tests in male and female rats, to reveal that ventral tegmental area dopamine (VTADA) projections to the basolateral amygdala (BLA) drive the encoding of identity-specific cue-reward memories. Dopamine is released in the BLA during cue-reward pairing; VTADA→BLA activity is necessary and sufficient to link the identifying features of a reward to a predictive cue but does not assign general incentive properties to the cue or mediate reinforcement. These data reveal a dopaminergic pathway for the learning that supports adaptive decision-making and help explain how VTADA neurons achieve their emerging multifaceted role in learning.
Collapse
Affiliation(s)
- Ana C Sias
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yousif Jafar
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Caitlin M Goodpaster
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Tyler M Wrenn
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nicholas K Griffin
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Keshav Patel
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Melissa J Sharpe
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
- Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
- Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, CA, USA
- Integrative Center for Addictive Disorders, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychology, University of Sydney, Sydney, New South Wales, Australia
| | - Kate M Wassum
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA.
- Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA.
- Integrative Center for Learning and Memory, University of California, Los Angeles, Los Angeles, CA, USA.
- Integrative Center for Addictive Disorders, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Mozafari R, Karimi-Haghighi S, Fattahi M, Kalivas P, Haghparast A. A review on the role of metabotropic glutamate receptors in neuroplasticity following psychostimulant use disorder. Prog Neuropsychopharmacol Biol Psychiatry 2023; 124:110735. [PMID: 36813105 DOI: 10.1016/j.pnpbp.2023.110735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/03/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023]
Abstract
Psychostimulant Use Disorder (PUD) is a chronic relapsing disorder with high motivation for drug abuse. In addition to developing PUD, the use of psychostimulants is a growing public health concern because it is associated with several physical and mental health impairments. To date, there are no FDA-confirmed medicines for the treatment of psychostimulant abuse; therefore, clarification of the cellular and molecular alterations participating in PUD is crucial for developing beneficial medications. PUD causes extensive neuroadaptations in glutamatergic circuitry involved in reinforcement and reward processing. These adaptations include both transient and long-lasting changes in glutamate transmission and glutamate receptors, especially metabotropic glutamate receptors, that have been linked to developing and maintaining PUD. Here, we review the roles of all groups of mGluRs,including I,II, and III in synaptic plasticity within brain reward circuitry engaged by psychostimulants (cocaine, amphetamine, methamphetamine, and nicotine). The review concentrates on investigations of psychostimulant-induced behavioral and neurological plasticity, with an ultimate goal to explore circuit and molecular targets with the potential to contribute to the treatment of PUD.
Collapse
Affiliation(s)
- Roghayeh Mozafari
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeideh Karimi-Haghighi
- Community Based Psychiatric Care Research Center, School of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojdeh Fattahi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Peter Kalivas
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran; Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Tyler RE, Besheer J, Joffe ME. Advances in translating mGlu 2 and mGlu 3 receptor selective allosteric modulators as breakthrough treatments for affective disorders and alcohol use disorder. Pharmacol Biochem Behav 2022; 219:173450. [PMID: 35988792 PMCID: PMC10405528 DOI: 10.1016/j.pbb.2022.173450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/26/2022] [Accepted: 08/13/2022] [Indexed: 11/16/2022]
Abstract
Metabotropic glutamate (mGlu) receptors are promising targets for the treatment of affective disorders and alcohol use disorder (AUD). Nonspecific ligands for Group II (mGlu2 and mGlu3) mGlu receptors have demonstrated consistent therapeutic potential for affective disorders in preclinical models. Disentangling the specific roles of mGlu2 versus mGlu3 receptors in these effects has persisted as a major challenge, in part due to pharmacological limitations. However, the recent development of highly specific allosteric modulators for both mGlu2 and mGlu3 receptors have enabled straightforward and rigorous investigations into the specific function of each receptor. Here, we review recent experiments using these compounds that have demonstrated both similar and distinct receptor functions in behavioral, molecular, and electrophysiological measures associated with basal function and preclinical models of affective disorders. Studies using these selective drugs have demonstrated that mGlu2 is the predominant receptor subclass involved in presynaptic neurotransmitter release in prefrontal cortex. By contrast, the activation of postsynaptic mGlu3 receptors induces a cascade of cellular changes that results in AMPA receptor internalization, producing long-term depression and diminishing excitatory drive. Acute stress decreases the mGlu3 receptor function and dynamically alters transcript expression for both mGlu2 (Grm2) and mGlu3 (Grm3) receptors in brain areas involved in reward and stress. Accordingly, both mGlu2 and mGlu3 negative allosteric modulators show acute antidepressant-like effects and potential prophylactic effects against acute and traumatic stressors. The wide array of effects displayed by these new allosteric modulators of mGlu2 and mGlu3 receptors suggest that these drugs may act through improving endophenotypes of symptoms observed across several neuropsychiatric disorders. Therefore, recently developed allosteric modulators selective for mGlu2 or mGlu3 receptors show promise as potential therapeutics for affective disorders and AUD.
Collapse
Affiliation(s)
- Ryan E Tyler
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Neuroscience Curriculum, University of North Carolina at Chapel Hill, USA; Department of Psychiatry, University of North Carolina at Chapel Hill, USA
| | - Joyce Besheer
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Neuroscience Curriculum, University of North Carolina at Chapel Hill, USA; Department of Psychiatry, University of North Carolina at Chapel Hill, USA
| | - Max E Joffe
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15219, USA; Translational Neuroscience Program, University of Pittsburgh, USA.
| |
Collapse
|
7
|
Stubbendorff C, Stevenson CW. Dopamine regulation of contextual fear and associated neural circuit function. Eur J Neurosci 2020; 54:6933-6947. [DOI: 10.1111/ejn.14772] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 01/07/2023]
|
8
|
Reduced serotonin impairs long-term depression in basolateral amygdala complex and causes anxiety-like behaviors in a mouse model of perimenopause. Exp Neurol 2019; 321:113030. [DOI: 10.1016/j.expneurol.2019.113030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 07/07/2019] [Accepted: 07/31/2019] [Indexed: 11/19/2022]
|
9
|
Neuhofer D, Kalivas P. Metaplasticity at the addicted tetrapartite synapse: A common denominator of drug induced adaptations and potential treatment target for addiction. Neurobiol Learn Mem 2018; 154:97-111. [PMID: 29428364 PMCID: PMC6112115 DOI: 10.1016/j.nlm.2018.02.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/26/2018] [Accepted: 02/07/2018] [Indexed: 11/22/2022]
Abstract
In light of the current worldwide addiction epidemic, the need for successful therapies is more urgent than ever. Although we made substantial progress in our basic understanding of addiction, reliable therapies are lacking. Since 40-60% of patients treated for substance use disorder return to active substance use within a year following treatment discharge, alleviating the vulnerability to relapse is regarded as the most promising avenue for addiction therapy. Preclinical addiction research often focuses on maladaptive synaptic plasticity within the reward pathway. However, drug induced neuroadaptations do not only lead to a strengthening of distinct drug associated cues and drug conditioned behaviors, but also seem to increase plasticity thresholds for environmental stimuli that are not associated with the drug. This form of higher order plasticity, or synaptic metaplasticity, is not expressed as a change in the efficacy of synaptic transmission but as a change in the direction or degree of plasticity induced by a distinct stimulation pattern. Experimental addiction research has demonstrated metaplasticity after exposure to multiple classes of addictive drugs. In this review we will focus on the concept of synaptic metaplasticity in the context of preclinical addiction research. We will take a closer look at the tetrapartite glutamatergic synapse and outline forms of metaplasticity that have been described at the addicted synapse. Finally we will discuss the different potential avenues for pharmacotherapies that target glutamatergic synaptic plasticity and metaplasticity. Here we will argue that aberrant metaplasticity renders the reward seeking circuitry more rigid and hence less able to adapt to changing environmental contingencies. An understanding of the molecular mechanisms that underlie this metaplasticity is crucial for the development of new strategies for addiction therapy. The correction of drug-induced metaplasticity could be used to support behavioral and pharmacotherapies for the treatment of addiction.
Collapse
Affiliation(s)
- Daniela Neuhofer
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, United States.
| | - Peter Kalivas
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, United States
| |
Collapse
|
10
|
Joffe ME, Centanni SW, Jaramillo AA, Winder DG, Conn PJ. Metabotropic Glutamate Receptors in Alcohol Use Disorder: Physiology, Plasticity, and Promising Pharmacotherapies. ACS Chem Neurosci 2018; 9:2188-2204. [PMID: 29792024 PMCID: PMC6192262 DOI: 10.1021/acschemneuro.8b00200] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Developing efficacious treatments for alcohol use disorder (AUD) has proven difficult. The insidious nature of the disease necessitates a deep understanding of its underlying biology as well as innovative approaches to ameliorate ethanol-related pathophysiology. Excessive ethanol seeking and relapse are generated by long-term changes to membrane properties, synaptic physiology, and plasticity throughout the limbic system and associated brain structures. Each of these factors can be modulated by metabotropic glutamate (mGlu) receptors, a diverse set of G protein-coupled receptors highly expressed throughout the central nervous system. Here, we discuss how different components of the mGlu receptor family modulate neurotransmission in the limbic system and other brain regions involved in AUD etiology. We then describe how these processes are dysregulated following ethanol exposure and speculate about how mGlu receptor modulation might restore such pathophysiological changes. To that end, we detail the current understanding of the behavioral pharmacology of mGlu receptor-directed drug-like molecules in animal models of AUD. Together, this review highlights the prominent position of the mGlu receptor system in the pathophysiology of AUD and provides encouragement that several classes of mGlu receptor modulators may be translated as viable treatment options.
Collapse
Affiliation(s)
- Max E. Joffe
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-0697, United States
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232-0697, United States
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee 37232-0697, United States
| | - Samuel W. Centanni
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee 37232-0697, United States
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Anel A. Jaramillo
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee 37232-0697, United States
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Danny G. Winder
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-0697, United States
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee 37232-0697, United States
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - P. Jeffrey Conn
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-0697, United States
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232-0697, United States
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, Tennessee 37232-0697, United States
| |
Collapse
|
11
|
Pałasz A, Pałka M, Filipczyk Ł, Menezes IC, Rojczyk E, Worthington JJ, Piwowarczyk-Nowak A, Krzystanek M, Wiaderkiewicz R. Effect of long-term treatment with classical neuroleptics on NPQ/spexin, kisspeptin and POMC mRNA expression in the male rat amygdala. J Neural Transm (Vienna) 2018; 125:1099-1105. [PMID: 29488100 PMCID: PMC5999179 DOI: 10.1007/s00702-018-1868-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/22/2018] [Indexed: 12/16/2022]
Abstract
Neuroleptics modulate the expression level of some regulatory neuropeptides in the brain. However, if these therapeutics influence the peptidergic circuits in the amygdala remains unclear. This study specifies the impact profile of the classical antipsychotic drugs on mRNA expression of the spexin/NPQ, kisspeptin-1 and POMC in the rat amygdala. Animals were treated with haloperidol and chlorpromazine for 28 days prior to transcript quantification via qPCR. Haloperidol and chlorpromazine induced a change in the expression of all neuropeptides analyzed. Both drugs led to the decrease of Kiss-1 expression, whereas in POMC and spexin/NPQ their up-regulation in the amygdala was detected. These modulating effects on may represent alternative, so far unknown mechanisms, of classical antipsychotic drugs triggering pharmacological responses.
Collapse
Affiliation(s)
- Artur Pałasz
- Department of Histology, School of Medicine in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland.
| | - Marcelina Pałka
- Department of Histology, School of Medicine in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland
| | - Łukasz Filipczyk
- Department of Histology, School of Medicine in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland
| | - Itiana Castro Menezes
- Department of Neurosciences and Behaviour, Faculty of Medicine, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Ewa Rojczyk
- Department of Descriptive and Topographic Anatomy, School of Medicine with Division of Dentistry in Zabrze, Medical University of Silesia, ul. Jordana 19, 41-808, Zabrze, Poland
| | - John J Worthington
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Aneta Piwowarczyk-Nowak
- Department of Anatomy, School of Medicine in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland
| | - Marek Krzystanek
- Department and Clinic of Psychiatric Rehabilitation, School of Medicine in Katowice, Medical University of Silesia, ul. Ziolowa 45/47, 40-635, Katowice, Poland
| | - Ryszard Wiaderkiewicz
- Department of Histology, School of Medicine in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland
| |
Collapse
|
12
|
Ng KH, Pollock MW, Urbanczyk PJ, Sangha S. Altering D1 receptor activity in the basolateral amygdala impairs fear suppression during a safety cue. Neurobiol Learn Mem 2018; 147:26-34. [DOI: 10.1016/j.nlm.2017.11.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 11/09/2017] [Accepted: 11/19/2017] [Indexed: 10/18/2022]
|
13
|
Rich MT, Torregrossa MM. Molecular and synaptic mechanisms regulating drug-associated memories: Towards a bidirectional treatment strategy. Brain Res Bull 2017; 141:58-71. [PMID: 28916448 DOI: 10.1016/j.brainresbull.2017.09.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/21/2017] [Accepted: 09/05/2017] [Indexed: 12/11/2022]
Abstract
The successful treatment of substance use disorders is dependent on the establishment of a long-term abstinent state. Relapse can be suppressed by interfering with memories of drug use that are evoked by re-exposure to drug-associated contexts and cues. Two strategies for accomplishing this goal are either to prevent drug-memory reconsolidation or to induce the formation of a competing, extinction memory. However, clinical attempts to prolong abstinence by behavioral modification of drug-related memories have had limited success. One approach to improve behavioral treatment strategies is to identify the molecular mechanisms that regulate these memory processes and then use pharmacological tools as supplements to improve efficacy. Still, due to the involvement of several overlapping signaling cascades in both reconsolidation and extinction, it is difficult to specifically modify one of the two processes. For example, attempting to elicit extinction may instead initiate reconsolidation, resulting in the unintentional strengthening of drug-related memories. A better approach is to identify diverging components of the two processes, whereby a single medication would simultaneously weaken reconsolidation and enhance extinction. This review will provide an overview of the neural substrates that are involved in the regulation of drug-associated memories, and will discuss emerging approaches to pharmacologically weaken these memories, including recent efforts to precisely and bidirectionally target reconsolidation and extinction. Ultimately, pharmacologically-enhanced memory-based approaches have the potential to produce more informed relapse-prevention therapies.
Collapse
Affiliation(s)
- Matthew T Rich
- Department of Psychiatry, University of Pittsburgh, 3811 O'Hara St., Pittsburgh, PA 15213, United States; Center for Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15213, United States; Center for the Neural Basis of Cognition, University of Pittsburgh, 4400 Fifth Ave, Pittsburgh, PA, 15213, United States.
| | - Mary M Torregrossa
- Center for Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15213, United States.
| |
Collapse
|
14
|
Stress-Induced Reinstatement of Nicotine Preference Requires Dynorphin/Kappa Opioid Activity in the Basolateral Amygdala. J Neurosci 2017; 36:9937-48. [PMID: 27656031 DOI: 10.1523/jneurosci.0953-16.2016] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 08/05/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED The dynorphin (DYN)/kappa-opioid receptor (KOR) system plays a conserved role in stress-induced reinstatement of drug seeking for prototypical substances of abuse. Due to nicotine's high propensity for stress-induced relapse, we hypothesized that stress would induce reinstatement of nicotine seeking-like behavior in a KOR-dependent manner. Using a conditioned place preference (CPP) reinstatement procedure in mice, we show that both foot-shock stress and the pharmacological stressor yohimbine (2 mg/kg, i.p.) induce reinstatement of nicotine CPP in a norbinaltorphimine (norBNI, a KOR antagonist)-sensitive manner, indicating that KOR activity is necessary for stress-induced nicotine CPP reinstatement. After reinstatement testing, we visualized robust c-fos expression in the basolateral amygdala (BLA), which was reduced in mice pretreated with norBNI. We then used several distinct but complementary approaches of locally disrupting BLA KOR activity to assess the role of KORs and KOR-coupled intracellular signaling cascades on reinstatement of nicotine CPP. norBNI injected locally into the BLA prevented yohimbine-induced nicotine CPP reinstatement without affecting CPP acquisition. Similarly, selective deletion of BLA KORs in KOR conditional knock-out mice prevented foot-shock-induced CPP reinstatement. Together, these findings strongly implicate BLA KORs in stress-induced nicotine seeking-like behavior. In addition, we found that chemogenetic activation of Gαi signaling within CaMKIIα BLA neurons was sufficient to induce nicotine CPP reinstatement, identifying an anatomically specific intracellular mechanism by which stress leads to reinstatement. Considered together, our findings suggest that activation of the DYN/KOR system and Gαi signaling within the BLA is both necessary and sufficient to produce reinstatement of nicotine preference. SIGNIFICANCE STATEMENT Considering the major impact of nicotine use on human health, understanding the mechanisms by which stress triggers reinstatement of drug-seeking behaviors is particularly pertinent to nicotine. The dynorphin (DYN)/kappa-opioid receptor (KOR) system has been implicated in stress-induced reinstatement of drug seeking for other commonly abused drugs. However, the specific role, brain region, and mechanisms that this system plays in reinstatement of nicotine seeking has not been characterized. Here, we report region-specific engagement of the DYN/KOR system and subsequent activation of inhibitory (Gi-linked) intracellular signaling pathways within the basolateral amygdala during stress-induced reinstatement of nicotine preference. We show that the DYN/KOR system is necessary to produce this behavioral state. This work may provide novel insight for the development of therapeutic approaches to prevent stress-related nicotine relapse.
Collapse
|
15
|
Resolving Behavioral Output via Chemogenetic Designer Receptors Exclusively Activated by Designer Drugs. J Neurosci 2017; 36:9268-82. [PMID: 27605603 DOI: 10.1523/jneurosci.1333-16.2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 07/13/2016] [Indexed: 12/26/2022] Open
Abstract
Designer receptors exclusively activated by designer drugs (DREADDs) have proven to be highly effective neuromodulatory tools for the investigation of neural circuits underlying behavioral outputs. They exhibit a number of advantages: they rely on cell-specific manipulations through canonical intracellular signaling pathways, they are easy and cost-effective to implement in a laboratory setting, and they are easily scalable for single-region or full-brain manipulations. On the other hand, DREADDs rely on ligand-G-protein-coupled receptor interactions, leading to coarse temporal dynamics. In this review we will provide a brief overview of DREADDs, their implementation, and the advantages and disadvantages of their use in animal systems. We also will provide numerous examples of their use across a broad variety of biomedical research fields.
Collapse
|
16
|
Barrett CE, Hennessey TM, Gordon KM, Ryan SJ, McNair ML, Ressler KJ, Rainnie DG. Developmental disruption of amygdala transcriptome and socioemotional behavior in rats exposed to valproic acid prenatally. Mol Autism 2017; 8:42. [PMID: 28775827 PMCID: PMC5539636 DOI: 10.1186/s13229-017-0160-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/19/2017] [Indexed: 12/12/2022] Open
Abstract
Background The amygdala controls socioemotional behavior and has consistently been implicated in the etiology of autism spectrum disorder (ASD). Precocious amygdala development is commonly reported in ASD youth with the degree of overgrowth positively correlated to the severity of ASD symptoms. Prenatal exposure to VPA leads to an ASD phenotype in both humans and rats and has become a commonly used tool to model the complexity of ASD symptoms in the laboratory. Here, we examined abnormalities in gene expression in the amygdala and socioemotional behavior across development in the valproic acid (VPA) rat model of ASD. Methods Rat dams received oral gavage of VPA (500 mg/kg) or saline daily between E11 and 13. Socioemotional behavior was tracked across development in both sexes. RNA sequencing and proteomics were performed on amygdala samples from male rats across development. Results Effects of VPA on time spent in social proximity and anxiety-like behavior were sex dependent, with social abnormalities presenting in males and heightened anxiety in females. Across time VPA stunted developmental and immune, but enhanced cellular death and disorder, pathways in the amygdala relative to saline controls. At postnatal day 10, gene pathways involved in nervous system and cellular development displayed predicted activations in prenatally exposed VPA amygdala samples. By juvenile age, however, transcriptomic and proteomic pathways displayed reductions in cellular growth and neural development. Alterations in immune pathways, calcium signaling, Rho GTPases, and protein kinase A signaling were also observed. Conclusions As behavioral, developmental, and genomic alterations are similar to those reported in ASD, these results lend support to prenatal exposure to VPA as a useful tool for understanding how developmental insults to molecular pathways in the amygdala give rise to ASD-related syndromes. Electronic supplementary material The online version of this article (doi:10.1186/s13229-017-0160-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Catherine E Barrett
- Silvio O. Conte Center for Oxytocin and Social Cognition, Division of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd, 30329 Atlanta, GA USA.,Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 30329 Atlanta, GA USA
| | - Thomas M Hennessey
- Silvio O. Conte Center for Oxytocin and Social Cognition, Division of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd, 30329 Atlanta, GA USA.,Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 30329 Atlanta, GA USA
| | - Katelyn M Gordon
- Silvio O. Conte Center for Oxytocin and Social Cognition, Division of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd, 30329 Atlanta, GA USA.,Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 30329 Atlanta, GA USA
| | - Steve J Ryan
- Silvio O. Conte Center for Oxytocin and Social Cognition, Division of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd, 30329 Atlanta, GA USA.,Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 30329 Atlanta, GA USA
| | - Morgan L McNair
- Silvio O. Conte Center for Oxytocin and Social Cognition, Division of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd, 30329 Atlanta, GA USA.,Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 30329 Atlanta, GA USA
| | - Kerry J Ressler
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA 02478 USA
| | - Donald G Rainnie
- Silvio O. Conte Center for Oxytocin and Social Cognition, Division of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd, 30329 Atlanta, GA USA.,Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 30329 Atlanta, GA USA
| |
Collapse
|
17
|
Combining Dopaminergic Facilitation with Robot-Assisted Upper Limb Therapy in Stroke Survivors: A Focused Review. Am J Phys Med Rehabil 2017; 95:459-74. [PMID: 26829074 PMCID: PMC4866584 DOI: 10.1097/phm.0000000000000438] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Despite aggressive conventional therapy, lasting hemiplegia persists in a large percentage of stroke survivors. The aim of this article is to critically review the rationale behind targeting multiple sites along the motor learning network by combining robotic therapy with pharmacotherapy and virtual reality–based reward learning to alleviate upper extremity impairment in stroke survivors. Methods for personalizing pharmacologic facilitation to each individual’s unique biology are also reviewed. At the molecular level, treatment with levodopa was shown to induce long-term potentiation-like and practice-dependent plasticity. Clinically, trials combining conventional therapy with levodopa in stroke survivors yielded statistically significant but clinically unconvincing outcomes because of limited personalization, standardization, and reproducibility. Robotic therapy can induce neuroplasticity by delivering intensive, reproducible, and functionally meaningful interventions that are objective enough for the rigors of research. Robotic therapy also provides an apt platform for virtual reality, which boosts learning by engaging reward circuits. The future of stroke rehabilitation should target distinct molecular, synaptic, and cortical sites through personalized multimodal treatments to maximize motor recovery.
Collapse
|
18
|
Monday HR, Castillo PE. Closing the gap: long-term presynaptic plasticity in brain function and disease. Curr Opin Neurobiol 2017; 45:106-112. [PMID: 28570863 DOI: 10.1016/j.conb.2017.05.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 03/10/2017] [Accepted: 05/15/2017] [Indexed: 11/28/2022]
Abstract
Synaptic plasticity is critical for experience-dependent adjustments of brain function. While most research has focused on the mechanisms that underlie postsynaptic forms of plasticity, comparatively little is known about how neurotransmitter release is altered in a long-term manner. Emerging research suggests that many of the features of canonical 'postsynaptic' plasticity, such as associativity, structural changes and bidirectionality, also characterize long-term presynaptic plasticity. Recent studies demonstrate that presynaptic plasticity is a potent regulator of circuit output and function. Moreover, aberrant presynaptic plasticity is a convergent factor of synaptopathies like schizophrenia, addiction, and Autism Spectrum Disorders, and may be a potential target for treatment.
Collapse
Affiliation(s)
- Hannah R Monday
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Pablo E Castillo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, United States.
| |
Collapse
|
19
|
Busch R, Baldus M, Vogt MA, Berger SM, Bartsch D, Gass P, von Bohlen Und Halbach O. Effects of p75NTR deficiency on cholinergic innervation of the amygdala and anxiety-like behavior. J Neurochem 2017; 141:461-471. [PMID: 28266720 DOI: 10.1111/jnc.14006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/31/2017] [Accepted: 02/13/2017] [Indexed: 12/13/2022]
Abstract
The p75 neurotrophin receptor (p75NTR) is a low-affinity receptor that is capable of binding neurotrophins. Two different p75NTR knockout mouse lines are available either with a deletion in Exon III (p75NTRExIII-/- ) or in Exon IV (p75NTRExIV-/- ). In p75NTRExIII knockout mice, only the full-length p75NTR is deleted, whereas in p75NTRExIV knockout mice, the full-length as well as the truncated isoform of the receptor is deleted. Deletion of p75NTR has been shown to affect, among others, the septohippocampal cholinergic innervation pattern and neuronal plasticity within the hippocampus. We hypothesize that deletion of p75NTR also alters the morphology and physiology of a further key structure of the limbic system, the amygdala. Our results indicate that deletion of p75NTR also increases cholinergic innervation in the basolateral amygdala in adult as well as aged p75NTRExIII-/- and p75NTRExIV-/- mice. The p75NTRExIV-/- mice did not display altered long-term potentiation (LTP) in the basolateral amygdala as compared to age-matched control littermates. However, p75NTRExIII-/- mice display stronger LTP in the basolateral amygdala compared to age-matched controls. Bath-application of K252a (a trk antagonist) did not inhibit the induction of LTP in the basolateral amygdala, but reduced the level of LTP in p75NTRExIII-/- mice to levels seen in respective controls. Moreover, p75NTRExIII-/- mice display altered behavior in the dark/light box. Thus, deletion of p75NTR in mice leads to physiological and morphological changes in the amygdala and altered behavior that is linked to the limbic system.
Collapse
Affiliation(s)
- Ruben Busch
- Institute of Anatomy and Cell Biology, University Medicine Greifswald, Friedrich-Löffler Straße-23c, Greifswald, Germany
| | - Marian Baldus
- Institute of Anatomy and Cell Biology, University Medicine Greifswald, Friedrich-Löffler Straße-23c, Greifswald, Germany
| | - Miriam A Vogt
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Stefan M Berger
- Department of Molecular Biology, Central Institute of Mental Health and Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Dusan Bartsch
- Department of Molecular Biology, Central Institute of Mental Health and Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Peter Gass
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Oliver von Bohlen Und Halbach
- Institute of Anatomy and Cell Biology, University Medicine Greifswald, Friedrich-Löffler Straße-23c, Greifswald, Germany
| |
Collapse
|
20
|
An intra-amygdala circuit specifically regulates social fear learning. Nat Neurosci 2017; 20:459-469. [PMID: 28114293 PMCID: PMC5323274 DOI: 10.1038/nn.4481] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 12/19/2016] [Indexed: 12/20/2022]
Abstract
Adaptive social behavior requires transmission and reception of salient social information. Impairment of this reciprocity is a cardinal symptom of autism. The amygdala is a critical mediator of social behavior and is implicated in social symptoms of autism. Here we found that a specific amygdala circuit, from the lateral nucleus to the medial nucleus (LA-MeA), is required for using social cues to learn about environmental cues that signal imminent threats. Disruption of the LA-MeA circuit impaired valuation of these environmental cues and subsequent ability to use a cue to guide behavior. Rats with impaired social guidance of behavior due to knockout of Nrxn1, an analog of autism-associated gene NRXN, exhibited marked LA-MeA deficits. Chemogenetic activation of this circuit reversed these impaired social behaviors. These findings identify an amygdala circuit required to guide emotional responses to socially significant cues and identify an exploratory target for disorders associated with social impairments.
Collapse
|
21
|
Zhang B, Wang L, Chen T, Hong J, Sha S, Wang J, Xiao H, Chen L. Sigma-1 receptor deficiency reduces GABAergic inhibition in the basolateral amygdala leading to LTD impairment and depressive-like behaviors. Neuropharmacology 2017; 116:387-398. [PMID: 28108357 DOI: 10.1016/j.neuropharm.2017.01.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 12/17/2016] [Accepted: 01/16/2017] [Indexed: 01/01/2023]
Abstract
Sigma-1 receptor knockout (σ1R-/-) in male mice causes depressive-like phenotype. We observed the expression of σ1R in principal neurons of basolateral amygdala (BLA), a main region for affective regulation. The present study investigated the influence of σ1R deficiency in BLA neurons on synaptic properties and plasticity at cortico-BLA pathway. In comparison with wild-type (WT) mice, the slopes of field excitatory postsynaptic potentials (fEPSP) were reduced in σ1R-/- mice with the increases in paired-pulse facilitation (PPF) and paired-pulse inhibition (PPI) values. Induction of NMDA receptor (NMDAr)-dependent long-term potentiation (LTP) and NMDAr-independent long-term depression (LTD) were impaired in σ1R-/- mice. The NMDAr NR2B phosphorylation in BLA of σ1R-/- mice was lower than in WT mice. The coupling of nNOS to PSD-95 and nitric oxide (NO) level were reduced in BLA of σ1R-/- mice, which were recovered by the BLA-injection of NMDAr agonist NMDA. The bath-application of NMDA in BLA slices from σ1R-/- mice corrected the reduced fEPSP slopes and increased PPF and PPI and recovered the LTP and LTD induction, which were sensitive to nNOS inhibitor 7-NI. NO donor DETA/NO or GABAAR agonist muscimol could correct the PPI and recover LTD in σ1R-/- mice. In addition, the BLA-injection of NMDA, DETA/NO or muscimol could relieve the depressive-like behaviors in σ1R-/- mice. These results indicate that the σ1R deficiency in BLA principal neurons via NMDAr dysfunction suppresses nNOS activity and NO production to reduce GABAAR-mediated inhibition, which impairs LTD induction and causes depressive-like phenotype.
Collapse
Affiliation(s)
- Baofeng Zhang
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China; Department of Physiology, Nanjing Medical University, Nanjing 210029, China
| | - Ling Wang
- Department of Physiology, Nanjing Medical University, Nanjing 210029, China
| | - Tingting Chen
- Department of Physiology, Nanjing Medical University, Nanjing 210029, China
| | - Juan Hong
- Department of Physiology, Nanjing Medical University, Nanjing 210029, China
| | - Sha Sha
- Department of Physiology, Nanjing Medical University, Nanjing 210029, China
| | - Jun Wang
- Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 210029, China.
| | - Hang Xiao
- Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Ling Chen
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China; Department of Physiology, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
22
|
Hikima T, Garcia-Munoz M, Arbuthnott GW. Presynaptic D1 heteroreceptors and mGlu autoreceptors act at individual cortical release sites to modify glutamate release. Brain Res 2016; 1639:74-87. [PMID: 26944299 DOI: 10.1016/j.brainres.2016.02.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 02/11/2016] [Accepted: 02/23/2016] [Indexed: 01/04/2023]
Abstract
The aim of this work was to study release of glutamic acid (GLU) from one-axon terminal or bouton at-a-time using cortical neurons grown in vitro to study the effect of presynaptic auto- and heteroreceptor stimulation. Neurons were infected with release reporters SypHx2 or iGluSnFR at 7 or 3 days-in-vitro (DIV) respectively. At 13-15 DIV single synaptic boutons were identified from images obtained from a confocal scanning microscope before and after field electrical stimulation. We further stimulated release by raising intracellular levels of cAMP with forskolin (10µM). Forskolin-mediated effects were dependent on protein kinase A (PKA) and did not result from an increase in endocytosis, but rather from an increase in the size of the vesicle readily releasable pool. Once iGluSnFR was confirmed as more sensitive than SypHx2, it was used to study the participation of presynaptic auto- and heteroreceptors on GLU release. Although most receptor agonizts (carbamylcholine, nicotine, dopamine D2, BDNF) did not affect electrically stimulated GLU release, a significant increase was observed in the presence of metabotropic D1/D5 heteroreceptor agonist (SKF38393 10µM) that was reversed by PKA inhibitors. Interestingly, stimulation of group II metabotropic mGLU2/3 autoreceptors (LY379268 50nM) induced a decrease in GLU release that was reversed by the specific mGLU2/3 receptor antagonist (LY341495 1µM) and also by PKA inhibitors (KT5720 200nM and PKI14-22 400nM). These changes in release probability at individual release sites suggest another level of control of the distribution of transmitter substances in cortical tissue.
Collapse
Affiliation(s)
- Takuya Hikima
- Brain Mechanism for Behaviour Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| | - Marianela Garcia-Munoz
- Brain Mechanism for Behaviour Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| | - Gordon William Arbuthnott
- Brain Mechanism for Behaviour Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| |
Collapse
|
23
|
Activation of Phosphatidylinositol-Linked Dopamine Receptors Induces a Facilitation of Glutamate-Mediated Synaptic Transmission in the Lateral Entorhinal Cortex. PLoS One 2015; 10:e0131948. [PMID: 26133167 PMCID: PMC4489908 DOI: 10.1371/journal.pone.0131948] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 06/08/2015] [Indexed: 11/19/2022] Open
Abstract
The lateral entorhinal cortex receives strong inputs from midbrain dopamine neurons that can modulate its sensory and mnemonic function. We have previously demonstrated that 1 µM dopamine facilitates synaptic transmission in layer II entorhinal cortex cells via activation of D1-like receptors, increased cAMP-PKA activity, and a resulting enhancement of AMPA-receptor mediated currents. The present study assessed the contribution of phosphatidylinositol (PI)-linked D1 receptors to the dopaminergic facilitation of transmission in layer II of the rat entorhinal cortex, and the involvement of phospholipase C activity and release of calcium from internal stores. Whole-cell patch-clamp recordings of glutamate-mediated evoked excitatory postsynaptic currents were obtained from pyramidal and fan cells. Activation of D1-like receptors using SKF38393, SKF83959, or 1 µM dopamine induced a reversible facilitation of EPSCs which was abolished by loading cells with either the phospholipase C inhibitor U-73122 or the Ca2+ chelator BAPTA. Neither the L-type voltage-gated Ca2+ channel blocker nifedipine, nor the L/N-type channel blocker cilnidipine, blocked the facilitation of synaptic currents. However, the facilitation was blocked by blocking Ca2+ release from internal stores via inositol 1,4,5-trisphosphate (InsP3) receptors or ryanodine receptors. Follow-up studies demonstrated that inhibiting CaMKII activity with KN-93 failed to block the facilitation, but that application of the protein kinase C inhibitor PKC(19-36) completely blocked the dopamine-induced facilitation. Overall, in addition to our previous report indicating a role for the cAMP-PKA pathway in dopamine-induced facilitation of synaptic transmission, we demonstrate here that the dopaminergic facilitation of synaptic responses in layer II entorhinal neurons also relies on a signaling cascade dependent on PI-linked D1 receptors, PLC, release of Ca2+ from internal stores, and PKC activation which is likely dependent upon both DAG and enhanced intracellular Ca2+. These signaling pathways may collaborate to enhance sensory and mnemonic function in the entorhinal cortex during tonic release of dopamine.
Collapse
|
24
|
Likhtik E, Paz R. Amygdala-prefrontal interactions in (mal)adaptive learning. Trends Neurosci 2015; 38:158-66. [PMID: 25583269 PMCID: PMC4352381 DOI: 10.1016/j.tins.2014.12.007] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/04/2014] [Accepted: 12/08/2014] [Indexed: 11/22/2022]
Abstract
The study of neurobiological mechanisms underlying anxiety disorders has been shaped by learning models that frame anxiety as maladaptive learning. Pavlovian conditioning and extinction are particularly influential in defining learning stages that can account for symptoms of anxiety disorders. Recently, dynamic and task related communication between the basolateral complex of the amygdala (BLA) and the medial prefrontal cortex (mPFC) has emerged as a crucial aspect of successful evaluation of threat and safety. Ongoing patterns of neural signaling within the mPFC-BLA circuit during encoding, expression and extinction of adaptive learning are reviewed. The mechanisms whereby deficient mPFC-BLA interactions can lead to generalized fear and anxiety are discussed in learned and innate anxiety. Findings with cross-species validity are emphasized.
Collapse
Affiliation(s)
- Ekaterina Likhtik
- Associate Research Scientist, Department of Psychiatry, 1051 Riverside Drive, Unit 87, Kolb Annex, Room 136, New York, NY 10032, USA.
| | - Rony Paz
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, 76100 Israel.
| |
Collapse
|
25
|
Dalgard CL, Jacobowitz DM, Singh VK, Saleem KS, Ursano RJ, Starr JM, Pollard HB. A novel analytical brain block tool to enable functional annotation of discriminatory transcript biomarkers among discrete regions of the fronto-limbic circuit in primate brain. Brain Res 2015; 1600:42-58. [DOI: 10.1016/j.brainres.2014.12.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/07/2014] [Accepted: 12/11/2014] [Indexed: 01/05/2023]
|