1
|
Nie W, Wen Y, Dong F, Qin B. The fatal effect of shock waves on the head of a person wearing a polyurea-reinforced ballistic helmet. Comput Methods Biomech Biomed Engin 2025; 28:212-225. [PMID: 38062885 DOI: 10.1080/10255842.2023.2285240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/03/2023] [Accepted: 10/23/2023] [Indexed: 01/15/2025]
Abstract
Ballistic helmets are an important part of personal protective equipment in war and are specifically designed to protect a person's head. The future trend is to improve the protective performance of helmets through the use of lightweight coatings, and polyurea, as one of the hottest elastomeric polymer coating materials in recent years, has excellent physical properties, especially its ability to improve the target's protection against blast shock waves. Therefore, in this study, using a validated head model, a blast impact model under the fluid-solid coupling method was constructed to study the effect of blast wave on the model and to analyse its effect on intracranial pressure and skull deformation. In addition, the effect of the position of the polyurea lightweight protective coating on the bending deformation of the skull under the effect of the blast wave was also investigated. The results showed that the polyurea coating could reduce the skull deformation under the same surface density condition. However, spraying polyurea on the blast surface of the helmet's blast-facing surface does not effectively reduce skull deformation caused by blast waves.
Collapse
Affiliation(s)
- Weixiao Nie
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
| | - Yaoke Wen
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
| | - Fangdong Dong
- Science and Technology on Transient Impact Laboratory, No. 208 Research Institute of China Ordnance Industries, Beijing, China
| | - Bin Qin
- Science and Technology on Transient Impact Laboratory, No. 208 Research Institute of China Ordnance Industries, Beijing, China
| |
Collapse
|
2
|
Morena A, Peroni L, Scapin M. Numerical Investigation of the Blast-Induced Injuries Using an Open-Source Detailed Human Model. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2024; 40:e3879. [PMID: 39433406 PMCID: PMC11618233 DOI: 10.1002/cnm.3879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/10/2024] [Accepted: 09/28/2024] [Indexed: 10/23/2024]
Abstract
Blasts are a threat both in military and civil contexts due not only to explosive devices but also to gas leakages or other accidents. Numerical models could aid to plan response strategies in the short and long term. Nevertheless, due to modeling complexities, a standardized computational framework has not been established yet. In this challenging context, the present study assesses the prediction of blast-induced traumas by using the total human model for safety (THUMS) human model, which has never been attempted before to the authors knowledge. The pedestrian model is publicly available, hence the demonstration of its suitability to predict blast injuries could benefit the establishment of a common modeling framework. Therefore, the THUMS human model was exposed to different blast scenarios both in free field and partially confined spaces and the response of vital organs was investigated. Trauma patterns to internal organs of the THUMS were consistent with available experimental data and injury thresholds. In conclusion, THUMS open-source human model demonstrated its validity to reproduce primary blast-related injuries, addressing the development of standardization of numerical simulations of human response to explosions.
Collapse
|
3
|
Sutar S, Ganpule SG. In Silico Investigation of Biomechanical Response of a Human Brain Subjected to Primary Blast. J Biomech Eng 2024; 146:081007. [PMID: 38421339 DOI: 10.1115/1.4064968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 02/23/2024] [Indexed: 03/02/2024]
Abstract
The brain response to the explosion-induced primary blast waves is actively sought. Over the past decade, reasonable progress has been made in the fundamental understanding of blast traumatic brain injury (bTBI) using head surrogates and animal models. Yet, the current understanding of how blast waves interact with human is in nascent stages, primarily due to the lack of data in human. The biomechanical response in human is critically required to faithfully establish the connection to the aforementioned bTBI models. In this work, the biomechanical cascade of the brain under a primary blast has been elucidated using a detailed, full-body human model. The full-body model allowed us to holistically probe short- (<5 ms) and long-term (200 ms) brain responses. The full-body model has been extensively validated against impact loading in the past. We have further validated the head model against blast loading. We have also incorporated the structural anisotropy of the brain white matter. The blast wave transmission, and linear and rotational motion of the head were dominant pathways for the loading of the brain, and these loading paradigms generated distinct biomechanical fields within the brain. Blast transmission and linear motion of the head governed the volumetric response, whereas the rotational motion of the head governed the deviatoric response. Blast induced head rotation alone produced diffuse injury pattern in white matter fiber tracts. The biomechanical response under blast was comparable to the impact event. These insights will augment laboratory and clinical investigations of bTBI and help devise better blast mitigation strategies.
Collapse
Affiliation(s)
- Sunil Sutar
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - S G Ganpule
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
4
|
Samuel IBH, Pollin K, Tschida S, Prisco MK, Lu C, Powell A, Mefford J, Lee J, Dupriest T, Forsten R, Ortiz J, Barrett J, Reinhard M, Costanzo M. Linked Exposures Across Databases: an exposure common data elements aggregation framework to facilitate clinical exposure review. Front Public Health 2024; 12:1408222. [PMID: 39005996 PMCID: PMC11243485 DOI: 10.3389/fpubh.2024.1408222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/21/2024] [Indexed: 07/16/2024] Open
Abstract
Understanding the health outcomes of military exposures is of critical importance for Veterans, their health care team, and national leaders. Approximately 43% of Veterans report military exposure concerns to their VA providers. Understanding the causal influences of environmental exposures on health is a complex exposure science task and often requires interpreting multiple data sources; particularly when exposure pathways and multi-exposure interactions are ill-defined, as is the case for complex and emerging military service exposures. Thus, there is a need to standardize clinically meaningful exposure metrics from different data sources to guide clinicians and researchers with a consistent model for investigating and communicating exposure risk profiles. The Linked Exposures Across Databases (LEAD) framework provides a unifying model for characterizing exposures from different exposure databases with a focus on providing clinically relevant exposure metrics. Application of LEAD is demonstrated through comparison of different military exposure data sources: Veteran Military Occupational and Environmental Exposure Assessment Tool (VMOAT), Individual Longitudinal Exposure Record (ILER) database, and a military incident report database, the Explosive Ordnance Disposal Information Management System (EODIMS). This cohesive method for evaluating military exposures leverages established information with new sources of data and has the potential to influence how military exposure data is integrated into exposure health care and investigational models.
Collapse
Affiliation(s)
- Immanuel B H Samuel
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, United States
- The War Related Illness and Injury Study Center, Washington, DC, United States
- Complex Exposure Threats Center, Department of Veterans Affairs, Washington, DC, United States
| | - Kamila Pollin
- The War Related Illness and Injury Study Center, Washington, DC, United States
| | - Sherri Tschida
- The War Related Illness and Injury Study Center, Washington, DC, United States
- Complex Exposure Threats Center, Department of Veterans Affairs, Washington, DC, United States
| | | | - Calvin Lu
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, United States
- The War Related Illness and Injury Study Center, Washington, DC, United States
- Complex Exposure Threats Center, Department of Veterans Affairs, Washington, DC, United States
| | - Alan Powell
- Explosive Ordnance Disposal Information Management System (EODIMS), Air Force Civil Engineer Center, Functional Management Office (FMO) (AFCEC/CBS), Joint Base San Antonio, San Antonio, TX, United States
| | - Jessica Mefford
- Explosive Ordnance Disposal Information Management System (EODIMS), Air Force Civil Engineer Center, Functional Management Office (FMO) (AFCEC/CBS), Joint Base San Antonio, San Antonio, TX, United States
| | - Jamie Lee
- Explosive Ordnance Disposal Information Management System (EODIMS), Air Force Civil Engineer Center, Functional Management Office (FMO) (AFCEC/CBS), Joint Base San Antonio, San Antonio, TX, United States
| | - Teresa Dupriest
- Explosive Ordnance Disposal Information Management System (EODIMS), Air Force Civil Engineer Center, Functional Management Office (FMO) (AFCEC/CBS), Joint Base San Antonio, San Antonio, TX, United States
| | - Robert Forsten
- The War Related Illness and Injury Study Center, Washington, DC, United States
- Complex Exposure Threats Center, Department of Veterans Affairs, Washington, DC, United States
- Department of Psychiatry, Uniformed Services University, Bethesda, MD, United States
| | - Jose Ortiz
- The War Related Illness and Injury Study Center, Washington, DC, United States
- Complex Exposure Threats Center, Department of Veterans Affairs, Washington, DC, United States
| | - John Barrett
- The War Related Illness and Injury Study Center, Washington, DC, United States
- Complex Exposure Threats Center, Department of Veterans Affairs, Washington, DC, United States
- Department of Medicine, Uniformed Services University, Bethesda, MD, United States
| | - Matthew Reinhard
- The War Related Illness and Injury Study Center, Washington, DC, United States
- Complex Exposure Threats Center, Department of Veterans Affairs, Washington, DC, United States
- Georgetown University Medical School, Washington, DC, United States
| | - Michelle Costanzo
- The War Related Illness and Injury Study Center, Washington, DC, United States
- Complex Exposure Threats Center, Department of Veterans Affairs, Washington, DC, United States
- Department of Medicine, Uniformed Services University, Bethesda, MD, United States
| |
Collapse
|
5
|
Sachdeva T, Ganpule SG. Twenty Years of Blast-Induced Neurotrauma: Current State of Knowledge. Neurotrauma Rep 2024; 5:243-253. [PMID: 38515548 PMCID: PMC10956535 DOI: 10.1089/neur.2024.0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024] Open
Abstract
Blast-induced neurotrauma (BINT) is an important injury paradigm of neurotrauma research. This short communication summarizes the current knowledge of BINT. We divide the BINT research into several broad categories-blast wave generation in laboratory, biomechanics, pathology, behavioral outcomes, repetitive blast in animal models, and clinical and neuroimaging investigations in humans. Publications from 2000 to 2023 in each subdomain were considered. The analysis of the literature has brought out salient aspects. Primary blast waves can be simulated reasonably in a laboratory using carefully designed shock tubes. Various biomechanics-based theories of BINT have been proposed; each of these theories may contribute to BINT by generating a unique biomechanical signature. The injury thresholds for BINT are in the nascent stages. Thresholds for rodents are reasonably established, but such thresholds (guided by primary blast data) are unavailable in humans. Single blast exposure animal studies suggest dose-dependent neuronal pathologies predominantly initiated by blood-brain barrier permeability and oxidative stress. The pathologies were typically reversible, with dose-dependent recovery times. Behavioral changes in animals include anxiety, auditory and recognition memory deficits, and fear conditioning. The repetitive blast exposure manifests similar pathologies in animals, however, at lower blast overpressures. White matter irregularities and cortical volume and thickness alterations have been observed in neuroimaging investigations of military personnel exposed to blast. Behavioral changes in human cohorts include sleep disorders, poor motor skills, cognitive dysfunction, depression, and anxiety. Overall, this article provides a concise synopsis of current understanding, consensus, controversies, and potential future directions.
Collapse
Affiliation(s)
- Tarun Sachdeva
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Shailesh G. Ganpule
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee, India
- Department of Design, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
6
|
Kim SY, Yeh PH, Ollinger JM, Morris HD, Hood MN, Ho VB, Choi KH. Military-related mild traumatic brain injury: clinical characteristics, advanced neuroimaging, and molecular mechanisms. Transl Psychiatry 2023; 13:289. [PMID: 37652994 PMCID: PMC10471788 DOI: 10.1038/s41398-023-02569-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 09/02/2023] Open
Abstract
Mild traumatic brain injury (mTBI) is a significant health burden among military service members. Although mTBI was once considered relatively benign compared to more severe TBIs, a growing body of evidence has demonstrated the devastating neurological consequences of mTBI, including chronic post-concussion symptoms and deficits in cognition, memory, sleep, vision, and hearing. The discovery of reliable biomarkers for mTBI has been challenging due to under-reporting and heterogeneity of military-related mTBI, unpredictability of pathological changes, and delay of post-injury clinical evaluations. Moreover, compared to more severe TBI, mTBI is especially difficult to diagnose due to the lack of overt clinical neuroimaging findings. Yet, advanced neuroimaging techniques using magnetic resonance imaging (MRI) hold promise in detecting microstructural aberrations following mTBI. Using different pulse sequences, MRI enables the evaluation of different tissue characteristics without risks associated with ionizing radiation inherent to other imaging modalities, such as X-ray-based studies or computerized tomography (CT). Accordingly, considering the high morbidity of mTBI in military populations, debilitating post-injury symptoms, and lack of robust neuroimaging biomarkers, this review (1) summarizes the nature and mechanisms of mTBI in military settings, (2) describes clinical characteristics of military-related mTBI and associated comorbidities, such as post-traumatic stress disorder (PTSD), (3) highlights advanced neuroimaging techniques used to study mTBI and the molecular mechanisms that can be inferred, and (4) discusses emerging frontiers in advanced neuroimaging for mTBI. We encourage multi-modal approaches combining neuropsychiatric, blood-based, and genetic data as well as the discovery and employment of new imaging techniques with big data analytics that enable accurate detection of post-injury pathologic aberrations related to tissue microstructure, glymphatic function, and neurodegeneration. Ultimately, this review provides a foundational overview of military-related mTBI and advanced neuroimaging techniques that merit further study for mTBI diagnosis, prognosis, and treatment monitoring.
Collapse
Affiliation(s)
- Sharon Y Kim
- School of Medicine, Uniformed Services University, Bethesda, MD, USA
- Program in Neuroscience, Uniformed Services University, Bethesda, MD, USA
| | - Ping-Hong Yeh
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - John M Ollinger
- Program in Neuroscience, Uniformed Services University, Bethesda, MD, USA
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Herman D Morris
- Department of Radiology and Radiological Sciences, Uniformed Services University, Bethesda, MD, USA
- Department of Radiology, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Maureen N Hood
- Department of Radiology and Radiological Sciences, Uniformed Services University, Bethesda, MD, USA
- Department of Radiology, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Vincent B Ho
- Department of Radiology and Radiological Sciences, Uniformed Services University, Bethesda, MD, USA
- Department of Radiology, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Kwang H Choi
- Program in Neuroscience, Uniformed Services University, Bethesda, MD, USA.
- Center for the Study of Traumatic Stress, Uniformed Services University, Bethesda, MD, USA.
- Department of Psychiatry, Uniformed Services University, Bethesda, MD, USA.
| |
Collapse
|
7
|
Menghani RR, Das A, Kraft RH. A sensor-enabled cloud-based computing platform for computational brain biomechanics. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 233:107470. [PMID: 36958108 DOI: 10.1016/j.cmpb.2023.107470] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/24/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND AND OBJECTIVES Driven by the risk of repetitive head trauma, sensors have been integrated into mouthguards to measure head impacts in contact sports and military activities. These wearable devices, referred to as "instrumented" or "smart" mouthguards are being actively developed by various research groups and organizations. These instrumented mouthguards provide an opportunity to further study and understand the brain biomechanics due to impact. In this study, we present a brain modeling service that can use information from these sensors to predict brain injury metrics in an automated fashion. METHODS We have built a brain modeling platform using several of Amazon's Web Services (AWS) to enable cloud computing and scalability. We use a custom-built cloud-based finite element modeling code to compute the physics-based nonlinear response of the intracranial brain tissue and provide a frontend web application and an application programming interface for groups working on head impact sensor technology to include simulated injury predictions into their research pipeline. RESULTS The platform results have been validated against experimental data available in literature for brain-skull relative displacements, brain strains and intracranial pressure. The parallel processing capability of the platform has also been tested and verified. We also studied the accuracy of the custom head surfaces generated by Avatar 3D. CONCLUSION We present a validated cloud-based computational brain modeling platform that uses sensor data as input for numerical brain models and outputs a quantitative description of brain tissue strains and injury metrics. The platform is expected to generate transparent, reproducible, and traceable brain computing results.
Collapse
Affiliation(s)
- Ritika R Menghani
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, 16802, USA
| | - Anil Das
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, 16802, USA
| | - Reuben H Kraft
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, 16802, USA; Department of Biomedical Engineering, The Pennsylvania State University, University Park, 16802, USA; Institute for Computational and Data Sciences, The Pennsylvania State University, University Park, 16802, USA.
| |
Collapse
|
8
|
Terpsma R, Carlsen RW, Szalkowski R, Malave S, Fawzi AL, Franck C, Hovey C. Head Impact Modeling to Support a Rotational Combat Helmet Drop Test. Mil Med 2023; 188:e745-e752. [PMID: 34508268 DOI: 10.1093/milmed/usab374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/23/2021] [Accepted: 08/30/2021] [Indexed: 11/12/2022] Open
Abstract
INTRODUCTION The Advanced Combat Helmet (ACH) military specification (mil-spec) provides blunt impact acceleration criteria that must be met before use by the U.S. warfighter. The specification, which requires a helmeted magnesium Department of Transportation (DOT) headform to be dropped onto a steel hemispherical target, results in a translational headform impact response. Relative to translations, rotations of the head generate higher brain tissue strains. Excessive strain has been implicated as a mechanical stimulus leading to traumatic brain injury (TBI). We hypothesized that the linear constrained drop test method of the ACH specification underreports the potential for TBI. MATERIALS AND METHODS To establish a baseline of translational acceleration time histories, we conducted linear constrained drop tests based on the ACH specification and then performed simulations of the same to verify agreement between experiment and simulation. We then produced a high-fidelity human head digital twin and verified that biological tissue responses matched experimental results. Next, we altered the ACH experimental configuration to use a helmeted Hybrid III headform, a freefall cradle, and an inclined anvil target. This new, modified configuration allowed both a translational and a rotational headform response. We applied this experimental rotation response to the skull of our human digital twin and compared brain deformation relative to the translational baseline. RESULTS The modified configuration produced brain strains that were 4.3 times the brain strains from the linear constrained configuration. CONCLUSIONS We provide a scientific basis to motivate revision of the ACH mil-spec to include a rotational component, which would enhance the test's relevance to TBI arising from severe head impacts.
Collapse
Affiliation(s)
- Ryan Terpsma
- Terminal Ballistics Technology Department 5421, Sandia National Laboratories, Albuquerque, NM 87185, USA
| | - Rika Wright Carlsen
- Department of Engineering, Robert Morris University, Moon Township, PA 15108, USA
| | | | | | - Alice Lux Fawzi
- School of Engineering, Brown University, Providence, RI 02912, USA
| | - Christian Franck
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Chad Hovey
- Terminal Ballistics Technology Department 5421, Sandia National Laboratories, Albuquerque, NM 87185, USA
| |
Collapse
|
9
|
Kundu S, Singh S. What Happens in TBI? A Wide Talk on Animal Models and Future Perspective. Curr Neuropharmacol 2023; 21:1139-1164. [PMID: 35794772 PMCID: PMC10286592 DOI: 10.2174/1570159x20666220706094248] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/05/2022] [Accepted: 05/11/2022] [Indexed: 11/22/2022] Open
Abstract
Traumatic brain injury (TBI) is a global healthcare concern and a leading cause of death. The most common causes of TBI include road accidents, sports injuries, violence in warzones, and falls. TBI induces neuronal cell death independent of age, gender, and genetic background. TBI survivor patients often experience long-term behavioral changes like cognitive and emotional changes. TBI affects social activity, reducing the quality and duration of life. Over the last 40 years, several rodent models have been developed to mimic different clinical outcomes of human TBI for a better understanding of pathophysiology and to check the efficacy of drugs used for TBI. However, promising neuroprotective approaches that have been used preclinically have been found to be less beneficial in clinical trials. So, there is an urgent need to find a suitable animal model for establishing a new therapeutic intervention useful for TBI. In this review, we have demonstrated the etiology of TBI and post- TBI social life alteration, and also discussed various preclinical TBI models of rodents, zebrafish, and drosophila.
Collapse
Affiliation(s)
- Satyabrata Kundu
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Shamsher Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
10
|
Hasan F, Mahmud KAHA, Khan MI, Adnan A. Viscoelastic damage evaluation of the axon. Front Bioeng Biotechnol 2022; 10:904818. [PMID: 36277388 PMCID: PMC9583024 DOI: 10.3389/fbioe.2022.904818] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
In this manuscript, we have studied the microstructure of the axonal cytoskeleton and adopted a bottom-up approach to evaluate the mechanical responses of axons. The cytoskeleton of the axon includes the microtubules (MT), Tau proteins (Tau), neurofilaments (NF), and microfilaments (MF). Although most of the rigidity of the axons is due to the MT, the viscoelastic response of axons comes from the Tau. Early studies have shown that NF and MF do not provide significant elasticity to the overall response of axons. Therefore, the most critical aspect of the mechanical response of axons is the microstructural topology of how MT and Tau are connected and construct the cross-linked network. Using a scanning electron microscope (SEM), the cross-sectional view of the axons revealed that the MTs are organized in a hexagonal array and cross-linked by Tau. Therefore, we have developed a hexagonal Representative Volume Element (RVE) of the axonal microstructure with MT and Tau as fibers. The matrix of the RVE is modeled by considering a combined effect of NF and MF. A parametric study is done by varying fiber geometric and mechanical properties. The Young’s modulus and spacing of MT are varied between 1.5 and 1.9 GPa and 20–38 nm, respectively. Tau is modeled as a 3-parameter General Maxwell viscoelastic material. The failure strains for MT and Tau are taken to be 50 and 40%, respectively. A total of 4 RVEs are prepared for finite element analysis, and six loading cases are inspected to quantify the three-dimensional (3D) viscoelastic relaxation response. The volume-averaged stress and strain are then used to fit the relaxation Prony series. Next, we imposed varying strain rates (between 10/sec to 50/sec) on the RVE and analyzed the axonal failure process. We have observed that the 40% failure strain of Tau is achieved in all strain rates before the MT reaches its failure strain of 50%. The corresponding axonal failure strain and stress vary between 6 and 11% and 5–19.8 MPa, respectively. This study can be used to model macroscale axonal aggregate typical of the white matter region of the brain tissue.
Collapse
Affiliation(s)
- Fuad Hasan
- Department of Mechanical and Aerospace Engineering, The University of Texas at Arlington, Arlington, TX, United States
| | - KAH Al Mahmud
- Department of Mechanical and Aerospace Engineering, The University of Texas at Arlington, Arlington, TX, United States
| | - Md. Ishak Khan
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ashfaq Adnan
- Department of Mechanical and Aerospace Engineering, The University of Texas at Arlington, Arlington, TX, United States
- *Correspondence: Ashfaq Adnan,
| |
Collapse
|
11
|
Rubio JE, Subramaniam DR, Unnikrishnan G, Sajja VSSS, Van Albert S, Rossetti F, Frock A, Nguyen G, Sundaramurthy A, Long JB, Reifman J. A biomechanical-based approach to scale blast-induced molecular changes in the brain. Sci Rep 2022; 12:14605. [PMID: 36028539 PMCID: PMC9418170 DOI: 10.1038/s41598-022-17967-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/03/2022] [Indexed: 11/09/2022] Open
Abstract
Animal studies provide valuable insights on how the interaction of blast waves with the head may injure the brain. However, there is no acceptable methodology to scale the findings from animals to humans. Here, we propose an experimental/computational approach to project observed blast-induced molecular changes in the rat brain to the human brain. Using a shock tube, we exposed rats to a range of blast overpressures (BOPs) and used a high-fidelity computational model of a rat head to correlate predicted biomechanical responses with measured changes in glial fibrillary acidic protein (GFAP) in rat brain tissues. Our analyses revealed correlates between model-predicted strain rate and measured GFAP changes in three brain regions. Using these correlates and a high-fidelity computational model of a human head, we determined the equivalent BOPs in rats and in humans that induced similar strain rates across the two species. We used the equivalent BOPs to project the measured GFAP changes in the rat brain to the human. Our results suggest that, relative to the rat, the human requires an exposure to a blast wave of a higher magnitude to elicit similar brain-tissue responses. Our proposed methodology could assist in the development of safety guidelines for blast exposure.
Collapse
Affiliation(s)
- Jose E Rubio
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, ATTN: FCMR-TT, 504 Scott Street, Fort Detrick, MD, 21702-5012, USA.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720-A Rockledge Drive, Bethesda, MD, 20817, USA
| | - Dhananjay Radhakrishnan Subramaniam
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, ATTN: FCMR-TT, 504 Scott Street, Fort Detrick, MD, 21702-5012, USA.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720-A Rockledge Drive, Bethesda, MD, 20817, USA
| | - Ginu Unnikrishnan
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, ATTN: FCMR-TT, 504 Scott Street, Fort Detrick, MD, 21702-5012, USA.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720-A Rockledge Drive, Bethesda, MD, 20817, USA
| | - Venkata Siva Sai Sujith Sajja
- Blast Induced Neurotrauma Branch, Center for Military Psychiatry and Neurosciences, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA
| | - Stephen Van Albert
- Blast Induced Neurotrauma Branch, Center for Military Psychiatry and Neurosciences, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA
| | - Franco Rossetti
- Blast Induced Neurotrauma Branch, Center for Military Psychiatry and Neurosciences, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA
| | - Andrew Frock
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, ATTN: FCMR-TT, 504 Scott Street, Fort Detrick, MD, 21702-5012, USA.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720-A Rockledge Drive, Bethesda, MD, 20817, USA
| | - Giang Nguyen
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, ATTN: FCMR-TT, 504 Scott Street, Fort Detrick, MD, 21702-5012, USA.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720-A Rockledge Drive, Bethesda, MD, 20817, USA
| | - Aravind Sundaramurthy
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, ATTN: FCMR-TT, 504 Scott Street, Fort Detrick, MD, 21702-5012, USA.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720-A Rockledge Drive, Bethesda, MD, 20817, USA
| | - Joseph B Long
- Blast Induced Neurotrauma Branch, Center for Military Psychiatry and Neurosciences, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA
| | - Jaques Reifman
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, ATTN: FCMR-TT, 504 Scott Street, Fort Detrick, MD, 21702-5012, USA.
| |
Collapse
|
12
|
Detection of Chronic Blast-Related Mild Traumatic Brain Injury with Diffusion Tensor Imaging and Support Vector Machines. Diagnostics (Basel) 2022; 12:diagnostics12040987. [PMID: 35454035 PMCID: PMC9030428 DOI: 10.3390/diagnostics12040987] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 01/13/2023] Open
Abstract
Blast-related mild traumatic brain injury (bmTBI) often leads to long-term sequalae, but diagnostic approaches are lacking due to insufficient knowledge about the predominant pathophysiology. This study aimed to build a diagnostic model for future verification by applying machine-learning based support vector machine (SVM) modeling to diffusion tensor imaging (DTI) datasets to elucidate white-matter features that distinguish bmTBI from healthy controls (HC). Twenty subacute/chronic bmTBI and 19 HC combat-deployed personnel underwent DTI. Clinically relevant features for modeling were selected using tract-based analyses that identified group differences throughout white-matter tracts in five DTI metrics to elucidate the pathogenesis of injury. These features were then analyzed using SVM modeling with cross validation. Tract-based analyses revealed abnormally decreased radial diffusivity (RD), increased fractional anisotropy (FA) and axial/radial diffusivity ratio (AD/RD) in the bmTBI group, mostly in anterior tracts (29 features). SVM models showed that FA of the anterior/superior corona radiata and AD/RD of the corpus callosum and anterior limbs of the internal capsule (5 features) best distinguished bmTBI from HCs with 89% accuracy. This is the first application of SVM to identify prominent features of bmTBI solely based on DTI metrics in well-defined tracts, which if successfully validated could promote targeted treatment interventions.
Collapse
|
13
|
Liu Y, Lu Y, Shao Y, Wu Y, He J, Wu C. Mechanism of the traumatic brain injury induced by blast wave using the energy assessment method. Med Eng Phys 2022; 101:103767. [DOI: 10.1016/j.medengphy.2022.103767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/20/2022] [Accepted: 02/06/2022] [Indexed: 11/26/2022]
|
14
|
Muelbl MJ, Glaeser BL, Shah AS, Chiariello RA, Nawarawong NN, Stemper BD, Budde MD, Olsen CM. Repeated blast mild traumatic brain injury and oxycodone self-administration produce interactive effects on neuroimaging outcomes. Addict Biol 2022; 27:e13134. [PMID: 35229952 PMCID: PMC8896287 DOI: 10.1111/adb.13134] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 10/19/2021] [Accepted: 12/10/2021] [Indexed: 01/11/2023]
Abstract
Traumatic brain injury (TBI) and drug addiction are common comorbidities, but it is unknown if the neurological sequelae of TBI contribute to this relationship. We have previously reported elevated oxycodone seeking after drug self-administration in rats that received repeated blast TBI (rbTBI). TBI and exposure to drugs of abuse can each change structural and functional neuroimaging outcomes, but it is unknown if there are interactive effects of injury and drug exposure. To determine the effects of TBI and oxycodone exposure, we subjected rats to rbTBI and oxycodone self-administration and measured drug seeking and several neuroimaging measures. We found interactive effects of rbTBI and oxycodone on fractional anisotropy (FA) in the nucleus accumbens (NAc) and that FA in the medial prefrontal cortex (mPFC) was correlated with drug seeking. We also found an interactive effect of injury and drug on widespread functional connectivity and regional homogeneity of the blood oxygen level dependent (BOLD) response, and that intra-hemispheric functional connectivity in the infralimbic medial prefrontal cortex positively correlated with drug seeking. In conclusion, rbTBI and oxycodone self-administration had interactive effects on structural and functional magnetic resonance imaging (MRI) measures, and correlational effects were found between some of these measures and drug seeking. These data support the hypothesis that TBI and opioid exposure produce neuroadaptations that contribute to addiction liability.
Collapse
Affiliation(s)
- Matthew J. Muelbl
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA;,Neuroscience Research Center, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
| | - Breanna L. Glaeser
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA;,Neuroscience Research Center, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
| | - Alok S. Shah
- Department of Neurosurgery, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA;,Clement J. Zablocki Veterans Affairs Medical Center, 5000 W National Ave, Milwaukee, WI 53295, USA
| | - Rachel A. Chiariello
- Department of Neurosurgery, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA;,Clement J. Zablocki Veterans Affairs Medical Center, 5000 W National Ave, Milwaukee, WI 53295, USA
| | - Natalie N. Nawarawong
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA;,Neuroscience Research Center, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA;,Deparment of Pharmacology & Toxicology, University of Texas at Austin
| | - Brian D. Stemper
- Joint Department of Biomedical Engineering, Marquette University, 1515 W. Wisconsin Ave, Milwaukee WI, 53233, USA and Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA;,Neuroscience Research Center, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA;,Department of Neurosurgery, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA;,Clement J. Zablocki Veterans Affairs Medical Center, 5000 W National Ave, Milwaukee, WI 53295, USA
| | - Matthew D. Budde
- Neuroscience Research Center, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA;,Department of Neurosurgery, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA;,Clement J. Zablocki Veterans Affairs Medical Center, 5000 W National Ave, Milwaukee, WI 53295, USA
| | - Christopher M. Olsen
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA;,Neuroscience Research Center, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA;,Department of Neurosurgery, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA;,Corresponding author: Christopher M. Olsen, PhD, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA, Phone: (414) 955-7629,
| |
Collapse
|
15
|
Subramaniam DR, Unnikrishnan G, Sundaramurthy A, Rubio JE, Kote VB, Reifman J. Cerebral Vasculature Influences Blast-Induced Biomechanical Responses of Human Brain Tissue. Front Bioeng Biotechnol 2021; 9:744808. [PMID: 34805106 PMCID: PMC8599150 DOI: 10.3389/fbioe.2021.744808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
Multiple finite-element (FE) models to predict the biomechanical responses in the human brain resulting from the interaction with blast waves have established the importance of including the brain-surface convolutions, the major cerebral veins, and using non-linear brain-tissue properties to improve model accuracy. We hypothesize that inclusion of a more detailed network of cerebral veins and arteries can further enhance the model-predicted biomechanical responses and help identify correlates of blast-induced brain injury. To more comprehensively capture the biomechanical responses of human brain tissues to blast-wave exposure, we coupled a three-dimensional (3-D) detailed-vasculature human-head FE model, previously validated for blunt impact, with a 3-D shock-tube FE model. Using the coupled model, we computed the biomechanical responses of a human head facing an incoming blast wave for blast overpressures (BOPs) equivalent to 68, 83, and 104 kPa. We validated our FE model, which includes the detailed network of cerebral veins and arteries, the gyri and the sulci, and hyper-viscoelastic brain-tissue properties, by comparing the model-predicted intracranial pressure (ICP) values with previously collected data from shock-tube experiments performed on cadaver heads. In addition, to quantify the influence of including a more comprehensive network of brain vessels, we compared the biomechanical responses of our detailed-vasculature model with those of a reduced-vasculature model and a no-vasculature model for the same blast-loading conditions. For the three BOPs, the predicted ICP values matched well with the experimental results in the frontal lobe, with peak-pressure differences of 4-11% and phase-shift differences of 9-13%. As expected, incorporating the detailed cerebral vasculature did not influence the ICP, however, it redistributed the peak brain-tissue strains by as much as 30% and yielded peak strain differences of up to 7%. When compared to existing reduced-vasculature FE models that only include the major cerebral veins, our high-fidelity model redistributed the brain-tissue strains in most of the brain, highlighting the importance of including a detailed cerebral vessel network in human-head FE models to more comprehensively account for the biomechanical responses induced by blast exposure.
Collapse
Affiliation(s)
- Dhananjay Radhakrishnan Subramaniam
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Ginu Unnikrishnan
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Aravind Sundaramurthy
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Jose E. Rubio
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Vivek Bhaskar Kote
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Jaques Reifman
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, MD, United States
| |
Collapse
|
16
|
Sundar S, Ponnalagu A. Biomechanical Analysis of Head Subjected to Blast Waves and the Role of Combat Protective Headgear Under Blast Loading: A Review. J Biomech Eng 2021; 143:100801. [PMID: 33954580 DOI: 10.1115/1.4051047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Indexed: 01/10/2023]
Abstract
Blast-induced traumatic brain injury (bTBI) is a rising health concern of soldiers deployed in modern-day military conflicts. For bTBI, blast wave loading is a cause, and damage incurred to brain tissue is the effect. There are several proposed mechanisms for the bTBI, such as direct cranial entry, skull flexure, thoracic compression, blast-induced acceleration, and cavitation that are not mutually exclusive. So the cause-effect relationship is not straightforward. The efficiency of protective headgears against blast waves is relatively unknown as compared with other threats. Proper knowledge about standard problem space, underlying mechanisms, blast reconstruction techniques, and biomechanical models are essential for protective headgear design and evaluation. Various researchers from cross disciplines analyze bTBI from different perspectives. From the biomedical perspective, the physiological response, neuropathology, injury scales, and even the molecular level and cellular level changes incurred during injury are essential. From a combat protective gear designer perspective, the spatial and temporal variation of mechanical correlates of brain injury such as surface overpressure, acceleration, tissue-level stresses, and strains are essential. This paper outlines the key inferences from bTBI studies that are essential in the protective headgear design context.
Collapse
Affiliation(s)
- Shyam Sundar
- Department of Civil Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Alagappan Ponnalagu
- Department of Civil Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
17
|
Khan MI, Gilpin K, Hasan F, Mahmud KAHA, Adnan A. Effect of Strain Rate on Single Tau, Dimerized Tau and Tau-Microtubule Interface: A Molecular Dynamics Simulation Study. Biomolecules 2021; 11:1308. [PMID: 34572521 PMCID: PMC8472149 DOI: 10.3390/biom11091308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 01/24/2023] Open
Abstract
Microtubule-associated protein (MAP) tau is a cross-linking molecule that provides structural stability to axonal microtubules (MT). It is considered a potential biomarker for Alzheimer's disease (AD), dementia, and other neurological disorders. It is also a signature protein for Traumatic Brain Injury (TBI) assessment. In the case of TBI, extreme dynamic mechanical energies can be felt by the axonal cytoskeletal members. As such, fundamental understandings of the responses of single tau protein, polymerized tau protein, and tau-microtubule interfaces under high-rate mechanical forces are important. This study attempts to determine the high-strain rate mechanical behavior of single tau, dimerized tau, and tau-MT interface using molecular dynamics (MD) simulation. The results show that a single tau protein is a highly stretchable soft polymer. During deformation, first, it significantly unfolds against van der Waals and electrostatic bonds. Then it stretches against strong covalent bonds. We found that tau acts as a viscoelastic material, and its stiffness increases with the strain rate. The unfolding stiffness can be ~50-500 MPa, while pure stretching stiffness can be >2 GPa. The dimerized tau model exhibits similar behavior under similar strain rates, and tau sliding from another tau is not observed until it is stretched to >7 times of original length, depending on the strain rate. The tau-MT interface simulations show that very high strain and strain rates are required to separate tau from MT suggesting Tau-MT bonding is stronger than MT subunit bonding between themselves. The dimerized tau-MT interface simulations suggest that tau-tau bonding is stronger than tau-MT bonding. In summary, this study focuses on the structural response of individual cytoskeletal components, namely microtubule (MT) and tau protein. Furthermore, we consider not only the individual response of a component, but also their interaction with each other (such as tau with tau or tau with MT). This study will eventually pave the way to build a bottom-up multiscale brain model and analyze TBI more comprehensively.
Collapse
Affiliation(s)
- Md Ishak Khan
- Department of Mechanical and Aerospace Engineering, University of Texas at Arlington, Arlington, TX 76019, USA; (M.I.K.); (F.H.); (K.A.H.A.M.)
| | - Kathleen Gilpin
- Academic Partnership and Engagement Experiment (APEX), Wright State Applied Research Corporation, Beavercreek, OH 45431, USA;
| | - Fuad Hasan
- Department of Mechanical and Aerospace Engineering, University of Texas at Arlington, Arlington, TX 76019, USA; (M.I.K.); (F.H.); (K.A.H.A.M.)
| | - Khandakar Abu Hasan Al Mahmud
- Department of Mechanical and Aerospace Engineering, University of Texas at Arlington, Arlington, TX 76019, USA; (M.I.K.); (F.H.); (K.A.H.A.M.)
| | - Ashfaq Adnan
- Department of Mechanical and Aerospace Engineering, University of Texas at Arlington, Arlington, TX 76019, USA; (M.I.K.); (F.H.); (K.A.H.A.M.)
| |
Collapse
|
18
|
Rubio JE, Unnikrishnan G, Sajja VSSS, Van Albert S, Rossetti F, Skotak M, Alay E, Sundaramurthy A, Subramaniam DR, Long JB, Chandra N, Reifman J. Investigation of the direct and indirect mechanisms of primary blast insult to the brain. Sci Rep 2021; 11:16040. [PMID: 34362935 PMCID: PMC8346555 DOI: 10.1038/s41598-021-95003-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/12/2021] [Indexed: 12/13/2022] Open
Abstract
The interaction of explosion-induced blast waves with the head (i.e., a direct mechanism) or with the torso (i.e., an indirect mechanism) presumably causes traumatic brain injury. However, the understanding of the potential role of each mechanism in causing this injury is still limited. To address this knowledge gap, we characterized the changes in the brain tissue of rats resulting from the direct and indirect mechanisms at 24 h following blast exposure. To this end, we conducted separate blast-wave exposures on rats in a shock tube at an incident overpressure of 130 kPa, while using whole-body, head-only, and torso-only configurations to delineate each mechanism. Then, we performed histopathological (silver staining) and immunohistochemical (GFAP, Iba-1, and NeuN staining) analyses to evaluate brain-tissue changes resulting from each mechanism. Compared to controls, our results showed no significant changes in torso-only-exposed rats. In contrast, we observed significant changes in whole-body-exposed (GFAP and silver staining) and head-only-exposed rats (silver staining). In addition, our analyses showed that a head-only exposure causes changes similar to those observed for a whole-body exposure, provided the exposure conditions are similar. In conclusion, our results suggest that the direct mechanism is the major contributor to blast-induced changes in brain tissues.
Collapse
Affiliation(s)
- Jose E Rubio
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, ATTN: FCMR-TT, 504 Scott Street, Fort Detrick, MD, 21702-5012, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Bethesda, MD, 20817, USA
| | - Ginu Unnikrishnan
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, ATTN: FCMR-TT, 504 Scott Street, Fort Detrick, MD, 21702-5012, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Bethesda, MD, 20817, USA
| | - Venkata Siva Sai Sujith Sajja
- Blast Induced Neurotrauma Division, Center for Military Psychiatry and Neurosciences, Walter Reed Army Institute of Research, 503 Robert Grant Drive, Silver Spring, MD, 20910, USA
| | - Stephen Van Albert
- Blast Induced Neurotrauma Division, Center for Military Psychiatry and Neurosciences, Walter Reed Army Institute of Research, 503 Robert Grant Drive, Silver Spring, MD, 20910, USA
| | - Franco Rossetti
- Blast Induced Neurotrauma Division, Center for Military Psychiatry and Neurosciences, Walter Reed Army Institute of Research, 503 Robert Grant Drive, Silver Spring, MD, 20910, USA
| | - Maciej Skotak
- Blast Induced Neurotrauma Division, Center for Military Psychiatry and Neurosciences, Walter Reed Army Institute of Research, 503 Robert Grant Drive, Silver Spring, MD, 20910, USA
- Department of Biomedical Engineering, Center for Injury Biomechanics, Materials, and Medicine, New Jersey Institute of Technology, 111 Lock Street, Newark, NJ, 07103, USA
| | - Eren Alay
- Department of Biomedical Engineering, Center for Injury Biomechanics, Materials, and Medicine, New Jersey Institute of Technology, 111 Lock Street, Newark, NJ, 07103, USA
| | - Aravind Sundaramurthy
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, ATTN: FCMR-TT, 504 Scott Street, Fort Detrick, MD, 21702-5012, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Bethesda, MD, 20817, USA
| | - Dhananjay Radhakrishnan Subramaniam
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, ATTN: FCMR-TT, 504 Scott Street, Fort Detrick, MD, 21702-5012, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Bethesda, MD, 20817, USA
| | - Joseph B Long
- Blast Induced Neurotrauma Division, Center for Military Psychiatry and Neurosciences, Walter Reed Army Institute of Research, 503 Robert Grant Drive, Silver Spring, MD, 20910, USA
| | - Namas Chandra
- Department of Biomedical Engineering, Center for Injury Biomechanics, Materials, and Medicine, New Jersey Institute of Technology, 111 Lock Street, Newark, NJ, 07103, USA
| | - Jaques Reifman
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, ATTN: FCMR-TT, 504 Scott Street, Fort Detrick, MD, 21702-5012, USA.
| |
Collapse
|
19
|
Taddei L, Bracq A, Delille R, Bourel B, Marechal C, Lauro F, Roth S. Effect of blast loading on the risk of rib fractures: a preliminary 3D numerical investigation. Forensic Sci Int 2021; 326:110930. [PMID: 34332264 DOI: 10.1016/j.forsciint.2021.110930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/23/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022]
Abstract
Blast is a complex phenomenon which needs to be understood, especially in a military framework, where this kind of loading can have severe consequences on the human body. Indeed, the literature lists a number of studies which try to investigate the dangerousness of such a phenomenon, both at experimental and numerical level, and the injuries that could occur when the fighters or police officers are stroke by blast wave. When focusing on primary blast effect, this paper analyses the effect of this loading on the occurrence of rib fracture, using previously developed injury risk curves.
Collapse
Affiliation(s)
- Lorenzo Taddei
- Laboratoire Interdisciplinaire Carnot de Bourgogne, site UTBM, UMR CNRS 6303/Univ. Bourgogne Franche-Comte (UBFC), Belfort, France
| | - Anthony Bracq
- Laboratory LAMIH UMR 8201 CNRS, Univ. Polytechnique Hauts-de-France, 59313 Valenciennes, France
| | - Remi Delille
- Laboratory LAMIH UMR 8201 CNRS, Univ. Polytechnique Hauts-de-France, 59313 Valenciennes, France
| | - Benjamin Bourel
- Laboratory LAMIH UMR 8201 CNRS, Univ. Polytechnique Hauts-de-France, 59313 Valenciennes, France
| | - Christophe Marechal
- Laboratory LAMIH UMR 8201 CNRS, Univ. Polytechnique Hauts-de-France, 59313 Valenciennes, France
| | - Franck Lauro
- Laboratory LAMIH UMR 8201 CNRS, Univ. Polytechnique Hauts-de-France, 59313 Valenciennes, France
| | - Sebastien Roth
- Laboratoire Interdisciplinaire Carnot de Bourgogne, site UTBM, UMR CNRS 6303/Univ. Bourgogne Franche-Comte (UBFC), Belfort, France.
| |
Collapse
|
20
|
Miller ST, Cooper CF, Elsbernd P, Kerwin J, Mejia-Alvarez R, Willis AM. Localizing Clinical Patterns of Blast Traumatic Brain Injury Through Computational Modeling and Simulation. Front Neurol 2021; 12:547655. [PMID: 34093380 PMCID: PMC8173077 DOI: 10.3389/fneur.2021.547655] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 03/10/2021] [Indexed: 11/13/2022] Open
Abstract
Blast traumatic brain injury is ubiquitous in modern military conflict with significant morbidity and mortality. Yet the mechanism by which blast overpressure waves cause specific intracranial injury in humans remains unclear. Reviewing of both the clinical experience of neurointensivists and neurosurgeons who treated service members exposed to blast have revealed a pattern of injury to cerebral blood vessels, manifested as subarachnoid hemorrhage, pseudoaneurysm, and early diffuse cerebral edema. Additionally, a seminal neuropathologic case series of victims of blast traumatic brain injury (TBI) showed unique astroglial scarring patterns at the following tissue interfaces: subpial glial plate, perivascular, periventricular, and cerebral gray-white interface. The uniting feature of both the clinical and neuropathologic findings in blast TBI is the co-location of injury to material interfaces, be it solid-fluid or solid-solid interface. This motivates the hypothesis that blast TBI is an injury at the intracranial mechanical interfaces. In order to investigate the intracranial interface dynamics, we performed a novel set of computational simulations using a model human head simplified but containing models of gyri, sulci, cerebrospinal fluid (CSF), ventricles, and vasculature with high spatial resolution of the mechanical interfaces. Simulations were performed within a hybrid Eulerian—Lagrangian simulation suite (CTH coupled via Zapotec to Sierra Mechanics). Because of the large computational meshes, simulations required high performance computing resources. Twenty simulations were performed across multiple exposure scenarios—overpressures of 150, 250, and 500 kPa with 1 ms overpressure durations—for multiple blast exposures (front blast, side blast, and wall blast) across large variations in material model parameters (brain shear properties, skull elastic moduli). All simulations predict fluid cavitation within CSF (where intracerebral vasculature reside) with cavitation occurring deep and diffusely into cerebral sulci. These cavitation events are adjacent to high interface strain rates at the subpial glial plate. Larger overpressure simulations (250 and 500kPa) demonstrated intraventricular cavitation—also associated with adjacent high periventricular strain rates. Additionally, models of embedded intraparenchymal vascular structures—with diameters as small as 0.6 mm—predicted intravascular cavitation with adjacent high perivascular strain rates. The co-location of local maxima of strain rates near several of the regions that appear to be preferentially damaged in blast TBI (vascular structures, subpial glial plate, perivascular regions, and periventricular regions) suggest that intracranial interface dynamics may be important in understanding how blast overpressures leads to intracranial injury.
Collapse
Affiliation(s)
- Scott T Miller
- Computational Solid Mechanics & Structural Dynamics, Sandia National Laboratories, Albuquerque, NM, United States
| | - Candice F Cooper
- Terminal Ballistics Technology, Sandia National Laboratories, Albuquerque, NM, United States
| | - Paul Elsbernd
- Department of Neurology, Brooke Army Medical Center, Fort Sam Houston, TX, United States
| | - Joseph Kerwin
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, United States
| | - Ricardo Mejia-Alvarez
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, United States
| | - Adam M Willis
- Department of Neurology, Brooke Army Medical Center, Fort Sam Houston, TX, United States.,Department of Mechanical Engineering, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
21
|
Zhang L, Jackson WJ, Bentil SA. Deformation of an airfoil-shaped brain surrogate under shock wave loading. J Mech Behav Biomed Mater 2021; 120:104513. [PMID: 34010798 DOI: 10.1016/j.jmbbm.2021.104513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 03/30/2021] [Accepted: 04/07/2021] [Indexed: 10/21/2022]
Abstract
Improvised explosive devices (IEDs), during military operations, has increased the incidence of blast-induced traumatic brain injuries (bTBI). The shock wave is created following detonation of the IED. This shock wave propagates through the atmosphere and may cause bTBI. As a result, bTBI research has gained increased attention since this injury's mechanism is not thoroughly understood. To develop better protection and treatment against bTBI, further studies of soft material (e.g. brain and brain surrogate) deformation due to shock wave exposure are essential. However, the dynamic mechanical behavior of soft materials, subjected to high strain rates from shock wave exposure, remains unknown. Thus, an experimental approach was applied to study the interaction between the shock wave and an unconfined brain surrogate fabricated from a biomaterial (i.e. polydimethylsiloxane (PDMS)). The 1:70 ratio of curing agent-to-base determined the stiffness of the PDMS (Sylgard 184, Dow Corning Corporation). A stretched NACA 2414 (upper airfoil surface) geometry was utilized to resemble the shape of a porcine brain. Digital image correlation (DIC) technique was applied to measure the deformation on the brain surrogate's surface following shock wave exposure. A shock tube was utilized to create the shock wave and pressure transducers measured the pressure in the vicinity of the brain surrogate. A transient structural analysis using ANSYS Workbench was performed to predict the elastic modulus of 1:70 airfoil-shaped PDMS, at a strain rate on the order of 6 × 103 s-1. Both compression and protrusion of the PDMS surface were found due to the shock wave exposure. Negative pressure was found in a semi-ring area, which was the cause of protrusion. Oscillation of the brain surrogate, due to the shock wave loading, was found. The frequency of oscillation does not depend on the geometry. This work will add to the limited data describing the dynamic behavior of soft materials due to shock wave loading.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Mechanical Engineering, Iowa State University of Science and Technology, 2529 Union Drive, Ames, IA, 50011, USA
| | - William J Jackson
- Department of Mechanical Engineering, Iowa State University of Science and Technology, 2529 Union Drive, Ames, IA, 50011, USA
| | - Sarah A Bentil
- Department of Mechanical Engineering, Iowa State University of Science and Technology, 2529 Union Drive, Ames, IA, 50011, USA.
| |
Collapse
|
22
|
Simulation of harmonic shear waves in the human brain and comparison with measurements from magnetic resonance elastography. J Mech Behav Biomed Mater 2021; 118:104449. [PMID: 33770585 DOI: 10.1016/j.jmbbm.2021.104449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 02/07/2021] [Accepted: 03/04/2021] [Indexed: 11/21/2022]
Abstract
Magnetic Resonance Elastography (MRE) provides a non-invasive method to characterize the mechanical response of the living brain subjected to harmonic loading conditions. The peak magnitude of the harmonic strain is small and the excitation results in harmless deformation waves propagating through the brain. In this paper, we describe a three-dimensional computational model of the brain for comparison of simulated harmonic deformations of the brain with MRE measurements. Relevant substructures of the head were constructed from MRI scans. Harmonic wave motions in a live human brain obtained in an MRE experiment were used to calibrate the viscoelastic properties at 50 Hz and assess accuracy of the computational model by comparing the measured and the simulated harmonic response of the brain. Quantitative comparison of strain field from simulations with measured data from MRE shows that the harmonic deformation of the brain tissue is responsive to changes in the viscoelastic properties, loss and storage moduli, of the brain. The simulation results demonstrate, in agreement with MRE measurements, that the presence of the falx and tentorium membranes alter the spatial distribution of harmonic deformation field and peak strain amplitudes in the computational model of the brain.
Collapse
|
23
|
Sutar S, Ganpule SG. Assessment of Compression Driven Shock Tube Designs in Replicating Free-Field Blast Conditions for Traumatic Brain Injury Studies. J Neurotrauma 2021; 38:1717-1729. [PMID: 33108952 DOI: 10.1089/neu.2020.7394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Compression driven shock tubes are indispensable in studies of blast-induced traumatic brain injury (bTBI). The ability of shock tubes in faithfully recreating free-field blast conditions is of enormous interest and has a direct impact on injury outcomes. Toward this end, the evolution of blast wave inside and outside of the compression driven shock tube has been studied using validated, finite element based shock tube models. Several shock tube configurations (uniform cross-section, transition, conical, suddenly expanded, and end plate) have been considered. The finite element modeling approach has been used to simulate the transient, dynamic response of blast wave propagation. The response is studied for longer durations (40-100 msec) compared with the existing literature. We demonstrate that locations inside and outside of the shock tube can generate free-field blast profile in some form, but with numerous caveats. Our results indicate that the locations inside the shock tube are affected by higher underpressure and corresponding kinetic energy yield compared with free-field blast. These effects can be minimized using optimized end plate configuration at the exit of the shock tube, yet this is accompanied by secondary loading that is not representative of the free-field blast. Blast wave profile can be tailored using transition, conical, and suddenly expanded sections. We observe oscillations in the blast wave profile for suddenly expanded configuration. Locations outside the shock tube are affected by jet-wind effects because of the sudden expansion, barring a narrow region at the exit. For the desired overpressure yield inferred in bTBI, obtaining positive phase durations of <1 msec inside the shock tube, which are sought for studies in rodents, is challenging. Overall, these results underscore that replicating free-field blast conditions using a shock tube involves tradeoffs that need to be weighed carefully and their effect on injury outcomes should be evaluated during laboratory bTBI investigations.
Collapse
Affiliation(s)
- Sunil Sutar
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - S G Ganpule
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
24
|
Tripathi BB, Chandrasekaran S, Pinton GF. Super-resolved shear shock focusing in the human head. BRAIN MULTIPHYSICS 2021. [DOI: 10.1016/j.brain.2021.100033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
25
|
Rubio JE, Skotak M, Alay E, Sundaramurthy A, Subramaniam DR, Kote VB, Yeoh S, Monson K, Chandra N, Unnikrishnan G, Reifman J. Does Blast Exposure to the Torso Cause a Blood Surge to the Brain? Front Bioeng Biotechnol 2020; 8:573647. [PMID: 33392161 PMCID: PMC7773947 DOI: 10.3389/fbioe.2020.573647] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/16/2020] [Indexed: 02/04/2023] Open
Abstract
The interaction of explosion-induced blast waves with the torso is suspected to contribute to brain injury. In this indirect mechanism, the wave-torso interaction is assumed to generate a blood surge, which ultimately reaches and damages the brain. However, this hypothesis has not been comprehensively and systematically investigated, and the potential role, if any, of the indirect mechanism in causing brain injury remains unclear. In this interdisciplinary study, we performed experiments and developed mathematical models to address this knowledge gap. First, we conducted blast-wave exposures of Sprague-Dawley rats in a shock tube at incident overpressures of 70 and 130 kPa, where we measured carotid-artery and brain pressures while limiting exposure to the torso. Then, we developed three-dimensional (3-D) fluid-structure interaction (FSI) models of the neck and cerebral vasculature and, using the measured carotid-artery pressures, performed simulations to predict mass flow rates and wall shear stresses in the cerebral vasculature. Finally, we developed a 3-D finite element (FE) model of the brain and used the FSI-computed vasculature pressures to drive the FE model to quantify the blast-exposure effects in the brain tissue. The measurements from the torso-only exposure experiments revealed marginal increases in the peak carotid-artery overpressures (from 13.1 to 28.9 kPa). Yet, relative to the blast-free, normotensive condition, the FSI simulations for the blast exposures predicted increases in the peak mass flow rate of up to 255% at the base of the brain and increases in the wall shear stress of up to 289% on the cerebral vasculature. In contrast, our simulations suggest that the effect of the indirect mechanism on the brain-tissue-strain response is negligible (<1%). In summary, our analyses show that the indirect mechanism causes a sudden and abundant stream of blood to rapidly propagate from the torso through the neck to the cerebral vasculature. This blood surge causes a considerable increase in the wall shear stresses in the brain vasculature network, which may lead to functional and structural effects on the cerebral veins and arteries, ultimately leading to vascular pathology. In contrast, our findings do not support the notion of strain-induced brain-tissue damage due to the indirect mechanism.
Collapse
Affiliation(s)
- Jose E Rubio
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, MD, United States.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Maciej Skotak
- Department of Biomedical Engineering, Center for Injury Biomechanics, Materials, and Medicine, New Jersey Institute of Technology, Newark, NJ, United States.,Blast Induced Neurotrauma Division, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Eren Alay
- Department of Biomedical Engineering, Center for Injury Biomechanics, Materials, and Medicine, New Jersey Institute of Technology, Newark, NJ, United States
| | - Aravind Sundaramurthy
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, MD, United States.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Dhananjay Radhakrishnan Subramaniam
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, MD, United States.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Vivek Bhaskar Kote
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, MD, United States.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Stewart Yeoh
- Department of Biomedical Engineering, College of Engineering, The University of Utah, Salt Lake City, UT, United States
| | - Kenneth Monson
- Department of Biomedical Engineering, College of Engineering, The University of Utah, Salt Lake City, UT, United States.,Department of Mechanical Engineering, College of Engineering, The University of Utah, Salt Lake City, UT, United States
| | - Namas Chandra
- Department of Biomedical Engineering, Center for Injury Biomechanics, Materials, and Medicine, New Jersey Institute of Technology, Newark, NJ, United States
| | - Ginu Unnikrishnan
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, MD, United States.,The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Jaques Reifman
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, MD, United States
| |
Collapse
|
26
|
Visco-hyperelastic characterization of human brain white matter micro-level constituents in different strain rates. Med Biol Eng Comput 2020; 58:2107-2118. [PMID: 32671675 DOI: 10.1007/s11517-020-02228-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 07/06/2020] [Indexed: 10/23/2022]
Abstract
In this study, we propose a computational characterization technique for obtaining the material properties of axons and extracellular matrix (ECM) in human brain white matter. To account for the dynamic behavior of the brain tissue, data from time-dependent relaxation tests of human brain white matter in different strain rates are extracted and formulated by a visco-hyperelastic constitutive model consisting of the Ogden hyperelastic model and the Prony series expansion. Through micromechanical finite element simulation, a derivative-free optimization framework designed to minimize the difference between the numerical and experimental data is used to identify the material properties of the axons and ECM. The Prony series expansion parameters of axons and ECM are found to be highly affected by the Prony series expansion coefficients of the brain white matter. The optimal parameters of axons and ECM are verified through micromechanical simulation by comparing the averaged numerical response with that of the experimental data. Moreover, the initial shear modulus and the reduced shear modulus of the axons are found for different strain rates of 0.0001, 0.01, and 1 s-1. Consequently, first- and second-order regressions are used to find relations for the prediction of the shear modulus at the intermediate strain rates. Graphical Abstract The applied procedure for characterization of brain white matter micro-level constituents. The macro-level experimental data in different strain rates are used in the context of simulation-based optimization to obtain the properties of axons and extracellular matrix material.
Collapse
|
27
|
Logsdon AF, Schindler AG, Meabon JS, Yagi M, Herbert MJ, Banks WA, Raskind MA, Marshall DA, Keene CD, Perl DP, Peskind ER, Cook DG. Nitric oxide synthase mediates cerebellar dysfunction in mice exposed to repetitive blast-induced mild traumatic brain injury. Sci Rep 2020; 10:9420. [PMID: 32523011 PMCID: PMC7287110 DOI: 10.1038/s41598-020-66113-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/16/2020] [Indexed: 02/02/2023] Open
Abstract
We investigated the role of nitric oxide synthase (NOS) in mediating blood-brain barrier (BBB) disruption and peripheral immune cell infiltration in the cerebellum following blast exposure. Repetitive, but not single blast exposure, induced delayed-onset BBB disruption (72 hours post-blast) in cerebellum. The NOS inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME) administered after blast blocked BBB disruption and prevented CD4+ T-cell infiltration into cerebellum. L-NAME also blocked blast-induced increases in intercellular adhesion molecule-1 (ICAM-1), a molecule that plays a critical role in regulating blood-to-brain immune cell trafficking. Blocking NOS-mediated BBB dysfunction during this acute/subacute post-blast interval (24-71 hours after the last blast) also prevented sensorimotor impairment on a rotarod task 30 days later, long after L-NAME cleared the body. In postmortem brains from Veterans/military Servicemembers with blast-related TBI, we found marked Purkinje cell dendritic arbor structural abnormalities, which were comparable to neuropathologic findings in the blast-exposed mice. Taken collectively, these results indicate that blast provokes delayed-onset of NOS-dependent pathogenic cascades that can later emerge as behavioral dysfunction. These results also further implicate the cerebellum as a brain region vulnerable to blast-induced mTBI.
Collapse
Affiliation(s)
- Aric F. Logsdon
- 0000 0004 0420 6540grid.413919.7Geriatric Research Education and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108 USA ,0000000122986657grid.34477.33Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195 USA
| | - Abigail G. Schindler
- 0000 0004 0420 6540grid.413919.7Geriatric Research Education and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108 USA ,0000000122986657grid.34477.33Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA 98195 USA
| | - James S. Meabon
- 0000 0004 0420 6540grid.413919.7VA Northwest Mental Illness Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108 USA ,0000000122986657grid.34477.33Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA 98195 USA
| | - Mayumi Yagi
- 0000 0004 0420 6540grid.413919.7Geriatric Research Education and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108 USA
| | - Melanie J. Herbert
- 0000 0004 0420 6540grid.413919.7Geriatric Research Education and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108 USA
| | - William A. Banks
- 0000 0004 0420 6540grid.413919.7Geriatric Research Education and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108 USA ,0000000122986657grid.34477.33Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195 USA
| | - Murray A. Raskind
- 0000 0004 0420 6540grid.413919.7VA Northwest Mental Illness Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108 USA ,0000000122986657grid.34477.33Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA 98195 USA
| | - Desiree A. Marshall
- 0000000122986657grid.34477.33Department of Pathology, University of Washington, Seattle, WA 98195 USA
| | - C. Dirk Keene
- 0000000122986657grid.34477.33Department of Pathology, University of Washington, Seattle, WA 98195 USA
| | - Daniel P. Perl
- 0000 0001 0421 5525grid.265436.0Department of Pathology, Center for Neuroscience and Regenerative Medicine, School of Medicine, Uniformed Services University, Bethesda, MD 20814 USA
| | - Elaine R. Peskind
- 0000 0004 0420 6540grid.413919.7VA Northwest Mental Illness Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108 USA ,0000000122986657grid.34477.33Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA 98195 USA
| | - David G. Cook
- 0000 0004 0420 6540grid.413919.7Geriatric Research Education and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108 USA ,0000000122986657grid.34477.33Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195 USA
| |
Collapse
|
28
|
Islam S, Shah V, Gidde STR, Hutapea P, Song SH, Picone J, Kim A. A Machine Learning Enabled Wireless Intracranial Brain Deformation Sensing System. IEEE Trans Biomed Eng 2020; 67:3521-3530. [PMID: 32340930 DOI: 10.1109/tbme.2020.2990071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A leading cause of traumatic brain injury (TBI) is intracranial brain deformation due to mechanical impact. This deformation is viscoelastic and differs from a traditional rigid transformation. In this paper, we describe a machine learning enabled wireless sensing system that predicts the trajectory of intracranial brain deformation. The sensing system consists of an implantable soft magnet and an external magnetic sensor array with a sensing volume of 12 × 12 × 4 mm3. Machine learning algorithm predicts the brain deformation by interpreting the magnetic sensor outputs created by the change in position of the implanted soft magnet. Three different machine learning models were trained on calibration data: (1) random forests, (2) k-nearest neighbors, and (3) a multi-layer perceptron-based neural network. These models were validated using both in vitro (a needle inserted into PVC gel) and in vivo (blast exposure to live and dead rat brains) experiments. The in vitro gel deformation predicted by these machine learning models showed excellent agreement with the camera measurements and had absolute error = 138 μm, Fréchet distance = 372 μm with normalized Procrustes disparity = 0.034. The in vivo brain deformation predicted by these models had absolute error = 50 μm, Fréchet distance = 95 μm with normalized Procrustes disparity = 0.055 for dead animal and absolute error = 125 μm, Fréchet distance = 289 μm with normalized Procrustes disparity = 0.2 for live animal respectively. These results suggest that the proposed machine learning enabled sensor system can be an effective tool for measuring in situ brain deformation.
Collapse
|
29
|
Liang KJ, Carlson ES. Resistance, vulnerability and resilience: A review of the cognitive cerebellum in aging and neurodegenerative diseases. Neurobiol Learn Mem 2020; 170:106981. [PMID: 30630042 PMCID: PMC6612482 DOI: 10.1016/j.nlm.2019.01.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/14/2018] [Accepted: 01/03/2019] [Indexed: 12/12/2022]
Abstract
In the context of neurodegeneration and aging, the cerebellum is an enigma. Genetic markers of cellular aging in cerebellum accumulate more slowly than in the rest of the brain, and it generates unknown factors that may slow or even reverse neurodegenerative pathology in animal models of Alzheimer's Disease (AD). Cerebellum shows increased activity in early AD and Parkinson's disease (PD), suggesting a compensatory function that may mitigate early symptoms of neurodegenerative pathophysiology. Perhaps most notably, different parts of the brain accumulate neuropathological markers of AD in a recognized progression and generally, cerebellum is the last brain region to do so. Taken together, these data suggest that cerebellum may be resistant to certain neurodegenerative mechanisms. On the other hand, in some contexts of accelerated neurodegeneration, such as that seen in chronic traumatic encephalopathy (CTE) following repeated traumatic brain injury (TBI), the cerebellum appears to be one of the most susceptible brain regions to injury and one of the first to exhibit signs of pathology. Cerebellar pathology in neurodegenerative disorders is strongly associated with cognitive dysfunction. In neurodegenerative or neurological disorders associated with cerebellar pathology, such as spinocerebellar ataxia, cerebellar cortical atrophy, and essential tremor, rates of cognitive dysfunction, dementia and neuropsychiatric symptoms increase. When the cerebellum shows AD pathology, such as in familial AD, it is associated with earlier onset and greater severity of disease. These data suggest that when neurodegenerative processes are active in the cerebellum, it may contribute to pathological behavioral outcomes. The cerebellum is well known for comparing internal representations of information with observed outcomes and providing real-time feedback to cortical regions, a critical function that is disturbed in neuropsychiatric disorders such as intellectual disability, schizophrenia, dementia, and autism, and required for cognitive domains such as working memory. While cerebellum has reciprocal connections with non-motor brain regions and likely plays a role in complex, goal-directed behaviors, it has proven difficult to establish what it does mechanistically to modulate these behaviors. Due to this lack of understanding, it's not surprising to see the cerebellum reflexively dismissed or even ignored in basic and translational neuropsychiatric literature. The overarching goals of this review are to answer the following questions from primary literature: When the cerebellum is affected by pathology, is it associated with decreased cognitive function? When it is intact, does it play a compensatory or protective role in maintaining cognitive function? Are there theoretical frameworks for understanding the role of cerebellum in cognition, and perhaps, illnesses characterized by cognitive dysfunction? Understanding the role of the cognitive cerebellum in neurodegenerative diseases has the potential to offer insight into origins of cognitive deficits in other neuropsychiatric disorders, which are often underappreciated, poorly understood, and not often treated.
Collapse
Affiliation(s)
- Katharine J Liang
- University of Washington School of Medicine, Department of Psychiatry and Behavioral Sciences, Seattle, WA, United States
| | - Erik S Carlson
- University of Washington School of Medicine, Seattle, WA, United States.
| |
Collapse
|
30
|
Yu X, Ghajari M. An assessment of blast modelling techniques for injury biomechanics research. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2019; 35:e3258. [PMID: 31518061 DOI: 10.1002/cnm.3258] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/06/2019] [Accepted: 09/01/2019] [Indexed: 06/10/2023]
Abstract
Blast-induced traumatic brain injury (TBI) has been affecting combatants and civilians. The blast pressure wave is thought to have a significant contribution to blast-related TBI. Due to the limitations and difficulties of conducting blast tests on surrogates, computational modelling has been used as a key method for exploring this field. However, the blast wave modelling methods reported in current literature have drawbacks. They either cannot generate the desirable blast pressure wave history or they are unable to accurately simulate the blast wave/structure interaction. In addition, boundary conditions, which can have significant effects on model predictions, have not been described adequately. Here, we critically assess the commonly used methods for simulating blast wave propagation in air (open-field blast) and its interaction with the human body. We investigate the predicted blast wave time history, blast wave transmission, and the effects of various boundary conditions in three-dimensional (3D) models of blast prediction. We propose a suitable meshing topology, which enables accurate prediction of blast wave propagation and interaction with the human head and significantly decreases the computational cost in 3D simulations. Finally, we predict strain and strain rate in the human brain during blast wave exposure and show the influence of the blast wave modelling methods on the brain response. The findings presented here can serve as guidelines for accurately modelling blast wave generation and interaction with the human body for injury biomechanics studies and design of prevention systems.
Collapse
Affiliation(s)
- Xiancheng Yu
- Dyson School of Design Engineering, Imperial College London, South Kensington Campus, London, UK
- Centre for Blast Injury Studies, Imperial College London, South Kensington Campus, London, UK
| | - Mazdak Ghajari
- Dyson School of Design Engineering, Imperial College London, South Kensington Campus, London, UK
- Centre for Blast Injury Studies, Imperial College London, South Kensington Campus, London, UK
| |
Collapse
|
31
|
Sutar S, Ganpule S. Investigation of wave propagation through head layers with focus on understanding blast wave transmission. Biomech Model Mechanobiol 2019; 19:875-892. [PMID: 31745681 DOI: 10.1007/s10237-019-01256-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 11/06/2019] [Indexed: 11/25/2022]
Abstract
Blast-induced traumatic brain injury (bTBI) is a critical health concern. This issue is being addressed in terms of identifying a cause-effect relationship between the mechanical insult in the form of a blast and resulting injury to the brain. Understanding wave propagation through the head is an important aspect in this regard. The objective of this work was to study the blast wave propagation through the layered architecture of the head with an emphasis on understanding the wave transmission mechanism. Toward this end, one-dimensional (1D) finite element head model is built for a simplified surrogate, human, and rat. Motivated from experimental investigations, four different head layer configurations have been considered. These configurations are: (A) Skull-Brain, (B) Skin-Skull-Brain, (C) Skin-Skull-Dura-Arachnoid-CSF-Pia-Brain, (D) Skin-Skull-Dura-Arachnoid-AT-Pia-Brain. The validated head model is subjected to flattop and Friedlander loading implied in the blast, and the resulting response is evaluated in terms of brain pressures. Our results suggest that wave propagation through head parenchyma plays an important role in blast wave transmission. The thickness, material properties of head layers, and rise time of an input pulse govern the temporal evolution of pressure in the brain. The key findings of this work are: (a) Skin and meninges amplify the applied input pressure, whereas air sinus has an attenuation effect. (b) Model is able to describe experimentally recorded peak pressures and rise times in the brain, including variations within the aforementioned experimental head models of TBI. This reinforces that the wave transmission is an important loading pathway to the brain. (c) Equivalent layer theory for modeling meningeal layers as a single layer has been proposed, and it gives reasonable agreement with each meningeal layer modeled explicitly. This modeling approach has a great utility in 3D head models. The potential applications of 1D head model in evaluation of new helmet materials, brain sensor calibration, and brain pressure estimation for a given explosive strength have also been demonstrated. Overall, these results provide important insights into the understanding of mechanics of blast wave transmission in the head.
Collapse
Affiliation(s)
- Sunil Sutar
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - S Ganpule
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India.
| |
Collapse
|
32
|
Ravin R, Morgan NY, Blank PS, Ravin N, Guerrero-Cazares H, Quinones-Hinojosa A, Zimmerberg J. Response to Blast-like Shear Stresses Associated with Mild Blast-Induced Brain Injury. Biophys J 2019; 117:1167-1178. [PMID: 31495447 PMCID: PMC6818442 DOI: 10.1016/j.bpj.2019.07.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/12/2019] [Accepted: 07/24/2019] [Indexed: 12/27/2022] Open
Abstract
Toward the goal of understanding the pathophysiology of mild blast-induced traumatic brain injury and identifying the physical forces associated with the primary injury phase, we developed a system that couples a pneumatic blast to a microfluidic channel to precisely and reproducibly deliver shear transients to dissociated human central nervous system (CNS) cells, on a timescale comparable to an explosive blast but with minimal pressure transients. Using fluorescent beads, we have characterized the shear transients experienced by the cells and demonstrate that the system is capable of accurately and reproducibly delivering uniform shear transients with minimal pressure across the cell culture volume. This system is compatible with high-resolution, time-lapse optical microscopy. Using this system, we demonstrate that blast-like shear transients produced with minimal pressure transients and submillisecond rise times activate calcium responses in dissociated human CNS cultures. Cells respond with increased cytosolic free calcium to a threshold shear stress between 8 and 21 Pa; the propagation of this calcium response is a result of purinergic signaling. We propose that this system models, in vitro, the fundamental injury wave produced by shear forces consequent to blast shock waves passing through density inhomogeneity in human CNS cells.
Collapse
Affiliation(s)
- Rea Ravin
- Celoptics, Inc., Rockville, Maryland
| | - Nicole Y Morgan
- National Institute of Biomedical Imaging and Bioengineering, Bethesda, Maryland
| | - Paul S Blank
- Section on Integrative Biophysics, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | | | | | | | - Joshua Zimmerberg
- Section on Integrative Biophysics, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
33
|
The Influence of Shear Anisotropy in mTBI: A White Matter Constitutive Model. Ann Biomed Eng 2019; 47:1960-1970. [PMID: 31309368 DOI: 10.1007/s10439-019-02321-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 07/09/2019] [Indexed: 10/26/2022]
Abstract
We examine the influence of shear anisotropy of brain tissue on the potential for mild traumatic brain injury. First we develop a new constitutive description for the white matter in the brain that can capture the anisotropic behavior of the white matter in both tension and shear. The material parameters for the models are determined using a set of three experiments already published in the literature. The calibrated and parameterized model is then implemented in a computational (finite element) model of the head. This computational model is two-dimensional and is used to simulate a previously published injury-causing event in the National Hockey League, using axonal strain as criterion to assess the level of diffuse axonal injury. It is demonstrated that the inclusion of shear anisotropy affects both the nature and the extent of predicted injury. Further, the locations of the predicted injury are more consistent with observations in the literature.
Collapse
|
34
|
Mallott JM, Palacios EM, Maruta J, Ghajar J, Mukherjee P. Disrupted White Matter Microstructure of the Cerebellar Peduncles in Scholastic Athletes After Concussion. Front Neurol 2019; 10:518. [PMID: 31156545 PMCID: PMC6530417 DOI: 10.3389/fneur.2019.00518] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/01/2019] [Indexed: 01/18/2023] Open
Abstract
Concussion, or mild traumatic brain injury (mTBI), is a major public health concern, linked with persistent post-concussive syndrome, and chronic traumatic encephalopathy. At present, standard clinical imaging fails to reliably detect traumatic axonal injury associated with concussion and post-concussive symptoms. Diffusion tensor imaging (DTI) is an MR imaging technique that is sensitive to changes in white matter microstructure. Prior studies using DTI did not jointly investigate white matter microstructure in athletes, a population at high risk for concussive and subconcussive head traumas, with those in typical emergency room (ER) patients. In this study, we determine DTI scalar metrics in both ER patients and scholastic athletes who suffered concussions and compared them to those in age-matched healthy controls. In the early subacute post-concussion period, athletes demonstrated an elevated rate of regional decreases in axial diffusivity (AD) compared to controls. These regional decreases of AD were especially pronounced in the cerebellar peduncles, and were more frequent in athletes compared to the ER patient sample. The group differences may indicate differences in the mechanisms of the concussive impacts as well as possible compound effects of cumulative subconcussive impacts in athletes. The prevalence of white matter abnormality in cerebellar tracts lends credence to the hypothesis that post-concussive symptoms are caused by shearing of axons within an attention network mediated by the cerebellum, and warrant further study of the correlation between cerebellar DTI findings and clinical, neurocognitive, oculomotor, and vestibular outcomes in mTBI patients.
Collapse
Affiliation(s)
- Jacob M. Mallott
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Eva M. Palacios
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Jun Maruta
- Departments of Neurology and Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Brain Trauma Foundation, New York, NY, United States
| | - Jamshid Ghajar
- Brain Trauma Foundation, New York, NY, United States
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Pratik Mukherjee
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
35
|
Tripathi BB, Espíndola D, Pinton GF. Piecewise parabolic method for propagation of shear shock waves in relaxing soft solids: One-dimensional case. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2019; 35:e3187. [PMID: 30861631 DOI: 10.1002/cnm.3187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/30/2018] [Accepted: 12/25/2018] [Indexed: 06/09/2023]
Abstract
Shear shock waves can be generated spontaneously deep within the brain during a traumatic injury. This recently observed behavior could be a primary mechanism for the generation of traumatic brain injuries. However, shear shock wave physics and its numerical modeling are relatively unstudied. Existing numerical solvers used in biomechanics are not designed for the extremely large Mach numbers (greater than 1) observed in the brain. Furthermore, soft solids, such as the brain, have a complex nonclassical viscoleastic response, which must be accurately modeled to capture the nonlinear wave behavior. Here, we develop a 1D inviscid velocity-stress-like system to model the propagation of shear shock waves in a homogeneous medium. Then a generalized Maxwell body is used to model a relaxing medium that can describe experimentally determined attenuation laws. Finally, the resulting system is solved numerically with the piecewise parabolic method, a high-order finite volume method. The nonlinear and the relaxing components of this method are validated with theoretical predictions. Comparisons between numerical solutions obtained for the proposed model and the experiments of plane shear shock wave propagation based on high frame-rate ultrasound imaging and tracking are shown to be in excellent agreement.
Collapse
Affiliation(s)
- Bharat B Tripathi
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina
| | - David Espíndola
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina
| | - Gianmarco F Pinton
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina
| |
Collapse
|
36
|
Saunders R, Tan XG, Bagchi A. On the Development of Interspecies Traumatic Brain Injury Correspondence Rules. Mil Med 2019; 184:181-194. [PMID: 30901476 DOI: 10.1093/milmed/usy360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/01/2018] [Indexed: 11/14/2022] Open
Abstract
Traumatic brain injury analysis in human is exceedingly difficult due to the methods in which data can be collected, thus many researchers commonly implement animal surrogates. However, use of these surrogates is costly and restricted by ethical concerns and test logistics. Computational models and simulations do not have these constraints and can produce significant amounts of data in relatively short periods. This paper shows the development of a human head and neck model and a full body porcine model. Both models are developed from high-resolution CT and MRI scans and the latest low-to-high strain rate mechanical data available in the literature to represent tissue component material behaviors. Both models are validated against experiments from the literature and used to complete an initial interspecies correspondence rule development study for blast overpressure effects. The results indicate the similarities in the way injury develops in the pig brain and human brain but these similarities occur at very different insult levels. These results are extended by a study, which shows that blast peak pressure is the driving factor in injury prediction and, depending on the injury metric used, significantly different injuries could be predicted.
Collapse
Affiliation(s)
- Robert Saunders
- Multifunctional Materials Branch, Materials Science and Technology Division, U.S. Naval Research Laboratory, 4555 Overlook Ave. SW., Washington, DC
| | - X Gary Tan
- Multifunctional Materials Branch, Materials Science and Technology Division, U.S. Naval Research Laboratory, 4555 Overlook Ave. SW., Washington, DC
| | - Amit Bagchi
- Multifunctional Materials Branch, Materials Science and Technology Division, U.S. Naval Research Laboratory, 4555 Overlook Ave. SW., Washington, DC
| |
Collapse
|
37
|
Multi-Scale Modeling of Head Kinematics and Brain Tissue Response to Blast Exposure. Ann Biomed Eng 2019; 47:1993-2004. [PMID: 30671753 DOI: 10.1007/s10439-018-02193-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/19/2018] [Indexed: 12/22/2022]
Abstract
Injuries resulting from blast exposure have been increasingly prevalent in recent conflicts, with a particular focus on the risk of head injury. In the current study, a multibody model (GEBOD) was used to investigate the gross kinematics resulting from blast exposure, including longer duration events such as the fall and ground impact. Additionally, detailed planar head models, in the sagittal and transverse planes, were used to model the primary blast wave interaction with the head, and resulting tissue response. For severe blast load cases (scaled distance less than 2), the translational head accelerations during primary blast were found to increase as the height-of-burst (HOB) was lowered, while the HOB was found to have no effect for cases with scaled distance greater than 2. The HOB was found to affect both the magnitude and direction of rotational accelerations, with increasing magnitudes as the HOB deviated from the height of the head. The choice of ground contact stiffness was found to greatly affect the predicted head accelerations during ground impact. For a medium soil ground material, the kinematics during ground impact were greater for scaled distances exceeding 1.5, below which the primary blast produced greater kinematic head response.
Collapse
|
38
|
Nawarawong NN, Slaker M, Muelbl M, Shah AS, Chiariello R, Nelson LD, Budde MD, Stemper BD, Olsen CM. Repeated blast model of mild traumatic brain injury alters oxycodone self-administration and drug seeking. Eur J Neurosci 2018; 50:2101-2112. [PMID: 30456793 DOI: 10.1111/ejn.14281] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/30/2018] [Accepted: 11/13/2018] [Indexed: 12/16/2022]
Abstract
Each year, traumatic brain injuries (TBI) affect millions worldwide. Mild TBIs (mTBI) are the most prevalent and can lead to a range of neurobehavioral problems, including substance abuse. A single blast exposure, inducing mTBI alters the medial prefrontal cortex, an area implicated in addiction, for at least 30 days post injury in rats. Repeated blast exposures result in greater physiological and behavioral dysfunction than single exposure; however, the impact of repeated mTBI on addiction is unknown. In this study, the effect of mTBI on various stages of oxycodone use was examined. Male Sprague Dawley rats were exposed to a blast model of mTBI once per day for 3 days. Rats were trained to self-administer oxycodone during short (2 h) and long (6 h) access sessions. Following abstinence, rats underwent extinction and two cued reinstatement sessions. Sham and rbTBI rats had similar oxycodone intake, extinction responding and cued reinstatement of drug seeking. A second group of rats were trained to self-administer oxycodone with varying reinforcement schedules (fixed ratio (FR)-2 and FR-4). Under an FR-2 schedule, rbTBI-exposed rats earned fewer reinforcers than sham-exposed rats. During 10 extinction sessions, the rbTBI-exposed rats exhibited significantly more seeking for oxycodone than the sham-injured rats. There was a positive correlation between total oxycodone intake and day 1 extinction drug seeking in sham, but not in rbTBI-exposed rats. Together, this suggests that rbTBI-exposed rats are more sensitive to oxycodone-associated cues during reinstatement than sham-exposed rats and that rbTBI may disrupt the relationship between oxycodone intake and seeking.
Collapse
Affiliation(s)
- Natalie N Nawarawong
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Megan Slaker
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Matt Muelbl
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Alok S Shah
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA.,Joint Department of Biomedical Engineering, Marquette University, Milwaukee, WI, USA
| | - Rachel Chiariello
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA.,Joint Department of Biomedical Engineering, Marquette University, Milwaukee, WI, USA
| | - Lindsay D Nelson
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Matthew D Budde
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA
| | - Brian D Stemper
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA.,Joint Department of Biomedical Engineering, Marquette University, Milwaukee, WI, USA
| | - Christopher M Olsen
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
39
|
Townsend MT, Alay E, Skotak M, Chandra N. Effect of Tissue Material Properties in Blast Loading: Coupled Experimentation and Finite Element Simulation. Ann Biomed Eng 2018; 47:2019-2032. [PMID: 30523466 DOI: 10.1007/s10439-018-02178-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/28/2018] [Indexed: 01/26/2023]
Abstract
Computational models of blast-induced traumatic brain injury (bTBI) require a robust definition of the material models of the brain. The mechanical constitutive models of these tissues are difficult to characterize, leading to a wide range of values reported in literature. Therefore, the sensitivity of the intracranial pressure (ICP) and maximum principal strain to variations in the material model of the brain was investigated through a combined computational and experimental approach. A finite element model of a rat was created to simulate a shock wave exposure, guided by the experimental measurements of rats subjected to shock loading conditions corresponding to that of mild traumatic brain injury in a field-validated shock tube. In the numerical model, the properties of the brain were parametrically varied. A comparison of the ICP measured at two locations revealed that experimental and simulated ICP were higher in the cerebellum (p < 0.0001), highlighting the significance of pressure sensor locations within the cranium. The ICP and strain were correlated with the long-term bulk (p < 0.0001) and shear moduli (p < 0.0001), with an 80 MPa effective bulk modulus value matching best with experimental measurements. In bTBI, the solution is sensitive to the brain material model, necessitating robust validation methods.
Collapse
Affiliation(s)
- Molly T Townsend
- Biomedical Engineering Department, New Jersey Institute of Technology, Newark, NJ, USA
| | - Eren Alay
- Biomedical Engineering Department, New Jersey Institute of Technology, Newark, NJ, USA
| | - Maciej Skotak
- Biomedical Engineering Department, New Jersey Institute of Technology, Newark, NJ, USA
| | - Namas Chandra
- Biomedical Engineering Department, New Jersey Institute of Technology, Newark, NJ, USA.
| |
Collapse
|
40
|
Teferra K, Tan XG, Iliopoulos A, Michopoulos J, Qidwai S. Effect of human head morphological variability on the mechanical response of blast overpressure loading. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2018; 34:e3109. [PMID: 29804323 DOI: 10.1002/cnm.3109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 05/20/2018] [Indexed: 06/08/2023]
Abstract
A methodology is introduced to investigate the effect of intersubject head morphological variability on the mechanical response of the brain when subjected to blast overpressure loading. Nonrigid image registration techniques are leveraged to warp a manually segmented template model to an arbitrary number of subjects following a procedure to coarsely segment the subjects in batch. Finite element meshes are autogenerated, and blast analysis is conducted. The template model is initially constructed to enable the full automated implementation and application of the proposed methodology. The application of the proposed approach for an anterior-oriented blast has been demonstrated, and the results reveal that the pressure response in the brain does exhibit some dependence on head morphological variability. While the magnitude of the peak pressure response can vary by more than 30%, its location within the brain is unaffected by head morphological variability. A linear least squares analysis was conducted to demonstrate that the peak magnitude of pressure is uncorrelated with head volume while it is correlated with aspect ratio relating to the amount of exposed surface area to the blast. These features of the pressure response are likely due to the peak pressure occurring during the early stages of stress wave transmission and reflection. As a result, the pressure response due to blast overpressure loading is predominantly loading dependent while morphological variability has a secondary effect.
Collapse
Affiliation(s)
| | - X Gary Tan
- US Naval Research Laboratory, Washington, DC, USA
| | | | | | - Siddiq Qidwai
- Division of Civil, Mechanical and Manufacturing Innovation, NSF, Alexandria, VA, USA
| |
Collapse
|
41
|
Garcia-Gonzalez D, Race NS, Voets NL, Jenkins DR, Sotiropoulos SN, Acosta G, Cruz-Haces M, Tang J, Shi R, Jérusalem A. Cognition based bTBI mechanistic criteria; a tool for preventive and therapeutic innovations. Sci Rep 2018; 8:10273. [PMID: 29980750 PMCID: PMC6035210 DOI: 10.1038/s41598-018-28271-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 06/15/2018] [Indexed: 02/06/2023] Open
Abstract
Blast-induced traumatic brain injury has been associated with neurodegenerative and neuropsychiatric disorders. To date, although damage due to oxidative stress appears to be important, the specific mechanistic causes of such disorders remain elusive. Here, to determine the mechanical variables governing the tissue damage eventually cascading into cognitive deficits, we performed a study on the mechanics of rat brain under blast conditions. To this end, experiments were carried out to analyse and correlate post-injury oxidative stress distribution with cognitive deficits on a live rat exposed to blast. A computational model of the rat head was developed from imaging data and validated against in vivo brain displacement measurements. The blast event was reconstructed in silico to provide mechanistic thresholds that best correlate with cognitive damage at the regional neuronal tissue level, irrespectively of the shape or size of the brain tissue types. This approach was leveraged on a human head model where the prediction of cognitive deficits was shown to correlate with literature findings. The mechanistic insights from this work were finally used to propose a novel protective device design roadmap and potential avenues for therapeutic innovations against blast traumatic brain injury.
Collapse
Affiliation(s)
- Daniel Garcia-Gonzalez
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | - Nicholas S Race
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
- Medical Scientist Training Program, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Natalie L Voets
- Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Damian R Jenkins
- Army Registrar in Neurology and Lecturer in Medicine and Physiology, St Hugh's College, St Margaret's Rd, Oxford, OX2 6LE, United Kingdom
| | - Stamatios N Sotiropoulos
- Centre for Functional MRI of the Brain, University of Oxford, Oxford, UK
- Sir Peter Mansfield Imaging Centre, School of Medicine, and National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Queens Medical Centre, University of Nottingham, Nottingham, UK
| | - Glen Acosta
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - Marcela Cruz-Haces
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Jonathan Tang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Riyi Shi
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA.
- PULSe Interdisciplinary Life Science Program, Purdue University, West Lafayette, IN, USA.
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA.
| | - Antoine Jérusalem
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK.
| |
Collapse
|
42
|
Esenaliev RO, Petrov IY, Petrov Y, Guptarak J, Boone DR, Mocciaro E, Weisz H, Parsley MA, Sell SL, Hellmich H, Ford JM, Pogue C, DeWitt D, Prough DS, Micci MA. Nano-Pulsed Laser Therapy Is Neuroprotective in a Rat Model of Blast-Induced Neurotrauma. J Neurotrauma 2018; 35:1510-1522. [PMID: 29562823 PMCID: PMC5998828 DOI: 10.1089/neu.2017.5249] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We have developed a novel, non-invasive nano-pulsed laser therapy (NPLT) system that combines the benefits of near-infrared laser light (808 nm) and ultrasound (optoacoustic) waves, which are generated with each short laser pulse within the tissue. We tested NPLT in a rat model of blast-induced neurotrauma (BINT) to determine whether transcranial application of NPLT provides neuroprotective effects. The laser pulses were applied on the intact rat head 1 h after injury using a specially developed fiber-optic system. Vestibulomotor function was assessed on post-injury days (PIDs) 1–3 on the beam balance and beam walking tasks. Cognitive function was assessed on PIDs 6–10 using a working memory Morris water maze (MWM) test. BDNF and caspase-3 messenger RNA (mRNA) expression was measured by quantitative real-time PCR (qRT-PCR) in laser-captured cortical neurons. Microglia activation and neuronal injury were assessed in brain sections by immunofluorescence using specific antibodies against CD68 and active caspase-3, respectively. In the vestibulomotor and cognitive (MWM) tests, NPLT-treated animals performed significantly better than the untreated blast group and similarly to sham animals. NPLT upregulated mRNA encoding BDNF and downregulated the pro-apoptotic protein caspase-3 in cortical neurons. Immunofluorescence demonstrated that NPLT inhibited microglia activation and reduced the number of cortical neurons expressing activated caspase-3. NPLT also increased expression of BDNF in the hippocampus and the number of proliferating progenitor cells in the dentate gyrus. Our data demonstrate a neuroprotective effect of NPLT and prompt further studies aimed to develop NPLT as a therapeutic intervention after traumatic brain injury (TBI).
Collapse
Affiliation(s)
- Rinat O Esenaliev
- 1 Department of Anesthesiology, University of Texas Medical Branch , Galveston, Texas.,2 Department of Neuroscience and Cell Biology, University of Texas Medical Branch , Galveston, Texas.,3 Center for Biomedical Engineering, University of Texas Medical Branch , Galveston, Texas
| | - Irene Y Petrov
- 3 Center for Biomedical Engineering, University of Texas Medical Branch , Galveston, Texas
| | - Yuriy Petrov
- 3 Center for Biomedical Engineering, University of Texas Medical Branch , Galveston, Texas
| | - Jutatip Guptarak
- 1 Department of Anesthesiology, University of Texas Medical Branch , Galveston, Texas
| | - Debbie R Boone
- 1 Department of Anesthesiology, University of Texas Medical Branch , Galveston, Texas
| | - Emanuele Mocciaro
- 1 Department of Anesthesiology, University of Texas Medical Branch , Galveston, Texas
| | - Harris Weisz
- 1 Department of Anesthesiology, University of Texas Medical Branch , Galveston, Texas
| | - Margaret A Parsley
- 1 Department of Anesthesiology, University of Texas Medical Branch , Galveston, Texas
| | - Stacy L Sell
- 1 Department of Anesthesiology, University of Texas Medical Branch , Galveston, Texas
| | - Helen Hellmich
- 1 Department of Anesthesiology, University of Texas Medical Branch , Galveston, Texas
| | - Jonathan M Ford
- 1 Department of Anesthesiology, University of Texas Medical Branch , Galveston, Texas
| | - Connor Pogue
- 1 Department of Anesthesiology, University of Texas Medical Branch , Galveston, Texas
| | - Douglas DeWitt
- 1 Department of Anesthesiology, University of Texas Medical Branch , Galveston, Texas
| | - Donald S Prough
- 1 Department of Anesthesiology, University of Texas Medical Branch , Galveston, Texas
| | - Maria-Adelaide Micci
- 1 Department of Anesthesiology, University of Texas Medical Branch , Galveston, Texas
| |
Collapse
|
43
|
Do blast induced skull flexures result in axonal deformation? PLoS One 2018; 13:e0190881. [PMID: 29547663 PMCID: PMC5856259 DOI: 10.1371/journal.pone.0190881] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 12/21/2017] [Indexed: 12/28/2022] Open
Abstract
Subject-specific computer models (male and female) of the human head were used to investigate the possible axonal deformation resulting from the primary phase blast-induced skull flexures. The corresponding axonal tractography was explicitly incorporated into these finite element models using a recently developed technique based on the embedded finite element method. These models were subjected to extensive verification against experimental studies which examined their pressure and displacement response under a wide range of loading conditions. Once verified, a parametric study was developed to investigate the axonal deformation for a wide range of loading overpressures and directions as well as varying cerebrospinal fluid (CSF) material models. This study focuses on early times during a blast event, just as the shock transverses the skull (< 5 milliseconds). Corresponding boundary conditions were applied to eliminate the rotation effects and the resulting axonal deformation. A total of 138 simulations were developed– 128 simulations for studying the different loading scenarios and 10 simulations for studying the effects of CSF material model variance–leading to a total of 10,702 simulation core hours. Extreme strains and strain rates along each of the fiber tracts in each of these scenarios were documented and presented here. The results suggest that the blast-induced skull flexures result in strain rates as high as 150–378 s-1. These high-strain rates of the axonal fiber tracts, caused by flexural displacement of the skull, could lead to a rate dependent micro-structural axonal damage, as pointed by other researchers.
Collapse
|
44
|
Rodriguez UA, Zeng Y, Deyo D, Parsley MA, Hawkins BE, Prough DS, DeWitt DS. Effects of Mild Blast Traumatic Brain Injury on Cerebral Vascular, Histopathological, and Behavioral Outcomes in Rats. J Neurotrauma 2018; 35:375-392. [PMID: 29160141 PMCID: PMC5784797 DOI: 10.1089/neu.2017.5256] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
To determine the effects of mild blast-induced traumatic brain injury (bTBI), several groups of rats were subjected to blast injury or sham injury in a compressed air-driven shock tube. The effects of bTBI on relative cerebral perfusion (laser Doppler flowmetry [LDF]), and mean arterial blood pressure (MAP) cerebral vascular resistance were measured for 2 h post-bTBI. Dilator responses to reduced intravascular pressure were measured in isolated middle cerebral arterial (MCA) segments, ex vivo, 30 and 60 min post-bTBI. Neuronal injury was assessed (Fluoro-Jade C [FJC]) 24 and 48 h post-bTBI. Neurological outcomes (beam balance and walking tests) and working memory (Morris water maze [MWM]) were assessed 2 weeks post-bTBI. Because impact TBI (i.e., non-blast TBI) is often associated with reduced cerebral perfusion and impaired cerebrovascular function in part because of the generation of reactive oxygen and nitrogen species such as peroxynitrite (ONOO-), the effects of the administration of the ONOO- scavenger, penicillamine methyl ester (PenME), on cerebral perfusion and cerebral vascular resistance were measured for 2 h post-bTBI. Mild bTBI resulted in reduced relative cerebral perfusion and MCA dilator responses to reduced intravascular pressure, increases in cerebral vascular resistance and in the numbers of FJC-positive cells in the brain, and significantly impaired working memory. PenME administration resulted in significant reductions in cerebral vascular resistance and a trend toward increased cerebral perfusion, suggesting that ONOO- may contribute to blast-induced cerebral vascular dysfunction.
Collapse
Affiliation(s)
- Uylissa A. Rodriguez
- Cell Biology Graduate Program, Department of Neuroscience and Cell Biology, Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - Yaping Zeng
- The Moody Project for Translational Traumatic Brain Injury Research, Charles R. Allen Research Laboratories, Department of Anesthesiology, Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - Donald Deyo
- The Moody Project for Translational Traumatic Brain Injury Research, Charles R. Allen Research Laboratories, Department of Anesthesiology, Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - Margaret A. Parsley
- The Moody Project for Translational Traumatic Brain Injury Research, Charles R. Allen Research Laboratories, Department of Anesthesiology, Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - Bridget E. Hawkins
- Cell Biology Graduate Program, Department of Neuroscience and Cell Biology, Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - Donald S. Prough
- The Moody Project for Translational Traumatic Brain Injury Research, Charles R. Allen Research Laboratories, Department of Anesthesiology, Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - Douglas S. DeWitt
- Cell Biology Graduate Program, Department of Neuroscience and Cell Biology, Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
- The Moody Project for Translational Traumatic Brain Injury Research, Charles R. Allen Research Laboratories, Department of Anesthesiology, Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
45
|
Ganpule S, Daphalapurkar NP, Cetingul MP, Ramesh K. Effect of bulk modulus on deformation of the brain under rotational accelerations. SHOCK WAVES 2018; 28:127-139. [PMID: 29662272 PMCID: PMC5898454 DOI: 10.1007/s00193-017-0791-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 11/09/2017] [Accepted: 11/17/2017] [Indexed: 06/08/2023]
Abstract
Traumatic brain injury such as that developed as a consequence of blast is a complex injury with a broad range of symptoms and disabilities. Computational models of brain biomechanics hold promise for illuminating the mechanics of traumatic brain injury (TBI) and for developing preventive devices. However, reliable material parameters are needed for models to be predictive. Unfortunately, the properties of human brain tissue are difficult to measure, and the bulk modulus of brain tissue in particular is not well-characterized. Thus, a wide range of bulk modulus values are used in computational models of brain biomechanics, spanning up to three orders of magnitude in the differences between values. However, the sensitivity of these variations on computational predictions is not known. In this work, we study the sensitivity of a 3D computational human head model to various bulk modulus values. A subject-specific human head model was constructed from T1-weighted MRI images at 2 mm3 voxel resolution. Diffusion tensor imaging provided data on spatial distribution and orientation of axonal fiber-bundles for modeling white-matter anisotropy. Non-injurious, full-field brain deformations in a human volunteer were used to assess the simulated predictions. The comparison suggests that a bulk modulus value on the order of GPa gives the best agreement with experimentally measured in vivo deformation in the human brain. Further, simulations of injurious loading suggest that bulk modulus values on the order of GPa provide the closest match with the clinical findings in terms of predicated injured regions and extent of injury.
Collapse
Affiliation(s)
- S. Ganpule
- Indian Institute of Technology Roorkee, Roorkee, India, 247667
- Hopkins Extreme Materials Institute, Johns Hopkins University, Baltimore, MD, 21218
| | - N. P. Daphalapurkar
- Hopkins Extreme Materials Institute, Johns Hopkins University, Baltimore, MD, 21218
| | | | - K.T. Ramesh
- Hopkins Extreme Materials Institute, Johns Hopkins University, Baltimore, MD, 21218
| |
Collapse
|
46
|
Tan LB, Tse KM, Tan YH, Sapingi MAB, Tan VBC, Lee HP. Face shield design against blast-induced head injuries. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2017; 33. [PMID: 28329435 DOI: 10.1002/cnm.2884] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 01/07/2017] [Accepted: 03/19/2017] [Indexed: 06/06/2023]
Abstract
Blast-induced traumatic brain injury has been on the rise in recent years because of the increasing use of improvised explosive devices in conflict zones. Our study investigates the response of a helmeted human head subjected to a blast of 1 atm peak overpressure, for cases with and without a standard polycarbonate (PC) face shield and for face shields comprising of composite PC and aerogel materials and with lateral edge extension. The novel introduction of aerogel into the laminate face shield is explored and its wave-structure interaction mechanics and performance in blast mitigation is analysed. Our numerical results show that the face shield prevented direct exposure of the blast wave to the face and help delays the transmission of the blast to reduce the intracranial pressures (ICPs) at the parietal lobe. However, the blast wave can diffract and enter the midface region at the bottom and side edges of the face shield, resulting in traumatic brain injury. This suggests that the bottom and sides of the face shield are important regions to focus on to reduce wave ingress. The laminated PC/aerogel/PC face shield yielded higher peak positive and negative ICPs at the frontal lobe, than the original PC one. For the occipital and temporal brain regions, the laminated face shield performed better than the original. The composite face shield with extended edges reduced ICP at the temporal lobe but increases ICP significantly at the parietal lobe, which suggests that a greater coverage may not lead to better mitigating effects.
Collapse
Affiliation(s)
- Long Bin Tan
- Department of Mechanical Engineering, National University of Singapore, 21 Lower Kent Ridge Rd, 119077, Singapore
| | - Kwong Ming Tse
- Department of Mechanical Engineering, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Yuan Hong Tan
- Department of Mechanical Engineering, National University of Singapore, 21 Lower Kent Ridge Rd, 119077, Singapore
| | - Mohamad Ali Bin Sapingi
- Department of Mechanical Engineering, National University of Singapore, 21 Lower Kent Ridge Rd, 119077, Singapore
| | - Vincent Beng Chye Tan
- Department of Mechanical Engineering, National University of Singapore, 21 Lower Kent Ridge Rd, 119077, Singapore
| | - Heow Pueh Lee
- Department of Mechanical Engineering, National University of Singapore, 21 Lower Kent Ridge Rd, 119077, Singapore
| |
Collapse
|
47
|
|
48
|
Simulated blast overpressure induces specific astrocyte injury in an ex vivo brain slice model. PLoS One 2017; 12:e0175396. [PMID: 28403239 PMCID: PMC5389806 DOI: 10.1371/journal.pone.0175396] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/25/2017] [Indexed: 12/14/2022] Open
Abstract
Exposure to explosive blasts can produce functional debilitation in the absence of brain pathology detectable at the scale of current diagnostic imaging. Transient (ms) overpressure components of the primary blast wave are considered to be potentially damaging to the brain. Astrocytes participate in neuronal metabolic maintenance, blood–brain barrier, regulation of homeostatic environment, and tissue remodeling. Damage to astrocytes via direct physical forces has the potential to disrupt local and global functioning of neuronal tissue. Using an ex vivo brain slice model, we tested the hypothesis that viable astrocytes within the slice could be injured simply by transit of a single blast wave consisting of overpressure alone. A polymer split Hopkinson pressure bar (PSHPB) system was adapted to impart a single positive pressure transient with a comparable magnitude to those that might be present inside the head. A custom built test chamber housing the brain tissue slice incorporated revised design elements to reduce fluid space and promote transit of a uniform planar waveform. Confocal microscopy, stereology, and morphometry of glial fibrillary acidic protein (GFAP) immunoreactivity revealed that two distinct astrocyte injury profiles were identified across a 4 hr post-test survival interval: (a) presumed conventional astrogliosis characterized by enhanced GFAP immunofluorescence intensity without significant change in tissue area fraction and (b) a process comparable to clasmatodendrosis, an autophagic degradation of distal processes that has not been previously associated with blast induced neurotrauma. Analysis of astrocyte branching revealed early, sustained, and progressive differences distinct from the effects of slice incubation absent overpressure testing. Astrocyte vulnerability to overpressure transients indicates a potential for significant involvement in brain blast pathology and emergent dysfunction. The testing platform can isolate overpressure injury phenomena to provide novel insight on physical and biological mechanisms.
Collapse
|
49
|
Protection against Blast-Induced Traumatic Brain Injury by Increase in Brain Volume. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2075463. [PMID: 28553646 PMCID: PMC5434276 DOI: 10.1155/2017/2075463] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/13/2017] [Accepted: 03/23/2017] [Indexed: 11/18/2022]
Abstract
Blast-induced traumatic brain injury (bTBI) is a leading cause of injuries in recent military conflicts and it is responsible for an increased number of civilian casualties by terrorist attacks. bTBI includes a variety of neuropathological changes depending on the intensity of blast overpressure (BOP) such as brain edema, neuronal degeneration, diffuse axonal damage, and vascular dysfunction with neurological manifestations of psychological and cognitive abnormalities. Internal jugular vein (IJV) compression is known to reduce intracranial compliance by causing an increase in brain volume and was shown to reduce brain damage during closed impact-induced TBI. We investigated whether IJV compression can attenuate signs of TBI in rats after exposure to BOP. Animals were exposed to three 110 ± 5 kPa BOPs separated by 30 min intervals. Exposure to BOP resulted in a significant decrease of neuronal nuclei (NeuN) together with upregulation of aquaporin-4 (AQP-4), 3-nitrotyrosine (3-NT), and endothelin 1 receptor A (ETRA) expression in frontal cortex and hippocampus one day following exposures. IJV compression attenuated this BOP-induced increase in 3-NT in cortex and ameliorated the upregulation of AQP-4 in hippocampus. These results suggest that elevated intracranial pressure and intracerebral volume have neuroprotective potential in blast-induced TBI.
Collapse
|
50
|
Hua Y, Wang Y, Gu L. Primary blast waves induced brain dynamics influenced by head orientations. Biomed Eng Lett 2017; 7:253-259. [PMID: 30603173 DOI: 10.1007/s13534-017-0027-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/12/2017] [Accepted: 04/01/2017] [Indexed: 10/19/2022] Open
Abstract
There is controversy regarding the directional dependence of head responses subjected to blast loading. The goal of this work is to characterize the role of head orientation in the mechanics of blast wave-head interactions as well as the load transmitting to the brain. A three-dimensional human head model with anatomical details was reconstructed from computed tomography images. Three different head orientations with respect to the oncoming blast wave, i.e., front-on with head facing blast, back-on with head facing away from blast, and side-on with right side exposed to blast, were considered. The reflected pressure at the blast wave-head interface positively correlated with the skull curvature. It is evidenced by the maximum reflected pressure occurring at the eye socket with the largest curvature on the skull. The reflected pressure pattern along with the local skull areas could further influence the intracranial pressure distributions within the brain. We did find out that the maximum coup pressure of 1.031 MPa in the side-on case as well as the maximum contrecoup pressure of -0.124 MPa in the back-on case. Moreover, the maximum principal strain (MPS) was also monitored due to its indication to diffuse brain injury. It was observed that the peak MPS located in the frontal cortex region regardless of the head orientation. However, the local peak MPS within each individual function region of the brain depended on the head orientation. The detailed interactions between blast wave and head orientations provided insights for evaluating the brain dynamics, as well as biomechanical factors leading to traumatic brain injury.
Collapse
Affiliation(s)
- Yi Hua
- 1Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0656 USA
| | - Yugang Wang
- 2China JiLiang University, Hangzhou, 310018 Zhejiang China
| | - Linxia Gu
- 1Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0656 USA.,Nebraska Center for Materials and Nanoscience, Lincoln, NE 68588-0656 USA
| |
Collapse
|