1
|
Ayala Orozco C, Liu D, Li Y, Alemany LB, Pal R, Krishnan S, Tour JM. Visible-Light-Activated Molecular Nanomachines Kill Pancreatic Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:410-417. [PMID: 31815419 DOI: 10.1021/acsami.9b21497] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recently, synthetic molecular nanomachines (MNMs) that rotate unidirectionally in response to UV light excitation have been used to produce nanomechanical action on live cells to kill them through the drilling of holes in their cell membranes. In the work here, visible-light-absorbing MNMs are designed and synthesized to enable nanomechanical activation by 405 nm light, thereby using a wavelength of light that is less phototoxic than the previously employed UV wavelengths. Visible-light-absorbing MNMs that kill pancreatic cancer cells upon response to light activation are demonstrated. Evidence is presented to support the conclusion that MNMs do not kill cancer cells by the photothermal effect when used at low optical density. In addition, MNMs suppress the formation of reactive oxygen species, leaving nanomechanical action as the most plausible working mechanism for cell killing under the experimental conditions.
Collapse
Affiliation(s)
- Ciceron Ayala Orozco
- Department of Radiation Oncology , The University of Texas MD Anderson Cancer Center , Houston , Texas 77030 , United States
| | | | - Yongjiang Li
- Department of Radiation Oncology , The University of Texas MD Anderson Cancer Center , Houston , Texas 77030 , United States
| | | | - Robert Pal
- Department of Chemistry , Durham University , South Road , Durham DH1 3LE , U.K
| | - Sunil Krishnan
- Department of Radiation Oncology , The University of Texas MD Anderson Cancer Center , Houston , Texas 77030 , United States
| | | |
Collapse
|
2
|
Mura F, Gradziuk G, Broedersz CP. Mesoscopic non-equilibrium measures can reveal intrinsic features of the active driving. SOFT MATTER 2019; 15:8067-8076. [PMID: 31576897 DOI: 10.1039/c9sm01169b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Biological assemblies such as chromosomes, membranes, and the cytoskeleton are driven out of equilibrium at the nanoscale by enzymatic activity and molecular motors. Similar non-equilibrium dynamics can be realized in synthetic systems, such as chemically fueled colloidal particles. Characterizing the stochastic non-equilibrium dynamics of such active soft assemblies still remains a challenge. Recently, new non-invasive approaches have been proposed to determine the non-equilibrium behavior, which are based on detecting broken detailed balance in the stochastic trajectories of several coordinates of the system. Inspired by the method of two-point microrheology, in which the equilibrium fluctuations of a pair of probe particles reveal the viscoelastic response of an equilibrium system, here, we investigate whether we can extend such an approach to non-equilibrium assemblies: can one extract information on the nature of the active driving in a system from the analysis of a two-point non-equilibrium measure? We address this question theoretically in the context of a class of elastic systems, driven out of equilibrium by a spatially heterogeneous stochastic internal driving. We consider several scenarios for the spatial features of the internal driving that may be relevant in biological and synthetic systems, and investigate how such features of the active noise may be reflected in the long-range scaling behavior of two-point non-equilibrium measures.
Collapse
Affiliation(s)
- Federica Mura
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, D-80333 München, Germany.
| | - Grzegorz Gradziuk
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, D-80333 München, Germany.
| | - Chase P Broedersz
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, D-80333 München, Germany.
| |
Collapse
|
3
|
Rahman MA, Reuther C, Lindberg FW, Mengoni M, Salhotra A, Heldt G, Linke H, Diez S, Månsson A. Regeneration of Assembled, Molecular-Motor-Based Bionanodevices. NANO LETTERS 2019; 19:7155-7163. [PMID: 31512480 DOI: 10.1021/acs.nanolett.9b02738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The guided gliding of cytoskeletal filaments, driven by biomolecular motors on nano/microstructured chips, enables novel applications in biosensing and biocomputation. However, expensive and time-consuming chip production hampers the developments. It is therefore important to establish protocols to regenerate the chips, preferably without the need to dismantle the assembled microfluidic devices which contain the structured chips. We here describe a novel method toward this end. Specifically, we use the small, nonselective proteolytic enzyme, proteinase K to cleave all surface-adsorbed proteins, including myosin and kinesin motors. Subsequently, we apply a detergent (5% SDS or 0.05% Triton X100) to remove the protein remnants. After this procedure, fresh motor proteins and filaments can be added for new experiments. Both, silanized glass surfaces for actin-myosin motility and pure glass surfaces for microtubule-kinesin motility were repeatedly regenerated using this approach. Moreover, we demonstrate the applicability of the method for the regeneration of nano/microstructured silicon-based chips with selectively functionalized areas for supporting or suppressing gliding motility for both motor systems. The results substantiate the versatility and a promising broad use of the method for regenerating a wide range of protein-based nano/microdevices.
Collapse
Affiliation(s)
- Mohammad A Rahman
- Department of Chemistry and Biomedical Sciences , Linnaeus University , Kalmar , Sweden , 39182
| | - Cordula Reuther
- B CUBE - Center for Molecular Bioengineering , Technische Universität Dresden , Sachsen , Germany , 01062
- Max Planck Institute of Molecular Cell Biology and Genetics , 01307 Dresden , Germany
| | | | - Martina Mengoni
- B CUBE - Center for Molecular Bioengineering , Technische Universität Dresden , Sachsen , Germany , 01062
- Max Planck Institute of Molecular Cell Biology and Genetics , 01307 Dresden , Germany
| | - Aseem Salhotra
- Department of Chemistry and Biomedical Sciences , Linnaeus University , Kalmar , Sweden , 39182
| | - Georg Heldt
- Fraunhofer Institute for Electronic Nano Systems , Chemnitz , Germany 09126
| | | | - Stefan Diez
- B CUBE - Center for Molecular Bioengineering , Technische Universität Dresden , Sachsen , Germany , 01062
- Max Planck Institute of Molecular Cell Biology and Genetics , 01307 Dresden , Germany
| | - Alf Månsson
- Department of Chemistry and Biomedical Sciences , Linnaeus University , Kalmar , Sweden , 39182
| |
Collapse
|
4
|
Liu D, García-López V, Gunasekera RS, Greer Nilewski L, Alemany LB, Aliyan A, Jin T, Wang G, Tour JM, Pal R. Near-Infrared Light Activates Molecular Nanomachines to Drill into and Kill Cells. ACS NANO 2019; 13:6813-6823. [PMID: 31117378 DOI: 10.1021/acsnano.9b01556] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Using two-photon excitation (2PE), molecular nanomachines (MNMs) are able to drill through cell membranes and kill the cells. This avoids the use of the more damaging ultraviolet light that has been used formerly to induce this nanomechanical cell-killing effect. Since 2PE is inherently confocal, enormous precision can be realized. The MNMs can be targeted to specific cell surfaces through peptide addends. Further, the efficacy was verified through a controlled opening of synthetic bilayer vesicles using the 2PE excitation of MNM that had been trapped within the vesicles.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tao Jin
- Department of Chemistry , North Carolina State University , Raleigh , North Carolina 27695-8204 , United States
| | - Gufeng Wang
- Department of Chemistry , North Carolina State University , Raleigh , North Carolina 27695-8204 , United States
| | | | - Robert Pal
- Department of Chemistry , Durham University , South Road , DH1 3LE Durham , United Kingdom
| |
Collapse
|
5
|
Stoychev G, Reuther C, Diez S, Ionov L. Controlled Retention and Release of Biomolecular Transport Systems Using Shape-Changing Polymer Bilayers. Angew Chem Int Ed Engl 2016; 55:16106-16109. [PMID: 27882699 DOI: 10.1002/anie.201608299] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/02/2016] [Indexed: 11/11/2022]
Abstract
Biomolecular transport systems based on cytoskeletal filaments and motor proteins have become promising tools for a wide range of nanotechnological applications. In this paper, we report control of such transport systems using substrates with switchable shape. We demonstrate this approach on the example of microtubules gliding on surfaces of self-folding polymer bilayers with adsorbed kinesin motors. The polymer bilayers are able to undergo reversible transitions between flat and tube-like shapes that allow the externally controlled retention and release of gliding microtubules. The demonstrated approach, based on surfaces with reconfigurable topography, opens broad perspectives to control biomolecular transport systems for bioanalytical and sensing applications, as well as for the construction of subcellular compartments in the field of synthetic biology.
Collapse
Affiliation(s)
- Georgi Stoychev
- College of Engineering, College of Family and Consumer Sciences, University of Georgia, Athens, GA, 30602, USA.,Leibniz Institute of Polymer Research e.V. Dresden, Hohe Str. 6, 01069, Dresden, Germany
| | - Cordula Reuther
- B CUBE-Center for Molecular Bioengineering, Technische Universität Dresden and Max-Planck-Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
| | - Stefan Diez
- B CUBE-Center for Molecular Bioengineering, Technische Universität Dresden and Max-Planck-Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
| | - Leonid Ionov
- College of Engineering, College of Family and Consumer Sciences, University of Georgia, Athens, GA, 30602, USA.,Leibniz Institute of Polymer Research e.V. Dresden, Hohe Str. 6, 01069, Dresden, Germany
| |
Collapse
|
6
|
Stoychev G, Reuther C, Diez S, Ionov L. Controlled Retention and Release of Biomolecular Transport Systems Using Shape-Changing Polymer Bilayers. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201608299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Georgi Stoychev
- College of Engineering, College of Family and Consumer Sciences; University of Georgia; Athens GA 30602 USA
- Leibniz Institute of Polymer Research e.V. Dresden; Hohe Str. 6 01069 Dresden Germany
| | - Cordula Reuther
- B CUBE-Center for Molecular Bioengineering; Technische Universität Dresden and Max-Planck-Institute of Molecular Cell Biology and Genetics; 01307 Dresden Germany
| | - Stefan Diez
- B CUBE-Center for Molecular Bioengineering; Technische Universität Dresden and Max-Planck-Institute of Molecular Cell Biology and Genetics; 01307 Dresden Germany
| | - Leonid Ionov
- College of Engineering, College of Family and Consumer Sciences; University of Georgia; Athens GA 30602 USA
- Leibniz Institute of Polymer Research e.V. Dresden; Hohe Str. 6 01069 Dresden Germany
| |
Collapse
|
7
|
Florea L, Wagner K, Wagner P, Wallace GG, Benito-Lopez F, Officer DL, Diamond D. Photo-chemopropulsion--light-stimulated movement of microdroplets. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:7339-7345. [PMID: 25236879 DOI: 10.1002/adma.201403007] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 08/14/2014] [Indexed: 06/03/2023]
Abstract
The controlled movement of a chemical container by the light-activated expulsion of a chemical fuel, named here "photo-chemopropulsion", is an exciting new development in the array of mechanisms employed for controlling the movement of microvehicles, herein represented by lipid-based microdroplets. This "chemopropulsion" effect can be switched on and off, and is fully reversible.
Collapse
Affiliation(s)
- Larisa Florea
- Insight Centre for Data Analytics, National Centre for Sensor Research, Dublin City University, Dublin, 9, Ireland
| | | | | | | | | | | | | |
Collapse
|
8
|
Steuerwald D, Früh SM, Griss R, Lovchik RD, Vogel V. Nanoshuttles propelled by motor proteins sequentially assemble molecular cargo in a microfluidic device. LAB ON A CHIP 2014; 14:3729-3738. [PMID: 25008788 DOI: 10.1039/c4lc00385c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Nanoshuttles powered by the molecular motor kinesin have the potential to capture and concentrate rare molecules from solution as well as to transport, sort and assemble them in a high-throughput manner. One long-thought-of goal has been the realisation of a molecular assembly line with nanoshuttles as workhorses. To harness them for this purpose might allow the community to engineer novel materials and nanodevices. The central milestone towards this goal is to expose nanoshuttles to a series of different molecules or building blocks and load them sequentially to build hierarchical structures, macromolecules or materials. Here, we addressed this challenge by exploiting the synergy of two so far mostly complementary techniques, nanoshuttle-mediated active transport and pressure-driven passive transport, integrated into a single microfluidic device to demonstrate the realisation of a molecular assembly line. Multiple step protocols can thus be miniaturised to a highly parallelised and autonomous working lab-on-a-chip: in each reaction chamber, analytes or building blocks are captured from solution and are then transported by nanoshuttles across fluid flow boundaries in the next chamber. Cargo can thus be assembled, modified, analysed and eventually unloaded in a procedure that requires only one step by its operator.
Collapse
Affiliation(s)
- Dirk Steuerwald
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zürich, 8093 Zürich, Switzerland.
| | | | | | | | | |
Collapse
|
9
|
Ahmed S, Wang W, Mair LO, Fraleigh RD, Li S, Castro LA, Hoyos M, Huang TJ, Mallouk TE. Steering acoustically propelled nanowire motors toward cells in a biologically compatible environment using magnetic fields. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:16113-8. [PMID: 24345038 DOI: 10.1021/la403946j] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The recent discovery of fuel-free propulsion of nanomotors using acoustic energy has provided a new avenue for using nanomotors in biocompatible media. Crucial to the application of nanomotors in biosensing and biomedical applications is the ability to remotely control and steer them toward targets of interest, such as specific cells and tissues. We demonstrate in vitro magnetic steering of acoustically powered nanorod motors in a biologically compatible environment. Steering was accomplished by incorporating (40 ± 5) nm thick nickel stripes into the electrochemically grown nanowires. An external magnetic field of 40-45 mT was used to orient the motors, which were acoustically propelled along their long axes. In the absence of a magnetic field, (300 ± 30) nm diameter, (4.3 ± 0.2) μm long nanowires with (40 ± 5) nm thick magnetic stripes exhibit the same self-acoustophoretic behavior, including pattern formation into concentric nanowire circles, aligned spinning chains, and autonomous axial motion, as their non-magnetic counterparts. In a magnetic field, these wires and their paths are oriented as evidenced by their relatively linear trajectories. Coordinated motion of multiple motors and targeting of individual motors toward HeLa cells with micrometer-level precision was demonstrated.
Collapse
Affiliation(s)
- Suzanne Ahmed
- Department of Chemistry, ‡Department of Physics, §Department of Biochemistry and Molecular Biology, ∥Department of Engineering Science and Mechanics, and ⊥Department of Cell and Developmental Biology Graduate Program, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Miller-Jaster KN, Petrie Aronin CE, Guilford WH. A Quantitative Comparison of Blocking Agents in the In Vitro Motility Assay. Cell Mol Bioeng 2011. [DOI: 10.1007/s12195-011-0202-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
11
|
Malcos JL, Hancock WO. Engineering tubulin: microtubule functionalization approaches for nanoscale device applications. Appl Microbiol Biotechnol 2011; 90:1-10. [PMID: 21327409 DOI: 10.1007/s00253-011-3140-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 01/05/2011] [Accepted: 01/05/2011] [Indexed: 11/28/2022]
Abstract
With the emergences of engineered devices at microscale and nanoscale dimensions, there is a growing need for controlled actuation and transport at these length scales. The kinesin-microtubule system provides a highly evolved biological transport system well suited for these tasks. Accordingly, there is an ongoing effort to create hybrid nanodevices that integrate biological components with engineered materials for applications such as biological separations, nanoscale assembly, and sensing. Adopting microtubules for these applications generally requires covalent attachment of biotin, fluorophores, or other biomolecules to tubulin enable surface or cargo attachment, or visualization. This review summarizes different strategies for functionalizing microtubules for application-focused as well as basic biological research. These functionalization strategies must maintain the integrity of microtubule proteins so that they do not depolymerize and can be transported by kinesin motors, while adding utility such as the ability to reversibly bind cargo. The relevant biochemical and electrical properties of microtubules are discussed, as well as strategies for microtubule stabilization and long-term storage. Next, attachment strategies, such as antibodies and DNA hybridization that have proven useful to date, are discussed in the context of ongoing hybrid nanodevice research. The review concludes with a discussion of less explored opportunities, such as harnessing the utility of tubulin posttranslational modifications and the use of recombinant tubulin that may enable future progress in nanodevice development.
Collapse
Affiliation(s)
- Jennelle L Malcos
- Department of Biology, The Pennsylvania State University, 208 Muller Lab, University Park, PA 16802, USA
| | | |
Collapse
|