1
|
Tanimura S, Tokunaga T, Fukuma Y, Kawakami J, Tian X, Ideo K, Yonemitsu R, Matsushita K, Sugimoto K, Yugami M, Hisanaga S, Nakamura T, Uehara Y, Masuda T, Karasugi T, Miyamoto T. Aging negatively affects postoperative recovery of biomechanical strength through decreased recruitment of scleraxis +/SRY-box-containing gene 9 + enthesis-related progenitors after rotator cuff repair in rats. J Shoulder Elbow Surg 2024:S1058-2746(24)00870-X. [PMID: 39638113 DOI: 10.1016/j.jse.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/11/2024] [Accepted: 10/02/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Although older adult patients have a higher retear rate after rotator cuff (RC) repair, the influence of aging on the healing process remains unclear. During mouse enthesis development, a multipotent progenitor coexpressing scleraxis (Scx) and SRY-box 9 (Sox9) contributes to enthesis formation. Scx+/Sox9+ cells may act as enthesis progenitors even during postnatal healing, and their number decreases with maturation. However, the pathophysiology of decreased RC healing ability due to aging remains unclear. We aimed to evaluate the effects of aging on tendon-to-bone healing after surgical RC repair in rats through biomechanical and histological analyses of Scx+ and Sox9+ progenitors in a ScxGFP transgenic rat model. METHODS This was a controlled laboratory study. Adult Sprague-Dawley rats (n = 111) underwent unilateral surgery for supraspinatus tendon repair immediately after transection. The rats were divided into aged (95 week old) and control (12 week old) groups. The effects of aging were assessed using biomechanical tests at 6 weeks postoperatively and histologically at 2 and 6 weeks postoperatively. ScxGFP transgenic rats were used for the immunohistochemical assessment of Scx- and Sox9-expressing progenitors during the repair process. Sox9, Scx, and tenomodulin expression was assessed using real-time reverse transcription polymerase chain reaction. RESULTS In the biomechanical test at 6 weeks postoperatively, the aged group had lower ultimate load to failure (control: 20.4 ± 6.1 N, aged: 14.9 ± 6.6 N, P = .007), stiffness (control: 16.1 ± 6.2 N/mm, aged: 12.6 ± 5.5 N/mm, P = .023), and ultimate stress to failure (control: 6.0 ± 3.4 N/mm2, aged: 3.4 ± 2.5 N/mm2, P < .001) than the control group. The total histological score of the aged group was lower than that of the control group at 6 weeks postoperatively (control: 8.8 ± 0.8, aged: 5.8 ± 0.4, P = .029). Immunohistochemistry tests showed that the percentages of Sox9+ (control: 6.6 ± 1.1, aged: 2.0 ± 1.0, P = .029) and Scx+/Sox9+ (control: 3.6 ± 0.8, aged: 1.1 ± 0.6, P = .029) cells at the reparative site were lower in the aged group than in the control group at 2 weeks postoperatively. CONCLUSION In a rat RC tendon-to-bone healing model, the decreased recruitment of Scx+/Sox9+ enthesis-related progenitor cells in the early phase may be associated with delayed reparative tissue remodeling in aging animals. These findings encourage the development of therapeutic strategies that biologically promote healing and reduce postoperative retears in older adult patients.
Collapse
Affiliation(s)
- Shuntaro Tanimura
- Department of Orthopedic Surgery, Faculty of Life Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Takuya Tokunaga
- Department of Orthopedic Surgery, Faculty of Life Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan.
| | - Yuko Fukuma
- Department of Orthopedic Surgery, Faculty of Life Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Junki Kawakami
- Department of Orthopedic Surgery, Faculty of Life Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Xiao Tian
- Department of Orthopedic Surgery, Faculty of Life Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Katsumasa Ideo
- Department of Orthopedic Surgery, Faculty of Life Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Ryuji Yonemitsu
- Department of Orthopedic Surgery, Faculty of Life Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Kozo Matsushita
- Department of Orthopedic Surgery, Faculty of Life Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Kazuki Sugimoto
- Department of Orthopedic Surgery, Faculty of Life Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Masaki Yugami
- Department of Orthopedic Surgery, Faculty of Life Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Satoshi Hisanaga
- Department of Orthopedic Surgery, Faculty of Life Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Takayuki Nakamura
- Department of Orthopedic Surgery, Faculty of Life Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Yusuke Uehara
- Department of Orthopedic Surgery, Faculty of Life Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Tetsuro Masuda
- Department of Orthopedic Surgery, Faculty of Life Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Tatsuki Karasugi
- Department of Orthopedic Surgery, Faculty of Life Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Takeshi Miyamoto
- Department of Orthopedic Surgery, Faculty of Life Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan.
| |
Collapse
|
2
|
Monteleone AS, Salerno M, Mondini Trissino da Lodi C, Gonalba GC, Candrian C, Filardo G. The influence of sex is a neglected focus in rotator cuff repair: A systematic review and meta-analysis. Knee Surg Sports Traumatol Arthrosc 2024; 32:2699-2710. [PMID: 38678392 DOI: 10.1002/ksa.12201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/26/2024] [Accepted: 04/02/2024] [Indexed: 04/30/2024]
Abstract
PURPOSE Rotator cuff (RC) disorders are the most common cause of shoulder disability. The aim of this study was to quantify the evidence on the sex-related differences in RC repair. METHODS A systematic review of the literature was performed in January 2023 in PubMed, Wiley Cochrane Library and Web of Science on research articles on humans with RC tears treated surgically. A meta-analysis was performed to compare results in men and women. The Downs and Black score and the modified Coleman methodology score (MCMS) were used to assess the retrieved studies. RESULTS A total of 39,909 patients were enroled in the 401 studies analysed (45% women, 55% men). A trend toward more sex-balanced recruitment was observed over time. Only 4% of the studies on 1.5% of the documented patients presented disaggregated outcome data and were quantitatively analysed. A tendency for lower range of motion values after surgery was found for external shoulder rotation in women, with 39.9° ± 6.9° versus 45.3° ± 4.1° in men (p = 0.066). According to Downs and Black scores, four studies were good and 12 fair, with a main MCMS score of 69/100. CONCLUSION There is a lack of awareness on the importance to document women- and men-specific data. Only 4% of the articles disaggregated data, and it was possible to analyse only 1.5% of the literature population, a sample which cannot be considered representative of all patients. The lack of disaggregated data is alarming and calls for action to better study men and women differences to optimise the management of RC tears. This will be necessary to provide sex-specific information that could be of clinical relevance when managing RC repair. LEVEL OF EVIDENCE Level IV.
Collapse
Affiliation(s)
| | - Manuela Salerno
- Applied and Translational Research Center, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | | | - Christian Candrian
- Service of Orthopaedics and Traumatology, Department of Surgery, EOC, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Giuseppe Filardo
- Service of Orthopaedics and Traumatology, Department of Surgery, EOC, Lugano, Switzerland
- Applied and Translational Research Center, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| |
Collapse
|
3
|
Amin H, Tapp A, Kailes B, Sheean A, Bulysheva A, Francis MP. Multiaxial filament winding of biopolymer microfibers with a collagen resin binder for orthobiologic medical device biomanufacturing. Biomed Mater 2024; 19:055013. [PMID: 38815607 DOI: 10.1088/1748-605x/ad5243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/30/2024] [Indexed: 06/01/2024]
Abstract
Multiaxial filament winding is an additive manufacturing technique used extensively in large industrial and military manufacturing yet unexplored for biomedical uses. This study adapts filament winding to biomanufacture scalable, strong, three-dimensional microfiber (3DMF) medical device implants for potential orthopedic applications. Polylactide microfiber filaments were wound through a collagen 'resin' bath to create organized, stable orthobiologic implants, which are sized for common ligament (e.g. anterior cruciate ligament) and tendon (e.g. rotator cuff) injuries and can be manufactured at industrial scale using a small footprint, economical, high-output benchtop system. Ethylene oxide or electron beam sterilized 3DMF samples were analyzed by scanning electron microscopy (SEM), underwent ASTM1635-based degradation testing, tensile testing, ISO 10993-based cytocompatibility, and biocompatibility testing, quantified for human platelet-rich plasma (PRP) absorption kinetics, and examined for adhesion of bioceramics and lyophilized collagen after coating. 3DMF implants had consistent fiber size and high alignment by SEM. Negligible mass and strength loss were noted over 4 months in culture. 3DMF implants initially exceeded 1000 N hydrated tensile strength and retained over 70% strength through 4 months in culture, significantly stronger than conventionally produced implants made by fused fiber deposition 3D printing. 3DMF implants absorbed over 3xtheir weight in PRP within 5 min, were cytocompatible and biocompatible in vivo in rabbits, and could readily bind tricalcium phosphate and calcium carbonate coatings discretely on implant ends for further orthobiologic material functionalization. The additive manufacturing process further enabled engineering implants with suture-shuttling passages for facile arthroscopic surgical delivery. This accessible, facile, economical, and rapid microfiber manufacturing platform presents a new method to engineer high-strength, flexible, low-cost, bio-based implants for orthopedic and extended medical device applications.
Collapse
Affiliation(s)
- Heather Amin
- Asante Bio, Tampa, FL 33612, United States of America
| | - Austin Tapp
- Asante Bio, Tampa, FL 33612, United States of America
- National Institutes of Health, Bethesda, MD 20892, United States of America
| | - Benjamin Kailes
- Department of Medical Engineering, University of South Florida, Tampa, FL 33612, United States of America
| | - Andrew Sheean
- San Antonio Military Medical Center, Department of Orthopedic Surgery, San Antonio, TX, United States of America
| | - Anna Bulysheva
- Department of Medical Engineering, University of South Florida, Tampa, FL 33612, United States of America
| | - Michael P Francis
- Asante Bio, Tampa, FL 33612, United States of America
- Department of Orthopaedic Surgery, University of South Florida Morsani College of Medicine, Tampa, FL 33612, United States of America
| |
Collapse
|
4
|
Bernier E, Driscoll M. Numerical investigation of intra-abdominal pressure and spinal load-sharing upon the application of an abdominal belt. J Biomech 2023; 161:111863. [PMID: 37977959 DOI: 10.1016/j.jbiomech.2023.111863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/04/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
Chronic low back pain patients may experience spinal instability. Abdominal belts (ABs) have been shown to improve spine stability, trunk stiffness, and resiliency to spinal perturbations. However, research on the contributing mechanisms is inconclusive. ABs may increase intra-abdominal pressure (IAP) and reduce paraspinal soft tissue contribution to spine stability without increasing spinal compressive loads. A finite element model (FEM) of the spine inclusive of the T1-S1 vertebrae, intervertebral discs (IVDs), ribcage, pelvis, soft tissues, and abdominal cavity, without active muscle forces was developed. An identical FEM with an AB was developed. Both FEMs underwent trunk flexion. Following validation, the models' intervertebral rotation (IVR), IAP, IVD pressure, and tensile stress in the multifidus (MF), erector spinae (ES), and thoracolumbar fascia (TLF) were compared. The inclusion of an AB resulted in a 3.8 kPa IAP increase, but a decreased average soft tissue tensile stress of 0.28 kPa. The TLF withstood the majority of tension being transferred across the paraspinal soft tissues (>70 %). The average IVR in the AB model decreased by 10 %, with the lumbar spine experiencing the largest reduction. The lumbar IVDs of the AB model likewise showed a 31 % reduction in average IVD pressure. Using an AB improved trunk bending stiffness, primarily in the lumbar spine. Wearing an AB had minimal effect on reducing tensile stress in theES. The skewed stress distribution towards the TLF suggests its large contribution to spine stability and the potential advantage in unloading the structure when wearing an AB, measured herein at8 %.
Collapse
Affiliation(s)
- Emeric Bernier
- Musculoskeletal Biomechanics Research Lab, Department of Mechanical Engineering, McGill University, 845 Sherbrooke St. W, Montréal, H3A 0G4, Québec, Canada; Orthopaedic Research Lab, Research Institute MUHC, Montreal General Hospital, McGill University, Montréal, H3G 1A4, Québec, Canada
| | - Mark Driscoll
- Musculoskeletal Biomechanics Research Lab, Department of Mechanical Engineering, McGill University, 845 Sherbrooke St. W, Montréal, H3A 0G4, Québec, Canada; Orthopaedic Research Lab, Research Institute MUHC, Montreal General Hospital, McGill University, Montréal, H3G 1A4, Québec, Canada.
| |
Collapse
|
5
|
Lake SP, Snedeker JG, Wang VM, Awad H, Screen HRC, Thomopoulos S. Guidelines for ex vivo mechanical testing of tendon. J Orthop Res 2023; 41:2105-2113. [PMID: 37312619 PMCID: PMC10528429 DOI: 10.1002/jor.25647] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/15/2023]
Abstract
Tendons are critical for the biomechanical function of joints. Tendons connect muscles to bones and allow for the transmission of muscle forces to facilitate joint motion. Therefore, characterizing the tensile mechanical properties of tendons is important for the assessment of functional tendon health and efficacy of treatments for acute and chronic injuries. In this guidelines paper, we review methodological considerations, testing protocols, and key outcome measures for mechanical testing of tendons. The goal of the paper is to present a simple set of guidelines to the nonexpert seeking to perform tendon mechanical tests. The suggested approaches provide rigorous and consistent methodologies for standardized biomechanical characterization of tendon and reporting requirements across laboratories.
Collapse
Affiliation(s)
- Spencer P. Lake
- Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis, Missouri, USA
| | | | - Vincent M. Wang
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia, USA
| | - Hani Awad
- Department of Orthopaedics, Department of Biomedical Engineering, University of Rochester, Rochester, New York, USA
| | - Hazel R. C. Screen
- School of Engineering & Materials Science, Queen Mary University of London, London, UK
| | - Stavros Thomopoulos
- Department of Orthopaedic Surgery, Department of Biomedical Engineering, Columbia University, New York, New York, USA
| |
Collapse
|
6
|
Griffith KM, Hammer LC, Iannuzzi NP, Takatani KC, Hsu JE, Cotton JD, Gee AO, Gardner RJ, Lack WD. Review of human supraspinatus tendon mechanics. Part II: tendon healing response and characterization of tendon health. J Shoulder Elbow Surg 2022; 31:2678-2682. [PMID: 35803551 DOI: 10.1016/j.jse.2022.05.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/18/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023]
Abstract
Overuse injuries of the rotator cuff, particularly of the supraspinatus tendon (SST), are highly prevalent and debilitating in work, sport, and daily activities. Despite the clinical significance of these injuries, there remains a large degree of uncertainty regarding the pathophysiology of injury, optimal methods of nonoperative and operative repair, and how to adequately assess tendon injury and healing. The tendon response to fatigue damage resulting from overuse is different from that of acute rupture and results in either an adaptive (healing) or a maladaptive (degenerative) response. Factors associated with the degenerative response include increasing age, smoking, hypercholesterolemia, biological sex (variable by tendon), diabetes mellitus, and excessive load post fatigue damage. After injury, the average healing rate of tendon is approximately 1% per day and may be significantly influenced by biologic sex (females have lower collagen synthesis rates) and excessive load after damage. Although magnetic resonance imaging (MRI) is considered the gold standard in assessing acute tears as well as tendinopathic change in the SST, ultrasonography has proven to be a valuable tool to measure tendinopathic change in real time. Ultrasonography can determine multiple mechanical and structural parameters of the SST that are altered in fatigue loading. Thus, ultrasonography may be utilized to understand how these parameters change in response to SST overuse, and may aid in determining the activity level that places the SST at greater risk of rupture.
Collapse
Affiliation(s)
- Kyle M Griffith
- University of Washington School of Medicine, Seattle, WA, USA.
| | | | - Nicholas P Iannuzzi
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, USA; Orthopedics Section S-112-ORT, VA Puget Sound Health Care System, Seattle, WA, USA
| | - Karen C Takatani
- Boeing Research & Technology, The Boeing Company, Seattle, WA, USA
| | - Jason Edward Hsu
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, USA
| | | | - Albert O Gee
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, USA
| | | | - William D Lack
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, USA; Orthopedics Section S-112-ORT, VA Puget Sound Health Care System, Seattle, WA, USA
| |
Collapse
|
7
|
Castile RM, Cannon PC, Smith MV, Brophy RH, Lake SP. Donor age and sex have limited effects on the mechanical and microstructural properties of human connective tissues. J Orthop Res 2022; 40:1844-1852. [PMID: 34676910 DOI: 10.1002/jor.25200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/15/2021] [Accepted: 10/18/2021] [Indexed: 02/04/2023]
Abstract
Connective tissues, such as tendons, ligaments, and capsules, play a large role in locomotion and joint stability and are often subjected to traumatic injuries and degeneration. The purpose of this study was to evaluate if the mechanical and microstructural properties of connective tissues correlate with the age and sex of the human donor. Dissected samples were prepared for mechanical testing, consisting of 10 cycles of preconditioning, a stress-relaxation ramp and hold, and a quasi-static ramp to failure. During the testing protocol, the microstructural organization of tissues was analyzed using quantitative polarized light imaging. A linear mixed model was used to assess whether tissue type, donor age, or donor sex were significantly associated with mechanical and microstructural tissue properties. Tissue type had a significant effect on all parameters, while donor age and sex did not. Groupings by tissue type (i.e., tendon vs. ligament vs. capsule) were evident for microstructural data, with tendons having a tighter grouping and ligaments having a larger spread of values. The interaction of tissue type and age yielded a significant effect for linear modulus only (p = 0.007), with the palmaris tendon appearing to have the largest contribution to this effect. There were no significant interaction effects between sex and tissue type or donor age. Donor age appears to affect linear modulus in some, but not all, tissue types. Otherwise, age and sex do not have significant effects on the mechanical and microstructural properties of the range of connective tissues that were analyzed in this study.
Collapse
Affiliation(s)
- Ryan M Castile
- Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Paul C Cannon
- Statistics and Data Science, Bringham Young University - Idaho, Rexburg, Idaho, USA
| | - Matthew V Smith
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Robert H Brophy
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Spencer P Lake
- Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis, Missouri, USA.,Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
8
|
Prabhath A, Vernekar VN, Vasu V, Badon M, Avochinou JE, Asandei AD, Kumbar SG, Weber E, Laurencin CT. Kinetic degradation and biocompatibility evaluation of polycaprolactone-based biologics delivery matrices for regenerative engineering of the rotator cuff. J Biomed Mater Res A 2021; 109:2137-2153. [PMID: 33974735 PMCID: PMC8440380 DOI: 10.1002/jbm.a.37200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/26/2021] [Accepted: 04/07/2021] [Indexed: 11/06/2022]
Abstract
Whereas synthetic biodegradable polymers have been successfully applied for the delivery of biologics in other tissues, the anatomical complexity, poor blood supply, and reduced clearance of degradation byproducts in the rotator cuff create unique design challenges for implantable biomaterials. Here, we investigated lower molecular weight poly-lactic acid co-epsilon-caprolactone (PLA-CL) formulations with varying molecular weight and film casting concentrations as potential matrices for the therapeutic delivery of biologics in the rotator cuff. Matrices were fabricated with target footprint dimensions to facilitate controlled and protected release of model biologic (Bovine Serum Albumin), and anatomically-unhindered implantation under the acromion in a rodent model of acute rotator cuff repair. The matrix obtained from the highest polymeric-film casting concentration showed a controlled release of model biologics payload. The tested matrices rapidly degraded during the initial 4 weeks due to preferential hydrolysis of the lactide-rich regions within the polymer, and subsequently maintained a stable molecular weight due to the emergence of highly-crystalline caprolactone-rich regions. pH evaluation in the interior of the matrix showed minimal change signifying lesser accumulation of acidic degradation byproducts than seen in other bulk-degrading polymers, and maintenance of conformational stability of the model biologic payload. The context-dependent biocompatibility evaluation in a rodent model of acute rotator cuff repair showed matrix remodeling without eliciting excessive inflammatory reaction and is anticipated to completely degrade within 6 months. The engineered PLA-CL matrices offer unique advantages in controlled and protected biologic delivery, non-toxic biodegradation, and biocompatibility overcoming several limitations of commonly-used biodegradable polyesters.
Collapse
Affiliation(s)
- Anupama Prabhath
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, Connecticut, USA
- Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut, USA
- Department of Biomedical Engineering, UConn Health, Farmington, Connecticut, USA
| | - Varadraj N Vernekar
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, Connecticut, USA
- Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut, USA
| | - Vignesh Vasu
- Department of Material Science and Engineering, University of Connecticut, Storrs, Connecticut, USA
| | - Mary Badon
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, Connecticut, USA
| | - Jean-Emmanuel Avochinou
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, Connecticut, USA
| | - Alexandru D Asandei
- Department of Material Science and Engineering, University of Connecticut, Storrs, Connecticut, USA
| | - Sangamesh G Kumbar
- Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut, USA
- Department of Biomedical Engineering, UConn Health, Farmington, Connecticut, USA
- Department of Material Science and Engineering, University of Connecticut, Storrs, Connecticut, USA
| | - Eckhard Weber
- Musculoskeletal Division, Novartis Institutes for BioMedical Research (NIBR), Basel, Switzerland
| | - Cato T Laurencin
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, Connecticut, USA
- Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut, USA
- Department of Biomedical Engineering, UConn Health, Farmington, Connecticut, USA
- Department of Material Science and Engineering, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
9
|
Bolam SM, Satokar VV, Konar S, Coleman B, Monk AP, Cornish J, Munro JT, Vickers MH, Albert BB, Musson DS. A Maternal High Fat Diet Leads to Sex-Specific Programming of Mechanical Properties in Supraspinatus Tendons of Adult Rat Offspring. Front Nutr 2021; 8:729427. [PMID: 34589513 PMCID: PMC8473632 DOI: 10.3389/fnut.2021.729427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/16/2021] [Indexed: 12/16/2022] Open
Abstract
Background: Over half of women of reproductive age are now overweight or obese. The impact of maternal high-fat diet (HFD) is emerging as an important factor in the development and health of musculoskeletal tissues in offspring, however there is a paucity of evidence examining its effects on tendon. Alterations in the early life environment during critical periods of tendon growth therefore have the potential to influence tendon health that cross the lifespan. We hypothesised that a maternal HFD would alter biomechanical, morphological and gene expression profiles of adult offspring rotator cuff tendon. Materials and Methods: Female Sprague-Dawley rats were randomly assigned to either: control diet (CD; 10% kcal or 43 mg/g from fat) or HFD (45% kcal or 235 mg/g from fat) 14 days prior to mating and throughout pregnancy and lactation. Eight female and male offspring from each maternal diet group were weaned onto a standard chow diet and then culled at postnatal day 100 for tissue collection. Supraspinatus tendons were used for mechanical testing and histological assessment (cellularity, fibre organisation, nuclei shape) and tail tendons were collected for gene expression analysis. Results: A maternal HFD increased the elasticity (Young's Modulus) in the supraspinatus tendon of male offspring. Female offspring tendon biomechanical properties were not affected by maternal HFD. Gene expression of SCX and COL1A1 were reduced in male and female offspring of maternal HFD, respectively. Despite this, tendon histological organisation were similar between maternal diet groups in both sexes. Conclusion: An obesogenic diet during pregnancy increased tendon elasticity in male, but not female, offspring. This is the first study to demonstrate that maternal diet can modulate the biomechanical properties of offspring tendon. A maternal HFD may be an important factor in regulating adult offspring tendon homeostasis that may predispose offspring to developing tendinopathies and adverse tendon outcomes in later life.
Collapse
Affiliation(s)
- Scott M. Bolam
- Bone and Joint Laboratory, University of Auckland, Auckland, New Zealand
- Department of Orthopaedic Surgery, Auckland City Hospital, Auckland, New Zealand
| | - Vidit V. Satokar
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Subhajit Konar
- Bone and Joint Laboratory, University of Auckland, Auckland, New Zealand
| | - Brendan Coleman
- Department of Orthopaedic Surgery, Middlemore Hospital, Auckland, New Zealand
| | - Andrew Paul Monk
- Department of Orthopaedic Surgery, Auckland City Hospital, Auckland, New Zealand
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Jillian Cornish
- Bone and Joint Laboratory, University of Auckland, Auckland, New Zealand
| | - Jacob T. Munro
- Bone and Joint Laboratory, University of Auckland, Auckland, New Zealand
- Department of Orthopaedic Surgery, Auckland City Hospital, Auckland, New Zealand
| | - Mark H. Vickers
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | | | - David S. Musson
- Bone and Joint Laboratory, University of Auckland, Auckland, New Zealand
- Department of Nutrition, University of Auckland, Auckland, New Zealand
| |
Collapse
|
10
|
The examination of stress shielding in a finite element lumbar spine inclusive of the thoracolumbar fascia. Med Biol Eng Comput 2021; 59:1621-1628. [PMID: 34273037 DOI: 10.1007/s11517-021-02408-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 07/04/2021] [Indexed: 12/19/2022]
Abstract
Despite the prevalence of low back pain (LBP) in society, the pathomechanism of LBP continues to elude researchers. LBP patients have demonstrated morphological and material property changes to their lumbar soft tissues, potentially leading to irregular load sharing within the lumbar spine. This study aims to analyze potential stress shielding consequential of augmented soft tissue properties via the comparison of a healthy and LBP finite element models. The models developed in this study include the vertebrae, intervertebral discs and soft tissues from L1-S1. Soft tissue morphology and material properties for the LBP model were augmented to reflect documented clinical findings. Model validation preceded testing and was confirmed through comparison to the available literature. Relative to the healthy model, the LBP model demonstrated an increase in stress by 15.6%, with 99.8% of this stress increase being distributed towards the thoracolumbar fascia. The majority of stress skewed towards the fascia may indicate a potential stress allocation bias whereby the lumbar muscles are unable to receive regular loading, leading to stress shielding. This load allocation bias and subsequent stress shielding may potentially contribute to the progression and pathomechanism of LBP but prospective studies would be required to make that link.
Collapse
|
11
|
Huegel J, Nuss CA, Chan PYW, Cheema AN, Kuntz AF, Soslowsky LJ. Chronic Nicotine Exposure Minimally Affects Rat Supraspinatus Tendon Properties and Bone Microstructure. Ann Biomed Eng 2021; 49:1333-1341. [PMID: 33145676 PMCID: PMC8062272 DOI: 10.1007/s10439-020-02667-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/20/2020] [Indexed: 11/26/2022]
Abstract
Cigarette smoking is the largest cause of preventable deaths, and a known risk factor for musculoskeletal issues including rotator cuff tendon tears. Tendon degeneration is believed to be due in part to changes in tendon cell health and collagen structure. Several studies have demonstrated that exposure to nicotine negatively impacts tendon healing, but surprisingly, nicotine exposure was shown to increase rat supraspinatus tendon stiffness. In order to address this seeming contradiction, the objective of this study was to comprehensively investigate the effects of long-term (18 weeks) exposure of nicotine on tendon-to-bone microstructural properties in a rat model. We hypothesized that long term subcutaneous nicotine delivery would lead to diminished tendon mechanical properties, decreased bone microstructure in the humeral head, and altered tendon cell morphology compared to age-matched control rats receiving saline. Results demonstrated a small decrease in tendon size and stiffness, with decreased cell density in the tendon midsubstance. However, no differences were found in the enthesis fibrocartilage or in the underlying subchondral or trabecular bone. In conclusion, our study revealed limited effects of nicotine on the homeostatic condition of the supraspinatus tendon, enthesis, and underlying bone. Future studies are needed to ascertain effects of other components of tobacco products.
Collapse
Affiliation(s)
- Julianne Huegel
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, 3450 Hamilton Walk, 371 Stemmler Hall, Philadelphia, PA, 19104-6081, USA
| | - Courtney A Nuss
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, 3450 Hamilton Walk, 371 Stemmler Hall, Philadelphia, PA, 19104-6081, USA
| | - Peter Y W Chan
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, 3450 Hamilton Walk, 371 Stemmler Hall, Philadelphia, PA, 19104-6081, USA
| | - Adnan N Cheema
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, 3450 Hamilton Walk, 371 Stemmler Hall, Philadelphia, PA, 19104-6081, USA
| | - Andrew F Kuntz
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, 3450 Hamilton Walk, 371 Stemmler Hall, Philadelphia, PA, 19104-6081, USA
| | - Louis J Soslowsky
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, 3450 Hamilton Walk, 371 Stemmler Hall, Philadelphia, PA, 19104-6081, USA.
| |
Collapse
|
12
|
de Campos Azevedo CI, Leiria Pires Gago Ângelo AC, Quental C, Gonçalves S, Folgado J, Ferreira N, Sevivas N. Proximal and mid-thigh fascia lata graft constructs used for arthroscopic superior capsule reconstruction show equivalent biomechanical properties: an in vitro human cadaver study. JSES Int 2021; 5:439-446. [PMID: 34136851 PMCID: PMC8178621 DOI: 10.1016/j.jseint.2021.01.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Background The proximal fascia lata (FL) graft construct used for arthroscopic superior capsule reconstruction (ASCR) is openly harvested, whereas the mid-thigh FL graft construct is minimally invasively harvested. The purpose of the current study was to compare the biomechanical properties of proximal thigh and mid-thigh-harvested FL graft constructs used for ASCR. The hypothesis was that, despite the different morphological characteristics of the proximal thigh and mid-thigh FL graft constructs used for ASCR, their biomechanical properties would not significantly differ. This information may assist orthopedic surgeons in the choice of the harvest location, technique, and type of graft construct for ASCR. Methods Forty FL specimens, 20 proximal thigh and 20 mid-thigh, were harvested from the lateral thighs of 10 fresh human cadavers (6 male, 4 female; average age, 58.60 ± 17.20 years). The thickness of each 2-layered proximal thigh and 6-layered mid-thigh FL graft construct was measured. Each construct was mechanically tested in the longitudinal direction, and the stiffness and Young’s modulus were computed. Data were compared by Welch’s independent t-test and analysis of variance, and statistical significance was set at P < .05. Results The average thickness of the proximal thigh FL graft construct (7.17 ± 1.97 mm) was significantly higher than that of the mid-thigh (5.54 ± 1.37 mm) [F (1,32) = 7.333, P = .011]. The average Young’s modulus of the proximal thigh and mid-thigh graft constructs was 32.85 ± 19.54 MPa (range, 7.94 – 75.14 MPa; 95% confidence interval [CI], 23.71 – 42.99) and 44.02 ± 31.29 MPa (range, 12.53 –120.33 MPa; 95% CI, 29.38 – 58.66), respectively. The average stiffness of the proximal thigh and mid-thigh graft constructs was 488.96 ± 267.80 N/mm (range, 152.96 – 1086.49 N/mm; 95% CI, 363.63 – 614.30) and 562.39 ± 294.76 N/mm (range, 77.46 – 1229.68 N/mm; 95% CI, 424.44 – 700.34), respectively. There was no significant difference in the average Young’s modulus or stiffness between the proximal thigh and mid-thigh graft constructs (P = .185 and P = .415, respectively). Conclusion Despite the different morphological characteristics of the proximal thigh and mid-thigh FL graft constructs used for ASCR, their Young’s modulus and stiffness did not significantly differ.
Collapse
Affiliation(s)
- Clara Isabel de Campos Azevedo
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal.,Hospital dos SAMS de Lisboa, Lisbon, Portugal
| | | | - Carlos Quental
- IDMEC - Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Sérgio Gonçalves
- IDMEC - Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - João Folgado
- IDMEC - Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Nuno Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Grupo Trofa Saúde, Portugal.,Hospital de Santa Maria Maior, Barcelos, Portugal
| | - Nuno Sevivas
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Grupo Trofa Saúde, Portugal.,Clínica do Dragão, Espregueira-Mendes Sports Centre - FIFA Medical Centre of Excellence, Porto, Portugal
| |
Collapse
|
13
|
Investigation of physiological stress shielding within lumbar spinal tissue as a contributor to unilateral low back pain: A finite element study. Comput Biol Med 2021; 133:104351. [PMID: 33812314 DOI: 10.1016/j.compbiomed.2021.104351] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 11/20/2022]
Abstract
INTRODUCTION The pathomechanism of low back pain (LBP) remains unknown. Unilateral LBP patients have demonstrated ipsilateral morphological and material property changes within the lumbar soft tissues, potentially leading to asymmetric tissue loading. Through the comparison of healthy and unilateral LBP validated finite element models (FEMs), this study investigates potential stress shielding consequential of spinal tissue property augmentation. METHODS Two FEMs of the musculoskeletal system - one demonstrating healthy and unilateral LBP conditions - were developed undergoing 30-degree flexion. FEMs included the vertebrae, intervertebral discs, and soft tissues from L1-S1. Material properties selected for the soft tissues were retrieved from published literature. To reflect unilateral LBP, the paraspinal morphology was atrophied, while the tissue moduli were increased. The symptomatic thoracolumbar fascia (TLF) was uniformly increased. Validation of the models preceded testing. RESULTS Model validation in spinal flexion was accomplished through comparison to literature. Compared to the healthy model, the unilateral LBP multifidus (MF), longissimus thoracis (LT), and TLF exhibited average tension changes of +7.9, -5.1, and +9.3%, respectively. Likewise, the symptomatic MF, LT, and TLF exhibited tension changes of +19.0, -10.4, and +16.1% respectively, whereas the asymptomatic MF, LT, and TLF exhibited -4.0, -2.0, and +0.4% changes in tension, respectively. CONCLUSION Relative to the healthy tissues, the symptomatic LBP soft tissues demonstrated a 19.5 kPa increase in stress, with 99.8% of this increase distributed towards the TLF, suggesting a load allocation bias within the symptomatic unilateral LBP tissues. Consequentially, symptomatic paraspinal muscles may be unable to withstand loading, leading to stress shielding.
Collapse
|
14
|
Use of Vibrational Optical Coherence Tomography to Analyze the Mechanical Properties of Composite Materials. SENSORS 2021; 21:s21062001. [PMID: 33809029 PMCID: PMC7998841 DOI: 10.3390/s21062001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/26/2021] [Accepted: 03/06/2021] [Indexed: 11/24/2022]
Abstract
Energy storage and dissipation by composite materials are important design parameters for sensors and other devices. While polymeric materials can reversibly store energy by decreased chain randomness (entropic loss) they fail to be able to dissipate energy effectively and ultimately fail due to fatigue and molecular chain breakage. In contrast, composite tissues, such as muscle and tendon complexes, store and dissipate energy through entropic changes in collagen (energy storage) and viscous losses (energy dissipation) by muscle fibers or through fluid flow of the interfibrillar matrix. In this paper we review the molecular basis for energy storage and dissipation by natural composite materials in an effort to aid in the development of improved substrates for sensors, implants and other commercial devices. In addition, we introduce vibrational optical coherence tomography, a new technique that can be used to follow energy storage and dissipation by composite materials without physically touching them.
Collapse
|
15
|
Sorushanova A, Skoufos I, Tzora A, Mullen AM, Zeugolis DI. The influence of animal species, gender and tissue on the structural, biophysical, biochemical and biological properties of collagen sponges. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:12. [PMID: 33475864 PMCID: PMC7819930 DOI: 10.1007/s10856-020-06485-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 12/18/2020] [Indexed: 05/03/2023]
Abstract
Although collagen type I is extensively used in biomedicine, no study to-date has assessed how the properties of the produced scaffolds are affected as a function of species, gender and tissue from which the collagen was extracted. Herein, we extracted and characterised collagen from porcine and bovine, male and female and skin and tendon tissues and we subsequently fabricated and assessed the structural, biophysical, biochemical and biological properties of collagen sponges. All collagen preparations were of similar purity and free-amine content (p > 0.05). In general, the porcine groups yielded more collagen; had higher (p < 0.05) denaturation temperature and resistance to enzymatic degradation; and lower (p < 0.05) swelling ratio and compression stress and modulus than the bovine groups of the same gender and tissue. All collagen preparations supported growth of human dermal fibroblasts and exhibited similar biological response to human THP-1 monocytes. These results further illustrate the need for standardisation of collagen preparations for the development of reproducible collagen-based devices. Assessment of the physicochemical and biological properties of collagen sponges as a function of animal species (bovine versus porcine), gender (male versus female) and tissue (skin versus tendon).
Collapse
Affiliation(s)
- Anna Sorushanova
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Ioannis Skoufos
- Laboratory of Animal Science, Nutrition and Biotechnology, School of Agriculture, University of Ioannina, Arta, Greece
| | - Athina Tzora
- Laboratory of Animal Science, Nutrition and Biotechnology, School of Agriculture, University of Ioannina, Arta, Greece
| | | | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland.
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland.
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Lugano, Switzerland.
| |
Collapse
|
16
|
Fiber splay precludes the direct identification of ligament material properties: Implications for ACL graft selection. J Biomech 2020; 113:110104. [PMID: 33161304 DOI: 10.1016/j.jbiomech.2020.110104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/08/2020] [Accepted: 10/17/2020] [Indexed: 11/20/2022]
Abstract
Anterior cruciate ligament (ACL) injuries typically require surgical reconstruction to restore adequate knee stability. The middle third of an injured patient's patellar tendon (PT) is a commonly used graft for ACL reconstruction. However, many clinicians and researchers question whether it is the best option, as several studies have suggested that it is a stiffer material than the ACL. Still, there is little to no consensus on even the most basic material property of ligaments/tendons: the tangent modulus in the fiber direction, or slope of the linear portion of the uniaxial stress-strain curve. In this study, we investigate the effect of fiber splay (the tendency of collagen fibers to spread out near the enthesis) on the apparent tangent modulus. Using a simplified theoretical model, we establish a quantity we call the splay ratio, which describes the relationship between splay geometry and the apparent tangent modulus. We then more rigorously investigate the effect of the splay ratio on the apparent tangent modulus of the ovine PT and anteromedial and posterolateral regions of the ACL using experimental and computational methods. Both approaches confirmed that splay geometry significantly affects the apparent material behavior. Because true material properties are independent of geometry, we conclude that the macroscopic response of ligaments and tendons is not sufficient for the characterization of their material properties, but rather is reflective of both material and structural properties. We further conclude that the PT is probably not a stiffer material than ACL, but that the PT graft is likely a stiffer structure than either ACL region.
Collapse
|
17
|
Fung AK, Shetye SS, Li Y, Zhou Y, Sherry Liu X, Soslowsky LJ. Pregnancy and Lactation Impair Subchondral Bone Leading to Reduced Rat Supraspinatus Tendon-to-Bone Insertion Site Failure Properties. J Biomech Eng 2020; 142:111003. [PMID: 32577720 PMCID: PMC7580662 DOI: 10.1115/1.4047629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 06/16/2020] [Indexed: 12/12/2022]
Abstract
Pregnant women experience weight gain, gait changes, and biochemical fluctuations that impair joint function and alter the maternal skeleton. Hormonal changes increase pelvic ligament laxity in preparation for childbirth and affect peripheral joint laxity. Calcium demands also rise during pregnancy and lactation, resulting in reduced bone mineral density (BMD) and maternal bone loss. Altered tendon properties and bone loss during pregnancy and lactation may impact tendon insertion sites, such as rotator cuff tendons where insertion site ruptures are common. However, the effects of pregnancy and lactation at the tendon-to-bone interface have not been investigated. Therefore, the objective of this study was to evaluate supraspinatus tendon mechanical properties and insertion site microstructure during pregnancy, lactation, and postweaning recovery in female rats. We hypothesized that pregnancy and lactation would compromise supraspinatus tendon mechanical properties and subchondral bone microstructure. Female rats were divided into virgin, pregnancy, lactation, and recovery groups, and supraspinatus tendons were mechanically evaluated. Surprisingly, tendon mechanics was unaffected by pregnancy and lactation. However, tendon modulus decreased two-weeks postweaning. Additionally, tendons failed by bony avulsion at the insertion site, and the lactation group exhibited reduced failure properties corresponding to decreased subchondral bone mineralization. Lactation also resulted in dramatic bone loss at the epiphysis, but trabecular bone microarchitecture recovered postweaning. In conclusion, lactation following pregnancy impaired trabecular bone microstructure and subchondral bone mineralization, leading to reduced supraspinatus tendon-to-bone insertion site failure properties. These findings will contribute toward understanding the pathogenesis of tendon-to-bone disorders.
Collapse
Affiliation(s)
- Ashley K. Fung
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104-6081
| | - Snehal S. Shetye
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104-6081
| | - Yihan Li
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104-6081
| | - Yilu Zhou
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104-6081
| | - X. Sherry Liu
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104-6081
| | - Louis J. Soslowsky
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104-6081
| |
Collapse
|
18
|
Connizzo BK, Piet JM, Shefelbine SJ, Grodzinsky AJ. Age-associated changes in the response of tendon explants to stress deprivation is sex-dependent. Connect Tissue Res 2020; 61:48-62. [PMID: 31411079 PMCID: PMC6884684 DOI: 10.1080/03008207.2019.1648444] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose of the Study: The incidence of tendon injuries increases dramatically with age, which presents a major clinical burden. While previous studies have sought to identify age-related changes in extracellular matrix structure and function, few have been able to explain fully why aged tissues are more prone to degeneration and injury. In addition, recent studies have also demonstrated that age-related processes in humans may be sex-dependent, which could be responsible for muddled conclusions in changes with age. In this study, we investigate short-term responses through an ex vivo explant culture model of stress deprivation that specifically questions how age and sex differentially affect the ability of tendons to respond to altered mechanical stimulus.Materials and Methods: We subjected murine flexor explants from young (4 months of age) and aged (22-24 months of age) male and female mice to stress-deprived culture conditions for up to 1 week and investigated changes in viability, cell metabolism and proliferation, matrix biosynthesis and composition, gene expression, and inflammatory responses throughout the culture period.Results and Conclusions: We found that aging did have a significant influence on the response to stress deprivation, demonstrating that aged explants have a less robust response overall with reduced metabolic activity, viability, proliferation, and biosynthesis. However, age-related changes appeared to be sex-dependent. Together, this work demonstrates that the aging process and the subsequent effect of age on the ability of tendons to respond to stress-deprivation are inherently different based on sex, where male explants favor increased activity, apoptosis, and matrix remodeling while female explants favor reduced activity and tissue preservation.
Collapse
Affiliation(s)
- Brianne K. Connizzo
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States,Correspondence: Brianne K. Connizzo, 70 Massachusetts Avenue, NE47-377, Cambridge, MA 02139, T: 617-253-2469,
| | - Judith M. Piet
- Department of Bioengineering, Northeastern University, Boston, MA 02115, United States
| | - Sandra J. Shefelbine
- Department of Bioengineering, Northeastern University, Boston, MA 02115, United States,Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, United States
| | - Alan J. Grodzinsky
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States,Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States,Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, United States,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| |
Collapse
|
19
|
Ryan CNM, Zeugolis DI. Engineering the Tenogenic Niche In Vitro with Microenvironmental Tools. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Christina N. M. Ryan
- Regenerative, Modular and Developmental Engineering LaboratoryBiomedical Sciences BuildingNational University of Ireland Galway Galway H91 W2TY Ireland
- Science Foundation Ireland, Centre for Research in Medical DevicesBiomedical Sciences BuildingNational University of Ireland Galway Galway H91 W2TY Ireland
| | - Dimitrios I. Zeugolis
- Regenerative, Modular and Developmental Engineering LaboratoryBiomedical Sciences BuildingNational University of Ireland Galway Galway H91 W2TY Ireland
- Science Foundation Ireland, Centre for Research in Medical DevicesBiomedical Sciences BuildingNational University of Ireland Galway Galway H91 W2TY Ireland
| |
Collapse
|