1
|
Covato C, Pilipenco A, Scheberl A, Reimhult E, Subbiahdoss G. Osteoblasts win the race for the surface on DNA polyelectrolyte multilayer coatings against S. epidermidis but not against S. aureus. Colloids Surf B Biointerfaces 2024; 245:114336. [PMID: 39489986 DOI: 10.1016/j.colsurfb.2024.114336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/08/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Biomaterial-associated infections pose severe challenges in modern medicine. Previously, we reported that polyanionic DNA surface coatings repel bacterial adhesion and support osteoblast-like cell attachment in monoculture experiments, candidate for orthopaedic implant coatings. However, monocultures lack the influence of bacteria or bacterial toxins on osteoblast-like cell adhesion to biomaterial surfaces. In this study, co-culture of staphylococcus (S. epidermidis and S. aureus) and SaOS-2 osteosarcoma cells was studied on chitosan-DNA polyelectrolyte multilayer coated glass based on the concept of `the race for the surface`. Staphylococcus was first deposited onto the surface in a microfluidic chamber to mimic peri-operative contamination, and subsequently, SaOS-2 cells were seeded. Both staphylococcus and SaOS-2 cells were cultured together on the surfaces for 24 h under flow. The presence of S. epidermidis decreased SaOS-2 cell number on all surfaces after 24 h. However, the cells that adhered spread equally well in the presence of low virulent S. epidermidis. However, highly virulent S. aureus induced cell death of all adherent SaOS-2 cells on chitosan-DNA multilayer coated glass, a worse outcome than on uncoated glass. The outcome of our co-culture study highlights the limitations of monoculture models. It demonstrates the need for in vitro co-culture assays to meaningfully bridge the gap in lab testing of biomaterials and their clinical evaluations where bacterial infection can occur. The relative failure of cell-adhesive and bacteria-repelling DNA coatings in co-cultures also suggests the need to incorporate bactericidal in addition to non-adhesive functions to protect competitive cell spreading over a long period.
Collapse
Affiliation(s)
- Carmelo Covato
- Department of Bionanosciences, Institute of Colloid and Biointerface Science, BOKU University, Muthgasse 11, Vienna 1190, Austria
| | - Alina Pilipenco
- FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, Prague 18200, Czech Republic
| | - Andrea Scheberl
- Department of Bionanosciences, Institute of Colloid and Biointerface Science, BOKU University, Muthgasse 11, Vienna 1190, Austria
| | - Erik Reimhult
- Department of Bionanosciences, Institute of Colloid and Biointerface Science, BOKU University, Muthgasse 11, Vienna 1190, Austria
| | - Guruprakash Subbiahdoss
- Department of Bionanosciences, Institute of Colloid and Biointerface Science, BOKU University, Muthgasse 11, Vienna 1190, Austria.
| |
Collapse
|
2
|
Wells MJ, Currie H, Gordon VD. Physiological Concentrations of Calcium Interact with Alginate and Extracellular DNA in the Matrices of Pseudomonas aeruginosa Biofilms to Impede Phagocytosis by Neutrophils. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:17050-17058. [PMID: 37972353 PMCID: PMC10764079 DOI: 10.1021/acs.langmuir.3c01637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Biofilms are communities of interacting microbes embedded in a matrix of polymer, protein, and other materials. Biofilms develop distinct mechanical characteristics that depend on their predominant matrix components. These matrix components may be produced by microbes themselves or, for infections in vivo, incorporated from the host environment. Pseudomonas aeruginosa (P. aeruginosa) is a human pathogen that forms robust biofilms that extensively tolerate antibiotics and effectively evade clearance by the immune system. Two of the important bacterial-produced polymers in the matrices of P. aeruginosa biofilms are alginate and extracellular DNA (eDNA), both of which are anionic and therefore have the potential to interact electrostatically with cations. Many physiological sites of infection contain significant concentrations of the calcium ion (Ca2+). In this study, we investigate the structural and mechanical impacts of Ca2+ supplementation in alginate-dominated biofilms grown in vitro, and we evaluate the impact of targeted enzyme treatments on clearance by immune cells. We use multiple-particle tracking microrheology to evaluate the changes in biofilm viscoelasticity caused by treatment with alginate lyase or DNase I. For biofilms grown without Ca2+, we correlate a decrease in relative elasticity with increased phagocytic success. However, we find that growth with Ca2+ supplementation disrupts this correlation except in the case where both enzymes are applied. This suggests that the calcium cation may be impacting the microstructure of the biofilm in nontrivial ways. Indeed, confocal laser scanning fluorescence microscopy and scanning electron microscopy reveal unique Ca2+-dependent eDNA and alginate microstructures. Our results suggest that the presence of Ca2+ drives the formation of structurally and compositionally discrete microdomains within the biofilm through electrostatic interactions with the anionic matrix components eDNA and alginate. Further, we observe that these structures serve a protective function as the dissolution of both components is required to render biofilm bacteria vulnerable to phagocytosis by neutrophils.
Collapse
Affiliation(s)
- Marilyn J. Wells
- Department of Physics, The University of Texas at Austin, 2515 Speedway, C1600, Austin, Texas 78712-1192, USA
- Center for Nonlinear Dynamics, The University of Texas at Austin, 2515 Speedway, Stop C1610, Austin, Texas 78712-11993, USA
| | - Hailey Currie
- Department of Physics, The University of Texas at Austin, 2515 Speedway, C1600, Austin, Texas 78712-1192, USA
- Center for Nonlinear Dynamics, The University of Texas at Austin, 2515 Speedway, Stop C1610, Austin, Texas 78712-11993, USA
| | - Vernita D. Gordon
- Department of Physics, The University of Texas at Austin, 2515 Speedway, C1600, Austin, Texas 78712-1192, USA
- Center for Nonlinear Dynamics, The University of Texas at Austin, 2515 Speedway, Stop C1610, Austin, Texas 78712-11993, USA
- Interdisciplinary Life Sciences Graduate Program, The University of Texas at Austin, Norman Hackerman Building, 100 East 24th St., NHB 4500, Austin, Texas 78712, USA
- LaMontagne Center for Infectious Disease, The University of Texas at Austin, Neural Molecular Science Building, 2506 Speedway, Stop A5000, Austin, Texas 78712, USA
| |
Collapse
|
3
|
Flores P, McBride SA, Galazka JM, Varanasi KK, Zea L. Biofilm formation of Pseudomonas aeruginosa in spaceflight is minimized on lubricant impregnated surfaces. NPJ Microgravity 2023; 9:66. [PMID: 37587131 PMCID: PMC10432549 DOI: 10.1038/s41526-023-00316-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 08/02/2023] [Indexed: 08/18/2023] Open
Abstract
The undesirable, yet inevitable, presence of bacterial biofilms in spacecraft poses a risk to the proper functioning of systems and to astronauts' health. To mitigate the risks that arise from them, it is important to understand biofilms' behavior in microgravity. As part of the Space Biofilms project, biofilms of Pseudomonas aeruginosa were grown in spaceflight over material surfaces. Stainless Steel 316 (SS316) and passivated SS316 were tested for their relevance as spaceflight hardware components, while a lubricant impregnated surface (LIS) was tested as potential biofilm control strategy. The morphology and gene expression of biofilms were characterized. Biofilms in microgravity are less robust than on Earth. LIS strongly inhibits biofilm formation compared to SS. Furthermore, this effect is even greater in spaceflight than on Earth, making LIS a promising option for spacecraft use. Transcriptomic profiles for the different conditions are presented, and potential mechanisms of biofilm reduction on LIS are discussed.
Collapse
Affiliation(s)
- Pamela Flores
- BioServe Space Technologies, Aerospace Engineering Sciences Department, University of Colorado Boulder, Boulder, CO, 80309, USA.
- Molecular, Cellular, and Developmental Biology Department, University of Colorado Boulder, Boulder, CO, 80309, USA.
| | | | - Jonathan M Galazka
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Kripa K Varanasi
- Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA.
| | - Luis Zea
- BioServe Space Technologies, Aerospace Engineering Sciences Department, University of Colorado Boulder, Boulder, CO, 80309, USA.
| |
Collapse
|
4
|
Tuck B, Watkin E, Somers A, Forsyth M, Machuca LL. Conditioning of metal surfaces enhances Shewanella chilikensis adhesion. BIOFOULING 2022; 38:207-222. [PMID: 35345940 DOI: 10.1080/08927014.2022.2039349] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Microbiologically influenced corrosion and biofouling of steels depend on the adsorption of a conditioning film and subsequent attachment of bacteria. Extracellular deoxyribonucleic acid (eDNA) and amino acids are biologically critical nutrient sources and are ubiquitous in marine environments. However, little is known about their role as conditioning film molecules in early biofilm formation on metallic surfaces. The present study evaluated the capacity for eDNA and amino acids to form a conditioning film on carbon steel (CS), and subsequently, the influence of these conditioning films on bacterial attachment using a marine bacterial strain. Conditioning films of eDNA or amino acids were formed on CS through physical adsorption. Biochemical and microscopic analysis of eDNA conditioning, amino acid conditioning and control CS surfaces demonstrated that organic conditioning surfaces promoted bacterial attachment. The results highlight the importance of conditioning the surface in initial bacterial attachment to steel.
Collapse
Affiliation(s)
- Benjamin Tuck
- Curtin Corrosion Centre, WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Bentley, WA, Australia
| | - Elizabeth Watkin
- Curtin Medical School, Curtin University, Bentley, WA, Australia
| | - Anthony Somers
- Institute for Frontier Materials, Deakin University, Geelong, VIC, Australia
| | - Maria Forsyth
- Institute for Frontier Materials, Deakin University, Geelong, VIC, Australia
| | - Laura L Machuca
- Curtin Corrosion Centre, WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Bentley, WA, Australia
| |
Collapse
|
5
|
Batasheva S, Fakhrullin R. Sequence Does Not Matter: The Biomedical Applications of DNA-Based Coatings and Cores. Int J Mol Sci 2021; 22:ijms222312884. [PMID: 34884687 PMCID: PMC8658021 DOI: 10.3390/ijms222312884] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/21/2021] [Accepted: 11/24/2021] [Indexed: 12/20/2022] Open
Abstract
Biomedical applications of DNA are diverse but are usually associated with specific recognition of target nucleotide sequences or proteins and with gene delivery for therapeutic or biotechnological purposes. However, other aspects of DNA functionalities, like its nontoxicity, biodegradability, polyelectrolyte nature, stability, thermo-responsivity and charge transfer ability that are rather independent of its sequence, have recently become highly appreciated in material science and biomedicine. Whereas the latest achievements in structural DNA nanotechnology associated with DNA sequence recognition and Watson–Crick base pairing between complementary nucleotides are regularly reviewed, the recent uses of DNA as a raw material in biomedicine have not been summarized. This review paper describes the main biomedical applications of DNA that do not involve any synthesis or extraction of oligo- or polynucleotides with specified sequences. These sequence-independent applications currently include some types of drug delivery systems, biocompatible coatings, fire retardant and antimicrobial coatings and biosensors. The reinforcement of DNA properties by DNA complexation with nanoparticles is also described as a field of further research.
Collapse
|
6
|
In-Situ Monitoring of Real-Time Loop-Mediated Isothermal Amplification with QCM: Detecting Listeria monocytogenes. BIOSENSORS-BASEL 2021; 11:bios11090308. [PMID: 34562899 PMCID: PMC8470657 DOI: 10.3390/bios11090308] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 12/03/2022]
Abstract
Functionalized DNA sequences are promising sensing elements to combine with transducers for bio-sensing specific target microbes. As an application example, this paper demonstrates in situ detection of loop-mediated isothermal amplification products by hybridizing them with thiolated-ssDNA covalently anchored on the electrodes of a quartz crystal microbalance (QCM). Such hybridization leads to a frequency signal, which is suitable for monitoring real-time LAMP amplification based on mass-sensing: it detects interactions between the complementary nucleobases of LAMP products in solution and the thiolated-ssDNA probe sequence on the gold surface. Target DNA LAMP products cause irreversible frequency shifts on the QCM surfaces during hybridization in the kHz range, which result from both changes in mass and charge on the electrode surface. In order to confirm the LAMP assay working in the QCM sensing system at elevated temperature, the sky blue of positive LAMP products solution was achieved by using the Hydroxy Naphthol Blue (HNB) and agarose gel electrophoresis. Since on-QCM sensing of DNA hybridization leads to irreversible sensor responses, this work shows characterization by X-ray photoelectron spectroscopy (XPS) core spectra of S2p, N1s, Mg1s, P2p and C1s. XPS results confirmed that indeed both DNA and by-products of LAMP attached to the surface. Listeria monocytogenes DNA served to study in-situ detection of amplified LAMP products on DNA-functionalized surfaces.
Collapse
|
7
|
Ouni OA, Subbiahdoss G, Scheberl A, Reimhult E. DNA Polyelectrolyte Multilayer Coatings Are Antifouling and Promote Mammalian Cell Adhesion. MATERIALS 2021; 14:ma14164596. [PMID: 34443127 PMCID: PMC8400194 DOI: 10.3390/ma14164596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/07/2021] [Accepted: 08/12/2021] [Indexed: 11/17/2022]
Abstract
The ability of bacteria to adhere to and form biofilms on implant surfaces is the primary cause of implant failure. Implant-associated infections are difficult to treat, as the biofilm mode of growth protects microorganisms from the host’s immune response and antibiotics. Therefore, modifications of implant surfaces that can prevent or delay bacterial adhesion and biofilm formation are highly desired. In addition, the attachment and spreading of bone cells are required for successful tissue integration in orthopedic and dental applications. We propose that polyanionic DNA with a negatively charged phosphate backbone could provide a dual function to repel bacterial adhesion and support host tissue cell attachment. To this end, we developed polyelectrolyte multilayer coatings using chitosan (CS) and DNA on biomaterial surfaces via a layer-by-layer technique. The assembly of these coatings was characterized. Further, we evaluated staphylococcal adhesion and biofilm growth on the coatings as well as cytotoxicity for osteoblast-like cells (SaOS-2 cells), and we correlated these to the layer structure. The CS-DNA multilayer coatings impaired the biofilm formation of Staphylococcus by ~90% on both PMMA and titanium surfaces. The presence of cationic CS as the top layer did not hinder the bacteria-repelling property of the DNA in the coating. The CS-DNA multilayer coatings demonstrated no cytotoxic effect on SaOS-2 cells. Thus, DNA polyelectrolyte multilayer coatings could reduce infection risk while promoting host tissue cell attachment on medical implants.
Collapse
|
8
|
Abstract
At the biointerface where materials and microorganisms meet, the organic and synthetic worlds merge into a new science that directs the design and safe use of synthetic materials for biological applications. Vapor deposition techniques provide an effective way to control the material properties of these biointerfaces with molecular-level precision that is important for biomaterials to interface with bacteria. In recent years, biointerface research that focuses on bacteria-surface interactions has been primarily driven by the goals of killing bacteria (antimicrobial) and fouling prevention (antifouling). Nevertheless, vapor deposition techniques have the potential to create biointerfaces with features that can manipulate and dictate the behavior of bacteria rather than killing or deterring them. In this review, we focus on recent advances in antimicrobial and antifouling biointerfaces produced through vapor deposition and provide an outlook on opportunities to capitalize on the features of these techniques to find unexplored connections between surface features and microbial behavior.
Collapse
Affiliation(s)
- Trevor B. Donadt
- Robert F. Smith School of Chemical & Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Rong Yang
- Robert F. Smith School of Chemical & Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
9
|
Subbiahdoss G, Zeng G, Aslan H, Ege Friis J, Iruthayaraj J, Zelikin AN, Meyer RL. Antifouling properties of layer by layer DNA coatings. BIOFOULING 2019; 35:75-88. [PMID: 30821496 DOI: 10.1080/08927014.2019.1568417] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 12/14/2018] [Accepted: 01/04/2019] [Indexed: 06/09/2023]
Abstract
Fouling is a major concern for solid/liquid interfaces of materials used in different applications. One approach of fouling control is the use of hydrophilic polymer coatings made from poly-anions and poly-cations using the layer-by-layer (LBL) method. The authors hypothesized that the poly-anionic properties and the poly-phosphate backbone of DNA would provide anti-biofouling and anti-scaling properties. To this end, poly(ethyleneimine)/DNA LBL coatings against microbial and inorganic fouling were developed, characterized and evaluated. DNA LBL coatings reduced inorganic fouling from tap water by 90% when incubated statically or under flow conditions mimicking surfaces in heat exchangers. The coatings also impaired biofilm formation by 93% on stainless steel from tap water, and resulted in a 97% lower adhesion force and reduced initial attachment of the human pathogens Staphylococcus aureus, Staphylococcus epidermidis and Pseudomonas aeruginosa on glass. This study demonstrates a proof of concept that LBL coatings with poly-anions harboring phosphate groups can address fouling in several applications.
Collapse
Affiliation(s)
| | - Guanghong Zeng
- a Interdisciplinary Nanoscience Center , Aarhus University , Aarhus , Denmark
| | - Hüsnü Aslan
- a Interdisciplinary Nanoscience Center , Aarhus University , Aarhus , Denmark
| | - Jakob Ege Friis
- b Department of Biological and Chemical Engineering , Aarhus University , Aarhus , Denmark
| | - Joseph Iruthayaraj
- b Department of Biological and Chemical Engineering , Aarhus University , Aarhus , Denmark
| | | | - Rikke Louise Meyer
- a Interdisciplinary Nanoscience Center , Aarhus University , Aarhus , Denmark
- d Department of Bioscience , Aarhus University , Aarhus , Denmark
| |
Collapse
|