1
|
Feng Y, Xu X, Rounds CC, Hodge S, Tichauer KM, Samkoe KS. Dynamic Tracking of In Vivo Receptor Availability in Tumor Using Paired-Agent Imaging. Mol Pharm 2025. [PMID: 40367338 DOI: 10.1021/acs.molpharmaceut.5c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Quantitative assessment of receptor availability (RA) provides valuable insight into therapeutic outcomes in drug development and clinical practice. Here, paired-agent imaging (PAI) is used to dynamically track the availability of the epidermal growth factor receptor (EGFR) in response to in vivo ligand or inhibitor binding in individual mice with head and neck cancer (HNC). Naïve (n = 3) or xenograft HNC tumor-bearing (n = 21) mice were coadministered 0.15, 0.3, or 0.9 nmol ABY-029, and 2.5 nmol of IRDye 700DX. Fluorescence images were acquired for 300 min and then for an additional 60 min after administration of Z03115 (test group), human EGF (positive control), or PBS (vehicle control). Kinetic fluorescence and PAI curves were evaluated to determine the effects of the ABY-029 dose and EGFR blocking on tumor RA estimation. Nonquantifiable increases in ABY-029 fluorescence in tumor and muscle were observed after in vivo blocking, while PAI produced the expected decrease in RA. No statistically significant difference in preblocking RA was observed with different doses of ABY-029. RA decreased in response to blocking in positive control and test group animals, while the vehicle group exhibited no significant change in RA. This study demonstrated that RA can be monitored dynamically in individual animals using PAI regardless of imaging agent dose, while fluorescence from the receptor-targeted imaging agent alone could not. These results demonstrate PAI as a simple imaging strategy that could allow dose optimization in pharmaceutical development and patient-specific dosing for molecular therapeutics.
Collapse
Affiliation(s)
- Yichen Feng
- Geisel School of Medicine, Dartmouth College, 1 Rope Ferry Road, Hanover, New Hampshire 03755, United States
| | - Xiaochun Xu
- Thayer School of Engineering, Dartmouth College, 15 Thayer Drive, Hanover, New Hampshire 03755, United States
| | - Cody C Rounds
- Biomedical Engineering, Illinois Institute of Technology, 3255 S Dearborn Street, Chicago, Illinois 60616, United States
| | - Sassan Hodge
- Thayer School of Engineering, Dartmouth College, 15 Thayer Drive, Hanover, New Hampshire 03755, United States
| | - Kenneth M Tichauer
- Biomedical Engineering, Illinois Institute of Technology, 3255 S Dearborn Street, Chicago, Illinois 60616, United States
| | - Kimberley S Samkoe
- Geisel School of Medicine, Dartmouth College, 1 Rope Ferry Road, Hanover, New Hampshire 03755, United States
- Thayer School of Engineering, Dartmouth College, 15 Thayer Drive, Hanover, New Hampshire 03755, United States
| |
Collapse
|
2
|
McMahon NP, Solanki A, Wang LG, Montaño AR, Jones JA, Samkoe KS, Tichauer KM, Gibbs SL. In situ single-cell therapeutic response imaging facilitated by the TRIPODD fluorescence imaging platform. Theranostics 2024; 14:2816-2834. [PMID: 38773974 PMCID: PMC11103495 DOI: 10.7150/thno.93256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/21/2024] [Indexed: 05/24/2024] Open
Abstract
Purpose: Small molecule drugs such as tyrosine kinase inhibitors (TKIs) targeting tumoral molecular dependencies have become standard of care for numerous cancer types. Notably, epidermal growth factor receptor (EGFR) TKIs (e.g., erlotinib, afatinib, osimertinib) are the current first-line treatment for non-small cell lung cancer (NSCLC) due to their improved therapeutic outcomes for EGFR mutated and overexpressing disease over traditional platinum-based chemotherapy. However, many NSCLC tumors develop resistance to EGFR TKI therapy causing disease progression. Currently, the relationship between in situ drug target availability (DTA), local protein expression and therapeutic response cannot be accurately assessed using existing analytical tools despite being crucial to understanding the mechanism of therapeutic efficacy. Procedure: We have previously reported development of our fluorescence imaging platform termed TRIPODD (Therapeutic Response Imaging through Proteomic and Optical Drug Distribution) that is capable of simultaneous quantification of single-cell DTA and protein expression with preserved spatial context within a tumor. TRIPODD combines two complementary fluorescence imaging techniques: intracellular paired agent imaging (iPAI) to measure DTA and cyclic immunofluorescence (cyCIF), which utilizes oligonucleotide conjugated antibodies (Ab-oligos) for spatial proteomic expression profiling on tissue samples. Herein, TRIPODD was modified and optimized to provide a downstream analysis of therapeutic response through single-cell DTA and proteomic response imaging. Results: We successfully performed sequential imaging of iPAI and cyCIF resulting in high dimensional imaging and biomarker assessment to quantify single-cell DTA and local protein expression on erlotinib treated NSCLC models. Pharmacodynamic and pharmacokinetic studies of the erlotinib iPAI probes revealed that administration of 2.5 mg/kg each of the targeted and untargeted probe 4 h prior to tumor collection enabled calculation of DTA values with high Pearson correlation to EGFR, the erlotinib molecular target, expression in the tumors. Analysis of single-cell biomarker expression revealed that a single erlotinib dose was insufficient to enact a measurable decrease in the EGFR signaling cascade protein expression, where only the DTA metric detected the presence of bound erlotinib. Conclusion: We demonstrated the capability of TRIPODD to evaluate therapeutic response imaging to erlotinib treatment as it relates to signaling inhibition, DTA, proliferation, and apoptosis with preserved spatial context.
Collapse
Affiliation(s)
- Nathan P. McMahon
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201, USA
| | - Allison Solanki
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201, USA
| | - Lei G. Wang
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| | - Antonio R. Montaño
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201, USA
| | - Jocelyn A. Jones
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201, USA
| | - Kimberley S. Samkoe
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
- Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Kenneth M. Tichauer
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Summer L. Gibbs
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| |
Collapse
|
3
|
Feng Y, Pannem S, Hodge S, Rounds C, Tichauer KM, Paulsen KD, Samkoe KS. Quantitative pharmacokinetic and biodistribution studies for fluorescent imaging agents. BIOMEDICAL OPTICS EXPRESS 2024; 15:1861-1877. [PMID: 38495714 PMCID: PMC10942698 DOI: 10.1364/boe.504878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/02/2023] [Accepted: 01/22/2024] [Indexed: 03/19/2024]
Abstract
Pharmacokinetics and biodistribution studies are essential for characterizing fluorescent agents in vivo. However, few simple methods based on fluorescence imaging are available that account for tissue optical properties and sample volume differences. We describe a method for simultaneously quantifying mean fluorescence intensity of whole blood and homogenized tissues in glass capillary tubes for two fluorescent agents, ABY-029 and IRDye 680LT, using wide-field imaging and tissue-specific calibration curves. All calibration curves demonstrated a high degree of linearity with mean R2 = 0.99 ± 0.01 and RMSE = 0.12 ± 0.04. However, differences between linear regressions indicate that tissue-specific calibration curves are required for accurate concentration recovery. The lower limit of quantification (LLOQ) for all samples tested was determined to be < 0.3 nM for ABY-029 and < 0.4 nM for IRDye 680LT.
Collapse
Affiliation(s)
- Yichen Feng
- Geisel School of Medicine, Dartmouth College, 1 Rope Ferry Road, Hanover, NH 03755, USA
| | - Sanjana Pannem
- Thayer School of Engineering, Dartmouth College, 15 Thayer Drive, Hanover, NH 03755, USA
| | - Sassan Hodge
- Thayer School of Engineering, Dartmouth College, 15 Thayer Drive, Hanover, NH 03755, USA
| | - Cody Rounds
- Department of Biomedical Engineering, Illinois Institute of Technology, 10 West 35 Street, Chicago, IL 60616, USA
| | - Kenneth M. Tichauer
- Department of Biomedical Engineering, Illinois Institute of Technology, 10 West 35 Street, Chicago, IL 60616, USA
| | - Keith D. Paulsen
- Thayer School of Engineering, Dartmouth College, 15 Thayer Drive, Hanover, NH 03755, USA
| | - Kimberley S. Samkoe
- Geisel School of Medicine, Dartmouth College, 1 Rope Ferry Road, Hanover, NH 03755, USA
- Thayer School of Engineering, Dartmouth College, 15 Thayer Drive, Hanover, NH 03755, USA
| |
Collapse
|
4
|
Torres VC, Hodge S, Levy JJ, Vaickus LJ, Chen EY, LeBouef M, Samkoe KS. Paired-agent imaging as a rapid en face margin screening method in Mohs micrographic surgery. Front Oncol 2023; 13:1196517. [PMID: 37427140 PMCID: PMC10325620 DOI: 10.3389/fonc.2023.1196517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
Background Mohs micrographic surgery is a procedure used for non-melanoma skin cancers that has 97-99% cure rates largely owing to 100% margin analysis enabled by en face sectioning with real-time, iterative histologic assessment. However, the technique is limited to small and aggressive tumors in high-risk areas because the histopathological preparation and assessment is very time intensive. To address this, paired-agent imaging (PAI) can be used to rapidly screen excised specimens and identify tumor positive margins for guided and more efficient microscopic evaluation. Methods A mouse xenograft model of human squamous cell carcinoma (n = 8 mice, 13 tumors) underwent PAI. Targeted (ABY-029, anti-epidermal growth factor receptor (EGFR) affibody molecule) and untargeted (IRDye 680LT carboxylate) imaging agents were simultaneously injected 3-4 h prior to surgical tumor resection. Fluorescence imaging was performed on main, unprocessed excised specimens and en face margins (tissue sections tangential to the deep margin surface). Binding potential (BP) - a quantity proportional to receptor concentration - and targeted fluorescence signal were measured for each, and respective mean and maximum values were analyzed to compare diagnostic ability and contrast. The BP and targeted fluorescence of the main specimen and margin samples were also correlated with EGFR immunohistochemistry (IHC). Results PAI consistently outperformed targeted fluorescence alone in terms of diagnostic ability and contrast-to-variance ratio (CVR). Mean and maximum measures of BP resulted in 100% accuracy, while mean and maximum targeted fluorescence signal offered 97% and 98% accuracy, respectively. Moreover, maximum BP had the greatest average CVR for both main specimen and margin samples (average 1.7 ± 0.4 times improvement over other measures). Fresh tissue margin imaging improved similarity with EGFR IHC volume estimates compared to main specimen imaging in line profile analysis; and margin BP specifically had the strongest concordance (average 3.6 ± 2.2 times improvement over other measures). Conclusions PAI was able to reliably distinguish tumor from normal tissue in fresh en face margin samples using the single metric of maximum BP. This demonstrated the potential for PAI to act as a highly sensitive screening tool to eliminate the extra time wasted on real-time pathological assessment of low-risk margins.
Collapse
Affiliation(s)
- Veronica C. Torres
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - Sassan Hodge
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - Joshua J. Levy
- Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, United States
- Department of Dermatology, Dartmouth Hitchcock Medical Center, Lebanon, NH, United States
- Quantitative Biomedical Sciences, Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
| | - Louis J. Vaickus
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, United States
| | - Eunice Y. Chen
- Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
- Department of Surgery, Dartmouth Hitchcock Medical Center, Lebanon, NH, United States
| | - Matthew LeBouef
- Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
- Department of Dermatology, Dartmouth Hitchcock Medical Center, Lebanon, NH, United States
| | | |
Collapse
|
5
|
Chen Y, Streeter SS, Hunt B, Sardar HS, Gunn JR, Tafe LJ, Paydarfar JA, Pogue BW, Paulsen KD, Samkoe KS. Fluorescence molecular optomic signatures improve identification of tumors in head and neck specimens. FRONTIERS IN MEDICAL TECHNOLOGY 2023; 5:1009638. [PMID: 36875185 PMCID: PMC9975724 DOI: 10.3389/fmedt.2023.1009638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/16/2023] [Indexed: 02/17/2023] Open
Abstract
Background Fluorescence molecular imaging using ABY-029, an epidermal growth factor receptor (EGFR)-targeted, synthetic Affibody peptide labeled with a near-infrared fluorophore, is under investigation for surgical guidance during head and neck squamous cell carcinoma (HNSCC) resection. However, tumor-to-normal tissue contrast is confounded by intrinsic physiological limitations of heterogeneous EGFR expression and non-specific agent uptake. Objective In this preliminary study, radiomic analysis was applied to optical ABY-029 fluorescence image data for HNSCC tissue classification through an approach termed "optomics." Optomics was employed to improve tumor identification by leveraging textural pattern differences in EGFR expression conveyed by fluorescence. The study objective was to compare the performance of conventional fluorescence intensity thresholding and optomics for binary classification of malignant vs. non-malignant HNSCC tissues. Materials and Methods Fluorescence image data collected through a Phase 0 clinical trial of ABY-029 involved a total of 20,073 sub-image patches (size of 1.8 × 1.8 mm2) extracted from 24 bread-loafed slices of HNSCC surgical resections originating from 12 patients who were stratified into three dose groups (30, 90, and 171 nanomoles). Each dose group was randomly partitioned on the specimen-level 75%/25% into training/testing sets, then all training and testing sets were aggregated. A total of 1,472 standardized radiomic features were extracted from each patch and evaluated by minimum redundancy maximum relevance feature selection, and 25 top-ranked features were used to train a support vector machine (SVM) classifier. Predictive performance of the SVM classifier was compared to fluorescence intensity thresholding for classifying testing set image patches with histologically confirmed malignancy status. Results Optomics provided consistent improvement in prediction accuracy and false positive rate (FPR) and similar false negative rate (FNR) on all testing set slices, irrespective of dose, compared to fluorescence intensity thresholding (mean accuracies of 89% vs. 81%, P = 0.0072; mean FPRs of 12% vs. 21%, P = 0.0035; and mean FNRs of 13% vs. 17%, P = 0.35). Conclusions Optomics outperformed conventional fluorescence intensity thresholding for tumor identification using sub-image patches as the unit of analysis. Optomics mitigate diagnostic uncertainties introduced through physiological variability, imaging agent dose, and inter-specimen biases of fluorescence molecular imaging by probing textural image information. This preliminary study provides a proof-of-concept that applying radiomics to fluorescence molecular imaging data offers a promising image analysis technique for cancer detection in fluorescence-guided surgery.
Collapse
Affiliation(s)
- Yao Chen
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - Samuel S. Streeter
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
- Department of Orthopaedics, Dartmouth Health, Lebanon, NH, United States
- Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
| | - Brady Hunt
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - Hira S. Sardar
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - Jason R. Gunn
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - Laura J. Tafe
- Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
- Department of Pathology, Dartmouth Health, Lebanon, NH, United States
| | - Joseph A. Paydarfar
- Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
- Department of Surgery, Dartmouth Health, Lebanon, NH, United States
- Department of Otolaryngology, Dartmouth Health, Lebanon, NH, United States
| | - Brian W. Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
- Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - Keith D. Paulsen
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
- Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
| | - Kimberley S. Samkoe
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
- Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
- Department of Surgery, Dartmouth Health, Lebanon, NH, United States
| |
Collapse
|
6
|
Wang C, Hodge S, Ravi D, Chen EY, Hoopes PJ, Tichauer KM, Samkoe KS. Rapid and Quantitative Intraoperative Pathology-Assisted Surgery by Paired-Agent Imaging-Derived Confidence Map. Mol Imaging Biol 2023; 25:190-202. [PMID: 36315374 PMCID: PMC11841742 DOI: 10.1007/s11307-022-01780-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 02/03/2023]
Abstract
PURPOSE In nonmetastatic head and neck cancer treatment, surgical margin status is the most important prognosticator of recurrence and patient survival. Fresh frozen sectioning (FFS) of tissue margins is the standard of care for intraoperative margin assessment. However, FFS is time intensive, and its accuracy is not consistent among institutes. Mapping the epidermal growth factor receptor (EGFR) using paired-agent imaging (PAI) has the potential to provide more consistent intraoperative margin assessment in a fraction of the time as FFS. PROCEDURES PAI was carried out through IV injection of an anti-epidermal growth factor receptor (EGFR) affibody molecule (ABY-029, eIND 122,681) and an untargeted IRDye680LT carboxylate. Imaging was performed on 4 µm frozen sections from three oral squamous cell carcinoma xenograft mouse models (n = 24, 8 samples per cell line). The diagnostic ability and tumor contrast were compared between binding potential, targeted, and untargeted images. Confidence maps were constructed based on group histogram-derived tumor probability curves. Tumor differentiability and contrast by confidence maps were evaluated. RESULTS PAI outperformed ABY-029 and IRDye 680LT alone, demonstrating the highest individual receiver operating characteristic (ROC) curve area under the curve (PAI AUC: 0.91, 0.90, and 0.79) and contrast-to-noise ratio (PAI CNR: 1, 1.1, and 0.6) for FaDu, Det 562, and A253. PAI confidence maps (PAI CM) maintain high tumor diagnostic ability (PAI CMAUC: 0.91, 0.90, and 0.79) while significantly enhancing tumor contrast (PAI CMCNR: 1.5, 1.3, and 0.8) in FaDu, Det 562, and A253. Additionally, the PAI confidence map allows avascular A253 to be differentiated from a healthy tissue with significantly higher contrast than PAI. Notably, PAI does not require additional staining and therefore significantly reduces the tumor delineation time in a 5 [Formula: see text] 5 mm slice from ~ 35 min to under a minute. CONCLUSION This study demonstrated that PAI improved tumor detection in frozen sections with high diagnostic accuracy and rapid analysis times. The novel PAI confidence map improved the contrast in vascular tumors and differentiability in avascular tumors. With a larger database, the PAI confidence map promises to standardize fluorescence imaging in intraoperative pathology-assisted surgery (IPAS).
Collapse
Affiliation(s)
- Cheng Wang
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Sassan Hodge
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Divya Ravi
- Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Eunice Y Chen
- Department of Surgery, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
- Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - P Jack Hoopes
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
- Department of Surgery, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
- Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Kenneth M Tichauer
- Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Kimberley S Samkoe
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.
- Department of Surgery, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.
- Geisel School of Medicine, Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
7
|
Wang C, Xu X, Hodge S, Chen EY, Hoopes PJ, Tichauer KM, Samkoe KS. Identification of a Suitable Untargeted Agent for the Clinical Translation of ABY-029 Paired-Agent Imaging in Fluorescence-Guided Surgery. Mol Imaging Biol 2023; 25:97-109. [PMID: 34642897 PMCID: PMC9413473 DOI: 10.1007/s11307-021-01642-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/05/2021] [Accepted: 08/12/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE Non-specific uptake and retention of molecular targeted agents and heterogeneous tissue optical properties diminish the ability to differentiate between tumor and normal tissues using molecular targeted fluorescent agents. Paired-agent imaging (PAI) can increase the diagnostic ability to detect tumor tissue by mitigating these non-specific effects and providing true molecular contrast by co-administration of an untargeted control imaging agent with a targeted agent. This study evaluates the suitability of available clinically translatable untargeted agents for the translation of PAI in fluorescence-guided surgery using an affibody-based targeted imaging agent (ABY-029). EXPERIMENTAL DESIGN: Three untargeted agents that fluoresce near 700 nm and exhibit good clinical safety profiles (methylene blue, IRDye 700DX, and IRDye 680LT) were tested in combination with the clinically tested IRDye 800CW-labeled anti-epidermal growth factor receptor (EGFR) affibody molecule, ABY-029 (eIND 122,681). Properties of the untargeted agent important for human use and integrity of PAI were tested: (1) plasma protein binding; (2) fluorescence signal linearity in in vitro whole blood dilution; (3) in vivo pharmacokinetic matching to targeted agent in negative control tissue; and (4) in vivo diagnostic accuracy of PAI vs single agent imaging (SAI) of ABY-029 alone in orthotopic oral head and neck squamous cell carcinomas. RESULTS IRDye 680LT outperformed IRDye 700DX and methylene blue with the highest signal linearity (R2 = 0.9998 ± 0.0002, 0.9995 ± 0.0004, 0.91 ± 0.02, respectively), the highest fluorescence yield in whole blood at 1 μM (104.42 ± 0.05, 103.68 ± 0.09, 101.9 ± 0.2, respectively), and the most closely matched ABY-029 pharmacokinetics in EGFR-negative tissues (binding potential error percentage = 0.31% ± 0.37%, 10.25% ± 1.30%, and 8.10% ± 5.37%, respectively). The diagnostic ability of PAI with ABY-029 and IRDye 680LT outperformed conventional SAI with an area-under-the-receiver-operating-characteristic curve (AUC) value of 0.964 vs. 0.854, and 0.978 vs. 0.925 in the Odyssey scanning system and Pearl wide field imaging system, respectively. CONCLUSION PAI is a highly promising methodology for increasing detection of tumors in fluorescence-guided surgery. Although not yet clinically approved, IRDye 680LT demonstrates promise as an untargeted agent when paired with ABY-029. The clinical translation of PAI to maximize tumor excision, while minimizing normal tissue removal, could improve both patient survival and life quality.
Collapse
Affiliation(s)
- Cheng Wang
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Xiaochun Xu
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Sassan Hodge
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Eunice Y Chen
- Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - P Jack Hoopes
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.,Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Kenneth M Tichauer
- Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Kimberley S Samkoe
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA. .,Geisel School of Medicine, Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
8
|
Wang C, Xu X, Folaron M, Gunn JR, Hodge S, Chen EY, Hoopes PJ, Tichauer KM, Samkoe KS. Improved Discrimination of Tumors with Low and Heterogeneous EGFR Expression in Fluorescence-Guided Surgery Through Paired-Agent Protocols. Mol Imaging Biol 2023; 25:110-121. [PMID: 34651290 PMCID: PMC9527767 DOI: 10.1007/s11307-021-01656-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/16/2021] [Accepted: 07/18/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE The goal of fluorescence-guided surgery (FGS) in oncology is to improve the surgical therapeutic index by enhancing contrast between cancerous and healthy tissues. However, optimal discrimination between these tissues is complicated by the nonspecific uptake and retention of molecular targeted agents and the variance of fluorescence signal. Paired-agent imaging (PAI) employs co-administration of an untargeted imaging agent with a molecular targeted agent, providing a normalization factor to minimize nonspecific and varied signals. The resulting measured binding potential is quantitative and equivalent to in vivo immunohistochemistry of the target protein. This study demonstrates that PAI improves the accuracy of tumor-to-healthy tissue discrimination compared to single-agent imaging for in vivo FGS. PROCEDURES PAI using a fluorescent anti-epidermal growth factor receptor (EGFR) affibody molecule (ABY-029, eIND 122,681) with untargeted IRDye 700DX carboxylate was compared to ABY-029 alone in an oral squamous cell carcinoma xenograft mouse model at 3 h after dye administration (n = 30). RESULTS PAI significantly enhanced tumor discrimination, as compared to ABY-029 alone in low EGFR-expressing tumors and highly heterogeneous populations including multiple cell lines with varying expression (diagnostic accuracy: 0.908 vs. 0.854 and 0.908 vs. 0.822; and ROC curve AUC: 0.963 vs. 0.909 and 0.957 vs. 0.909, respectively) indicating a potential for universal FGS image thresholds to determine surgical margins. In addition, PAI achieved significantly higher diagnostic ability than ABY-029 alone 0.25-5-h post injection and exhibited a stronger correlation to EGFR expression heterogeneity. CONCLUSION The quantitative receptor delineation of PAI promises to improve the surgical therapeutic index of cancer resection in a clinically relevant timeline.
Collapse
Affiliation(s)
- Cheng Wang
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Xiaochun Xu
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Margaret Folaron
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Jason R Gunn
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Sassan Hodge
- Department of Surgery, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Eunice Y Chen
- Department of Surgery, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
- Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - P Jack Hoopes
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
- Department of Surgery, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
- Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Kenneth M Tichauer
- Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Kimberley S Samkoe
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.
- Department of Surgery, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.
- Geisel School of Medicine, Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
9
|
Al-Salihi M, Chen Z, Samanta S, Elazab A, Yi R, Wang S, Lin F, Qu J, Liu L. Improving the performance of rapid lifetime determination for wide-field time-gated imaging in live cells. OPTICS EXPRESS 2022; 30:30760-30778. [PMID: 36242174 DOI: 10.1364/oe.454958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 07/08/2022] [Indexed: 06/16/2023]
Abstract
In biological research, rapid wide-field fluorescence lifetime imaging has become an important imaging tool. However, the biological samples with weak fluorescence signals and lower sensitivity often suffer from very low precision in lifetime determinations which restricts its widespread utilization in many bioimaging applications. To address this issue, a method is presented in this paper to substantially enhance the precision of rapid lifetime determination (RLD). It expedites the discrimination of fluorescence lifetimes, even for the weak signals coming from the cells, stained with long-lived biocompatible AIS/ZnS QDs. The proposed method works in two phases. The first phase deals with the systematic noise analysis based on the signal and contrast of the images in a time-gated imaging system, wherein acquiring the high-quality imaging data through optimization of hardware parameters improves the overall system performance. In the second phase, the chosen images are treated using total variation denoising method combined with the Max/Min filtering method for extracting the region of interest to reconstruct the intensity images for RLD. We performed several experiments on live cells to demonstrate the improvements in imaging performance by the systematic optimizations and data treatment. Obtained results demonstrated a great enhancement in signal-to-noise and contrast-to-noise ratios beside witnessing an obvious improvement in RLD for weak signals. This approach can be used not only to improve the quality of time-gated imaging data but also for efficient fluorescence lifetime imaging of live biological samples without compromising imaging speed and light exposure.
Collapse
|
10
|
Gamage R, Li DH, Schreiber CL, Smith BD. Comparison of cRGDfK Peptide Probes with Appended Shielded Heptamethine Cyanine Dye ( s775z) for Near Infrared Fluorescence Imaging of Cancer. ACS OMEGA 2021; 6:30130-30139. [PMID: 34778684 PMCID: PMC8582267 DOI: 10.1021/acsomega.1c04991] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/21/2021] [Indexed: 05/14/2023]
Abstract
Previous work has shown that the sterically shielded near-infrared (NIR) fluorescent heptamethine cyanine dye, s775z, with a reactive carboxyl group produces fluorescent bioconjugates with an unsurpassed combination of high photostability and fluorescence brightness. This present contribution reports two new reactive homologues of s775z with either a maleimide group for reaction with a thiol or a strained alkyne group for reaction with an azide. Three cancer-targeting NIR fluorescent probes were synthesized, each with an appended cRGDfK peptide to provide selective affinity for integrin receptors that are overexpressed on the surface of many cancer cells including the A549 lung adenocarcinoma cells used in this study. A set of cancer cell microscopy and mouse tumor imaging experiments showed that all three probes were very effective at targeting cancer cells and tumors; however, the change in the linker structure produced a statistically significant difference in some aspects of the mouse biodistribution. The mouse studies included a mock surgical procedure that excised the subcutaneous tumors. A paired-agent fluorescence imaging experiment co-injected a binary mixture of targeted probe with 850 nm emission, an untargeted probe with 710 nm emission and determined the targeted probe's binding potential in the tumor tissue. A comparison of pixelated maps of binding potential for each excised tumor indicated a tumor-to-tumor variation of integrin expression levels, and a heterogeneous spatial distribution of integrin receptors within each tumor.
Collapse
Affiliation(s)
- Rananjaya
S. Gamage
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, United States
| | - Dong-Hao Li
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, United States
| | - Cynthia L. Schreiber
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, United States
| | - Bradley D. Smith
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, United States
| |
Collapse
|
11
|
Obaid G, Samkoe K, Tichauer K, Bano S, Park Y, Silber Z, Hodge S, Callaghan S, Guirguis M, Mallidi S, Pogue B, Hasan T. Is Tumor Cell Specificity Distinct from Tumor Selectivity In Vivo?: A Quantitative NIR Molecular Imaging Analysis of Nanoliposome Targeting. NANO RESEARCH 2021; 14:1344-1354. [PMID: 33717420 PMCID: PMC7951968 DOI: 10.1007/s12274-020-3178-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The significance and ability for receptor targeted nanoliposomes (tNLs) to bind to their molecular targets in solid tumors in vivo has been questioned, particularly as the efficiency of their tumor accumulation and selectivity is not always predictive of their efficacy or molecular specificity. This study presents, for the first time, in situ NIR molecular imaging-based quantitation of the in vivo specificity of tNLs for their target receptors, as opposed to tumor selectivity, which includes influences of enhanced tumor permeability and retention. Results show that neither tumor delivery nor selectivity (tumor-to-normal ratio) of cetuximab and IRDye conjugated tNLs correlate with EGFR expression in U251, U87 and 9L tumors, and in fact underrepresent their imaging-derived molecular specificity by up to 94.2%. Conversely, their in vivo specificity, which we quantify as the concentration of tNL-reported tumor EGFR provided by NIR molecular imaging, correlates positively with EGFR expression levels in vitro and ex vivo (Pearson's r= 0.92 and 0.96, respectively). This study provides a unique opportunity to address the problematic disconnect between tNL synthesis and in vivo specificity. The findings encourage their continued adoption as platforms for precision medicine, and facilitates intelligent synthesis and patient customization in order to improve safety profiles and therapeutic outcomes.
Collapse
Affiliation(s)
- Girgis Obaid
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, U.S
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, U.S
| | - Kimberley Samkoe
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 037551, U.S
| | - Kenneth Tichauer
- Armour College of Engineering, Illinois Institute of Technology, Chicago, Illinois 60616, U.S
| | - Shazia Bano
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, U.S
| | - Yeonjae Park
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 037551, U.S
| | - Zachary Silber
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, U.S
| | - Sassan Hodge
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 037551, U.S
| | - Susan Callaghan
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, U.S
| | - Mina Guirguis
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, U.S
| | - Srivalleesha Mallidi
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, U.S
| | - Brian Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 037551, U.S
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, U.S
- Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, U.S
| |
Collapse
|
12
|
McMahon NP, Solanki A, Wang LG, Montaño AR, Jones JA, Samkoe KS, Tichauer KM, Gibbs SL. TRIPODD: a Novel Fluorescence Imaging Platform for In Situ Quantification of Drug Distribution and Therapeutic Response. Mol Imaging Biol 2021; 23:650-664. [PMID: 33751366 DOI: 10.1007/s11307-021-01589-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/22/2021] [Accepted: 02/08/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE Personalized medicine has largely failed to produce curative therapies in advanced cancer patients. Evaluation of in situ drug target availability (DTA) concomitant with local protein expression is critical to an accurate assessment of therapeutic efficacy, but tools capable of both are currently lacking. PROCEDURE We developed and optimized a fluorescence imaging platform termed TRIPODD (Therapeutic Response Imaging through Proteomic and Optical Drug Distribution), resulting in the only methodology capable of simultaneous quantification of single-cell DTA and protein expression with preserved spatial context within a tumor. Using TRIPODD, we demonstrate the feasibility of combining two complementary fluorescence imaging techniques, intracellular paired agent imaging (iPAI) and cyclic immunofluorescence (cyCIF), conducted with oligonucleotide-conjugated antibodies (Ab-oligos) on tissue samples. RESULTS We successfully performed sequential imaging on a single tissue section of iPAI to capture single-cell DTA and local protein expression heterogeneity using Ab-oligo cyCIF. Fluorescence imaging data acquisition was followed by spatial registration resulting in high dimensional data correlating DTA to protein expression at the single-cell level where uptake of a targeted probe alone was not well correlated to protein expression. CONCLUSION Herein, we demonstrated the utility of TRIPODD as a powerful imaging platform capable of interpreting tumor heterogeneity for a mechanistic understanding of therapeutic response and resistance through quantification of drug target availability and proteomic response with preserved spatial context at single-cell resolution.
Collapse
Affiliation(s)
- Nathan P McMahon
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR, USA
| | - Allison Solanki
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR, USA
| | - Lei G Wang
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR, USA
| | - Antonio R Montaño
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR, USA
| | - Jocelyn A Jones
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR, USA
| | - Kimberley S Samkoe
- Thayer School of Engineering at Dartmouth College, Dartmouth College, Hanover, NH, USA.,Department of Surgery, Geisel School of Medicine at Dartmouth College, Dartmouth College, Hanover, NH, 03755, USA
| | - Kenneth M Tichauer
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - Summer L Gibbs
- Biomedical Engineering Department, Oregon Health & Science University, Portland, OR, USA. .,Knight Cancer Institute, Oregon Health & Science University, Collaborative Life Sciences Building, 2730 S Moody Ave, Mail Code: CL3SG, Portland, OR, 97201, USA.
| |
Collapse
|
13
|
Li C, Torres VC, He Y, Xu X, Basheer Y, Papavasiliou G, Samkoe KS, Brankov JG, Tichauer KM. Intraoperative Detection of Micrometastases in Whole Excised Lymph Nodes Using Fluorescent Paired-Agent Imaging Principles: Identification of a Suitable Staining and Rinsing Protocol. Mol Imaging Biol 2021; 23:537-549. [PMID: 33591478 DOI: 10.1007/s11307-021-01587-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/18/2021] [Accepted: 02/02/2021] [Indexed: 02/05/2023]
Abstract
PURPOSE Correctly identifying nodal status is recognized as a critical prognostic factor in many cancer types and is essential to guide adjuvant treatment. Currently, surgical removal of lymph nodes followed by pathological examination is commonly performed as a standard-of-care to detect node metastases. However, conventional pathology protocols are time-consuming, yet less than 1 % of lymph node volumes are examined, resulting in a 30-60 % rate of missed micrometastases (0.2-2 mm in size). PROCEDURES This study presents a method to fluorescently stain excised lymph nodes using paired-agent molecular imaging principles, which entail co-administration of a molecular-targeted imaging agent with a suitable control (untargeted) agent, whereby any nonspecific retention of the targeted agent is accounted for by the signal from the control agent. Specifically, it was demonstrated that by dual-needle continuous infusion of either an antibody-based imaging agent pair (epidermal growth factor receptor (EGFR) targeted agent: IRDye-800CW labeled Cetuximab; control agent: IRDye-700DX-IgG) or an Affibody-based pair (EGFR targeted Affibody® agent: ABY-029; control agent IRDYe-700DX carboxylate) at 0.3 ml/min. RESULTS The results demonstrated the possibility to achieve >99 % sensitivity and > 95 % specificity for detection of a single micrometastasis (~0.2 mm diameter) in a whole lymph node within 22 min of tissue processing time. CONCLUSION The detection capabilities offer substantial improvements over existing intraoperative lymph node biopsy methods (e.g., frozen pathology has a micrometastasis sensitivity <20 %).
Collapse
Affiliation(s)
- Chengyue Li
- Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - Veronica C Torres
- Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - Yusheng He
- Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - Xiaochun Xu
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Yusairah Basheer
- Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - Georgia Papavasiliou
- Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - Kimberley S Samkoe
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Jovan G Brankov
- Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - Kenneth M Tichauer
- Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA.
| |
Collapse
|
14
|
Hernandez Vargas S, Lin C, Voss J, Ghosh SC, Halperin DM, AghaAmiri S, Cao HST, Ikoma N, Uselmann AJ, Azhdarinia A. Development of a drug-device combination for fluorescence-guided surgery in neuroendocrine tumors. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:JBO-200129R. [PMID: 33300316 PMCID: PMC7725236 DOI: 10.1117/1.jbo.25.12.126002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 11/06/2020] [Indexed: 05/13/2023]
Abstract
SIGNIFICANCE The use of cancer-targeted contrast agents in fluorescence-guided surgery (FGS) has the potential to improve intraoperative visualization of tumors and surgical margins. However, evaluation of their translational potential is challenging. AIM We examined the utility of a somatostatin receptor subtype-2 (SSTR2)-targeted fluorescent agent in combination with a benchtop near-infrared fluorescence (NIRF) imaging system to visualize mouse xenografts under conditions that simulate the clinical FGS workflow for open surgical procedures. APPROACH The dual-labeled somatostatin analog, Ga67-MMC(IR800)-TOC, was injected into mice (n = 24) implanted with SSTR2-expressing tumors and imaged with the customized OnLume NIRF imaging system (Madison, Wisconsin). In vivo and ex vivo imaging were performed under ambient light. The optimal dose (0.2, 0.5, and 2 nmol) and imaging time point (3, 24, 48, and 72 h) were determined using contrast-to-noise ratio (CNR) as the image quality parameter. Video captures of tumor resections were obtained to provide an FGS readout that is representative of clinical utility. Finally, a log-transformed linear regression model was fitted to assess congruence between fluorescence readouts and the underlying drug distribution. RESULTS The drug-device combination provided high in vivo and ex vivo contrast (CNRs > 3, except lung at 3 h) at all time points with the optimal dose of 2 nmol. The optimal imaging time point was 24-h post-injection, where CNRs > 6.5 were achieved in tissues of interest (i.e., pancreas, small intestine, stomach, and lung). Intraoperative FGS showed excellent utility for examination of the tumor cavity pre- and post-resection. The relationship between fluorescence readouts and gamma counts was linear and strongly correlated (n = 334, R2 = 0.71; r = 0.84; P < 0.0001). CONCLUSION The innovative OnLume NIRF imaging system enhanced the evaluation of Ga67-MMC(IR800)-TOC in tumor models. These components comprise a promising drug-device combination for FGS in patients with SSTR2-expressing tumors.
Collapse
Affiliation(s)
- Servando Hernandez Vargas
- The University of Texas Health Science Center at Houston, The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, Houston, Texas, United States
| | | | - Julie Voss
- The University of Texas Health Science Center at Houston, The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, Houston, Texas, United States
| | - Sukhen C. Ghosh
- The University of Texas Health Science Center at Houston, The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, Houston, Texas, United States
| | - Daniel M. Halperin
- The University of Texas MD Anderson Cancer Center, Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, Houston, Texas, United States
| | - Solmaz AghaAmiri
- The University of Texas Health Science Center at Houston, The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, Houston, Texas, United States
| | - Hop S. Tran Cao
- The University of Texas MD Anderson Cancer Center, Department of Surgical Oncology, Division of Surgery, Houston, Texas, United States
| | - Naruhiko Ikoma
- The University of Texas MD Anderson Cancer Center, Department of Surgical Oncology, Division of Surgery, Houston, Texas, United States
| | | | - Ali Azhdarinia
- The University of Texas Health Science Center at Houston, The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, Houston, Texas, United States
| |
Collapse
|
15
|
Sadeghipour N, Rangnekar A, Folaron MR, Strawbridge RR, Samkoe KS, Davis SC, Tichauer KM. Prediction of optimal contrast times post-imaging agent administration to inform personalized fluorescence-guided surgery. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:JBO-200182RR. [PMID: 33200596 PMCID: PMC7667427 DOI: 10.1117/1.jbo.25.11.116005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/30/2020] [Indexed: 05/08/2023]
Abstract
SIGNIFICANCE Fluorescence guidance in cancer surgery (FGS) using molecular-targeted contrast agents is accelerating, yet the influence of individual patients' physiology on the optimal time to perform surgery post-agent-injection is not fully understood. AIM Develop a mathematical framework and analytical expressions to estimate patient-specific time-to-maximum contrast after imaging agent administration for single- and paired-agent (coadministration of targeted and control agents) protocols. APPROACH The framework was validated in mouse subcutaneous xenograft studies for three classes of imaging agents: peptide, antibody mimetic, and antibody. Analytical expressions estimating time-to-maximum-tumor-discrimination potential were evaluated over a range of parameters using the validated framework for human cancer parameters. RESULTS Correlations were observed between simulations and matched experiments and metrics of tumor discrimination potential (p < 0.05). Based on human cancer physiology, times-to-maximum contrast for peptide and antibody mimetic agents were <200 min, >15 h for antibodies, on average. The analytical estimates of time-to-maximum tumor discrimination performance exhibited errors of <10 % on average, whereas patient-to-patient variance is expected to be greater than 100%. CONCLUSION We demonstrated that analytical estimates of time-to-maximum contrast in FGS carried out patient-to-patient can outperform the population average time-to-maximum contrast used currently in clinical trials. Such estimates can be made with preoperative DCE-MRI (or similar) and knowledge of the targeted agent's binding affinity.
Collapse
Affiliation(s)
- Negar Sadeghipour
- Illinois Institute of Technology, Department of Biomedical Engineering, Chicago, Illinois, United States
- Stanford University School of Medicine, Molecular Imaging Program at Stanford, Palo Alto, California, United States
- Stanford University School of Medicine, Canary Center at Stanford for Cancer Early Detection, Palo Alto, California, United States
| | - Aakanksha Rangnekar
- Illinois Institute of Technology, Department of Biomedical Engineering, Chicago, Illinois, United States
| | - Margaret R. Folaron
- Dartmouth College, Thayer School for Engineering, Hanover, New Hampshire, United States
| | | | - Kimberley S. Samkoe
- Dartmouth College, Thayer School for Engineering, Hanover, New Hampshire, United States
| | - Scott C. Davis
- Dartmouth College, Thayer School for Engineering, Hanover, New Hampshire, United States
| | - Kenneth M. Tichauer
- Illinois Institute of Technology, Department of Biomedical Engineering, Chicago, Illinois, United States
| |
Collapse
|
16
|
Schreiber CL, Zhai C, Dempsey JM, McGarraugh HH, Matthews BP, Christmann CR, Smith B. Paired Agent Fluorescence Imaging of Cancer in a Living Mouse Using Preassembled Squaraine Molecular Probes with Emission Wavelengths of 690 and 830 nm. Bioconjug Chem 2020; 31:214-223. [PMID: 31756298 PMCID: PMC7768864 DOI: 10.1021/acs.bioconjchem.9b00750] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
New methods are described for the construction of targeted fluorescence probes for imaging cancer and the assessment of tumor targeting performance in a living mouse model. A novel noncovalent assembly process was used to fabricate a set of structurally related targeted fluorescent probes with modular differences in three critical assembly components: the emission wavelength of the squaraine fluorochrome, the number of cRGDfK peptide units that target the cancer cells, and the length of the polyethylene glycol chains as pharmacokinetic controllers. Selective targeting of cancer cells was proven by a series of cell microscopy experiments followed by in vivo imaging of subcutaneous tumors in living mice. The mouse imaging studies included a mock surgery that completely removed a fluorescently labeled tumor. Enhanced tumor accumulation due to probe targeting was first evaluated by conducting Single Agent Imaging (SAI) experiments that compared tumor imaging performance of a targeted probe and untargeted probe in separate mouse cohorts. Although there was imaging evidence for enhanced tumor accumulation of the targeted probe, there was moderate scatter in the data due to tumor-to-tumor variability of the vasculature structure and interstitial pressure. A subsequent Paired Agent Imaging (PAI) study coinjected a binary mixture of targeted probe (with emission at 690 nm) and untargeted probe (with emission at 830 nm) into the same tumor-burdened animal. The conclusion of the PAI experiment also indicated enhanced tumor accumulation of the targeted probe, but the statistical significance was much higher, even though the experiment required a much smaller cohort of mice. The imaging data from the PAI experiment was analyzed to determine the targeted probe's Binding Potential (BP) for available integrin receptors within the tumor tissue. In addition, pixelated maps of BP within each tumor indicated a heterogeneous spatial distribution of BP values. The results of this study show that the combination of fluorescent probe preassembly and PAI is a promising new way to rapidly develop targeted fluorescent probes for tumors with high BP and eventual use in clinical applications such as targeted therapy, image guided surgery, and personalized medicine.
Collapse
Affiliation(s)
- Cynthia L. Schreiber
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Canjia Zhai
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Janel M. Dempsey
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Hannah H. McGarraugh
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Braden P. Matthews
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Caroline R. Christmann
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Bradley Smith
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
17
|
Tichauer KM, Wang C, Xu X, Samkoe KS. Task-based evaluation of fluorescent-guided cancer surgery as a means of identifying optimal imaging agent properties in the context of variability in tumor- and healthy-tissue physiology. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2020; 11222. [PMID: 33568879 DOI: 10.1117/12.2546700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Fluorescent molecular-guided surgery (FGS) is at a tipping point in terms of clinical approval and adoption in a number cancer applications, with ongoing phase 0 and phase 1 clinical trials being carried out in a wide range of cancers using a wide range of agents. The pharmacokinetics of each of these agents and the physiology of these cancers can differ vastly on a patient-to-patient basis, bringing to question: how can one fairly compare different methodologies (defined as the combination of imaging agent, system, and protocol) and how can existing methodologies be further optimized? To this point, little methodology comparison has been carried out, and the majority of FGS optimization has concerned system development-on the level of maximizing signal-to-noise, dynamic detection range, and sensitivity-independently from traditional agent development-in terms of fluorophore brightness, toxicity, solubility, and binding affinity and specificity. Here we propose an inclusion of tumor and healthy tissue physiology (blood flow, vascular permeability, specific and nonspecific binding sites, extracellular matrix, interstitial pressure, etc…) variability into the optimization process and re-establish well-described task-based metrics for methodology optimization and comparing quality of one methodology to another. Two salient conclusions were identified: (1) contrast-to-background variability is a simple metric that correlates with difficult-to-carry-out task-based metrics for comparing methodologies, and (2) paired-agent imaging protocols offer unique advantages over single-imaging-agent studies for mitigating confounding tumor and background physiology variability.
Collapse
Affiliation(s)
| | - Cheng Wang
- Thayer School of Engineering, Dartmouth College, Hanover, NH
| | - Xiaochun Xu
- Department of Surgery, Dartmouth Geisel School of Medicine, Hanover, NH
| | - Kimberley S Samkoe
- Thayer School of Engineering, Dartmouth College, Hanover, NH.,Department of Surgery, Dartmouth Geisel School of Medicine, Hanover, NH
| |
Collapse
|
18
|
Solanki A, Wang L, Korber J, McMahon N, Tichauer K, Samkoe KS, Gibbs SL. Intracellular paired agent imaging enables improved evaluation of tyrosine kinase inhibitor target engagement. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2020; 11219:112190F. [PMID: 32292225 PMCID: PMC7155938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Targeting the aberrant epidermal growth factor receptor (EGFR) signaling pathway is an attractive choice for many cancers (e.g., non-small cell lung carcinoma (NSCLC) and head and neck squamous cell carcinoma (HNSCC)). Despite the development of promising therapeutics, incomplete target engagement and acquired resistance (e.g., mutagenesis and intracellular signaling pathway rewiring) ensure that curative options still elude patients. To address limitations posed by standard drag evaluation assays (e.g., western blot, bulk plasma monitoring, immunohistochemistry), we have developed a novel dynamic, fluorescence-based platform termed intracellular paired agent imaging (iPAI). iPAI quantifies intracellular protein target engagement using two matched small-molecule, cell membrane-permeable agents: one targeted to the protein of interest and one untargeted, which accounts for non-specific therapeutic uptake. Currently, our iPAI panel includes successfully characterized tyrosine kinase inhibitors targeting the kinase binding domain of numerous proteins in the EGFR pathway, including erlotinib (EGFR). Here, we present a pharmacokinetic uptake study using our novel iPAI erlotinib reagents: a targeted erlotinib probed conjugated to silicon tetramethylrhodamine (Erl-SiTMR-T) and an untargeted reagent conjugated to tetramethylrhodaime (Erl-TMR-UT). An initial uptake study in a cell derived xenograft (CDX) model of NSCLC was performed by administering the Erl iPAI reagents systemically via tail vein injection, where drag uptake was quantified in the tumor over time. Excitingly, evidence of heterogeneous uptake was observed in the iPAI injected cohort, displaying distinct drug-uptake within a single tumor. Characterization of additional iPAI agents targeting downstream effectors (e.g., AKT, PI3K, MEK and ERK) is ongoing and will allow us to visualize complex drug-target interactions and quantify their downstream signaling partners during treatment regimens for NSCLC and other cancers. Together, we anticipate these iPAI probes will improve understanding of current limitations in personalized cancer therapy.
Collapse
Affiliation(s)
- Allison Solanki
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, 97201
| | - Lei Wang
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, 97201
| | - Jesse Korber
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, 97201
| | - Nathan McMahon
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, 97201
| | - Kenneth Tichauer
- Biomedical Engineering Department, Illinois Institute of Technology, Chicago, IL, 60616
| | - Kimberley S. Samkoe
- Department of Surgery, Geisel School of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, 03766
| | - Summer L. Gibbs
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, 97201
- Center for Spatial Systems Biomedicine, Oregon Health and Science University, Portland, OR, 97201
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97201
| |
Collapse
|
19
|
Fluorescence imaging reversion using spatially variant deconvolution. Sci Rep 2019; 9:18123. [PMID: 31792293 PMCID: PMC6889134 DOI: 10.1038/s41598-019-54578-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 11/09/2019] [Indexed: 12/13/2022] Open
Abstract
Fluorescence imaging opens new possibilities for intraoperative guidance and early cancer detection, in particular when using agents that target specific disease features. Nevertheless, photon scattering in tissue degrades image quality and leads to ambiguity in fluorescence image interpretation and challenges clinical translation. We introduce the concept of capturing the spatially-dependent impulse response of an image and investigate Spatially Adaptive Impulse Response Correction (SAIRC), a method that is proposed for improving the accuracy and sensitivity achieved. Unlike classical methods that presume a homogeneous spatial distribution of optical properties in tissue, SAIRC explicitly measures the optical heterogeneity in tissues. This information allows, for the first time, the application of spatially-dependent deconvolution to correct the fluorescence images captured in relation to their modification by photon scatter. Using experimental measurements from phantoms and animals, we investigate the improvement in resolution and quantification over non-corrected images. We discuss how the proposed method is essential for maximizing the performance of fluorescence molecular imaging in the clinic.
Collapse
|
20
|
Slooter MD, Blok RD, Wisselink DD, Buskens CJ, Bemelman WA, Tanis PJ, Hompes R. Near-infrared fluorescence angiography for intra-operative assessment of pedicled omentoplasty for filling of a pelvic cavity: a pilot study. Tech Coloproctol 2019; 23:723-728. [PMID: 31432336 PMCID: PMC6736781 DOI: 10.1007/s10151-019-02048-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/19/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND During creation of a pedicled omentoplasty, blood flow to segments of the omentum might become compromised. If unrecognized, this can lead to omental necrosis. The purpose of this study was to investigate the potential added intra-operative value of the use of fluorescence angiography (FA) with indocyanine green (ICG) to assess omental perfusion. METHODS All consecutive patients undergoing a pedicled omentoplasty in a 6-month period (April 1 2018-October 1 2018) in a University hospital were included. The primary outcome was change in management due to FA. Secondary outcomes included the amount of additionally resected omentum, added surgical time, and quantitative fluorescent values (time to fluorescent enhancement, contrast quantification). RESULTS Fifteen patients had pelvic surgery with omentoplasty and FA. Change in management occurred in 12 patients (80%) and consisted of resecting a median of 44 g (range 12-198 g) of poorly perfused omental areas that were not visible by conventional white light. The median added surgical time for the use of FA and subsequent management was 8 min (range 3-39 min). The first fluorescent signal in the omental tissue appeared after a median of 20 s (range 9-37 s) after injection of ICG. The median signal-to-baseline ratio was 23.7 (interquartile range 12.2-29.7) in well perfused and 2.5 (interquartile range 1.7-4.0) in poorly perfused tissue. CONCLUSIONS FA of a pedicled omentoplasty allows a real-time assessment of omental perfusion and leads to change in management in 80% of the cases in this pilot study. These findings support the conduct of larger studies to determine the impact on patient outcome in this setting.
Collapse
Affiliation(s)
- M D Slooter
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - R D Blok
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,LEXOR, Center for Experimental and Molecular Medicine, Oncode Institute, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - D D Wisselink
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - C J Buskens
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - W A Bemelman
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - P J Tanis
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - R Hompes
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands. .,Department of Surgery, Amsterdam UMC, University of Amsterdam, G4, Post box 22660, 1100 DD, Amsterdam, The Netherlands.
| |
Collapse
|
21
|
Setting Standards for Reporting and Quantification in Fluorescence-Guided Surgery. Mol Imaging Biol 2019; 21:11-18. [PMID: 29845427 DOI: 10.1007/s11307-018-1220-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE Intraoperative fluorescence imaging (FI) is a promising technique that could potentially guide oncologic surgeons toward more radical resections and thus improve clinical outcome. Despite the increase in the number of clinical trials, fluorescent agents and imaging systems for intraoperative FI, a standardized approach for imaging system performance assessment and post-acquisition image analysis is currently unavailable. PROCEDURES We conducted a systematic, controlled comparison between two commercially available imaging systems using a novel calibration device for FI systems and various fluorescent agents. In addition, we analyzed fluorescence images from previous studies to evaluate signal-to-background ratio (SBR) and determinants of SBR. RESULTS Using the calibration device, imaging system performance could be quantified and compared, exposing relevant differences in sensitivity. Image analysis demonstrated a profound influence of background noise and the selection of the background on SBR. CONCLUSIONS In this article, we suggest clear approaches for the quantification of imaging system performance assessment and post-acquisition image analysis, attempting to set new standards in the field of FI.
Collapse
|
22
|
Samkoe KS, Schultz E, Solanki A, Wang L, Korber J, Tichauer KM, Gibbs SL. Simultaneous extracellular and intracellular quantification of EGFR using paired-agent imaging in an in ovo tumor model. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2019; 10859. [PMID: 32296254 DOI: 10.1117/12.2510778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Quantification of protein concentrations is often a static and tissue destructive technique. Paired-agent imaging (PAI) using matched targeted and untargeted agents has been established as a dynamic method for quantifying the extracellular domain of epidermal growth factor receptor (EGFR) in vivo in a variety of tumor lines. Here we extend the PAI model to simultaneously quantify the extracellular and intracellular regions of EGFR using novel cell membrane permeable fluorescent small molecules, TRITC-erlotinib (targeted) and BODIPY-N-erlotinib (non-binding control isoform) synthesized in house. An EGFR overexpressing squamous cell carcinoma cell xenograft tumor, A431, was implanted on the chorioallantoic membrane (CAM) of the embryonated chicken egg. In total six fluorescent molecules were administered and monitored over 1 h using multi-spectral imaging. EGFR concentrations were determined using both extracellular and intracellular PAI methods. The fluorescent molecules used for extracellular PAI were ABY-029, an anti-EGFR Affibody molecule conjugated to IRDye 800CW, and a Control Imaging Agent Affibody molecule conjugated to IRDye 680RD. The intracellular PAI (iPAI) fluorescent molecules were cell membrane penetrating TRITC-erlotinib, BODIPY-N-erlotinb, and BODIPY TR carboxylate, as well as cell membrane impermeant control agent, Alexa Fluor 647 carboxylate. Results from simultaneous imaging of both the extracellular and intracellular binding domains of EGFR indicate that concentrations of intracellular EGFR are higher than extracellular. This is anticipated as EGFR exists in two distinct populations in cells, cell membrane bound and internalized, activated protein. iPAI is a promising new method for quantifying intracellular proteins in a rapid tumor model on the chicken CAM.
Collapse
Affiliation(s)
- Kimberley S Samkoe
- Geisel School of Medicine, Dartmouth College, Hanover, NH 03755.,Department of Surgery, Dartmouth-Hitchcock, Lebanon, NH, 03756
| | - Emily Schultz
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois, 60616
| | - Allison Solanki
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois, 60616
| | - Lei Wang
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois, 60616
| | - Jesse Korber
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois, 60616
| | - Kenneth M Tichauer
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, 97201
| | - Summer L Gibbs
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois, 60616
| |
Collapse
|
23
|
Samkoe KS, Park Y, Marra K, Chen EY, Tichauer KM. Paired-agent imaging for detection of head and neck cancers. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2019; 10853. [PMID: 31686720 DOI: 10.1117/12.2510897] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Head and neck cancers overwhelmingly overexpress epidermal growth factor receptor (EGFR). This overexpression has been utilized for head and neck cancers using molecular targeted agents for therapy and cancer cell detection. Significant progress has been made in using EGFR-targeted fluorescent antibody and Affibody molecule agents for fluorescent guided surgery in head and neck cancers. Although success in achieving tumor-to-background ratio of 3-5 have been achieved, the field is limited by the non-specific fluorescence in normal tissues as well as EGFR specific fluorescence in the oral cavity. We propose that paired-agent imaging (PAI) could improve the contrast between tumor and normal tissue by removing the fluorescent signal arising from non-specific binding. Here, ABY-029 - an anti-EGFR Affibody molecule labeled with IRDye 800CW - and IRDye 680RD conjugated to Affibody Control Imaging Agent molecule (IR680-Affctrl) are used as targeted and untargeted control agents, respectively, in a panel of head and neck squamous cell carcinomas (HNSCC) to test the ability of PAI to increase tumor detection. Initial results demonstrate that binding potential, a value proportional to receptor concentration, correlates well to EGFR expression but experimental limitations prevented pixel-by-pixel analysis that was desired. Although promising, a more rigorous and well-defined experimental protocol is required to align ex vivo EGFR immunohistochemistry with in vivo binding potential and fluorescence intensity. Additionally, a new set of paired-agents, ABY-029 and IRDye 700DX, are successfully tested in naïve mice and will be carried forward for clinical translation.
Collapse
Affiliation(s)
- Kimberley S Samkoe
- Geisel School of Medicine, Dartmouth College, Hanover, NH 03755.,Department of Surgery, Dartmouth-Hitchcock, Lebanon, NH, 03756
| | | | - Kayla Marra
- Thayer School of Engineering at Dartmouth, Lebanon, NH, 03755
| | - Eunice Y Chen
- Geisel School of Medicine, Dartmouth College, Hanover, NH 03755
| | - Kenneth M Tichauer
- Department of Biomedical Engineering, llinois Institute of Technology, Chicago, Illinois, 60616
| |
Collapse
|
24
|
Kang S, Xu X, Navarro E, Wang Y, Liu JTC, Tichauer KM. Modeling the binding and diffusion of receptor-targeted nanoparticles topically applied on fresh tissue specimens. Phys Med Biol 2019; 64:045013. [PMID: 30654346 DOI: 10.1088/1361-6560/aaff81] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nanoparticle (NP) contrast agents targeted to cancer biomarkers are increasingly being engineered for the early detection of cancer, guidance of therapy, and monitoring of response. There have been recent efforts to topically apply biomarker-targeted NPs on tissue surfaces to image the expression of cell-surface receptors over large surface areas as a means of evaluating tumor margins to guide wide local excision surgeries. However, diffusion and nonspecific binding of the NPs present challenges for relating NP retention on the tissue surface with the expression of cancer cell receptors. Paired-agent methods that employ a secondary 'control' NP to account for these nonspecific effects can improve cancer detection. Yet these paired-agent methods introduce multidimensional complexity (with tissue staining, rinsing, imaging, and data analysis protocols all being subject to alteration), and could be greatly simplified with accurate, predictive in silico models of NP binding and diffusion. Here, we outline and validate such a model to predict the diffusion, as well as specific and nonspecific binding, of targeted and control NPs topically applied on tissue surfaces. In order to inform the model, in vitro experiments were performed to determine relevant NP diffusion and binding rate constants in tissues. The predictive capacity of the model was validated by comparing simulated distributions of various sizes of NPs in comparison with experimental results. The regression of predicted and experimentally measured concentration-depth profiles yielded <15% error (compared to ~70% error obtained using a previous model of NP diffusion and binding).
Collapse
Affiliation(s)
- Soyoung Kang
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98105, United States of America. These authors contributed equally to this work
| | | | | | | | | | | |
Collapse
|
25
|
Sadeghipour N, Davis SC, Tichauer KM. Quantifying cancer cell receptors with paired-agent fluorescent imaging: a novel method to account for tissue optical property effects. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2018; 10497. [PMID: 30220772 DOI: 10.1117/12.2290631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Dynamic fluorescence imaging approaches can be used to estimate the concentration of cell surface receptors in vivo. Kinetic models are used to generate the final estimation by taking the targeted imaging agent concentration as a function of time. However, tissue absorption and scattering properties cause the final readout signal to be on a different scale than the real fluorescent agent concentration. In paired-agent imaging approaches, simultaneous injection of a suitable control imaging agent with a targeted one can account for non-specific uptake and retention of the targeted agent. Additionally, the signal from the control agent can be a normalizing factor to correct for tissue optical property differences. In this study, the kinetic model used for paired-agent imaging analysis (i.e., simplified reference tissue model) is modified and tested in simulation and experimental data in a way that accounts for the scaling correction within the kinetic model fit to the data to ultimately extract an estimate of the targeted biomarker concentration.
Collapse
Affiliation(s)
- Negar Sadeghipour
- Department of Biomedical Engineering, Illinois Institute of Technology, 3255 S Dearborn St., Chicago, IL USA 60616
| | - Scott C Davis
- Thayer School of Engineering, Dartmouth College, 14 Engineering Dr., Hanover, NH USA 03755-8001
| | - Kenneth M Tichauer
- Department of Biomedical Engineering, Illinois Institute of Technology, 3255 S Dearborn St., Chicago, IL USA 60616
| |
Collapse
|
26
|
Wang Y“W, Yang Q, Kang S, Wall MA, Liu JTC. High-speed Raman-encoded molecular imaging of freshly excised tissue surfaces with topically applied SERRS nanoparticles. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-8. [PMID: 29658229 PMCID: PMC5899991 DOI: 10.1117/1.jbo.23.4.046005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 03/26/2018] [Indexed: 05/03/2023]
Abstract
Surface-enhanced Raman scattering (SERS) nanoparticles (NPs) are increasingly being engineered for a variety of disease-detection and treatment applications. For example, we have previously developed a fiber-optic Raman-encoded molecular imaging (REMI) system for spectral imaging of biomarker-targeted SERS NPs topically applied on tissue surfaces to identify residual tumors at surgical margins. Although accurate tumor detection was achieved, the commercial SERS NPs used in our previous studies lacked the signal strength to enable high-speed imaging with high pixel counts (large fields of view and/or high spatial resolution), which limits their use for certain time-constrained clinical applications. As a solution, we explored the use of surface-enhanced resonant Raman scattering (SERRS) NPs to enhance imaging speeds. The SERRS NPs were synthesized de novo, and then conjugated to HER2 antibodies to achieve high binding affinity, as validated by flow cytometry. Under identical tissue-staining and imaging conditions, the targeted SERRS NPs enabled reliable identification of HER2-overexpressed tumor xenografts with 50-fold-enhanced imaging speed compared with our standard targeted SERS NPs. This enables our REMI system to image tissue surfaces at a rate of 150 cm2 per minute at a spatial resolution of 0.5 mm.
Collapse
Affiliation(s)
- Yu “Winston” Wang
- University of Washington, Department of Mechanical Engineering, Seattle, Washington, United States
- Address all correspondence to: Yu “Winston” Wang, ; Jonathan T. C. Liu,
| | - Qian Yang
- University of Washington, Department of Mechanical Engineering, Seattle, Washington, United States
- Chengdu Medical College, Collaborative Innovation Center of Sichuan for Elderly Care and Health, School of Pharmacy, Chengdu, China
| | - Soyoung Kang
- University of Washington, Department of Mechanical Engineering, Seattle, Washington, United States
| | - Matthew A. Wall
- University of Washington, Department of Mechanical Engineering, Seattle, Washington, United States
- Institute for Systems Biology, Seattle, Washington, United States
| | - Jonathan T. C. Liu
- University of Washington, Department of Mechanical Engineering, Seattle, Washington, United States
- University of Washington, School of Medicine, Department of Pathology, Seattle, Washington, United States
- Address all correspondence to: Yu “Winston” Wang, ; Jonathan T. C. Liu,
| |
Collapse
|
27
|
ISERS Microscopy for Tissue-Based Cancer Diagnostics with SERS Nanotags. CONFOCAL RAMAN MICROSCOPY 2018. [DOI: 10.1007/978-3-319-75380-5_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
28
|
Gao Y, Chen M, Wu J, Zhou Y, Cai C, Wang D, Luo J. Facilitating in vivo tumor localization by principal component analysis based on dynamic fluorescence molecular imaging. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-9. [PMID: 28929642 DOI: 10.1117/1.jbo.22.9.096010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 08/29/2017] [Indexed: 05/09/2023]
Abstract
Fluorescence molecular imaging has been used to target tumors in mice with xenograft tumors. However, tumor imaging is largely distorted by the aggregation of fluorescent probes in the liver. A principal component analysis (PCA)-based strategy was applied on the in vivo dynamic fluorescence imaging results of three mice with xenograft tumors to facilitate tumor imaging, with the help of a tumor-specific fluorescent probe. Tumor-relevant features were extracted from the original images by PCA and represented by the principal component (PC) maps. The second principal component (PC2) map represented the tumor-related features, and the first principal component (PC1) map retained the original pharmacokinetic profiles, especially of the liver. The distribution patterns of the PC2 map of the tumor-bearing mice were in good agreement with the actual tumor location. The tumor-to-liver ratio and contrast-to-noise ratio were significantly higher on the PC2 map than on the original images, thus distinguishing the tumor from its nearby fluorescence noise of liver. The results suggest that the PC2 map could serve as a bioimaging marker to facilitate in vivo tumor localization, and dynamic fluorescence molecular imaging with PCA could be a valuable tool for future studies of in vivo tumor metabolism and progression.
Collapse
Affiliation(s)
- Yang Gao
- Tsinghua University, School of Medicine, Department of Biomedical Engineering, Beijing, China
| | - Maomao Chen
- Tsinghua University, School of Medicine, Department of Biomedical Engineering, Beijing, China
| | - Junyu Wu
- Tsinghua University, School of Medicine, Department of Basic Medical Sciences, Beijing, China
| | - Yuan Zhou
- Tsinghua University, School of Medicine, Department of Biomedical Engineering, Beijing, China
| | - Chuangjian Cai
- Tsinghua University, School of Medicine, Department of Biomedical Engineering, Beijing, China
| | - Daliang Wang
- Tsinghua University, School of Medicine, Department of Basic Medical Sciences, Beijing, China
| | - Jianwen Luo
- Tsinghua University, School of Medicine, Department of Biomedical Engineering, Beijing, China
- Tsinghua University, Center for Biomedical Imaging Research, Beijing, China
| |
Collapse
|
29
|
Miampamba M, Liu J, Harootunian A, Gale AJ, Baird S, Chen SL, Nguyen QT, Tsien RY, González JE. Sensitive in vivo Visualization of Breast Cancer Using Ratiometric Protease-activatable Fluorescent Imaging Agent, AVB-620. Am J Cancer Res 2017; 7:3369-3386. [PMID: 28900516 PMCID: PMC5595138 DOI: 10.7150/thno.20678] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 06/07/2017] [Indexed: 12/26/2022] Open
Abstract
With the goal of improving intraoperative cancer visualization, we have developed AVB-620, a novel intravenously administered, in vivo fluorescent peptide dye conjugate that highlights malignant tissue and is optimized for human use. Matrix metalloproteinases (MMPs) hydrolyze AVB-620 triggering tissue retention and a ratiometric fluorescence color change which is visualized using camera systems capable of imaging fluorescence and white light simultaneously. AVB-620 imaging visualizes primary tumors and demonstrated high in vivo diagnostic sensitivity and specificity (both >95%) for identifying breast cancer metastases to lymph nodes in two immunocompetent syngeneic mouse models. It is well tolerated and single-dose toxicology studies in rats determined a no-observed-adverse-effect-level (NOAEL) at >110-fold above the imaging and estimated human dose. Protease specificity and hydrolysis kinetics were characterized and compared using recombinant MMPs. To understand the human translation potential, an in vitro diagnostic study was conducted to evaluate the ability of AVB-620 to differentiate human breast cancer tumor from healthy adjacent tissue. Patient tumor tissue and healthy adjacent breast tissue were homogenized, incubated with AVB-620, and fluorogenic responses were compared. Tumor tissue had 2-3 fold faster hydrolysis than matched healthy breast tissue; generating an assay sensitivity of 96% and specificity of 88%. AVB-620 has excellent sensitivity and specificity for identifying breast cancer in mouse and human tissue. Significant changes were made in the design of AVB-620 relative to previous ratiometric protease-activated agents. AVB-620 has pharmaceutical properties, fluorescence ratio dynamic range, usable diagnostic time window, a scalable synthesis, and a safety profile that have enabled it to advance into clinical evaluation in breast cancer patients.
Collapse
|
30
|
Xu X, Wang Y, Xiang J, Liu JTC, Tichauer KM. Rinsing paired-agent model (RPAM) to quantify cell-surface receptor concentrations in topical staining applications of thick tissues. Phys Med Biol 2017; 62:5098-5113. [PMID: 28548970 DOI: 10.1088/1361-6560/aa6cf1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Conventional molecular assessment of tissue through histology, if adapted to fresh thicker samples, has the potential to enhance cancer detection in surgical margins and monitoring of 3D cell culture molecular environments. However, in thicker samples, substantial background staining is common despite repeated rinsing, which can significantly reduce image contrast. Recently, 'paired-agent' methods-which employ co-administration of a control (untargeted) imaging agent-have been applied to thick-sample staining applications to account for background staining. To date, these methods have included (1) a simple ratiometric method that is relatively insensitive to noise in the data but has accuracy that is dependent on the staining protocol and the characteristics of the sample; and (2) a complex paired-agent kinetic modeling method that is more accurate but is more noise-sensitive and requires a precise serial rinsing protocol. Here, a new simplified mathematical model-the rinsing paired-agent model (RPAM)-is derived and tested that offers a good balance between the previous models, is adaptable to arbitrary rinsing-imaging protocols, and does not require calibration of the imaging system. RPAM is evaluated against previous models and is validated by comparison to estimated concentrations of targeted biomarkers on the surface of 3D cell culture and tumor xenograft models. This work supports the use of RPAM as a preferable model to quantitatively analyze targeted biomarker concentrations in topically stained thick tissues, as it was found to match the accuracy of the complex paired-agent kinetic model while retaining the low noise-sensitivity characteristics of the ratiometric method.
Collapse
Affiliation(s)
- Xiaochun Xu
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616, United States of America
| | | | | | | | | |
Collapse
|
31
|
Wang YW, Reder NP, Kang S, Glaser AK, Yang Q, Wall MA, Javid SH, Dintzis SM, Liu JTC. Raman-Encoded Molecular Imaging with Topically Applied SERS Nanoparticles for Intraoperative Guidance of Lumpectomy. Cancer Res 2017; 77:4506-4516. [PMID: 28615226 DOI: 10.1158/0008-5472.can-17-0709] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/28/2017] [Accepted: 06/08/2017] [Indexed: 12/30/2022]
Abstract
Intraoperative identification of carcinoma at lumpectomy margins would enable reduced re-excision rates, which are currently as high as 20% to 50%. Although imaging of disease-associated biomarkers can identify malignancies with high specificity, multiplexed imaging of such biomarkers is necessary to detect molecularly heterogeneous carcinomas with high sensitivity. We have developed a Raman-encoded molecular imaging (REMI) technique in which targeted nanoparticles are topically applied on excised tissues to enable rapid visualization of a multiplexed panel of cell surface biomarkers at surgical margin surfaces. A first-ever clinical study was performed in which 57 fresh specimens were imaged with REMI to simultaneously quantify the expression of four biomarkers HER2, ER, EGFR, and CD44. Combined detection of these biomarkers enabled REMI to achieve 89.3% sensitivity and 92.1% specificity for the detection of breast carcinoma. These results highlight the sensitivity and specificity of REMI to detect biomarkers in freshly resected tissue, which has the potential to reduce the rate of re-excision procedures in cancer patients. Cancer Res; 77(16); 4506-16. ©2017 AACR.
Collapse
Affiliation(s)
- Yu Winston Wang
- Department of Mechanical Engineering, University of Washington, Seattle, Washington.
| | - Nicholas P Reder
- Department of Mechanical Engineering, University of Washington, Seattle, Washington.,Department of Pathology, University of Washington School of Medicine, Seattle, Washington
| | - Soyoung Kang
- Department of Mechanical Engineering, University of Washington, Seattle, Washington
| | - Adam K Glaser
- Department of Mechanical Engineering, University of Washington, Seattle, Washington
| | - Qian Yang
- Department of Mechanical Engineering, University of Washington, Seattle, Washington.,Department of Pharmacy, Chengdu Medical College, Chengdu, Sichuan, China
| | - Matthew A Wall
- Department of Mechanical Engineering, University of Washington, Seattle, Washington
| | - Sara H Javid
- Department of Surgery, University of Washington School of Medicine, Seattle, Washington
| | - Suzanne M Dintzis
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington
| | - Jonathan T C Liu
- Department of Mechanical Engineering, University of Washington, Seattle, Washington.
| |
Collapse
|
32
|
Dimitriadis N, Grychtol B, Theuring M, Behr T, Sippel C, Deliolanis NC. Spectral and temporal multiplexing for multispectral fluorescence and reflectance imaging using two color sensors. OPTICS EXPRESS 2017; 25:12812-12829. [PMID: 28786634 DOI: 10.1364/oe.25.012812] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/24/2017] [Indexed: 06/07/2023]
Abstract
Fluorescence imaging can reveal functional, anatomical or pathological features of high interest in medical interventions. We present a novel method to record and display in video rate multispectral color and fluorescence images over the visible and near infrared range. The fast acquisition in multiple channels is achieved through a combination of spectral and temporal multiplexing in a system with two standard color sensors. Accurate color reproduction and high fluorescence unmixing performance are experimentally demonstrated with a prototype system in a challenging imaging scenario. Through spectral simulation and optimization we show that the system is sensitive to all dyes emitting in the visible and near infrared region without changing filters and that the SNR of multiple unmixed components can be kept high if parameters are chosen well. We propose a sensitive per-pixel metric of unmixing quality in a single image based on noise propagation and present a method to visualize the high-dimensional data in a 2D graph, where up to three fluorescent components can be distinguished and segmented.
Collapse
|
33
|
Belykh E, Martirosyan NL, Yagmurlu K, Miller EJ, Eschbacher JM, Izadyyazdanabadi M, Bardonova LA, Byvaltsev VA, Nakaji P, Preul MC. Intraoperative Fluorescence Imaging for Personalized Brain Tumor Resection: Current State and Future Directions. Front Surg 2016; 3:55. [PMID: 27800481 PMCID: PMC5066076 DOI: 10.3389/fsurg.2016.00055] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/12/2016] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Fluorescence-guided surgery is one of the rapidly emerging methods of surgical "theranostics." In this review, we summarize current fluorescence techniques used in neurosurgical practice for brain tumor patients as well as future applications of recent laboratory and translational studies. METHODS Review of the literature. RESULTS A wide spectrum of fluorophores that have been tested for brain surgery is reviewed. Beginning with a fluorescein sodium application in 1948 by Moore, fluorescence-guided brain tumor surgery is either routinely applied in some centers or is under active study in clinical trials. Besides the trinity of commonly used drugs (fluorescein sodium, 5-aminolevulinic acid, and indocyanine green), less studied fluorescent stains, such as tetracyclines, cancer-selective alkylphosphocholine analogs, cresyl violet, acridine orange, and acriflavine, can be used for rapid tumor detection and pathological tissue examination. Other emerging agents, such as activity-based probes and targeted molecular probes that can provide biomolecular specificity for surgical visualization and treatment, are reviewed. Furthermore, we review available engineering and optical solutions for fluorescent surgical visualization. Instruments for fluorescent-guided surgery are divided into wide-field imaging systems and hand-held probes. Recent advancements in quantitative fluorescence-guided surgery are discussed. CONCLUSION We are standing on the threshold of the era of marker-assisted tumor management. Innovations in the fields of surgical optics, computer image analysis, and molecular bioengineering are advancing fluorescence-guided tumor resection paradigms, leading to cell-level approaches to visualization and resection of brain tumors.
Collapse
Affiliation(s)
- Evgenii Belykh
- Department of Neurosurgery, St. Joseph’s Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Laboratory of Neurosurgery, Irkutsk Scientific Center of Surgery and Traumatology, Irkutsk, Russia
- Irkutsk State Medical University, Irkutsk, Russia
| | - Nikolay L. Martirosyan
- Department of Neurosurgery, St. Joseph’s Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Kaan Yagmurlu
- Department of Neurosurgery, St. Joseph’s Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Eric J. Miller
- University of Arizona College of Medicine – Phoenix, Phoenix, AZ, USA
| | - Jennifer M. Eschbacher
- Department of Neurosurgery, St. Joseph’s Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Mohammadhassan Izadyyazdanabadi
- Department of Neurosurgery, St. Joseph’s Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Liudmila A. Bardonova
- Department of Neurosurgery, St. Joseph’s Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, USA
- Laboratory of Neurosurgery, Irkutsk Scientific Center of Surgery and Traumatology, Irkutsk, Russia
- Irkutsk State Medical University, Irkutsk, Russia
| | - Vadim A. Byvaltsev
- Laboratory of Neurosurgery, Irkutsk Scientific Center of Surgery and Traumatology, Irkutsk, Russia
- Irkutsk State Medical University, Irkutsk, Russia
| | - Peter Nakaji
- Department of Neurosurgery, St. Joseph’s Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Mark C. Preul
- Department of Neurosurgery, St. Joseph’s Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, USA
| |
Collapse
|
34
|
Kang S, Wang Y, Reder NP, Liu JTC. Multiplexed Molecular Imaging of Biomarker-Targeted SERS Nanoparticles on Fresh Tissue Specimens with Channel-Compressed Spectrometry. PLoS One 2016; 11:e0163473. [PMID: 27685991 PMCID: PMC5042405 DOI: 10.1371/journal.pone.0163473] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/10/2016] [Indexed: 01/11/2023] Open
Abstract
Biomarker-targeted surface-enhanced Raman scattering (SERS) nanoparticles (NPs) have been explored as a viable option for targeting and imaging multiple cell-surface protein biomarkers of cancer. While it has been demonstrated that this Raman-encoded molecular imaging (REMI) technology may potentially be used to guide tumor-resection procedures, the REMI strategy would benefit from further improvements in imaging speed. Previous implementations of REMI have utilized 1024 spectral channels (camera pixels) in a commercial spectroscopic CCD to detect the spectral signals from multiplexed SERS NPs, a strategy that enables accurate demultiplexing of the relative concentration of each NP "flavor" within a mixture. Here, we investigate the ability to significantly reduce the number of spectral-collection channels while maintaining accurate imaging and demultiplexing of up to five SERS NP flavors, a strategy that offers the potential for improved imaging speed and/or detection sensitivity in future systems. This strategy was optimized by analyzing the linearity of five multiplexed flavors of SERS NPs topically applied on tissues. The accuracy of this binning approach was then validated by staining tumor xenografts and human breast tumor specimens with a mixture of five NP flavors (four targeted NPs and one untargeted NP) and performing ratiometric imaging of specific vs. nonspecific NP accumulation. We demonstrate that with channel-compressed spectrometry using as few as 16 channels, it is possible to perform REMI with five NP flavors, with < 20% error, at low concentrations (< 10 pM) that are relevant for clinical applications.
Collapse
Affiliation(s)
- Soyoung Kang
- Department of Mechanical Engineering, University of Washington, Seattle, WA, United States of America
| | - Yu Wang
- Department of Mechanical Engineering, University of Washington, Seattle, WA, United States of America
| | - Nicholas P. Reder
- Department of Pathology, University of Washington Medical Center, Seattle, WA, United States of America
| | - Jonathan T. C. Liu
- Department of Mechanical Engineering, University of Washington, Seattle, WA, United States of America
- * E-mail:
| |
Collapse
|
35
|
Wang Y, Kang S, Doerksen JD, Glaser AK, Liu JT. Surgical Guidance via Multiplexed Molecular Imaging of Fresh Tissues Labeled with SERS-Coded Nanoparticles. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS : A PUBLICATION OF THE IEEE LASERS AND ELECTRO-OPTICS SOCIETY 2016; 22:6802911. [PMID: 27524875 PMCID: PMC4978138 DOI: 10.1109/jstqe.2015.2507358] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The imaging of dysregulated cell-surface receptors (or biomarkers) is a potential means of identifying the presence of cancer with high sensitivity and specificity. However, due to heterogeneities in the expression of protein biomarkers in tumors, molecular imaging technologies should ideally be capable of visualizing a multiplexed panel of cancer biomarkers. Recently, surface-enhanced Raman-scattering (SERS) nanoparticles (NPs) have attracted wide interest due to their potential for sensitive and multiplexed biomarker detection. In this review, we focus on the most recent advances in tumor imaging using SERS-coded NPs. A brief introduction of the structure and optical properties of SERS NPs is provided, followed by a detailed discussion of key imaging issues such as the administration of NPs in tissue (topical versus systemic), the optical configuration and imaging approach of Raman imaging systems, spectral demultiplexing methods for quantifying NP concentrations, and the disambiguation of specific vs. nonspecific sources of contrast through ratiometric imaging of targeted and untargeted (control) NP pairs. Finally, future challenges and directions are briefly outlined.
Collapse
|
36
|
Dimitriadis N, Grychtol B, Maertins L, Behr T, Themelis G, Deliolanis NC. Simultaneous real-time multicomponent fluorescence and reflectance imaging method for fluorescence-guided surgery. OPTICS LETTERS 2016; 41:1173-1176. [PMID: 26977662 DOI: 10.1364/ol.41.001173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Fluorescence-guided surgical procedures are employed in an increasing number of applications such as tumor delineation, blood perfusion, and sentinel lymph node detection. A new generation of fluorescent probes is expected to increase the number of applications and improve efficiency. Yet, there are no available imaging methods to take full advantage of the forthcoming targeting technologies. We present a novel concept for imaging multiple agents for fluorescence-guided surgery. The system operates without any moving parts and can resolve images of three different fluorochromes while simultaneously recording conventional reflectance images.
Collapse
|
37
|
Wang YW, Kang S, Khan A, Bao PQ, Liu JT. In vivo multiplexed molecular imaging of esophageal cancer via spectral endoscopy of topically applied SERS nanoparticles. BIOMEDICAL OPTICS EXPRESS 2015; 6:3714-23. [PMID: 26504623 PMCID: PMC4605032 DOI: 10.1364/boe.6.003714] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 08/10/2015] [Accepted: 08/24/2015] [Indexed: 05/19/2023]
Abstract
The biological investigation and detection of esophageal cancers could be facilitated with an endoscopic technology to screen for the molecular changes that precede and accompany the onset of cancer. Surface-enhanced Raman scattering (SERS) nanoparticles (NPs) have the potential to improve cancer detection and investigation through the sensitive and multiplexed detection of cell-surface biomarkers. Here, we demonstrate that the topical application and endoscopic imaging of a multiplexed cocktail of receptor-targeted SERS NPs enables the rapid detection of tumors in an orthotopic rat model of esophageal cancer. Antibody-conjugated SERS NPs were topically applied on the lumenal surface of the rat esophagus to target EGFR and HER2, and a miniature spectral endoscope featuring rotational scanning and axial pull-back was employed to comprehensively image the NPs bound on the lumen of the esophagus. Ratiometric analyses of specific vs. nonspecific binding enabled the visualization of tumor locations and the quantification of biomarker expression in agreement with immunohistochemistry and flow cytometry validation data.
Collapse
Affiliation(s)
- Yu Winston Wang
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Soyoung Kang
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Altaz Khan
- Department of Biomedical Engineering, Stony Brook University (SUNY), Stony Brook, NY 11794, USA
| | - Philip Q. Bao
- Department of Surgery, Stony Brook Medicine, Stony Brook, NY 11794, USA
| | - Jonathan T.C. Liu
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
38
|
Tichauer KM, Wang Y, Pogue BW, Liu JTC. Quantitative in vivo cell-surface receptor imaging in oncology: kinetic modeling and paired-agent principles from nuclear medicine and optical imaging. Phys Med Biol 2015; 60:R239-69. [PMID: 26134619 PMCID: PMC4522156 DOI: 10.1088/0031-9155/60/14/r239] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The development of methods to accurately quantify cell-surface receptors in living tissues would have a seminal impact in oncology. For example, accurate measures of receptor density in vivo could enhance early detection or surgical resection of tumors via protein-based contrast, allowing removal of cancer with high phenotype specificity. Alternatively, accurate receptor expression estimation could be used as a biomarker to guide patient-specific clinical oncology targeting of the same molecular pathway. Unfortunately, conventional molecular contrast-based imaging approaches are not well adapted to accurately estimating the nanomolar-level cell-surface receptor concentrations in tumors, as most images are dominated by nonspecific sources of contrast such as high vascular permeability and lymphatic inhibition. This article reviews approaches for overcoming these limitations based upon tracer kinetic modeling and the use of emerging protocols to estimate binding potential and the related receptor concentration. Methods such as using single time point imaging or a reference-tissue approach tend to have low accuracy in tumors, whereas paired-agent methods or advanced kinetic analyses are more promising to eliminate the dominance of interstitial space in the signals. Nuclear medicine and optical molecular imaging are the primary modalities used, as they have the nanomolar level sensitivity needed to quantify cell-surface receptor concentrations present in tissue, although each likely has a different clinical niche.
Collapse
Affiliation(s)
- Kenneth M Tichauer
- Biomedical Engineering, Illinois Institute of Technology, Chicago IL 60616, USA
| | | | | | | |
Collapse
|
39
|
Abstract
Mounting evidence suggests that a more extensive surgical resection is associated with an improved life expectancy for both low-grade and high-grade glioma patients. However, radiographically complete resections are not often achieved in many cases because of the lack of sensitivity and specificity of current neurosurgical guidance techniques at the margins of diffuse infiltrative gliomas. Intraoperative fluorescence imaging offers the potential to improve the extent of resection and to investigate the possible benefits of resecting beyond the radiographic margins. Here, we provide a review of wide-field and high-resolution fluorescence-imaging strategies that are being developed for neurosurgical guidance, with a focus on emerging imaging technologies and clinically viable contrast agents. The strengths and weaknesses of these approaches will be discussed, as well as issues that are being addressed to translate these technologies into the standard of care.
Collapse
Affiliation(s)
- Jonathan T C Liu
- *Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York; ‡Barrow Brain Tumor Research Center, Division of Neurosurgical Oncology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | | | | |
Collapse
|
40
|
Quantification of the binding potential of cell-surface receptors in fresh excised specimens via dual-probe modeling of SERS nanoparticles. Sci Rep 2015; 5:8582. [PMID: 25716578 PMCID: PMC4341215 DOI: 10.1038/srep08582] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 01/26/2015] [Indexed: 12/12/2022] Open
Abstract
The complete removal of cancerous tissue is a central aim of surgical oncology, but is difficult to achieve in certain cases, especially when the removal of surrounding normal tissues must be minimized. Therefore, when post-operative pathology identifies residual tumor at the surgical margins, re-excision surgeries are often necessary. An intraoperative approach for tumor-margin assessment, insensitive to nonspecific sources of molecular probe accumulation and contrast, is presented employing kinetic-modeling analysis of dual-probe staining using surface-enhanced Raman scattering nanoparticles (SERS NPs). Human glioma (U251) and epidermoid (A431) tumors were implanted subcutaneously in six athymic mice. Fresh resected tissues were stained with an equimolar mixture of epidermal growth factor receptor (EGFR)-targeted and untargeted SERS NPs. The binding potential (BP; proportional to receptor concentration) of EGFR – a cell-surface receptor associated with cancer – was estimated from kinetic modeling of targeted and untargeted NP concentrations in response to serial rinsing. EGFR BPs in healthy, U251, and A431 tissues were 0.06 ± 0.14, 1.13 ± 0.40, and 2.23 ± 0.86, respectively, which agree with flow-cytometry measurements and published reports. The ability of this approach to quantify the BP of cell-surface biomarkers in fresh tissues opens up an accurate new approach to analyze tumor margins intraoperatively.
Collapse
|
41
|
Holt RW, Demers JLH, Sexton KJ, Gunn JR, Davis SC, Samkoe KS, Pogue BW. Tomography of epidermal growth factor receptor binding to fluorescent Affibody in vivo studied with magnetic resonance guided fluorescence recovery in varying orthotopic glioma sizes. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:26001. [PMID: 25652703 PMCID: PMC4317247 DOI: 10.1117/1.jbo.20.2.026001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 12/23/2014] [Indexed: 05/20/2023]
Abstract
The ability to image targeted tracer binding to epidermal growth factor receptor (EGFR) was studied in vivo in orthotopically grown glioma tumors of different sizes. The binding potential was quantified using a dual-tracer approach, which employs a fluorescently labeled peptide targeted to EGFR and a reference tracer with similar pharmacokinetic properties but no specific binding, to estimate the relative bound fraction from kinetic compartment modeling. The recovered values of binding potential did not vary significantly as a function of tumor size (1 to 33 mm3), suggesting that binding potential may be consistent in the U251 tumors regardless of size or stage after implantation. However, the fluorescence yield of the targeted fluorescent tracers in the tumor was affected significantly by tumor size, suggesting that dual-tracer imaging helps account for variations in absolute uptake, which plague single-tracer imaging techniques. Ex vivo analysis showed relatively high spatial heterogeneity in each tumor that cannot be resolved by tomographic techniques. Nonetheless, the dual-tracer tomographic technique is a powerful tool for longitudinal bulk estimation of receptor binding.
Collapse
Affiliation(s)
- Robert W. Holt
- Dartmouth College, Department of Physics & Astronomy, Hanover, New Hampshire 03755, United States
| | - Jennifer-Lynn H. Demers
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire 03755, United States
| | - Kristian J. Sexton
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire 03755, United States
| | - Jason R. Gunn
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire 03755, United States
| | - Scott C. Davis
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire 03755, United States
| | - Kimberley S. Samkoe
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire 03755, United States
- Geisel School of Medicine at Dartmouth, Department of Surgery, Hanover, New Hampshire 03755, United States
| | - Brian W. Pogue
- Dartmouth College, Department of Physics & Astronomy, Hanover, New Hampshire 03755, United States
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire 03755, United States
- Geisel School of Medicine at Dartmouth, Department of Surgery, Hanover, New Hampshire 03755, United States
- Address all correspondence to: Brian W. Pogue, E-mail:
| |
Collapse
|
42
|
Samkoe KS, Tichauer KM, Gunn JR, Wells WA, Hasan T, Pogue BW. Quantitative in vivo immunohistochemistry of epidermal growth factor receptor using a receptor concentration imaging approach. Cancer Res 2014; 74:7465-74. [PMID: 25344226 PMCID: PMC4268352 DOI: 10.1158/0008-5472.can-14-0141] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
As receptor-targeted therapeutics become increasingly used in clinical oncology, the ability to quantify protein expression and pharmacokinetics in vivo is imperative to ensure successful individualized treatment plans. Current standards for receptor analysis are performed on extracted tissues. These measurements are static and often physiologically irrelevant; therefore, only a partial picture of available receptors for drug targeting in vivo is provided. Until recently, in vivo measurements were limited by the inability to separate delivery, binding, and retention effects, but this can be circumvented by a dual-tracer approach for referencing the detected signal. We hypothesized that in vivo receptor concentration imaging (RCI) would be superior to ex vivo immunohistochemistry (IHC). Using multiple xenograft tumor models with varying EGFR expression, we determined the EGFR concentration in each model using a novel targeted agent (anti-EGFR affibody-IRDye800CW conjugate) along with a simultaneously delivered reference agent (control affibody-IRDye680RD conjugate). The RCI-calculated in vivo receptor concentration was strongly correlated with ex vivo pathologist-scored IHC and computer-quantified ex vivo immunofluorescence. In contrast, no correlation was observed with ex vivo Western blot analysis or in vitro flow-cytometry assays. Overall, our results argue that in vivo RCI provides a robust measure of receptor expression equivalent to ex vivo immunostaining, with implications for use in noninvasive monitoring of therapy or therapeutic guidance during surgery.
Collapse
Affiliation(s)
- Kimberley S Samkoe
- Department of Surgery, Geisel School of Medicine at Dartmouth College, Lebanon, New Hampshire. Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire.
| | - Kenneth M Tichauer
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois
| | - Jason R Gunn
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | - Wendy A Wells
- Department of Pathology, Geisel School of Medicine at Dartmouth College, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Brian W Pogue
- Department of Surgery, Geisel School of Medicine at Dartmouth College, Lebanon, New Hampshire. Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| |
Collapse
|
43
|
Microscopic lymph node tumor burden quantified by macroscopic dual-tracer molecular imaging. Nat Med 2014; 20:1348-53. [PMID: 25344739 PMCID: PMC4224611 DOI: 10.1038/nm.3732] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 07/03/2014] [Indexed: 12/24/2022]
Abstract
Lymph node biopsy (LNB) is employed in many cancer surgeries to identify metastatic disease and stage the cancer, yet morbidity and diagnostic delays associated with LNB could be avoided if non-invasive imaging of nodal involvement was reliable. Molecular imaging has potential in this regard; however, variable delivery and nonspecific uptake of imaging tracers has made conventional approaches ineffective clinically. A method of correcting for non-specific uptake with injection of a second untargeted tracer is presented, allowing tumor burden in lymph nodes to be quantified. The approach was confirmed in an athymic mouse model of metastatic human breast cancer targeting epidermal growth factor receptor, a cell surface receptor overexpressed by many cancers. A significant correlation was observed between in vivo (dual-tracer) and ex vivo measures of tumor burden (r = 0.97, p < 0.01), with an ultimate sensitivity of approximately 200 cells (potentially more sensitive than conventional LNB).
Collapse
|
44
|
Wang YW, Khan A, Leigh SY, Wang D, Chen Y, Meza D, Liu JT. Comprehensive spectral endoscopy of topically applied SERS nanoparticles in the rat esophagus. BIOMEDICAL OPTICS EXPRESS 2014; 5:2883-95. [PMID: 25401005 PMCID: PMC4230873 DOI: 10.1364/boe.5.002883] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/11/2014] [Accepted: 07/24/2014] [Indexed: 05/09/2023]
Abstract
The early detection and biological investigation of esophageal cancer would benefit from the development of advanced imaging techniques to screen for the molecular changes that precede and accompany the onset of cancer. Surface-enhanced Raman scattering (SERS) nanoparticles (NPs) have the potential to improve cancer detection and the investigation of cancer progression through the sensitive and multiplexed phenotyping of cell-surface biomarkers. Here, a miniature endoscope featuring rotational scanning and axial pull back has been developed for 2D spectral imaging of SERS NPs topically applied on the lumenal surface of the rat esophagus. Raman signals from low-pM concentrations of SERS NP mixtures are demultiplexed in real time to accurately calculate the concentration and ratio of the NPs. Ex vivo and in vivo experiments demonstrate the feasibility of topical application and imaging of multiplexed SERS NPs along the entire length of the rat esophagus.
Collapse
Affiliation(s)
- Yu W. Wang
- Department of Biomedical Engineering, Stony Brook University (SUNY), Stony Brook, NY 11794 USA
- Current institution: Department of Mechanical Engineering, University of Washington, Seattle, WA 98195 USA
- These authors contributed equally to this work
| | - Altaz Khan
- Department of Biomedical Engineering, Stony Brook University (SUNY), Stony Brook, NY 11794 USA
- These authors contributed equally to this work
| | - Steven Y. Leigh
- Department of Biomedical Engineering, Stony Brook University (SUNY), Stony Brook, NY 11794 USA
| | - Danni Wang
- Department of Biomedical Engineering, Stony Brook University (SUNY), Stony Brook, NY 11794 USA
| | - Ye Chen
- Department of Biomedical Engineering, Stony Brook University (SUNY), Stony Brook, NY 11794 USA
- Current institution: Department of Mechanical Engineering, University of Washington, Seattle, WA 98195 USA
| | - Daphne Meza
- Department of Biomedical Engineering, Stony Brook University (SUNY), Stony Brook, NY 11794 USA
| | - Jonathan T.C. Liu
- Department of Biomedical Engineering, Stony Brook University (SUNY), Stony Brook, NY 11794 USA
- Current institution: Department of Mechanical Engineering, University of Washington, Seattle, WA 98195 USA
| |
Collapse
|
45
|
Wang YW, Khan A, Som M, Wang D, Chen Y, Leigh SY, Meza D, McVeigh PZ, Wilson BC, Liu JTC. Rapid ratiometric biomarker detection with topically applied SERS nanoparticles. TECHNOLOGY 2014; 2:118-132. [PMID: 25045721 PMCID: PMC4103661 DOI: 10.1142/s2339547814500125] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Multiplexed surface-enhanced Raman scattering (SERS) nanoparticles (NPs) offer the potential for rapid molecular phenotyping of tissues, thereby enabling accurate disease detection as well as patient stratification to guide personalized therapies or to monitor treatment outcomes. The clinical success of molecular diagnostics based on SERS NPs would be facilitated by the ability to accurately identify tissue biomarkers under time-constrained staining and detection conditions with a portable device. In vitro, ex vivo and in vivo experiments were performed to optimize the technology and protocols for the rapid detection (0.1-s integration time) of multiple cell-surface biomarkers with a miniature fiber-optic spectral-detection probe following a brief (5 min) topical application of SERS NPs on tissues. Furthermore, we demonstrate that the simultaneous detection and ratiometric quantification of targeted and nontargeted NPs allows for an unambiguous assessment of molecular expression that is insensitive to nonspecific variations in NP concentrations.
Collapse
|
46
|
Wu B, Gayen SK. Fluorescence tomography of targets in a turbid medium using non-negative matrix factorization. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:042708. [PMID: 24827279 DOI: 10.1103/physreve.89.042708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Indexed: 06/03/2023]
Abstract
A near-infrared optical tomography approach for detection, three-dimensional localization, and cross-section imaging of fluorescent targets in a turbid medium is introduced. The approach uses multisource probing of targets, multidetector acquisition of diffusely transmitted fluorescence signal, and a non-negative matrix factorization based blind source separation scheme to obtain three-dimensional location of the targets. A Fourier transform back-projection algorithm provides an estimate of target cross section. The efficacy of the approach is demonstrated in an experiment involving two laterally separated small fluorescent targets embedded in a human breast tissue-simulating sample of thickness 60 times the transport mean free path. The approach could locate the targets within ∼1 mm of their known positions, and provide estimates of their cross sections. The high spatial resolution, fast reconstruction speed, noise tolerance, and ability to detect small targets are indicative of the potential of the approach for detecting and locating fluorescence contrast-enhanced breast tumors in early growth stages, when they are more amenable to treatment.
Collapse
Affiliation(s)
- Binlin Wu
- Physics Department, The City College and the Graduate Center of the City University of New York, 160 Convent Avenue, New York, New York 10031, USA
| | - S K Gayen
- Physics Department, The City College and the Graduate Center of the City University of New York, 160 Convent Avenue, New York, New York 10031, USA
| |
Collapse
|
47
|
Hamzei N, Samkoe KS, Elliott JT, Holt RW, Gunn JR, Hasan T, Pogue BW, Tichauer KM. Comparison of Kinetic Models for Dual-Tracer Receptor Concentration Imaging in Tumors. AUSTIN JOURNAL OF BIOMEDICAL ENGINEERING 2014; 1:austinpublishinggroup.com/biomedical-engineering/fulltext/ajbe-v1-id1002.php. [PMID: 25414912 PMCID: PMC4235770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Molecular differences between cancerous and healthy tissue have become key targets for novel therapeutics specific to tumor receptors. However, cancer cell receptor expression can vary within and amongst different tumors, making strategies that can quantify receptor concentration in vivo critical for the progression of targeted therapies. Recently a dual-tracer imaging approach capable of providing quantitative measures of receptor concentration in vivo was developed. It relies on the simultaneous injection and imaging of receptor-targeted tracer and an untargeted tracer (to account for non-specific uptake of the targeted tracer). Early implementations of this approach have been structured on existing "reference tissue" imaging methods that have not been optimized for or validated in dual-tracer imaging. Using simulations and mouse tumor model experimental data, the salient findings in this study were that all widely used reference tissue kinetic models can be used for dual-tracer imaging, with the linearized simplified reference tissue model offering a good balance of accuracy and computational efficiency. Moreover, an alternate version of the full two-compartment reference tissue model can be employed accurately by assuming that the K1s of the targeted and untargeted tracers are similar to avoid assuming an instantaneous equilibrium between bound and free states (made by all other models).
Collapse
Affiliation(s)
- Nazanin Hamzei
- Biomedical Engineering Despartment, Illinois Institute of Technology, Chicago IL 60616, USA
| | - Kimberley S Samkoe
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, USA
- Department of Surgery, Dartmouth Medical School, Hanover NH 03755, USA
| | | | - Robert W Holt
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, USA
| | - Jason R Gunn
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, USA
| | - Tayyaba Hasan
- Wellman Center for Photo medicine, Massachusetts General Hospital, Boston MA 02114, USA
| | - Brian W Pogue
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, USA
- Department of Surgery, Dartmouth Medical School, Hanover NH 03755, USA
- Wellman Center for Photo medicine, Massachusetts General Hospital, Boston MA 02114, USA
| | - Kenneth M Tichauer
- Biomedical Engineering Despartment, Illinois Institute of Technology, Chicago IL 60616, USA
| |
Collapse
|
48
|
Tichauer KM, Deharvengt SJ, Samkoe KS, Gunn JR, Bosenberg MW, Turk MJ, Hasan T, Stan RV, Pogue BW. Tumor endothelial marker imaging in melanomas using dual-tracer fluorescence molecular imaging. Mol Imaging Biol 2013; 16:372-82. [PMID: 24217944 DOI: 10.1007/s11307-013-0692-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/05/2013] [Accepted: 09/19/2013] [Indexed: 12/28/2022]
Abstract
PURPOSE Cancer-specific endothelial markers available for intravascular binding are promising targets for new molecular therapies. In this study, a molecular imaging approach of quantifying endothelial marker concentrations (EMCI) is developed and tested in highly light-absorbing melanomas. The approach involves injection of targeted imaging tracer in conjunction with an untargeted tracer, which is used to account for nonspecific uptake and tissue optical property effects on measured targeted tracer concentrations. PROCEDURES Theoretical simulations and a mouse melanoma model experiment were used to test out the EMCI approach. The tracers used in the melanoma experiments were fluorescently labeled anti-Plvap/PV1 antibody (plasmalemma vesicle associated protein Plvap/PV1 is a transmembrane protein marker exposed on the luminal surface of endothelial cells in tumor vasculature) and a fluorescent isotype control antibody, the uptakes of which were measured on a planar fluorescence imaging system. RESULTS The EMCI model was found to be robust to experimental noise under reversible and irreversible binding conditions and was capable of predicting expected overexpression of PV1 in melanomas compared to healthy skin despite a 5-time higher measured fluorescence in healthy skin compared to melanoma: attributable to substantial light attenuation from melanin in the tumors. CONCLUSIONS This study demonstrates the potential of EMCI to quantify endothelial marker concentrations in vivo, an accomplishment that is currently unavailable through any other methods, either in vivo or ex vivo.
Collapse
Affiliation(s)
- Kenneth M Tichauer
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA,
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Mai L, Yao A, Li J, Wei Q, Yuchi M, He X, Ding M, Zhou Q. Cyanine 5.5 conjugated nanobubbles as a tumor selective contrast agent for dual ultrasound-fluorescence imaging in a mouse model. PLoS One 2013; 8:e61224. [PMID: 23637799 PMCID: PMC3630137 DOI: 10.1371/journal.pone.0061224] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 03/07/2013] [Indexed: 12/03/2022] Open
Abstract
Nanobubbles and microbubbles are non-invasive ultrasound imaging contrast agents that may potentially enhance diagnosis of tumors. However, to date, both nanobubbles and microbubbles display poor in vivo tumor-selectivity over non-targeted organs such as liver. We report here cyanine 5.5 conjugated nanobubbles (cy5.5-nanobubbles) of a biocompatible chitosan-vitamin C lipid system as a dual ultrasound-fluorescence contrast agent that achieved tumor-selective imaging in a mouse tumor model. Cy5.5-nanobubble suspension contained single bubble spheres and clusters of bubble spheres with the size ranging between 400-800 nm. In the in vivo mouse study, enhancement of ultrasound signals at tumor site was found to persist over 2 h while tumor-selective fluorescence emission was persistently observed over 24 h with intravenous injection of cy5.5-nanobubbles. In vitro cell study indicated that cy5.5-flurescence dye was able to accumulate in cancer cells due to the unique conjugated nanobubble structure. Further in vivo fluorescence study suggested that cy5.5-nanobubbles were mainly located at tumor site and in the bladder of mice. Subsequent analysis confirmed that accumulation of high fluorescence was present at the intact subcutaneous tumor site and in isolated tumor tissue but not in liver tissue post intravenous injection of cy5.5-nanobubbles. All these results led to the conclusion that cy5.5-nanobubbles with unique crosslinked chitosan-vitamin C lipid system have achieved tumor-selective imaging in vivo.
Collapse
Affiliation(s)
- Liyi Mai
- Department of Nanomedicine & Biopharmaceuticals, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Anna Yao
- Department of Nanomedicine & Biopharmaceuticals, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Li
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qiong Wei
- Department of Nanomedicine & Biopharmaceuticals, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ming Yuchi
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoling He
- University Hospital, China University of Geoscience, Wuhan, Hubei, China
| | - Mingyue Ding
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qibing Zhou
- Department of Nanomedicine & Biopharmaceuticals, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| |
Collapse
|
50
|
Tichauer KM, Holt RW, El-Ghussein F, Davis SC, Samkoe KS, Gunn JR, Leblond F, Pogue BW. Dual-tracer background subtraction approach for fluorescent molecular tomography. JOURNAL OF BIOMEDICAL OPTICS 2013; 18:16003. [PMID: 23292612 PMCID: PMC3537325 DOI: 10.1117/1.jbo.18.1.016003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Diffuse fluorescence tomography requires high contrast-to-background ratios to accurately reconstruct inclusions of interest. This is a problem when imaging the uptake of fluorescently labeled molecularly targeted tracers in tissue, which can result in high levels of heterogeneously distributed background uptake. We present a dual-tracer background subtraction approach, wherein signal from the uptake of an untargeted tracer is subtracted from targeted tracer signal prior to image reconstruction, resulting in maps of targeted tracer binding. The approach is demonstrated in simulations, a phantom study, and in a mouse glioma imaging study, demonstrating substantial improvement over conventional and homogenous background subtraction image reconstruction approaches.
Collapse
Affiliation(s)
- Kenneth M. Tichauer
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire 03755
| | - Robert W. Holt
- Dartmouth College, Department of Physics and Astronomy, Hanover, New Hampshire 03755
| | - Fadi El-Ghussein
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire 03755
| | - Scott C. Davis
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire 03755
| | - Kimberley S. Samkoe
- Dartmouth Medical School, Department of Surgery, Lebanon, New Hampshire 03756
| | - Jason R. Gunn
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire 03755
| | - Frederic Leblond
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire 03755
- ÉcolePolytechnique Montréal, Génie Physique, Montréal, Quebec H3C 3A7, Canada
| | - Brian W. Pogue
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire 03755
- Dartmouth College, Department of Physics and Astronomy, Hanover, New Hampshire 03755
- Dartmouth Medical School, Department of Surgery, Lebanon, New Hampshire 03756
- Address all correspondence to: Brian W. Pogue, Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire 03755. Tel: 603-646-3861; Fax: 603-646-3856; E-mail:
| |
Collapse
|