1
|
Zhang X, Song J, Fan J, Zeng N, He H, Tuchin VV, Ma H. Stereoscopic spatial graphical method of Mueller matrix: Global-Polarization Stokes Ellipsoid. FRONTIERS OF OPTOELECTRONICS 2024; 17:29. [PMID: 39150587 PMCID: PMC11329479 DOI: 10.1007/s12200-024-00132-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/14/2024] [Indexed: 08/17/2024]
Abstract
A Mueller matrix covers all the polarization information of the measured sample, however the combination of its 16 elements is sometimes not intuitive enough to describe and identify the key characteristics of polarization changes. Within the Poincaré sphere system, this study achieves a spatial representation of the Mueller matrix: the Global-Polarization Stokes Ellipsoid (GPSE). With the help of Monte Carlo simulations combined with anisotropic tissue models, three basic characteristic parameters of GPSE are proposed and explained, where the V parameter represents polarization maintenance ability, and the E and D† parameters represent the degree of anisotropy. Furthermore, based on GPSE system, a dynamic analysis of skeletal muscle dehydration process demonstrates the monitoring effect of GPSE from an application perspective, while confirming its robustness and accuracy.
Collapse
Affiliation(s)
- Xinxian Zhang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Jiawei Song
- School of Teacher Education, Nanjing Normal University, Nanjing, 210097, China
| | - Jiahao Fan
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Nan Zeng
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| | - Honghui He
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Valery V Tuchin
- Institute of Physics, Saratov State University, Saratov, 410012, Russia
| | - Hui Ma
- Department of Physics, Tsinghua University, Beijing, 100084, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
2
|
Liu Z, Song J, Fu Q, Zeng N, Ma H. Study on anisotropy orientation due to well-ordered fibrous biological microstructures. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:052919. [PMID: 38420109 PMCID: PMC10901243 DOI: 10.1117/1.jbo.29.5.052919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 10/07/2023] [Accepted: 01/26/2024] [Indexed: 03/02/2024]
Abstract
Significance Most biological fibrous tissues have anisotropic optical characteristics, which originate from scattering by their fibrous microstructures and birefringence of biological macromolecules. The orientation-related anisotropic interpretation is of great value in biological tissue characterization and pathological diagnosis. Aim We focus on intrinsic birefringence and form birefringence in biological tissue samples. By observing and comparing the forward Mueller matrix of typical samples, we can understand the interpretation ability of orientation-related polarization parameters and further distinguish the sources and trends of anisotropy in tissues. Approach For glass fiber, silk fiber, skeletal muscle, and tendon, we construct a forward measuring device to obtain the Mueller matrix image and calculate the anisotropic parameters related to orientation. The statistical analysis method based on polar coordinates can effectively analyze the difference in anisotropic parameters. Results For those birefringent fibers, the statistical distribution of fast-axis values derived from Mueller matrix polar decomposition was found to exhibit bimodal characteristics, which is a key point in distinguishing the single-layer birefringent fiber sample from a layered, multioriented fibrous sample. The application conditions and interference factors of anisotropic orientation parameters are analyzed. Based on the parameters extracted from the orientation bimodal distribution, we can evaluate the relative change trend of intrinsic birefringence and form birefringence in anisotropic samples. Conclusions The cross-vertical bimodal distribution of the fast axis of anisotropic fibers is beneficial to accurately analyze the anisotropic changes in biological tissues. The results imply the potential of anisotropic orientation analysis for applications in pathological diagnosis.
Collapse
Affiliation(s)
- Zhidi Liu
- Tsinghua University, Shenzhen International Graduate School, Shenzhen, China
- Tsinghua University, Shenzhen International Graduate School, Guangdong Research Center of Polarization Imaging and Measurement Engineering Technology, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Shenzhen, China
| | - Jiawei Song
- Tsinghua University, Shenzhen International Graduate School, Guangdong Research Center of Polarization Imaging and Measurement Engineering Technology, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Shenzhen, China
- Tsinghua University, Department of Physics, Beijing, China
| | - Qiqi Fu
- Tsinghua University, Shenzhen International Graduate School, Shenzhen, China
- Tsinghua University, Shenzhen International Graduate School, Guangdong Research Center of Polarization Imaging and Measurement Engineering Technology, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Shenzhen, China
| | - Nan Zeng
- Tsinghua University, Shenzhen International Graduate School, Shenzhen, China
- Tsinghua University, Shenzhen International Graduate School, Guangdong Research Center of Polarization Imaging and Measurement Engineering Technology, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Shenzhen, China
| | - Hui Ma
- Tsinghua University, Shenzhen International Graduate School, Shenzhen, China
- Tsinghua University, Shenzhen International Graduate School, Guangdong Research Center of Polarization Imaging and Measurement Engineering Technology, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Shenzhen, China
- Tsinghua University, Department of Physics, Beijing, China
| |
Collapse
|
3
|
Wang H, Zhang L, Huang J, Yang Z, Fan C, Yuan L, Zhao H, Zhang Z, Liu X. Imaging the intracellular refractive index distribution (IRID) for dynamic label-free living colon cancer cells via circularly depolarization decay model (CDDM). BIOMEDICAL OPTICS EXPRESS 2024; 15:2451-2465. [PMID: 38633098 PMCID: PMC11019712 DOI: 10.1364/boe.518957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 04/19/2024]
Abstract
Label-free detection of intracellular substances for living cancer cells remains a significant hurdle in cancer pathogenesis research. Although the sensitivity of light polarization to intracellular substances has been validated, current studies are predominantly focused on tissue lesions, thus label-free detection of substances within individual living cancer cells is still a challenge. The main difficulty is to find specific detection methods along with corresponding characteristic parameters. With refractive index as an endogenous marker of substances, this study proposes a detection method of intracellular refractive index distribution (IRID) for label-free living colon cancer (LoVo) cells. Utilizing the circular depolarization decay model (CDDM) to calculate the degree of circular polarization (DOCP) modulated by the cell allows for the derivation of the IRID on the focal plane. Experiments on LoVo cells demonstrated the refractive index of single cell can be accurately and precisely measured, with precision of 10-3 refractive index units (RIU). Additionally, chromatin content during the interphases (G1, S, G2) of cell cycle was recorded at 56.5%, 64.4%, and 71.5%, respectively. A significantly finer IRID can be obtained compared to the phase measurement method. This method is promising in providing a dynamic label-free intracellular substances detection method in cancer pathogenesis studies.
Collapse
Affiliation(s)
- Huijun Wang
- State Key Laboratory for Manufacturing System Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Lu Zhang
- State Key Laboratory for Manufacturing System Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- School of Instrument Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Jie Huang
- State Key Laboratory for Manufacturing System Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Zewen Yang
- State Key Laboratory for Manufacturing System Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Chen Fan
- State Key Laboratory for Manufacturing System Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- School of Instrument Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Li Yuan
- First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710049, China
| | - Hong Zhao
- State Key Laboratory for Manufacturing System Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- School of Instrument Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Zhenxi Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi’an Jiaotong University, Xi’an 710049, China
| | - Xiaolong Liu
- Mengchao Hepatobiliary Hospital of Fujian Medical University, The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Provincey, Fuzhou 350025, China
| |
Collapse
|
4
|
Chen Y, Chu J, Xin B, Qi J. Mechanical stability of polarization signatures in biological tissue characterization. BIOMEDICAL OPTICS EXPRESS 2024; 15:2652-2665. [PMID: 38633097 PMCID: PMC11019670 DOI: 10.1364/boe.518756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 04/19/2024]
Abstract
Mueller matrix imaging polarimetry (MMIP) is a promising technique for investigating structural abnormalities in pathological diagnosis. The characterization stability of polarization signatures, described by Mueller matrix parameters (MMPs), correlates with the mechanical state of the biological medium. In this study, we developed an MMIP system capable of applying quantitative forces to samples and measuring the resulting polarization signatures. Mechanical stretching experiments were conducted on a mimicking phantom and a tissue sample at different force scales. We analyzed the textural features and data distribution of MMP images and evaluated the force effect on the characterization of MMPs using the structural similarity index. The results demonstrate that changes in the mechanical microenvironment (CMM) can cause textural fluctuations in MMP images, interfering with the stability of polarization signatures. Specifically, parameters of anisotropic orientation, retardance, and optical rotation are the most sensitive to CMM, inducing a dramatic change in the overall image texture, while other parameters (e.g., polarization, diattenuation, and depolarization) exhibit locality in their response to CMM. For some MMPs, CMM can enhance regional textural contrasts. This study elucidates the mechanical stability of polarization signatures in biological tissue characterization and provides a valuable reference for further research toward minimizing CMM influence.
Collapse
Affiliation(s)
- Yongtai Chen
- Research Center for Frontier Fundamental Studies, Zhejiang Lab, Hangzhou 311100, China
- School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jinkui Chu
- School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Benda Xin
- School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Ji Qi
- Research Center for Frontier Fundamental Studies, Zhejiang Lab, Hangzhou 311100, China
| |
Collapse
|
5
|
Hao R, Zeng N, Zhang Z, He H, He C, Ma H. Discrepancy of coordinate system selection in backscattering Mueller matrix polarimetry: exploring photon coordinate system transformation invariants. OPTICS EXPRESS 2024; 32:3804-3816. [PMID: 38297593 DOI: 10.1364/oe.513999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/09/2024] [Indexed: 02/02/2024]
Abstract
In biomedical studies, Mueller matrix polarimetry is gaining increasing attention because it can comprehensively characterize polarization-related vectorial properties of the sample, which are crucial for microstructural identification and evaluation. For backscattering Mueller matrix polarimetry, there are two photon coordinate selection conventions, which can affect the following Mueller matrix parameters calculation and information acquisition quantitatively. In this study, we systematically analyze the influence of photon coordinate system selection on the backscattering Mueller matrix polarimetry. We compare the Mueller matrix elements in the right-handed-nonunitary and non-right-handed-unitary coordinate systems, and specifically deduce the changes of Mueller matrix polar decomposition, Mueller matrix Cloude decomposition and Mueller matrix transformation parameters widely used in backscattering Mueller matrix imaging as the photon coordinate system varied. Based on the theoretical analysis and phantom experiments, we provide a group of photon coordinate system transformation invariants for backscattering Mueller matrix polarimetry. The findings presented in this study give a crucial criterion of parameters selection for backscattering Mueller matrix imaging under different photon coordinate systems.
Collapse
|
6
|
Pardo I, Bian S, Gomis-Brescó J, Pascual E, Canillas A, Bosch S, Arteaga O. Wide-field Mueller matrix polarimetry for spectral characterization of basic biological tissues: Muscle, fat, connective tissue, and skin. JOURNAL OF BIOPHOTONICS 2024; 17:e202300252. [PMID: 37743627 DOI: 10.1002/jbio.202300252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/19/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023]
Abstract
This study investigates the polarimetric properties of skin, skeletal muscle, connective tissue, and fat using Mueller matrix imaging. It aims to compare the polarimetric characteristics of these tissues and explore how they evolve with wavelength. Additionally, the temporal evolution of certain tissues during meat aging is studied, providing insights into the dynamic behavior of polarimetric properties over time. The research employs back-scattering configuration and the differential decomposition analysis method of Mueller matrix images. Both in-vivo and ex-vivo experiments were conducted using a consistent instrument setup to ensure reliable analysis. The results reveal wavelength-dependent variations in tissue properties, including an increase in depolarization with wavelength. Significant differences in the polarimetric characteristics of meat tissues, particularly for skeletal muscle, are observed. Over a 24-h period, intensity, diattenuation, and retardation experience alterations, being the decreased retardation in skeletal muscle and the increased retardation in fat the most notable ones.
Collapse
Affiliation(s)
- Iago Pardo
- Dep. Fisica Aplicada, PLAT group, Universitat de Barcelona, Barcelona, Spain
| | - Subiao Bian
- Dep. Fisica Aplicada, PLAT group, Universitat de Barcelona, Barcelona, Spain
| | - Jordi Gomis-Brescó
- Dep. Fisica Aplicada, PLAT group, Universitat de Barcelona, Barcelona, Spain
| | - Esther Pascual
- Dep. Fisica Aplicada, PLAT group, Universitat de Barcelona, Barcelona, Spain
| | - Adolf Canillas
- Dep. Fisica Aplicada, PLAT group, Universitat de Barcelona, Barcelona, Spain
| | - Salvador Bosch
- Dep. Fisica Aplicada, PLAT group, Universitat de Barcelona, Barcelona, Spain
| | - Oriol Arteaga
- Dep. Fisica Aplicada, PLAT group, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
7
|
Zhang Z, Hao R, Shao C, Mi C, He H, He C, Du E, Liu S, Wu J, Ma H. Analysis and optimization of aberration induced by oblique incidence for in-vivo tissue polarimetry. OPTICS LETTERS 2023; 48:6136-6139. [PMID: 38039210 DOI: 10.1364/ol.501365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/24/2023] [Indexed: 12/03/2023]
Abstract
For in-vivo polarimetry such as Mueller matrix endoscopy of human internal organ cavities, the complicated undulating tissue surfaces deliver an inescapable occurrence of oblique incidence, which induce a prominent aberration to backscattering tissue polarimetry. In this Letter, we quantitatively analyze such polarimetric aberration on polarization basic parameters derived from the Mueller matrix. A correlation heatmap is obtained as applicable criteria to select an appropriate incident angle for different polarization basic parameters. Based on the analyzing results, we propose two aberration optimization strategies of parameter selection and azimuth rotation, which are suitable for tissue samples with randomly and well-aligned fiber textures, respectively. Both strategies are demonstrated to be effective in the ex-vivo human gastric muscularis tissue experiment. The findings presented in this Letter can be useful to provide accurate polarization imaging results, widely applied on in-vivo polarimetric endoscopy for tissues with complicated surface topography.
Collapse
|
8
|
Deng L, Fan Z, Chen B, Zhai H, He H, He C, Sun Y, Wang Y, Ma H. A Dual-Modality Imaging Method Based on Polarimetry and Second Harmonic Generation for Characterization and Evaluation of Skin Tissue Structures. Int J Mol Sci 2023; 24:ijms24044206. [PMID: 36835613 PMCID: PMC9966533 DOI: 10.3390/ijms24044206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
The characterization and evaluation of skin tissue structures are crucial for dermatological applications. Recently, Mueller matrix polarimetry and second harmonic generation microscopy have been widely used in skin tissue imaging due to their unique advantages. However, the features of layered skin tissue structures are too complicated to use a single imaging modality for achieving a comprehensive evaluation. In this study, we propose a dual-modality imaging method combining Mueller matrix polarimetry and second harmonic generation microscopy for quantitative characterization of skin tissue structures. It is demonstrated that the dual-modality method can well divide the mouse tail skin tissue specimens' images into three layers of stratum corneum, epidermis, and dermis. Then, to quantitatively analyze the structural features of different skin layers, the gray level co-occurrence matrix is adopted to provide various evaluating parameters after the image segmentations. Finally, to quantitatively measure the structural differences between damaged and normal skin areas, an index named Q-Health is defined based on cosine similarity and the gray-level co-occurrence matrix parameters of imaging results. The experiments confirm the effectiveness of the dual-modality imaging parameters for skin tissue structure discrimination and assessment. It shows the potential of the proposed method for dermatological practices and lays the foundation for further, in-depth evaluation of the health status of human skin.
Collapse
Affiliation(s)
- Liangyu Deng
- Guangdong Research Center of Polarization Imaging and Measurement Engineering Technology, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zhipeng Fan
- Guangdong Research Center of Polarization Imaging and Measurement Engineering Technology, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Binguo Chen
- Guangdong Research Center of Polarization Imaging and Measurement Engineering Technology, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Department of Biomedical Engineering, Tsinghua University, Beijing 100084, China
| | - Haoyu Zhai
- Guangdong Research Center of Polarization Imaging and Measurement Engineering Technology, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Department of Biomedical Engineering, Tsinghua University, Beijing 100084, China
| | - Honghui He
- Guangdong Research Center of Polarization Imaging and Measurement Engineering Technology, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Correspondence: (H.H.); (C.H.)
| | - Chao He
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
- Correspondence: (H.H.); (C.H.)
| | - Yanan Sun
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yi Wang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hui Ma
- Guangdong Research Center of Polarization Imaging and Measurement Engineering Technology, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Department of Physics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
9
|
Chen Y, Chu J, Tang WC, Zhang R, Zhao M, Xin B. Study of the spatial scale stability of Mueller matrix parameters for textural characterization of biological tissues. JOURNAL OF BIOPHOTONICS 2022; 15:e202100269. [PMID: 34837329 DOI: 10.1002/jbio.202100269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Mueller matrix imaging polarimetry (MMIP) is a promising technique for the textural characterization of biological tissue structures. To reveal the influence of imaging magnification on the robustness of Mueller matrix parameters (MMPs), the spatial scale stability of MMPs was studied. We established a new MMIP detector and derived the mathematical model of the spatial scale stability of MMPs. The biological tissues with well-defined structural components were imaged under different magnifications. Then, we compared and analyzed the textural features of the MMPs in the resulting images. The experimental results match the predictions of the mathematical model in these aspects: (a) magnification exhibits a strong nonlinear effect on the textural contrasts of MMPs images; (b) higher magnification does not necessarily lead to superior contrast for textural characterization; and (c) for different biological tissues, MMPs contrasts can be optimized differently, with some showing superior results. This study provides a reference for the experimental design and operation of the MMIP technique and is helpful for improving the characterization ability of MMPs.
Collapse
Affiliation(s)
- Yongtai Chen
- School of Mechanical Engineering, Dalian University of Technology, Dalian, China
| | - Jinkui Chu
- School of Mechanical Engineering, Dalian University of Technology, Dalian, China
| | - William C Tang
- Department of Biomedical Engineering, University of California, Irvine, California, USA
| | - Ran Zhang
- School of Mechanical Engineering, Dalian University of Technology, Dalian, China
| | - Mingyu Zhao
- School of Mechanical Engineering, Dalian University of Technology, Dalian, China
| | - Benda Xin
- School of Mechanical Engineering, Dalian University of Technology, Dalian, China
| |
Collapse
|
10
|
Ali Z, Mahmood T, Shahzad A, Iqbal M, Ahmad I. Assessment of tissue pathology using optical polarimetry. Lasers Med Sci 2021; 37:1907-1919. [PMID: 34689277 DOI: 10.1007/s10103-021-03450-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/18/2021] [Indexed: 11/28/2022]
Abstract
Optical polarimetry have been extensively used for the non-invasive assessment of biological tissues. However, the knowledge regarding differences in polarimetric signatures of different tissue pathologies is very scattered, confounding the deduction of a global trend of the polarimetric variables for healthy and pathological tissues. The purpose of this study was to bridge this gap. We conducted a rigorous online survey to collect all published studies that report the two most common polarimetric variables (i.e., depolarization and retardance) for any type of tissue pathology. A total of 101 studies describing the polarimetric assessment of tissues were collected, wherein 253 (i.e., nhuman = 149, nanimal = 104) different type of tissues were optically characterized. Most tissue samples (172/253) were investigated in ex vivo settings. The data showed 32 different types of tissues pathologies, where the most common pathology was cancer and its subtypes. The skin tissues were the most frequently explored tissues, followed by tissue samples from breast, colon, liver, and cervix. Although differences in polarimetric signatures of different tissue pathologies were summarized from the included studies, generalization of the results was hindered by the presentation of polarimetric data in a non-uniform format. The analyses presented in this study may provide an important reference for future polarimetric studies that conduct optical assessment of tissues at greater depth, particularly in the context of optical biopsy/digital staining.
Collapse
Affiliation(s)
- Zahra Ali
- DHQ and Teaching Hospital, Sahiwal, Pakistan
| | | | | | - Muaz Iqbal
- Department of Physics, Islamia College Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Iftikhar Ahmad
- Institute of Radiotherapy and Nuclear Medicine (IRNUM), Peshawar, Pakistan.
| |
Collapse
|
11
|
Zhu Y, Dong Y, Yao Y, Si L, Liu Y, He H, Ma H. Probing layered structures by multi-color backscattering polarimetry and machine learning. BIOMEDICAL OPTICS EXPRESS 2021; 12:4324-4339. [PMID: 34457417 PMCID: PMC8367275 DOI: 10.1364/boe.425614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/06/2021] [Accepted: 06/17/2021] [Indexed: 05/10/2023]
Abstract
Polarization imaging can quantitatively probe the characteristic microstructural features of biological tissues non-invasively. In biomedical tissues, layered structures are common. Superposition of two simple layers can result in a complex Mueller matrix, and multi-color backscattering polarimetry can help to probe layered structures. In this work, multi-color backscattering Mueller matrix images are measured for living nude mice skins. Preliminary analysis of anisotropy parameter A and linear polarizance parameter b show signs of a layered structure in the skin. For more detailed examinations on polarization features of layered samples, we generate Mueller matrices by experimenting with two-layered thick tissues and concentrically aligned silk submerged in milk. Then we use supervised machine learning to identify polarization parameters that are sensitive to layered structure and guide the synthesis of more parameters. Monte Carlo simulation is also adopted to explore the relationship between parameters and microstructures of media. We conclude that multi-color backscattering polarimetry combined with supervised machine learning can be applied to probe the characteristic microstructure in layered living tissue samples.
Collapse
Affiliation(s)
- Yuanhuan Zhu
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Yang Dong
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Yue Yao
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Lu Si
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Yudi Liu
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Honghui He
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Hui Ma
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Department of Physics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
12
|
Liu Z, Liao R, Ma H, Li J, Leung PTY, Yan M, Gu J. Classification of marine microalgae using low-resolution Mueller matrix images and convolutional neural network. APPLIED OPTICS 2020; 59:9698-9709. [PMID: 33175806 DOI: 10.1364/ao.405427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
In this paper, we used a convolutional neural network to study the classification of marine microalgae by using low-resolution Mueller matrix images. Mueller matrix images of 12 species of algae from 5 families were measured by a Mueller matrix microscopy with an LED light source at 514 nm wavelength. The data sets of seven resolution levels were generated by the bicubic interpolation algorithm. We conducted two groups of classification experiments; one group classified the algae into 12 classes according to species category, and the other group classified the algae into 5 classes according to family category. In each group of classification experiments, we compared the classification results of the Mueller matrix images with those of the first element (M11) images. The classification accuracy of Mueller matrix images declines gently with the decrease of image resolution, while the accuracy of M11 images declines sharply. The classification accuracy of Mueller matrix images is higher than that of M11 images at each resolution level. At the lowest resolution level, the accuracy of 12-class classification and 5-class classification of full Mueller matrix images is 29.89% and 35.83% higher than those of M11 images, respectively. In addition, we also found that the polarization information of different species had different contributions to the classification. These results show that the polarization information can greatly improve the classification accuracy of low-resolution microalgal images.
Collapse
|
13
|
Chen L, Chen X, Yang X, He C, Wang M, Xi P, Gao J. Advances of super-resolution fluorescence polarization microscopy and its applications in life sciences. Comput Struct Biotechnol J 2020; 18:2209-2216. [PMID: 32952935 PMCID: PMC7476067 DOI: 10.1016/j.csbj.2020.06.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 11/29/2022] Open
Abstract
Fluorescence polarization microscopy (FPM) analyzes both intensity and orientation of fluorescence dipole, and reflects the structural specificity of target molecules. It has become an important tool for studying protein organization, orientational order, and structural changes in cells. However, suffering from optical diffraction limit, conventional FPM has low orientation resolution and observation accuracy, as the polarization information is averaged by multiple fluorescent molecules within a diffraction-limited volume. Recently, novel super-resolution FPMs have been developed to break the diffraction barrier. In this review, we will introduce the recent progress to achieve sub-diffraction determination of dipole orientation. Biological applications, based on polarization analysis of fluorescence dipole, are also summarized, with focus on chromophore-target molecule interaction and molecular organization.
Collapse
Affiliation(s)
- Long Chen
- Department of Automation, Tsinghua University, 100084 Beijing, China.,MOE Key Laboratory of Bioinformatics; Bioinformatics Division, Center for Synthetic & Systems Biology, BNRist; Center for Synthetic & Systems Biology, Tsinghua University, 100084 Beijing, China
| | - Xingye Chen
- Department of Automation, Tsinghua University, 100084 Beijing, China
| | - Xusan Yang
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Chao He
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
| | - Miaoyan Wang
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Peng Xi
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Juntao Gao
- Department of Automation, Tsinghua University, 100084 Beijing, China.,MOE Key Laboratory of Bioinformatics; Bioinformatics Division, Center for Synthetic & Systems Biology, BNRist; Center for Synthetic & Systems Biology, Tsinghua University, 100084 Beijing, China
| |
Collapse
|
14
|
Jain A, Maurya AK, Ulrich L, Jaeger M, Rossi RM, Neels A, Schucht P, Dommann A, Frenz M, Akarçay HG. Polarimetric imaging in backscattering for the structural characterization of strongly scattering birefringent fibrous media. OPTICS EXPRESS 2020; 28:16673-16695. [PMID: 32549485 DOI: 10.1364/oe.390303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Interpreting the polarimetric data from fiber-like macromolecules constitutive of tissue can be difficult due to strong scattering. In this study, we probed the superficial layers of fibrous tissue models (membranes consisting of nanofibers) displaying varying degrees of alignment. To better understand the manifestation of membranes' degree of alignment in polarimetry, we analyzed the spatial variations of the backscattered light's Stokes vectors as a function of the orientation of the probing beam's linear polarization. The degree of linear polarization reflects the uniaxially birefringent behavior of the membranes. The rotational (a-)symmetry of the backscattered light's degree of linear polarization provides a measure of the membranes' degree of alignment.
Collapse
|
15
|
Wang C, Qin P, Lv D, Wan J, Sun S, Ma H. Characterization of anisotropy of the porous anodic alumina by the Mueller matrix imaging method. OPTICS EXPRESS 2020; 28:6740-6754. [PMID: 32225915 DOI: 10.1364/oe.380070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Porous anodic alumina (PAA) is a photonic crystal with a hexagonal porous structure. To learn more about the effects brought by pores on the anisotropy of the PAA, we use the orientation sensitive Mueller matrix imaging (MMI) method to study it. We fabricated the PAA samples with uniform pores and two different pore diameters. By the MMI experiments with these samples, we found that the birefringence is the major anisotropy of the PAA and that there are many small areas with different orientations that formed spontaneously in the process of production on the surface of the PAA. By the MMI experiments at different orientations of the sample with two different pore diameters, we found that the pores affect the birefringence of the sample and the effect increases with the increased inclination of the sample. To further analyze the PAA, we present a symmetrical rotation measurement method according to the Mueller matrix of the retarder. With this method, we can calculate the average refractive index (RI) of birefringence and the orientation of the optical axis of uniaxial crystal. The results also show the effect of the pores on the anisotropy of PAA.
Collapse
|
16
|
Liu T, Lu M, Chen B, Zhong Q, Li J, He H, Mao H, Ma H. Distinguishing structural features between Crohn's disease and gastrointestinal luminal tuberculosis using Mueller matrix derived parameters. JOURNAL OF BIOPHOTONICS 2019; 12:e201900151. [PMID: 31465142 DOI: 10.1002/jbio.201900151] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 05/02/2023]
Abstract
Recently, the incidence of inflammatory bowel diseases, especially the Crohn's disease (CD) and gastrointestinal luminal tuberculosis (ITB), has grown rapidly worldwide. Currently there is no general gold standard to distinguish between CD and ITB tissues, which both have tuberculosis and surrounding fibrous structures. Mueller matrix imaging technique is suitable for describing the location, density and distribution behavior of such fibrous structures. In this study, we apply the Mueller matrix microscopic imaging to the CD and ITB tissue samples. The 2D Mueller matrix images of the CD and ITB tissue slices are measured using the Mueller matrix microscope developed in our previous study, then the Mueller matrix polar decomposition and Mueller matrix transformation parameters are calculated. To evaluate the distribution features of the fibrous structures surrounding the tuberculosis areas more quantitatively and precisely, we analyze the retardance related Mueller matrix derived parameters, which show clear different distribution behaviors between the CD and ITB tissues, using the Tamura image processing method. It is demonstrated that the Mueller matrix derived parameters can reveal the structural features of tuberculosis areas and be used as quantitative indicators to distinguish between CD and ITB tissues, which may be useful for the clinical diagnosis.
Collapse
Affiliation(s)
- Teng Liu
- Guangdong Research Center of Polarization Imaging and Measurement Engineering Technology, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
- Department of Physics, Tsinghua University, Beijing, China
| | - Min Lu
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Binguo Chen
- Guangdong Research Center of Polarization Imaging and Measurement Engineering Technology, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
- Department of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Qinsong Zhong
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jingyu Li
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Honghui He
- Guangdong Research Center of Polarization Imaging and Measurement Engineering Technology, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Hua Mao
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hui Ma
- Guangdong Research Center of Polarization Imaging and Measurement Engineering Technology, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
- Department of Physics, Tsinghua University, Beijing, China
- Center for Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, China
| |
Collapse
|
17
|
Quantitative Analysis of 4 × 4 Mueller Matrix Transformation Parameters for Biomedical Imaging. PHOTONICS 2019. [DOI: 10.3390/photonics6010034] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mueller matrix polarimetry is a potentially powerful technique for obtaining microstructural information of biomedical specimens. Thus, it has found increasing application in both backscattering imaging of bulk tissue samples and transmission microscopic imaging of thin tissue slices. Recently, we proposed a technique to transform the 4 × 4 Mueller matrix elements into a group of parameters, which have explicit associations with specific microstructural features of samples. In this paper, we thoroughly analyze the relationships between the Mueller matrix transformation parameters and the characteristic microstructures of tissues by using experimental phantoms and Monte Carlo simulations based on different tissue mimicking models. We also adopt quantitative evaluation indicators to compare the Mueller matrix transformation parameters with the Mueller matrix polar decomposition parameters. The preliminary imaging results of bulk porcine colon tissues and thin human pathological tissue slices demonstrate the potential of Mueller matrix transformation parameters as biomedical diagnostic indicators. Also, this study provides quantitative criteria for parameter selection in biomedical Mueller matrix imaging.
Collapse
|
18
|
Chen Z, Yao Y, Zhu Y, Ma H. Removing the dichroism and retardance artifacts in a collinear backscattering Mueller matrix imaging system. OPTICS EXPRESS 2018; 26:28288-28301. [PMID: 30470003 DOI: 10.1364/oe.26.028288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 09/20/2018] [Indexed: 06/09/2023]
Abstract
In this paper we report a method for removing artifacts caused by the beam splitter in a collinear backscattering Mueller matrix (CBMM) imaging system. As an essential optical component in a collinear back reflection optical path, a 45ϵ6,ρ8,δ10 beam splitter has to be used to separate the incident and the reflection beam. Since the beam splitter induces parasitic dichroism and retardance artifacts in both the illumination and detection optical paths, it leads to artifacts in the experimental results of Muller matrix measurements. We examined the influence of the beam splitter to the measured Mueller matrices in detail and reduced those artifacts in the CBMM system by precisely reconstructing the instrument matrix with a numerical calculation method. By measuring three standard samples we can calculate multiple systematic errors and the polarization characteristics of beam splitter in the CBMM system simultaneously. After the calibration, the maximum error in the Mueller matrix elements can be reduced to less than 0.02.
Collapse
|
19
|
Sun T, Liu T, He H, Wu J, Ma H. Distinguishing anisotropy orientations originated from scattering and birefringence of turbid media using Mueller matrix derived parameters. OPTICS LETTERS 2018; 43:4092-4095. [PMID: 30160724 DOI: 10.1364/ol.43.004092] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 07/18/2018] [Indexed: 05/27/2023]
Abstract
Anisotropic structures such as myofibrils, collagen, and elastic fibers are prevalent in tissues. The orientations of these anisotropic structures are important indicators in various biomedical studies. Here we analyze the ability of using Mueller matrix polar decomposition (MMPD) and Mueller matrix transformation (MMT) parameters to determine and distinguish the accurate orientations of different anisotropies originated from scattering and birefringence in backscattering measurements. The experimental results of complex phantoms and Monte Carlo simulations suggest that the MMT and MMPD parameters can be used to reveal the orientations of the cylindrical scatterers and birefringence in turbid media, respectively. Moreover, a preliminary application of these Mueller matrix-derived parameters on bovine tendon samples demonstrates the ability of using the parameters to distinguish anisotropic scattering and birefringence orientations of tissues. The anisotropy orientation information can be helpful for biomedical studies or diagnosis.
Collapse
|
20
|
Liu T, Sun T, He H, Liu S, Dong Y, Wu J, Ma H. Comparative study of the imaging contrasts of Mueller matrix derived parameters between transmission and backscattering polarimetry. BIOMEDICAL OPTICS EXPRESS 2018; 9:4413-4428. [PMID: 30615708 PMCID: PMC6157769 DOI: 10.1364/boe.9.004413] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 05/02/2023]
Abstract
Mueller matrix polarimetry is a potentially powerful tool for biomedical diagnosis. Recently, the transmission Mueller matrix microscope and backscattering Mueller matrix endoscope were developed and applied to various pathological samples. However, a comparative study of imaging contrasts of Mueller matrix derived parameters between transmission and backscattering measurements is still needed to help decide which information obtained from transmission Mueller matrix microscope can be directly applied to in vivo Mueller matrix imaging. Here, to compare the imaging contrasts of Mueller matrix derived parameters between transmission and backscattering polarimetry, we measure porcine liver tissue samples and human breast carcinoma tissue specimens. The experiments and corresponding Monte Carlo stimulation results demonstrate that the backscattering and transmission retardance-related Mueller matrix parameters have very similar contrasts to characterize the anisotropic and isotropic structures of pathological tissues, meaning that the conclusions made from Mueller matrix microscopic imaging based on retardance can also be helpful to guide the in situ backscattering Mueller matrix polarimetric diagnosis. However, the values and contrasts of depolarization-related Mueller matrix parameters have some differences between transmission and backscattering polarimetry.
Collapse
Affiliation(s)
- Teng Liu
- Guangdong Research Center of Polarization Imaging and Measurement Engineering Technology, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
- Department of Physics, Tsinghua University, Beijing 100084, China
- These authors contributed equally to this work
| | - Tao Sun
- Guangdong Research Center of Polarization Imaging and Measurement Engineering Technology, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
- Department of Biomedical Engineering, Tsinghua University, Beijing 100084, China
- These authors contributed equally to this work
| | - Honghui He
- Guangdong Research Center of Polarization Imaging and Measurement Engineering Technology, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Shaoxiong Liu
- Shenzhen Sixth People’s Hospital (Nanshan Hospital), Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Yang Dong
- Guangdong Research Center of Polarization Imaging and Measurement Engineering Technology, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
- Department of Biomedical Engineering, Tsinghua University, Beijing 100084, China
| | - Jian Wu
- Guangdong Research Center of Polarization Imaging and Measurement Engineering Technology, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Hui Ma
- Guangdong Research Center of Polarization Imaging and Measurement Engineering Technology, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
- Department of Physics, Tsinghua University, Beijing 100084, China
- Center for Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, China
| |
Collapse
|
21
|
Badieyan S, Dilmaghani-Marand A, Hajipour MJ, Ameri A, Razzaghi MR, Rafii-Tabar H, Mahmoudi M, Sasanpour P. Detection and Discrimination of Bacterial Colonies with Mueller Matrix Imaging. Sci Rep 2018; 8:10815. [PMID: 30018335 PMCID: PMC6050273 DOI: 10.1038/s41598-018-29059-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/05/2018] [Indexed: 01/05/2023] Open
Abstract
The polarization imaging technique is a powerful approach to probe microstructural and optical information of biological structures (e.g., tissue samples). Here, we have studied the polarization properties of different bacterial colonies in order to evaluate the possibility of bacterial detection and discrimination. In this regard, we have taken the backscattering Mueller matrix images of four different bacteria colonies (i.e., Escherichia coli, Lactobacillus rhamnosus, Rhodococcus erythropolis, and Staphylococcus aureus). Although the images have the potential to distinguish qualitatively different bacterial colonies, we explored more accurate and quantitative parameters criteria for discrimination of bacterial samples; more specifically, we have exploited the Mueller matrix polar decomposition (MMPD),frequency distribution histogram (FDH), and central moment analysis method. The outcomes demonstrated a superior capacity of Mueller matrix imaging, MMPD, and FDH in bacterial colonies identification and discrimination. This approach might pave the way for a reliable, efficient, and cheap way of identification of infectious diseases.
Collapse
Affiliation(s)
- Saeedesadat Badieyan
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arezou Dilmaghani-Marand
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Hajipour
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran. .,Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Ali Ameri
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Razzaghi
- Department of Urology, Shohada-e-Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hashem Rafii-Tabar
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Morteza Mahmoudi
- Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, 02115, United States.
| | - Pezhman Sasanpour
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,School of Nanoscience, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
| |
Collapse
|
22
|
Li P, Lv D, He H, Ma H. Separating azimuthal orientation dependence in polarization measurements of anisotropic media. OPTICS EXPRESS 2018; 26:3791-3800. [PMID: 29475358 DOI: 10.1364/oe.26.003791] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Polarization imaging and Mueller polarimetry provide powerful tools for probing the microstructure of complex anisotropic media, which is a core task in material science, biomedical diagnosis and many research fields. However, Mueller matrix elements and many polarization parameters are sensitive to the spatial orientation of the sample and experimental configurations, hindering the effectiveness for distinguishing different sources of anisotropies. In this paper, we propose a set of rotation invariant parameters and corresponding orientation parameters, which are explicit functions of the Mueller matrix elements. They are valid under the condition that the illumination and detection directions are collinear with the rotation axis of the sample. More detailed examinations show that these parameters have potential applications for fast analyzing different anisotropy contributions in the media, such as birefringence, dichroism, and their coexistence. The conclusions are validated with Monte Carlo simulations and the experimental results of transparent tape samples.
Collapse
|
23
|
Ge GR, Laimes R, Pinto J, Guerrero J, Chavez H, Salazar C, Lavarello RJ, Parker KJ. H-scan analysis of thyroid lesions. J Med Imaging (Bellingham) 2018; 5:013505. [PMID: 29430475 PMCID: PMC5802103 DOI: 10.1117/1.jmi.5.1.013505] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/12/2018] [Indexed: 11/14/2022] Open
Abstract
The H-scan analysis of ultrasound images is a matched-filter approach derived from analysis of scattering from incident pulses in the form of Gaussian-weighted Hermite polynomial functions. This framework is applied in a preliminary study of thyroid lesions to examine the H-scan outputs for three categories: normal thyroid, benign lesions, and cancerous lesions within a total group size of 46 patients. In addition, phantoms comprised of spherical scatterers are analyzed to establish independent reference values for comparison. The results demonstrate a small but significant difference in some measures of the H-scan channel outputs between the different groups.
Collapse
Affiliation(s)
- Gary R. Ge
- University of Rochester Medical Center, School of Medicine and Dentistry, Rochester, New York, United States
| | - Rosa Laimes
- Oncosalud, Departamento de Radiodiagnóstico, Lima, Perú
| | - Joseph Pinto
- Oncosalud, Unidad de Investigación Básica y Translacional, Lima, Perú
| | | | | | | | - Roberto J. Lavarello
- Pontificia Universidad Católica del Perú, Laboratorio de Imágenes Médicas, Lima, Perú
| | - Kevin J. Parker
- University of Rochester, Department of Electrical and Computer Engineering, Rochester, New York, United States
| |
Collapse
|
24
|
Qi J, He C, Elson DS. Real time complete Stokes polarimetric imager based on a linear polarizer array camera for tissue polarimetric imaging. BIOMEDICAL OPTICS EXPRESS 2017; 8:4933-4946. [PMID: 29188092 PMCID: PMC5695942 DOI: 10.1364/boe.8.004933] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/03/2017] [Accepted: 10/03/2017] [Indexed: 05/03/2023]
Abstract
Tissue polarimetric imaging measures Mueller matrices of tissues or Stokes vectors of the emergent light from tissues (normally using incidence with a fixed polarization state) over a field of view, and has demonstrated utility in a number of surgical and diagnostic applications. Here we introduce a compact complete Stokes polarimetric imager that can work for multiple wavelength bands with a frame-rate suitable for real-time applications. The imager was validated with standard polarizing components, and then employed as a polarization state analyzer of a Mueller imaging polarimeter and a standalone Stokes imaging polarimeter respectively to image the process of dehydration of bovine tendon tissue. The results obtained in this work suggested that the polarization properties of the samples rich of collagen fibres can change with the degree of dehydration, and therefore, dehydration of the samples prepared for polarimetric imaging (e.g. polarimetric microscopy) should be carefully controlled.
Collapse
Affiliation(s)
- Ji Qi
- Hamlyn Centre for Robotic Surgery, Institute of Global Health Innovation, Imperial College London, Exhibition Road, London SW7 2AZ, UK
- Department of Surgery and Cancer, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - Chao He
- Hamlyn Centre for Robotic Surgery, Institute of Global Health Innovation, Imperial College London, Exhibition Road, London SW7 2AZ, UK
- Department of Surgery and Cancer, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - Daniel S. Elson
- Hamlyn Centre for Robotic Surgery, Institute of Global Health Innovation, Imperial College London, Exhibition Road, London SW7 2AZ, UK
- Department of Surgery and Cancer, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| |
Collapse
|
25
|
Dong Y, He H, Sheng W, Wu J, Ma H. A quantitative and non-contact technique to characterise microstructural variations of skin tissues during photo-damaging process based on Mueller matrix polarimetry. Sci Rep 2017; 7:14702. [PMID: 29089638 PMCID: PMC5666003 DOI: 10.1038/s41598-017-14804-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 10/17/2017] [Indexed: 12/11/2022] Open
Abstract
Skin tissue consists of collagen and elastic fibres, which are highly susceptible to damage when exposed to ultraviolet radiation (UVR), leading to skin aging and cancer. However, a lack of non-invasive detection methods makes determining the degree of UVR damage to skin in real time difficult. As one of the fundamental features of light, polarization can be used to develop imaging techniques capable of providing structural information about tissues. In particular, Mueller matrix polarimetry is suitable for detecting changes in collagen and elastic fibres. Here, we demonstrate a novel, quantitative, non-contact and in situ technique based on Mueller matrix polarimetry for monitoring the microstructural changes of skin tissues during UVR-induced photo-damaging. We measured the Mueller matrices of nude mouse skin samples, then analysed the transformed parameters to characterise microstructural changes during the skin photo-damaging and self-repairing processes. Comparisons between samples with and without the application of a sunscreen showed that the Mueller matrix-derived parameters are potential indicators for fibrous microstructure in skin tissues. Histological examination and Monte Carlo simulations confirmed the relationship between the Mueller matrix parameters and changes to fibrous structures. This technique paves the way for non-contact evaluation of skin structure in cosmetics and dermatological health.
Collapse
Affiliation(s)
- Yang Dong
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China.,Department of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Honghui He
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Wei Sheng
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China.,Department of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jian Wu
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Hui Ma
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China. .,Center for Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, 518071, China. .,Department of Physics, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
26
|
Li X, Liao R, Zhou J, Leung PTY, Yan M, Ma H. Classification of morphologically similar algae and cyanobacteria using Mueller matrix imaging and convolutional neural networks. APPLIED OPTICS 2017; 56:6520-6530. [PMID: 29047942 DOI: 10.1364/ao.56.006520] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We present the Mueller matrix imaging system to classify morphologically similar algae based on convolutional neural networks (CNNs). The algae and cyanobacteria data set contains 10,463 Mueller matrices from eight species of algae and one species of cyanobacteria, belonging to four phyla, the shapes of which are mostly randomly oriented spheres, ovals, wheels, or rods. The CNN serves as an automatic machine with learning ability to help in extracting features from the Mueller matrix, and trains a classifier to achieve a 97% classification accuracy. We compare the performance in two ways. One way is to compare the performance of five CNNs that differ in the number of convolution layers as well as the classical principle component analysis (PCA) plus the support vector machine (SVM) method; the other way is to quantify the differences of scores between full Mueller matrix and the first matrix element m11, which does not contain polarization information under the same conditions. As the results show, deeper CNNs perform better, the best of which outperforms the conventional PCA plus SVM method by 19.66% in accuracy, and using the full Mueller matrix earns 6.56% increase of accuracy than using m11. It demonstrates that the coupling of Mueller matrix imaging and CNN may be a promising and efficient solution for the automatic classification of morphologically similar algae.
Collapse
|
27
|
Chen D, Zeng N, Xie Q, He H, Tuchin VV, Ma H. Mueller matrix polarimetry for characterizing microstructural variation of nude mouse skin during tissue optical clearing. BIOMEDICAL OPTICS EXPRESS 2017; 8:3559-3570. [PMID: 28856035 PMCID: PMC5560825 DOI: 10.1364/boe.8.003559] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/20/2017] [Accepted: 06/25/2017] [Indexed: 05/18/2023]
Abstract
We investigate the polarization features corresponding to changes in the microstructure of nude mouse skin during immersion in a glycerol solution. By comparing the Mueller matrix imaging experiments and Monte Carlo simulations, we examine in detail how the Mueller matrix elements vary with the immersion time. The results indicate that the polarization features represented by Mueller matrix elements m22&m33&m44 and the absolute values of m34&m43 are sensitive to the immersion time. To gain a deeper insight on how the microstructures of the skin vary during the tissue optical clearing (TOC), we set up a sphere-cylinder birefringence model (SCBM) of the skin and carry on simulations corresponding to different TOC mechanisms. The good agreement between the experimental and simulated results confirm that Mueller matrix imaging combined with Monte Carlo simulation is potentially a powerful tool for revealing microscopic features of biological tissues.
Collapse
Affiliation(s)
- Dongsheng Chen
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
- Department of Physics, Tsinghua University, Beijing 100084, China
| | - Nan Zeng
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Qiaolin Xie
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
- Department of Biomedical Engineering, Tsinghua University, Beijing 100084, China
| | - Honghui He
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Valery V. Tuchin
- Saratov National Research State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
- Laboratory of Femtomedicine, ITMO University, 9 Lomonosova Street, St. Petersburg 191002, Russia
- Institute of Precision Mechanics and Control of RAS, 24 Rabochaya Street, Saratov 410028, Russia
| | - Hui Ma
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
- Department of Physics, Tsinghua University, Beijing 100084, China
- Center for Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518071, China
| |
Collapse
|
28
|
Qi J, Elson DS. Mueller polarimetric imaging for surgical and diagnostic applications: a review. JOURNAL OF BIOPHOTONICS 2017; 10:950-982. [PMID: 28464464 DOI: 10.1002/jbio.201600152] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 01/18/2017] [Accepted: 01/19/2017] [Indexed: 05/02/2023]
Abstract
Polarization is a fundamental property of light and a powerful sensing tool that has been applied to many areas. A Mueller matrix is a complete mathematical description of the polarization characteristics of objects that interact with light, and is known as a transfer function of Stokes vectors which characterise the state of polarization of light. Mueller polarimetric imaging measures Mueller matrices over a field of view and thus allows for visualising the polarization characteristics of the objects. It has emerged as a promising technique in recent years for tissue imaging, improving image contrast and providing a unique perspective to reveal additional information that cannot be resolved by other optical imaging modalities. This review introduces the basis of the Stokes-Mueller formulism, interpretation methods of Mueller matrices into fundamental polarization properties, polarization properties of biological tissues, and considerations in the construction of Mueller polarimetric imaging devices for surgical and diagnostic applications, including primary configurations, optimization procedures, calibration methods as well as the instrument polarization properties of several widely-used biomedical optical devices. The paper also reviews recent progress in Mueller polarimetric endoscopes and fibre Mueller polarimeters, followed by the future outlook in applying the technique to surgery and diagnostics. Tissue polarization properties convey morphological, micro-structural and compositional information of tissue with great potential for label free characterization of tissue pathological changes. Recent progress in tissue polarimetric imaging and polarization resolved endoscopy paved the way for translation of polarimetric imaging to surgery and tissue diagnosis.
Collapse
Affiliation(s)
- Ji Qi
- Hamlyn Centre for Robotic Surgery, Institute of Global Health Innovation, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
- Department of Surgery and Cancer, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Daniel S Elson
- Hamlyn Centre for Robotic Surgery, Institute of Global Health Innovation, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
- Department of Surgery and Cancer, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| |
Collapse
|
29
|
He H, He C, Chang J, Lv D, Wu J, Duan C, Zhou Q, Zeng N, He Y, Ma H. Monitoring microstructural variations of fresh skeletal muscle tissues by Mueller matrix imaging. JOURNAL OF BIOPHOTONICS 2017; 10:664-673. [PMID: 27160958 DOI: 10.1002/jbio.201600008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/10/2016] [Accepted: 04/22/2016] [Indexed: 05/18/2023]
Abstract
Recently many attempts have been made for extracting the structural information of myofibrils as indicators for diseases of skeletal muscle. In this paper we adopt wide-field illumination and take the backscattering Mueller matrix images of bovine skeletal muscle tissues during the 24-hour experimental time after the animal's death. The 2D images of Mueller matrix elements and their frequency distribution histograms (FDHs) reveal rich qualitative information on the changes in the microstructures of the skeletal muscle. The temporal variations of the sample are quantitatively analyzed using two Mueller matrix transformation (MMT) parameters. The characteristic features of the temporal plots are attributed to the rigor mortis and proteolysis processes. For a deeper insight on the relationship between the features of the MMT parameters and the microstructures during the rigor mortis and proteolysis processes, Monte Carlo (MC) simulations are carried out based on sphere-cylinder birefringence model (SCBM). The good agreement between the experimental and MC simulated results show that the FDHs and MMT parameters can describe more clearly the characteristic microstructural features of skeletal muscle tissues. The techniques are useful for the characterization of physiological status of tissues, or quantitative assessment of meat qualities in food industry.
Collapse
Affiliation(s)
- Honghui He
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Chao He
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
- Department of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jintao Chang
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
- Department of Physics, Tsinghua University, Beijing, 100084, China
| | - Donghong Lv
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
- Department of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jian Wu
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Chaijie Duan
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Qian Zhou
- Division of Advanced Manufacturing, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Nan Zeng
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Yonghong He
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Hui Ma
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
- Department of Physics, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
30
|
Characterizing the Effects of Washing by Different Detergents on the Wavelength-Scale Microstructures of Silk Samples Using Mueller Matrix Polarimetry. Int J Mol Sci 2016; 17:ijms17081301. [PMID: 27517919 PMCID: PMC5000698 DOI: 10.3390/ijms17081301] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/02/2016] [Accepted: 08/04/2016] [Indexed: 11/17/2022] Open
Abstract
Silk fibers suffer from microstructural changes due to various external environmental conditions including daily washings. In this paper, we take the backscattering Mueller matrix images of silk samples for non-destructive and real-time quantitative characterization of the wavelength-scale microstructure and examination of the effects of washing by different detergents. The 2D images of the 16 Mueller matrix elements are reduced to the frequency distribution histograms (FDHs) whose central moments reveal the dominant structural features of the silk fibers. A group of new parameters are also proposed to characterize the wavelength-scale microstructural changes of the silk samples during the washing processes. Monte Carlo (MC) simulations are carried out to better understand how the Mueller matrix parameters are related to the wavelength-scale microstructure of silk fibers. The good agreement between experiments and simulations indicates that the Mueller matrix polarimetry and FDH based parameters can be used to quantitatively detect the wavelength-scale microstructural features of silk fibers. Mueller matrix polarimetry may be used as a powerful tool for non-destructive and in situ characterization of the wavelength-scale microstructures of silk based materials.
Collapse
|
31
|
Wang Y, He H, Chang J, He C, Liu S, Li M, Zeng N, Wu J, Ma H. Mueller matrix microscope: a quantitative tool to facilitate detections and fibrosis scorings of liver cirrhosis and cancer tissues. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:71112. [PMID: 27087003 DOI: 10.1117/1.jbo.21.7.071112] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 03/29/2016] [Indexed: 05/02/2023]
Abstract
Today the increasing cancer incidence rate is becoming one of the biggest threats to human health.Among all types of cancers, liver cancer ranks in the top five in both frequency and mortality rate all over the world. During the development of liver cancer, fibrosis often evolves as part of a healing process in response to liver damage, resulting in cirrhosis of liver tissues. In a previous study, we applied the Mueller matrix microscope to pathological liver tissue samples and found that both the Mueller matrix polar decomposition (MMPD) and Mueller matrix transformation (MMT) parameters are closely related to the fibrous microstructures. In this paper,we take this one step further to quantitatively facilitate the fibrosis detections and scorings of pathological liver tissue samples in different stages from cirrhosis to cancer using the Mueller matrix microscope. The experimental results of MMPD and MMT parameters for the fibrotic liver tissue samples in different stages are measured and analyzed. We also conduct Monte Carlo simulations based on the sphere birefringence model to examine in detail the influence of structural changes in different fibrosis stages on the imaging parameters. Both the experimental and simulated results indicate that the polarized light microscope and transformed Mueller matrix parameter scan provide additional quantitative information helpful for fibrosis detections and scorings of liver cirrhosis and cancers. Therefore, the polarized light microscope and transformed Mueller matrix parameters have a good application prospect in liver cancer diagnosis.
Collapse
Affiliation(s)
- Ye Wang
- Tsinghua University, Graduate School at Shenzhen, Institute of Optical Imaging and Sensing, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, 2279 Lishui Street, Shenzhen 518055, ChinabTsinghua University, Department of Physics, 1 Tsinghu
| | - Honghui He
- Tsinghua University, Graduate School at Shenzhen, Institute of Optical Imaging and Sensing, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, 2279 Lishui Street, Shenzhen 518055, China
| | - Jintao Chang
- Tsinghua University, Graduate School at Shenzhen, Institute of Optical Imaging and Sensing, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, 2279 Lishui Street, Shenzhen 518055, ChinabTsinghua University, Department of Physics, 1 Tsinghu
| | - Chao He
- Tsinghua University, Graduate School at Shenzhen, Institute of Optical Imaging and Sensing, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, 2279 Lishui Street, Shenzhen 518055, ChinacTsinghua University, Department of Biomedical Enginee
| | - Shaoxiong Liu
- Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen Sixth People's Hospital (Nanshan Hospital), 89 Taoyuan Street, Shenzhen 518052, China
| | - Migao Li
- Guangzhou Liss Optical Instrument Factory, 81 Taojinbei Street, Guangzhou 510095, China
| | - Nan Zeng
- Tsinghua University, Graduate School at Shenzhen, Institute of Optical Imaging and Sensing, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, 2279 Lishui Street, Shenzhen 518055, China
| | - Jian Wu
- Tsinghua University, Graduate School at Shenzhen, Institute of Optical Imaging and Sensing, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, 2279 Lishui Street, Shenzhen 518055, China
| | - Hui Ma
- Tsinghua University, Graduate School at Shenzhen, Institute of Optical Imaging and Sensing, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, 2279 Lishui Street, Shenzhen 518055, ChinabTsinghua University, Department of Physics, 1 Tsinghu
| |
Collapse
|
32
|
Qi J, Elson DS. A high definition Mueller polarimetric endoscope for tissue characterisation. Sci Rep 2016; 6:25953. [PMID: 27173145 PMCID: PMC4865982 DOI: 10.1038/srep25953] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/26/2016] [Indexed: 11/14/2022] Open
Abstract
The contrast mechanism of medical endoscopy is mainly based on metrics of optical intensity and wavelength. As another fundamental property of light, polarization can not only reveal tissue scattering and absorption information from a different perspective, but can also provide insight into directional tissue birefringence properties to monitor pathological changes in collagen and elastin. Here we demonstrate a low cost wide field high definition Mueller polarimetric endoscope with minimal alterations to a rigid endoscope. We show that this novel endoscopic imaging modality is able to provide a number of image contrast mechanisms besides traditional unpolarized radiation intensity, including linear depolarization, circular depolarization, cross-polarization, directional birefringence and dichroism. This enhances tissue features of interest, and additionally reveals tissue micro-structure and composition, which is of central importance for tissue diagnosis and image guidance for surgery. The potential applications of the Mueller polarimetric endoscope include wide field early epithelial cancer diagnosis, surgical margin detection and energy-based tissue fusion monitoring, and could further benefit a wide range of endoscopic investigations through intra-operative guidance.
Collapse
Affiliation(s)
- Ji Qi
- Hamlyn Centre for Robotic Surgery, Institute of Global Health Innovation, Imperial College London, Exhibition Road, London, SW7 2AZ, UK.,Department of Surgery and Cancer, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Daniel S Elson
- Hamlyn Centre for Robotic Surgery, Institute of Global Health Innovation, Imperial College London, Exhibition Road, London, SW7 2AZ, UK.,Department of Surgery and Cancer, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| |
Collapse
|
33
|
He C, He H, Li X, Chang J, Wang Y, Liu S, Zeng N, He Y, Ma H. Quantitatively differentiating microstructures of tissues by frequency distributions of Mueller matrix images. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:105009. [PMID: 26502227 DOI: 10.1117/1.jbo.20.10.105009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/23/2015] [Indexed: 05/21/2023]
Abstract
We present a new way to extract characteristic features of the Mueller matrix images based on their frequency distributions and the central moments. We take the backscattering Mueller matrices of tissues with distinctive microstructures, and then analyze the frequency distribution histograms (FDHs) of all the matrix elements. For anisotropic skeletal muscle and isotropic liver tissues, we find that the shapes of the FDHs and their central moment parameters, i.e., variance, skewness, and kurtosis, are not sensitive to the sample orientation. Comparisons among different tissues further indicate that the frequency distributions of Mueller matrix elements and their corresponding central moments can be used as indicators for the characteristic microstructural features of tissues. A preliminary application to human cervical cancerous tissues shows that the distribution curves and central moment parameters may have the potential to give quantitative criteria for cancerous tissues detections.
Collapse
Affiliation(s)
- Chao He
- Tsinghua University, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Shenzhen 518055, ChinabTsinghua University, Department of Biomedical Engineering, Beijing 100084
| | - Honghui He
- Tsinghua University, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Shenzhen 518055, China
| | - Xianpeng Li
- Tsinghua University, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Shenzhen 518055, ChinacTsinghua University, Department of Physics, Beijing 100084, China
| | - Jintao Chang
- Tsinghua University, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Shenzhen 518055, ChinacTsinghua University, Department of Physics, Beijing 100084, China
| | - Ye Wang
- Tsinghua University, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Shenzhen 518055, ChinacTsinghua University, Department of Physics, Beijing 100084, China
| | - Shaoxiong Liu
- Shenzhen Sixth People's Hospital (Nanshan Hospital) Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Nan Zeng
- Tsinghua University, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Shenzhen 518055, China
| | - Yonghong He
- Tsinghua University, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Shenzhen 518055, China
| | - Hui Ma
- Tsinghua University, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Shenzhen 518055, ChinacTsinghua University, Department of Physics, Beijing 100084, China
| |
Collapse
|
34
|
Wang Y, He H, Chang J, Zeng N, Liu S, Li M, Ma H. Differentiating characteristic microstructural features of cancerous tissues using Mueller matrix microscope. Micron 2015; 79:8-15. [PMID: 26280279 DOI: 10.1016/j.micron.2015.07.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 07/28/2015] [Accepted: 07/28/2015] [Indexed: 12/20/2022]
Abstract
Polarized light imaging can provide rich microstructural information of samples, and has been applied to the detections of various abnormal tissues. In this paper, we report a polarized light microscope based on Mueller matrix imaging by adding the polarization state generator and analyzer (PSG and PSA) to a commercial transmission optical microscope. The maximum errors for the absolute values of Mueller matrix elements are reduced to 0.01 after calibration. This Mueller matrix microscope has been used to examine human cervical and liver cancerous tissues with fibrosis. Images of the transformed Mueller matrix parameters provide quantitative assessment on the characteristic features of the pathological tissues. Contrast mechanism of the experimental results are backed up by Monte Carlo simulations based on the sphere-cylinder birefringence model, which reveal the relationship between the pathological features in the cancerous tissues at the cellular level and the polarization parameters. Both the experimental and simulated data indicate that the microscopic transformed Mueller matrix parameters can distinguish the breaking down of birefringent normal tissues for cervical cancer, or the formation of birefringent surrounding structures accompanying the inflammatory reaction for liver cancer. With its simple structure, fast measurement and high precision, polarized light microscope based on Mueller matrix shows a good diagnosis application prospect.
Collapse
Affiliation(s)
- Ye Wang
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China; Department of Physics, Tsinghua University, Beijing 100084, China
| | - Honghui He
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Jintao Chang
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China; Department of Physics, Tsinghua University, Beijing 100084, China
| | - Nan Zeng
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Shaoxiong Liu
- Shenzhen Sixth People's Hospital (Nanshan Hospital), Shenzhen 518052, China
| | - Migao Li
- Guangzhou Liss Optical Instrument Factory, Guangzhou 510095, China
| | - Hui Ma
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China; Department of Physics, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
35
|
He C, He H, Chang J, Dong Y, Liu S, Zeng N, He Y, Ma H. Characterizing microstructures of cancerous tissues using multispectral transformed Mueller matrix polarization parameters. BIOMEDICAL OPTICS EXPRESS 2015; 6:2934-45. [PMID: 26309757 PMCID: PMC4541521 DOI: 10.1364/boe.6.002934] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/06/2015] [Accepted: 07/15/2015] [Indexed: 05/02/2023]
Abstract
In this paper, we take the transmission 3 × 3 linear polarization Mueller matrix images of the unstained thin slices of human cervical and thyroid cancer tissues, and analyze their multispectral behavior using the Mueller matrix transformation (MMT) parameters. The experimental results show that for both cervical and thyroid cancerous tissues, the characteristic features of multispectral transmitted MMT parameters can be used to distinguish the normal and abnormal areas. Moreover, Monte Carlo simulations based on the sphere-cylinder birefringence model (SCBM) provide additional information of the relations between the characteristic spectral features of the MMT parameters and the microstructures of the tissues. Comparisons between the experimental and simulated data confirm that the contrast mechanism of the transmission MMT imaging for cancer detection is the breaking down of birefringent normal tissues for cervical cancer, or the formation of birefringent surrounding structures accompanying the inflammatory reaction for thyroid cancer. It is also testified that, the characteristic spectral features of polarization imaging techniques can provide more detailed microstructural information of tissues for diagnosis applications.
Collapse
Affiliation(s)
- Chao He
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
- Department of Biomedical Engineering, Tsinghua University, Beijing 100084, China
| | - Honghui He
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Jintao Chang
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
- Department of Physics, Tsinghua University, Beijing 100084, China
| | - Yang Dong
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
- Department of Biomedical Engineering, Tsinghua University, Beijing 100084, China
| | - Shaoxiong Liu
- Shenzhen Sixth People's Hospital (Nanshan Hospital) Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Nan Zeng
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Yonghong He
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Hui Ma
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Institute of Optical Imaging and Sensing, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
- Department of Physics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
36
|
Ney M, Abdulhalim I. Ultrahigh polarimetric image contrast enhancement for skin cancer diagnosis using InN plasmonic nanoparticles in the terahertz range. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:125007. [PMID: 26720872 DOI: 10.1117/1.jbo.20.12.125007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 11/24/2015] [Indexed: 05/13/2023]
Abstract
Mueller matrix imaging sensitivity, to delicate water content changes in tissue associated with early stages of skin cancer, is demonstrated by numerical modeling to be enhanced by localized surface plasmon resonance (LSPR) effects at the terahertz (THz) range when InN nanoparticles (NPs) coated with Parylene-C are introduced into the skin. A skin tissue model tailored for THz wavelengths is established for a Monte Carlo simulation of polarized light propagation and scattering, and a comparative study based on simulated Mueller matrices is presented considering different NPs’ parameters and insertion into the skin methods. The insertion of NPs presenting LSPR in the THz is demonstrated to enable the application of polarization-based sample characterization techniques adopted from the scattering dominated visible wavelengths domain for the, otherwise, relatively low scattering THz domain, where such approach is irrelevant without the NPs. Through these Mueller polarimetry techniques, the detection of water content variations in the tissue is made possible and with high sensitivity. This study yields a limit of detection down to 0.0018% for relative changes in the water content based on linear degree of polarization--an improvement of an order of magnitude relative to the limit of detection without NPs calculated in a previous ellipsometric study.
Collapse
|