1
|
Ventura R, Bae JS, Kim EH, Kim AY, Oh MH, Kim JH, Yoo SH, Ryu G, Mo JH. Evaluating the Therapeutic Potential of Microneedle Patch Laser With Multiple Wavelengths in Allergic Rhinitis: Insights From an Allergic Rhinitis Mouse Model. Lasers Surg Med 2024; 56:854-864. [PMID: 39563091 DOI: 10.1002/lsm.23862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/27/2024] [Accepted: 11/05/2024] [Indexed: 11/21/2024]
Abstract
OBJECTIVE There is insufficient evidence to determine the effectiveness of treating allergic rhinitis with a patch laser affix to the skin as opposed to direct intranasal irradiation of the nasal mucosa. We aimed to evaluate the effect of the microneedle patch laser with multiple wavelengths in an allergic rhinitis (AR) mouse model and its underlying mechanism. METHODS The microneedle patch laser was attached to the skin above the mouse's nasal cavity, transmitting light to the nasal mucosa. For 10 days, the microneedle patch laser administered simultaneous exposure to wavelengths of 670, 780, 850, and 910 nm at either 10 or 20 min each day. Multiple allergic parameters were evaluated following the microneedle patch laser treatment. RESULTS Microneedle patch laser treatment decreased allergic symptoms and inhibited OVA-specific IgE levels. Additionally, it significantly reduced eosinophil infiltration, epithelial thickness of the nasal mucosa, and IL-4 cytokine levels. CONCLUSION The light emitted by the microneedle patch laser attached to the skin, penetrated effectively to the nasal mucosa within the nasal cavity, suggesting potential for treating allergic rhinitis in mice and could be extended in clinical applications.
Collapse
Affiliation(s)
- Reiza Ventura
- Department of Otorhinolaryngology, Dankook University College of Medicine, Cheonan, Korea
- Beckman Laser Institute Korea, Dankook University College of Medicine, Cheonan, Korea
| | - Jun-Sang Bae
- Department of Otorhinolaryngology, Dankook University College of Medicine, Cheonan, Korea
- Beckman Laser Institute Korea, Dankook University College of Medicine, Cheonan, Korea
| | - Eun Hee Kim
- Department of Otorhinolaryngology, Dankook University College of Medicine, Cheonan, Korea
- Beckman Laser Institute Korea, Dankook University College of Medicine, Cheonan, Korea
| | - A Young Kim
- Department of Otorhinolaryngology, Dankook University College of Medicine, Cheonan, Korea
- Beckman Laser Institute Korea, Dankook University College of Medicine, Cheonan, Korea
| | - Min Hyuck Oh
- Department of Otorhinolaryngology, Dankook University College of Medicine, Cheonan, Korea
- Beckman Laser Institute Korea, Dankook University College of Medicine, Cheonan, Korea
| | - Ji Hye Kim
- Department of Otorhinolaryngology, Dankook University College of Medicine, Cheonan, Korea
- Beckman Laser Institute Korea, Dankook University College of Medicine, Cheonan, Korea
| | - Shin Hyuk Yoo
- Department of Otorhinolaryngology, Dankook University College of Medicine, Cheonan, Korea
- Beckman Laser Institute Korea, Dankook University College of Medicine, Cheonan, Korea
| | - Gwanghui Ryu
- Department of Otorhinolaryngology-Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ji-Hun Mo
- Department of Otorhinolaryngology, Dankook University College of Medicine, Cheonan, Korea
- Beckman Laser Institute Korea, Dankook University College of Medicine, Cheonan, Korea
| |
Collapse
|
2
|
Malavazzi TCDS, Andreo L, Martinelli A, Rodrigues MFSD, Horliana ACRT, Bussadori SK, Fernandes KPS, Nunes FD, Mesquita-Ferrari RA. Preventive and therapeutic vascular photobiomodulation decreases the inflammatory markers and enhances the muscle repair process in an animal model. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 256:112921. [PMID: 38714002 DOI: 10.1016/j.jphotobiol.2024.112921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/22/2024] [Indexed: 05/09/2024]
Abstract
Photobiomodulation therapy (PBM) has shown positive effects when applied locally to modulate the inflammatory process and facilitate muscle repair. However, the available literature on the mechanisms of action of vascular photobiomodulation (VPBM), a non-invasive method of vascular irradiation, specifically in the context of local muscle repair, is limited. Thus, this study aimed to assess the impact of vascular photobiomodulation (VPBM) using a low-level laser (LLL) on the inflammatory response and the process of skeletal muscle repair whether administered prior to or following cryoinjury-induced acute muscle damage in the tibialis anterior (TA) muscles. Wistar rats (n = 85) were organized into the following experimental groups: (1) Control (n = 5); (2) Non-Injury + VPBM (n = 20); (3) Injured (n = 20); (4) Pre-VPBM + Injury (n = 20); (5) Injury + Post-VPBM (n = 20). VPBM was administered over the vein/artery at the base of the animals' tails (wavelength: 780 nm; power: 40 mW; application area: 0.04 cm2; energy density: 80 J/cm2). Euthanasia of the animals was carried out at 1, 2, 5, and 7 days after inducing the injuries. Tibialis anterior (TA) muscles were collected for both qualitative and quantitative histological analysis using H&E staining and for assessing protein expression of TNF-α, MCP-1, IL-1β, and IL-6 via ELISA. Blood samples were collected and analyzed using an automatic hematological analyzer and a leukocyte differential counter. Data were subjected to statistical analysis (ANOVA/Tukey). The results revealed that applying VPBM prior to injury led to an increase in circulating neutrophils (granulocytes) after 1 day and a subsequent increase in monocytes after 2 and 5 days, compared to the Non-Injury + VPBM and Injured groups. Notably, an increase in erythrocytes and hemoglobin concentration was observed in the Non-Injury + VPBM group on days 1 and 2 in comparison to the Injured group. In terms of histological aspects, only the Prior VPBM + Injured group exhibited a reduction in the number of inflammatory cells after 1, 5, and 7 days, along with an increase in blood vessels at 5 days. Both the Prior VPBM + Injured and Injured + VPBM after groups displayed a decrease in myonecrosis at 1, 2, and 7 days, an increase in newly-formed and immature fibers after 5 and 7 days, and neovascularization after 1, 2, and 7 days. Regarding protein expression, there was an increase in MCP-1 after 1 and 5 days, TNF-α, IL-6, and IL-1β after 1, 2, and 5 days in the Injured + VPBM after group when compared to the other experimental groups. The Prior VPBM + Injured group exhibited increased MCP-1 production after 2 days, in comparison to the Non-Injury + VPBM and Control groups. Notably, on day 7, the Injured group continued to show elevated MCP-1 protein expression when compared to the VPBM groups. In conclusion, VPBM effectively modulated hematological parameters, circulating leukocytes, the protein expression of the chemokine MCP-1, and the proinflammatory cytokines TNF-α and IL-1β, ultimately influencing the inflammatory process. This modulation resulted in a reduction of myonecrosis, restoration of tissue architecture, increased formation of newly and immature muscle fibers, and enhanced neovascularization, with more pronounced effects when VPBM was applied prior to the muscle injury.
Collapse
Affiliation(s)
- Tainá Caroline Dos Santos Malavazzi
- Postgraduate Program in Medicine-Biophotonics, Nove de Julho University (UNINOVE), 235/249 Vergueiro Street, Liberdade, São Paulo, SP 01504-001, Brazil
| | - Lucas Andreo
- Postgraduate Program in Medicine-Biophotonics, Nove de Julho University (UNINOVE), 235/249 Vergueiro Street, Liberdade, São Paulo, SP 01504-001, Brazil
| | - Andreia Martinelli
- Postgraduate Program in Rehabilitation Sciences, Nove de Julho University (UNINOVE), 235/249 Vergueiro Street, Liberdade, Sao Paulo, SP 01504-001, Brazil
| | | | | | - Sandra Kalil Bussadori
- Postgraduate Program in Medicine-Biophotonics, Nove de Julho University (UNINOVE), 235/249 Vergueiro Street, Liberdade, São Paulo, SP 01504-001, Brazil; Postgraduate Program in Rehabilitation Sciences, Nove de Julho University (UNINOVE), 235/249 Vergueiro Street, Liberdade, Sao Paulo, SP 01504-001, Brazil
| | - Kristianne Porta Santos Fernandes
- Postgraduate Program in Medicine-Biophotonics, Nove de Julho University (UNINOVE), 235/249 Vergueiro Street, Liberdade, São Paulo, SP 01504-001, Brazil
| | - Fabio Daumas Nunes
- Department of Stomatology, Discipline of Oral and Maxillofacial Pathology, School of Dentistry, University of São Paulo (FOUSP), Sao Paulo, SP 05508-000, Brazil
| | - Raquel Agnelli Mesquita-Ferrari
- Postgraduate Program in Medicine-Biophotonics, Nove de Julho University (UNINOVE), 235/249 Vergueiro Street, Liberdade, São Paulo, SP 01504-001, Brazil; Postgraduate Program in Rehabilitation Sciences, Nove de Julho University (UNINOVE), 235/249 Vergueiro Street, Liberdade, Sao Paulo, SP 01504-001, Brazil.
| |
Collapse
|
3
|
Covatti C, Mizobuti DS, da Rocha GL, da Silva HNM, Minatel E. Photobiomodulation Therapy Effects at Different Stages of the Dystrophic Phenotype: A Histomorphometric Study. J Manipulative Physiol Ther 2024; 47:142-154. [PMID: 39453299 DOI: 10.1016/j.jmpt.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 10/26/2024]
Abstract
OBJECTIVE The purpose of this study was to evaluate the effects of photobiomodulation therapy (PBMT) on the gastrocnemius muscle of X-linked muscular dystrophy (mdx) mice. METHODS The study used an experimental model of Duchenne muscular dystrophy, at 3 stages of degeneration/regeneration of muscle fibers: an acute stage (14-28 days old), acute and stabilized stages (14-42 days old), and a stabilized stage (28-42 days old). Photobiomodulation therapy (also known as low-level light therapy) at 0.6 J was applied 3 times per week to the dystrophic gastrocnemius muscle of mdx mice at ages 14 to 28, 14 to 42, and 28 to 42 days. After the treatment period, the gastrocnemius muscle was collected, and cryosections were prepared for histopathologic analysis. RESULTS In all 3 stages evaluated, a significant reduction was observed in immunoglobulin G uptake by muscle fibers, the inflammatory area, macrophage infiltration, the reactive dihydroethidium area, and the number of autofluorescent lipofuscin granules in the gastrocnemius muscle of mdx mice after PBMT. CONCLUSION The results demonstrated that low-level light therapy, when applied during or after the acute phase of the degeneration/regeneration muscle process, improves the pathological histomorphologic features in dystrophic muscle. Based on these results, PBMT appears to be a promising therapy for dystrophinopathies, warranting further research in humans to verify its efficacy.
Collapse
Affiliation(s)
- Caroline Covatti
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Daniela Sayuri Mizobuti
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Guilherme Luiz da Rocha
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Heloina Nathalliê Mariano da Silva
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Elaine Minatel
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| |
Collapse
|
4
|
Physiotherapeutic Strategies and Their Current Evidence for Canine Osteoarthritis. Vet Sci 2022; 10:vetsci10010002. [PMID: 36669003 PMCID: PMC9863568 DOI: 10.3390/vetsci10010002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Osteoarthritis (OA) is a common and debilitating condition in domestic dogs. Alongside pharmaceutical interventions and weight loss, exercise and physiotherapy (PT) are important measures in maintaining patient mobility and quality of life. Physiotherapy for OA aims to reduce pain, optimize muscular function and maintain joint function. Physiotherapeutic plans typically include PT exercises combined with therapeutic modalities, lifestyle and environmental modifications to improve the patient's overall quality of life and function. Information on therapeutic clinical efficacy of physiotherapeutic measures for canine OA is still very limited. Thus, physiotherapeutic strategies are still primarily based on evidence extrapolated from human protocols tailored to people with OA. The authors propose a simple systematic PT approach for canine OA, prioritizing measures according to simplicity, cost effectiveness and practicality. This guide (the "Physiotherapy Pyramid") aims to provide a clear stratified approach to simplify decision making and planning for owners, veterinarians and veterinary physiotherapists, leading to more straightforward design and implementation of treatment plans. Measures are implemented starting at the base of the pyramid, subsequently progressing to the top, allowing effective and practical interventions to be prioritized. The levels of the pyramid are in ascending order: environmental modification, exercise plan, OA-specific home exercises and treatment by a veterinary physiotherapist.
Collapse
|
5
|
Khorsandi K, Hosseinzadeh R, Abrahamse H, Fekrazad R. Biological Responses of Stem Cells to Photobiomodulation Therapy. Curr Stem Cell Res Ther 2021; 15:400-413. [PMID: 32013851 DOI: 10.2174/1574888x15666200204123722] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/26/2019] [Accepted: 11/14/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Stem cells have attracted the researchers interest, due to their applications in regenerative medicine. Their self-renewal capacity for multipotent differentiation, and immunomodulatory properties make them unique to significantly contribute to tissue repair and regeneration applications. Recently, stem cells have shown increased proliferation when irradiated with low-level laser therapy or Photobiomodulation Therapy (PBMT), which induces the activation of intracellular and extracellular chromophores and the initiation of cellular signaling. The purpose of this study was to evaluate this phenomenon in the literature. METHODS The literature investigated the articles written in English in four electronic databases of PubMed, Scopus, Google Scholar and Cochrane up to April 2019. Stem cell was searched by combining the search keyword of "low-level laser therapy" OR "low power laser therapy" OR "low-intensity laser therapy" OR "photobiomodulation therapy" OR "photo biostimulation therapy" OR "LED". In total, 46 articles were eligible for evaluation. RESULTS Studies demonstrated that red to near-infrared light is absorbed by the mitochondrial respiratory chain. Mitochondria are significant sources of reactive oxygen species (ROS). Mitochondria play an important role in metabolism, energy generation, and are also involved in mediating the effects induced by PBMT. PBMT may result in the increased production of (ROS), nitric oxide (NO), adenosine triphosphate (ATP), and cyclic adenosine monophosphate (cAMP). These changes, in turn, initiate cell proliferation and induce the signal cascade effect. CONCLUSION The findings of this review suggest that PBMT-based regenerative medicine could be a useful tool for future advances in tissue engineering and cell therapy.
Collapse
Affiliation(s)
- Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research Center, YARA Institute, ACECR, Tehran, Iran;
and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Reza Hosseinzadeh
- Department of Medical Laser, Medical Laser Research Center, YARA Institute, ACECR, Tehran, Iran
| | - Heidi Abrahamse
- Laser Research Centre, NRF SARChI Chair: Laser Applications in Health, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Reza Fekrazad
- Department of Periodontology, Dental Faculty - Radiation Sciences Research Center, Laser Research
Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran,International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
6
|
Abstract
Photobiomodulation has been shown to improve tissue and cell functions. We evaluated the influence of photobiomodulation, using a B-Cure laser, on: 1) maximal performance, and 2) muscle recovery after resistance exercise. Two separate crossover randomized double-blinded placebo-controlled trials were conducted. Sixty healthy physical education students (28 men, 32 women), aged 20-35, were recruited (30 participants for each trial). Participants performed two interventions for each experiment, with real lasers (GaAlAs, 808 nm) on three quadricep locations in parallel (overall treatment energy of ~150J) or sham (placebo) treatment. In the first experiment muscle total work (TW) and peak torque (PT) were measured by an isokinetic dynamometer in five repetitions of knee extension, and in the second experiment muscle recovery was measured after the induction of muscle fatigue by evaluating TW and PT in five repetitions of knee extension. There were no differences between treatments (real or sham) regarding the TW (F(1,28) = 1.09, p = .31), or PT (F(1,29) = .056, p = .814). In addition, there was no effect of photobiomodulation on muscle recovery as measured by the TW (F(1,27) = .16, p = .69) or PT (F(1,29) = .056, p = .814). Applying photobiomodulation for 10 min immediately before exercise did not improve muscle function or muscle recovery after fatigue.
Collapse
|
7
|
Santos TC, Brito Sousa K, Andreo L, Martinelli A, Rodrigues MFSD, Bussadori SK, Fernandes KPS, Mesquita‐Ferrari RA. Effect of Photobiomodulation on C2C12 Myoblasts Cultivated in M1 Macrophage‐conditioned Media. Photochem Photobiol 2020; 96:906-916. [DOI: 10.1111/php.13215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/22/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Tainá Caroline Santos
- Postgraduate Program in Biophotonics Applied to Health Sciences Universidade Nove de Julho (UNINOVE) São Paulo SP Brazil
| | - Kaline Brito Sousa
- Postgraduate Program in Biophotonics Applied to Health Sciences Universidade Nove de Julho (UNINOVE) São Paulo SP Brazil
| | - Lucas Andreo
- Postgraduate Program in Biophotonics Applied to Health Sciences Universidade Nove de Julho (UNINOVE) São Paulo SP Brazil
| | - Andreia Martinelli
- Postgraduate Program in Rehabilitation Sciences UNINOVE São Paulo SP Brazil
| | | | - Sandra Kalil Bussadori
- Postgraduate Program in Biophotonics Applied to Health Sciences Universidade Nove de Julho (UNINOVE) São Paulo SP Brazil
- Postgraduate Program in Rehabilitation Sciences UNINOVE São Paulo SP Brazil
| | | | - Raquel Agnelli Mesquita‐Ferrari
- Postgraduate Program in Biophotonics Applied to Health Sciences Universidade Nove de Julho (UNINOVE) São Paulo SP Brazil
- Postgraduate Program in Rehabilitation Sciences UNINOVE São Paulo SP Brazil
| |
Collapse
|
8
|
Vasconcelos AB, Nampo FK, Molina JC, Silva MB, Oliveira AS, de Angelis TR, Hasuda AL, Camargo EA, Ramos SP. Modulation of exercise-induced muscular damage and hyperalgesia by different 630 nm doses of light-emitting diode therapy (LEDT) in rats. Lasers Med Sci 2018; 34:749-758. [PMID: 30328526 DOI: 10.1007/s10103-018-2655-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 09/30/2018] [Indexed: 11/29/2022]
Abstract
We compared the acute effects of different doses of 630 nm light-emitting diode therapy (LEDT) on skeletal muscle inflammation and hyperalgesia in rats submitted to exercise-induced muscle damage (EIMD). Wistar rats were divided into five experimental groups (n = 5-8/group): sedentary control (CON); exercise + passive recovery (PR); and exercise + LEDT (1.2 J/cm2, 1.8 J; 4.2 J/cm2, 6.3 J; 10.0 J/cm2, 15 J). After 100 min of swimming, the rats in the LEDT groups were exposed to phototherapy on the triceps surae muscle. For mechanical hyperalgesia evaluation, paw withdrawal threshold was assessed before and 24 h after swimming. Immediately after hyperalgesia tests, blood samples were collected to analyze creatine kinase (CK) activity and the soleus muscle was removed for histological and tumor necrosis factor (TNF)-α immunohistological analyses. In all LEDT groups, plasma CK activity was reduced to levels similar to those measured in the CON group. Paw withdrawal threshold decreased in the PR group (- 11.9 ± 1.9 g) when compared to the CON group (2.2 ± 1.5 g; p < 0.01) and it was attenuated in the group LEDT 4.2 J/cm2 (- 3.3 ± 2.4 g, p < 0.05). Less leukocyte infiltration and edema and fewer necrotic areas were found in histological sections of soleus muscle in LEDT (4.2 J/cm2) and LEDT (10.0 J/cm2) groups compared to the PR group. Also, LEDT (4.2 J/cm2) and LEDT (10.0 J/cm2) groups showed less immunostaining for TNF-α in macrophages or areas with necrosis of muscle fibers compared to the PR group. LEDT (4.2 J/cm2, 6.3 J)-reduced muscle inflammation and nociception in animals submitted to EIMD.
Collapse
Affiliation(s)
- Alan B Vasconcelos
- Department of Physiology, Federal University of Sergipe, Marechal Rondon Av., São Cristóvão, SE, CEP 49100-000, Brazil
| | - Fernando K Nampo
- Latin American Institute of Life and Natural Sciences, Federal University of Latin American Integration, Foz do Iguaçu, PR, Brazil
| | - Júlio C Molina
- Department of Histology, State University of Londrina, Londrina, PR, Brazil
| | - Miriam B Silva
- Department of Physiology, Federal University of Sergipe, Marechal Rondon Av., São Cristóvão, SE, CEP 49100-000, Brazil
| | - Alan S Oliveira
- Department of Physiology, Federal University of Sergipe, Marechal Rondon Av., São Cristóvão, SE, CEP 49100-000, Brazil
| | | | - Amanda L Hasuda
- Department of Histology, State University of Londrina, Londrina, PR, Brazil
| | - Enilton A Camargo
- Department of Physiology, Federal University of Sergipe, Marechal Rondon Av., São Cristóvão, SE, CEP 49100-000, Brazil.
| | - Solange P Ramos
- Department of Histology, State University of Londrina, Londrina, PR, Brazil
| |
Collapse
|
9
|
Yang L, Tucker D, Dong Y, Wu C, Lu Y, Li Y, Zhang J, Liu TCY, Zhang Q. Photobiomodulation therapy promotes neurogenesis by improving post-stroke local microenvironment and stimulating neuroprogenitor cells. Exp Neurol 2018; 299:86-96. [PMID: 29056360 PMCID: PMC5723531 DOI: 10.1016/j.expneurol.2017.10.013] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/27/2017] [Accepted: 10/17/2017] [Indexed: 12/24/2022]
Abstract
Recent work has indicated that photobiomodulation (PBM) may beneficially alter the pathological status of several neurological disorders, although the mechanism currently remains unclear. The current study was designed to investigate the beneficial effect of PBM on behavioral deficits and neurogenesis in a photothrombotic (PT) model of ischemic stroke in rats. From day 1 to day 7 after the establishment of PT model, 2-minute daily PBM (CW, 808nm, 350mW/cm2, total 294J at scalp level) was applied on the infarct injury area (1.8mm anterior to the bregma and 2.5mm lateral from the midline). Rats received intraperitoneal injections of 5-bromodeoxyuridine (BrdU) twice daily (50mg/kg) from day 2 to 8 post-stoke, and samples were collected at day 14. We demonstrated that PBM significantly attenuated behavioral deficits and infarct volume induced by PT stroke. Further investigation displayed that PBM remarkably enhanced neurogenesis and synaptogenesis, as evidenced by immunostaining of BrdU, Ki67, DCX, MAP2, spinophilin, and synaptophysin. Mechanistic studies suggested beneficial effects of PBM were accompanied by robust suppression of reactive gliosis and the production of pro-inflammatory cytokines. On the contrary, the release of anti-inflammatory cytokines, cytochrome c oxidase activity and ATP production in peri-infarct regions were elevated following PBM treatment. Intriguingly, PBM could effectively switch an M1 microglial phenotype to an anti-inflammatory M2 phenotype. Our novel findings indicated that PBM is capable of promoting neurogenesis after ischemic stroke. The underlying mechanisms may rely on: 1) promotion of proliferation and differentiation of internal neuroprogenitor cells in the peri-infarct zone; 2) improvement of the neuronal microenvironment by altering inflammatory status and promoting mitochondrial function. These findings provide strong support for the promising therapeutic effect of PBM on neuronal repair following ischemic stroke.
Collapse
Affiliation(s)
- Luodan Yang
- Laboratory of Laser Sports Medicine, College of Physical Education and Sports Science, South China Normal University, Guangzhou, China; Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Donovan Tucker
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Yan Dong
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Chongyun Wu
- Laboratory of Laser Sports Medicine, College of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Yujiao Lu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Yong Li
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Juan Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Timon Cheng-Yi Liu
- Laboratory of Laser Sports Medicine, College of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Quanguang Zhang
- Laboratory of Laser Sports Medicine, College of Physical Education and Sports Science, South China Normal University, Guangzhou, China; Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
10
|
Effects of Light-Emitting Diode Therapy on Muscle Hypertrophy, Gene Expression, Performance, Damage, and Delayed-Onset Muscle Soreness: Case-control Study with a Pair of Identical Twins. Am J Phys Med Rehabil 2017; 95:746-57. [PMID: 27088469 DOI: 10.1097/phm.0000000000000490] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE The aim of this study was to verify how a pair of monozygotic twins would respond to light-emitting diode therapy (LEDT) or placebo combined with a strength-training program during 12 weeks. DESIGN This case-control study enrolled a pair of male monozygotic twins, allocated randomly to LEDT or placebo therapies. Light-emitting diode therapy or placebo was applied from a flexible light-emitting diode array (λ = 850 nm, total energy = 75 J, t = 15 seconds) to both quadriceps femoris muscles of each twin immediately after each strength training session (3 times/wk for 12 weeks) consisting of leg press and leg extension exercises with load of 80% and 50% of the 1-repetition maximum test, respectively. Muscle biopsies, magnetic resonance imaging, maximal load, and fatigue resistance tests were conducted before and after the training program to assess gene expression, muscle hypertrophy and performance, respectively. Creatine kinase levels in blood and visual analog scale assessed muscle damage and delayed-onset muscle soreness, respectively, during the training program. RESULTS Compared with placebo, LEDT increased the maximal load in exercise and reduced fatigue, creatine kinase, and visual analog scale. Gene expression analyses showed decreases in markers of inflammation (interleukin 1β) and muscle atrophy (myostatin) with LEDT. Protein synthesis (mammalian target of rapamycin) and oxidative stress defense (SOD2 [mitochondrial superoxide dismutase]) were up-regulated with LEDT, together with increases in thigh muscle hypertrophy. CONCLUSIONS Light-emitting diode therapy can be useful to reduce muscle damage, pain, and atrophy, as well as to increase muscle mass, recovery, and athletic performance in rehabilitation programs and sports medicine.
Collapse
|
11
|
Alessi Pissulin CN, Henrique Fernandes AA, Sanchez Orellana AM, Rossi E Silva RC, Michelin Matheus SM. Low-level laser therapy (LLLT) accelerates the sternomastoid muscle regeneration process after myonecrosis due to bupivacaine. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 168:30-39. [PMID: 28161653 DOI: 10.1016/j.jphotobiol.2017.01.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 01/19/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Because of its long-lasting analgesic action, bupivacaine is an anesthetic used for peripheral nerve block and relief of postoperative pain. Muscle degeneration and neurotoxicity are its main limitations. There is strong evidence that low-level laser therapy (LLLT) assists in muscle and nerve repair. The authors evaluated the effects of a Gallium Arsenide laser (GaAs), on the regeneration of muscle fibers of the sternomastoid muscle and accessory nerve after injection of bupivacaine. METHODS In total, 30 Wistar adult rats were divided into 2 groups: control group (C: n=15) and laser group (L: n=15). The groups were subdivided by antimere, with 0.5% bupivacaine injected on the right and 0.9% sodium chloride on the left. LLLT (GaAs 904nm, 0,05W, 2.8J per point) was administered for 5 consecutive days, starting 24h after injection of the solutions. Seven days after the trial period, blood samples were collected for determination of creatine kinase (CK). The sternomastoid nerve was removed for morphological and morphometric analyses; the surface portion of the sternomastoid muscle was used for histopathological and ultrastructural analyses. Muscle CK and TNFα protein levels were measured. RESULTS The anesthetic promoted myonecrosis and increased muscle CK without neurotoxic effects. The LLLT reduced myonecrosis, characterized by a decrease in muscle CK levels, inflammation, necrosis, and atrophy, as well as the number of central nuclei in the muscle fibers and the percentage of collagen. TNFα values remained constant. CONCLUSIONS LLLT, at the dose used, reduced fibrosis and myonecrosis in the sternomastoid muscle triggered by bupivacaine, accelerating the muscle regeneration process.
Collapse
Affiliation(s)
- Cristiane Neves Alessi Pissulin
- Department of Anatomy, Universidade do Oeste Paulista (UNOESTE), Presidente Prudente, SP, Brazil; General Bases of Surgery, Botucatu Medical School, Unesp, Botucatu, SP, Brazil.
| | | | | | | | - Selma Maria Michelin Matheus
- Department of Anatomy, Institute of Bioscience, General Bases of Surgery, Botucatu Medical School, Unesp, Botucatu, SP, Brazil.
| |
Collapse
|
12
|
Assis L, Manis C, Fernandes KR, Cabral D, Magri A, Veronez S, Renno ACM. Investigation of the Comparative Effects of Red and Infrared Laser Therapy on Skeletal Muscle Repair in Diabetic Rats. Am J Phys Med Rehabil 2016; 95:525-34. [PMID: 26829073 DOI: 10.1097/phm.0000000000000431] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the in vivo response of 2 different laser wavelengths (red and infrared) on skeletal muscle repair process in diabetic rats. DESIGN Forty Wistar rats were randomly divided into 4 experimental groups: basal control-nondiabetic and muscle-injured animals without treatment (BC); diabetic muscle-injured without treatment (DC); diabetic muscle-injured, treated with red laser (DCR) and infrared laser (DCIR). The injured region was irradiated daily for 7 consecutive days, starting immediately after the injury using a red (660 nm) and an infrared (808 nm) laser. RESULTS The histological results demonstrated in both treated groups (red and infrared wavelengths) a modulation of the inflammatory process and a better tissue organization located in the site of the injury. However, only infrared light significantly reduced the injured area and increased MyoD and myogenin protein expression. Moreover, both red and infrared light increased the expression of the proangiogenic vascular endothelial growth factor and reduced the cyclooxygenase 2 protein expression. CONCLUSION These results suggest that low-level laser therapy was efficient in promoting skeletal muscle repair in diabetic rats. However, the effect of infrared wavelength was more pronounced by reducing the area of the injury and modulating the expression proteins related to the repair.
Collapse
Affiliation(s)
- Lívia Assis
- From the Department of Bioscience, Federal University of São Paulo, Santos, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|