1
|
Sadraeian M, Zhang L, Aavani F, Biazar E, Jin D. Viral inactivation by light. ELIGHT 2022; 2:18. [PMID: 36187558 PMCID: PMC9510523 DOI: 10.1186/s43593-022-00029-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/03/2022] [Accepted: 09/07/2022] [Indexed: 11/28/2022]
Abstract
Nowadays, viral infections are one of the greatest challenges for medical sciences and human society. While antiviral compounds and chemical inactivation remain inadequate, physical approaches based on irradiation provide new potentials for prevention and treatment of viral infections, without the risk of drug resistance and other unwanted side effects. Light across the electromagnetic spectrum can inactivate the virions using ionizing and non-ionizing radiations. This review highlights the anti-viral utility of radiant methods from the aspects of ionizing radiation, including high energy ultraviolet, gamma ray, X-ray, and neutron, and non-ionizing photo-inactivation, including lasers and blue light.
Collapse
Affiliation(s)
- Mohammad Sadraeian
- Present Address: Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007 Australia
| | - Le Zhang
- Present Address: Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007 Australia
| | - Farzaneh Aavani
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Hospital Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Esmaeil Biazar
- Department of Biomedical Engineering, Islamic Azad University, Tonekabon Branch, Tonekabon, Iran
| | - Dayong Jin
- Present Address: Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007 Australia
- UTS-SUStech Joint Research Centre for Biomedical Materials & Devices, Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, Guangdong China
| |
Collapse
|
2
|
Tsen SWD, Popovich J, Hodges M, Haydel SE, Tsen KT, Sudlow G, Mueller EA, Levin PA, Achilefu S. Inactivation of multidrug-resistant bacteria and bacterial spores and generation of high-potency bacterial vaccines using ultrashort pulsed lasers. JOURNAL OF BIOPHOTONICS 2022; 15:e202100207. [PMID: 34802194 PMCID: PMC8934174 DOI: 10.1002/jbio.202100207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/20/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Multidrug-resistant organisms (MDROs) represent a continuing healthcare crisis with no definitive solution to date. An alternative to antibiotics is the development of therapies and vaccines using biocompatible physical methods such as ultrashort pulsed (USP) lasers, which have previously been shown to inactivate pathogens while minimizing collateral damage to human cells, blood proteins, and vaccine antigens. Here we demonstrate that visible USP laser treatment results in bactericidal effect (≥3-log load reduction) against clinically significant MDROs, including methicillin-resistant Staphylococcus aureus and extended spectrum beta-lactamase-producing Escherichia coli. Bacillus cereus endospores, which are highly resistant to conventional chemical and physical treatments, were also shown to be effectively inactivated by USP laser treatment, resulting in sporicidal (≥3-log load reduction) activity. Furthermore, we demonstrate that administration of USP laser-inactivated E. coli whole-cell vaccines at dosages as low as 105 cfu equivalents without adjuvant was able to protect 100% of mice against subsequent lethal challenge. Our findings open the possibility for application of USP lasers in disinfection of hospital environments, therapy of drug-resistant bacterial infections in skin or bloodstream via pheresis modalities, and in the production of potent bacterial vaccines.
Collapse
Affiliation(s)
- Shaw-Wei D. Tsen
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110
| | - John Popovich
- The Biodesign Institute Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ 85287
| | - Megan Hodges
- School of Life Sciences, Arizona State University, Tempe, AZ 85287
| | - Shelley E. Haydel
- The Biodesign Institute Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ 85287
- School of Life Sciences, Arizona State University, Tempe, AZ 85287
| | - Kong-Thon Tsen
- Department of Physics, Arizona State University, Tempe, AZ 85287
- Center for Biophysics, Arizona State University, Tempe, AZ 85287
| | - Gail Sudlow
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110
| | | | - Petra Anne Levin
- Department of Biology, Washington University in St Louis, St Louis, MO 63130
| | - Samuel Achilefu
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, St Louis, MO 63130
- Department of Biomedical Engineering, Washington University in St Louis, St Louis, MO 63130
| |
Collapse
|
3
|
Abstract
Ensuring the maximum standards of quality and welfare in animal production requires developing effective tools to halt and prevent the spread of the high number of infectious diseases affecting animal husbandry. Many of these diseases are caused by pathogens of viral etiology. To date, one of the best strategies is to implement preventive vaccination policies whenever possible. However, many of the currently manufactured animal vaccines still rely in classical vaccine technologies (killed or attenuated vaccines). Under some circumstances, these vaccines may not be optimal in terms of safety and immunogenicity, nor adequate for widespread application in disease-free countries at risk of disease introduction. One step ahead is needed to improve and adapt vaccine manufacturing to the use of new generation vaccine technologies already tested in experimental settings. In the context of viral diseases of veterinary interest, we overview current vaccine technologies that can be approached, with a brief insight in the type of immunity elicited.
Collapse
Affiliation(s)
- Alejandro Brun
- Centro de Investigación en Sanidad Animal (CISA), Instituto de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Valdeolmos, Madrid, Spain.
| |
Collapse
|
4
|
Luzuriaga MA, Herbert FC, Brohlin OR, Gadhvi J, Howlett T, Shahrivarkevishahi A, Wijesundara YH, Venkitapathi S, Veera K, Ehrman R, Benjamin CE, Popal S, Burton MD, Ingersoll MA, De Nisco NJ, Gassensmith JJ. Metal-Organic Framework Encapsulated Whole-Cell Vaccines Enhance Humoral Immunity against Bacterial Infection. ACS NANO 2021; 15:17426-17438. [PMID: 34546723 DOI: 10.1021/acsnano.1c03092] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The increasing rate of resistance of bacterial infection against antibiotics requires next generation approaches to fight potential pandemic spread. The development of vaccines against pathogenic bacteria has been difficult owing, in part, to the genetic diversity of bacteria. Hence, there are many potential target antigens and little a priori knowledge of which antigen/s will elicit protective immunity. The painstaking process of selecting appropriate antigens could be avoided with whole-cell bacteria; however, whole-cell formulations typically fail to produce long-term and durable immune responses. These complications are one reason why no vaccine against any type of pathogenic E. coli has been successfully clinically translated. As a proof of principle, we demonstrate a method to enhance the immunogenicity of a model pathogenic E. coli strain by forming a slow releasing depot. The E. coli strain CFT073 was biomimetically mineralized within a metal-organic framework (MOF). This process encapsulates the bacteria within 30 min in water and at ambient temperatures. Vaccination with this formulation substantially enhances antibody production and results in significantly enhanced survival in a mouse model of bacteremia compared to standard inactivated formulations.
Collapse
|
5
|
Sabino CP, Ball AR, Baptista MS, Dai T, Hamblin MR, Ribeiro MS, Santos AL, Sellera FP, Tegos GP, Wainwright M. Light-based technologies for management of COVID-19 pandemic crisis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2020; 212:111999. [PMID: 32855026 PMCID: PMC7435279 DOI: 10.1016/j.jphotobiol.2020.111999] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022]
Abstract
The global dissemination of the novel coronavirus disease (COVID-19) has accelerated the need for the implementation of effective antimicrobial strategies to target the causative agent SARS-CoV-2. Light-based technologies have a demonstrable broad range of activity over standard chemotherapeutic antimicrobials and conventional disinfectants, negligible emergence of resistance, and the capability to modulate the host immune response. This perspective article identifies the benefits, challenges, and pitfalls of repurposing light-based strategies to combat the emergence of COVID-19 pandemic.
Collapse
Affiliation(s)
- Caetano P Sabino
- Department of Clinical Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, SP, Brazil; BioLambda, Scientific and Commercial LTD, São Paulo, SP, Brazil.
| | - Anthony R Ball
- GAMA Therapeutics LLC, Massachusetts Biomedical Initiatives, Worcester, USA
| | - Mauricio S Baptista
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil..
| | - Tianhong Dai
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Vaccine and Immunotherapy Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Martha S Ribeiro
- Center for Lasers and Applications, Nuclear, and Energy Research Institute, National Commission for Nuclear Energy, São Paulo, SP, Brazil
| | - Ana L Santos
- GAMA Therapeutics LLC, Massachusetts Biomedical Initiatives, Worcester, USA; Department of Chemistry Rice University, Houston, TX, USA; IdISBA - Fundación de Investigación Sanitaria de las Islas Baleares, Palma, Spain
| | - Fábio P Sellera
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil; School of Veterinary Medicine, Metropolitan University of Santos, Santos, Brazil
| | - George P Tegos
- GAMA Therapeutics LLC, Massachusetts Biomedical Initiatives, Worcester, USA; Micromoria LLC, Marlborough, USA
| | - Mark Wainwright
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
6
|
Hanna R, Dalvi S, Sălăgean T, Bordea IR, Benedicenti S. Phototherapy as a Rational Antioxidant Treatment Modality in COVID-19 Management; New Concept and Strategic Approach: Critical Review. Antioxidants (Basel) 2020; 9:E875. [PMID: 32947974 PMCID: PMC7555229 DOI: 10.3390/antiox9090875] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 12/11/2022] Open
Abstract
The COVID-19 pandemic has taken the entire globe by storm. The pathogenesis of this virus has shown a cytokine storm release, which contributes to critical or severe multi-organ failure. Currently the ultimate treatment is palliative; however, many modalities have been introduced with effective or minimal outcomes. Meanwhile, enormous efforts are ongoing to produce safe vaccines and therapies. Phototherapy has a wide range of clinical applications against various maladies. This necessitates the exploration of the role of phototherapy, if any, for COVID-19. This critical review was conducted to understand COVID-19 disease and highlights the prevailing facts that link phototherapy utilisation as a potential treatment modality for SARS-CoV-2 viral infection. The results demonstrated phototherapy's efficacy in regulating cytokines and inflammatory mediators, increasing angiogenesis and enhancing healing in chronic pulmonary inflammatory diseases. In conclusion, this review answered the following research question. Which molecular and cellular mechanisms of action of phototherapy have demonstrated great potential in enhancing the immune response and reducing host-viral interaction in COVID-19 patients? Therefore, phototherapy is a promising treatment modality, which needs to be validated further for COVID-19 by robust and rigorous randomised, double blind, placebo-controlled, clinical trials to evaluate its impartial outcomes and safety.
Collapse
Affiliation(s)
- Reem Hanna
- Department of Surgical Sciences and Integrated Diagnostics, Laser Therapy Centre, University of Genoa, Viale Benedetto XV,6, 16132 Genoa, Italy; (S.D.); (S.B.)
- Department of Oral Surgery, Dental Institute, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK
| | - Snehal Dalvi
- Department of Surgical Sciences and Integrated Diagnostics, Laser Therapy Centre, University of Genoa, Viale Benedetto XV,6, 16132 Genoa, Italy; (S.D.); (S.B.)
- Department of Periodontology, Swargiya Dadasaheb Kalmegh Smruti Dental College and Hospital, Nagpur 441110, India
| | - Tudor Sălăgean
- Department of Land Measurements and Exact Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Ioana Roxana Bordea
- Department of Oral Rehabilitation, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania;
| | - Stefano Benedicenti
- Department of Surgical Sciences and Integrated Diagnostics, Laser Therapy Centre, University of Genoa, Viale Benedetto XV,6, 16132 Genoa, Italy; (S.D.); (S.B.)
| |
Collapse
|
7
|
Sabbaghi A, Miri SM, Keshavarz M, Zargar M, Ghaemi A. Inactivation methods for whole influenza vaccine production. Rev Med Virol 2019; 29:e2074. [PMID: 31334909 DOI: 10.1002/rmv.2074] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/16/2019] [Accepted: 06/19/2019] [Indexed: 12/16/2022]
Abstract
Despite tremendous efforts toward vaccination, influenza remains an ongoing global threat. The induction of strain-specific neutralizing antibody responses is a common phenomenon during vaccination with the current inactivated influenza vaccines, so the protective effect of these vaccines is mostly strain-specific. There is an essential need for the development of next-generation vaccines, with a broad range of immunogenicity against antigenically drifted or shifted influenza viruses. Here, we evaluate the potential of whole inactivated vaccines, based on chemical and physical methods, as well as new approaches to generate cross-protective immune responses. We also consider the mechanisms by which some of these vaccines may induce CD8+ T-cells cross-reactivity with different strains of influenza. In this review, we have focused on conventional and novel methods for production of whole inactivated influenza vaccine. As well as chemical modification, using formaldehyde or β-propiolactone and physical manipulation by ultraviolet radiation or gamma-irradiation, novel approaches, including visible ultrashort pulsed laser, and low-energy electron irradiation are discussed. These two latter methods are considered to be attractive approaches to design more sophisticated vaccines, due to their ability to maintain most of the viral antigenic properties during inactivation and potential to produce cross-protective immunity. However, further studies are needed to validate them before they can replace traditional methods for vaccine manufacturing.
Collapse
Affiliation(s)
- Ailar Sabbaghi
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran.,Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran
| | | | - Mohsen Keshavarz
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mohsen Zargar
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | - Amir Ghaemi
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
8
|
Tsen SWD, Kibler K, Jacobs B, Fay JC, Podolnikova NP, Ugarova TP, Achilefu S, Tsen KT. Selective photonic disinfection of cell culture using a visible ultrashort pulsed laser. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS : A PUBLICATION OF THE IEEE LASERS AND ELECTRO-OPTICS SOCIETY 2016; 22:7100508. [PMID: 27013847 PMCID: PMC4800335 DOI: 10.1109/jstqe.2015.2498920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Microbial contamination of cell culture is a major problem encountered both in academic labs and in the biotechnology/pharmaceutical industries. A broad spectrum of microbes including mycoplasma, bacteria, fungi, and viruses are the causative agents of cell culture contamination. Unfortunately, the existing disinfection techniques lack selectivity and/or lead to the development of drug-resistance, and more importantly there is no universal method to address all microbes. Here, we report a novel, chemical-free visible ultrashort pulsed laser method for cell culture disinfection. The ultrashort pulsed laser technology inactivates pathogens with mechanical means, a paradigm shift from the traditional pharmaceutical and chemical approaches. We demonstrate that ultrashort pulsed laser treatment can efficiently inactivate mycoplasma, bacteria, yeast, and viruses with good preservation of mammalian cell viability. Our results indicate that this ultrashort pulsed laser technology has the potential to serve as a universal method for the disinfection of cell culture.
Collapse
Affiliation(s)
- Shaw-Wei D. Tsen
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110
| | - Karen Kibler
- Biodesign Institute, Arizona State University, Tempe, AZ 85287
| | - Bert Jacobs
- Biodesign Institute, Arizona State University, Tempe, AZ 85287
| | - Justin C. Fay
- Department of Genetics, Washington University School of Medicine, St Louis, MO 63110
| | - NP Podolnikova
- ASU/Mayo Center for Metabolic and Vascular Biology, Arizona State University Tempe, AZ 85287
| | - TP Ugarova
- ASU/Mayo Center for Metabolic and Vascular Biology, Arizona State University Tempe, AZ 85287
| | - Samuel Achilefu
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110
| | - Kong-Thon Tsen
- Department of Physics and Center for Biophysics, Arizona State University, Tempe, AZ 85287-1504
| |
Collapse
|