1
|
Behl I, Calado G, Vishwakarma A, Traynor D, Flint S, Galvin S, Healy CM, Malkin A, Byrne HJ, Lyng FM. Identification of high-risk oral leukoplakia (OLK) using combined Raman spectroscopic analysis of brush biopsy and saliva samples: A proof of concept study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 330:125721. [PMID: 39847873 DOI: 10.1016/j.saa.2025.125721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/01/2024] [Accepted: 01/06/2025] [Indexed: 01/25/2025]
Abstract
The gold standard method of diagnosis of oral leukoplakia (OLK) is a tissue biopsy followed by histological examination. Raman spectroscopic studies of cytological brush biopsy and saliva samples have previously been shown to differentiate low (no and mild dysplasia) and high risk (moderate and severe dysplasia) OLKs, discriminant models of cellular samples achieving higher specificity, whereas those based on saliva samples achieved higher sensitivity. The current study combines the spectral data sets of cell and saliva samples in an attempt to improve the overall efficiency of the discriminating models. Raman spectral data from cellular (nucleus and cytoplasm) and saliva samples, collected from patients with OLK (n = 12), was analysed as a concatenated or fused dataset and as data blocks in a multiblock analysis. The concatenated data was subjected to partial least squares-discriminant analysis (PLS-DA) to discriminate high and low grade dysplasia. Finally, multi-block analysis was performed using sequential orthogonalised PLS-DA, by which each set of data blocks was combined sequentially to provide maximum discrimination. For the concatenated dataset of cells and saliva, 87 % sensitivity and 76 % specificity were achieved, while in the case of the multi-block analysis, 97 % sensitivity and 100 % specificity were achieved. It is concluded that multiblock analysis provides maximum sensitivity and specificity using both cell and saliva datasets, compared to fused datasets. This study demonstrates that Raman spectroscopy of minimally invasive brush biopsy and saliva samples could have a role in differentiating high and low-risk OLKs.
Collapse
Affiliation(s)
- Isha Behl
- Centre for Radiation and Environmental Science, FOCAS Research Institute, Technological University Dublin, City Campus, Dublin, Ireland; School of Physics, Clinical and Optometric Sciences, Technological University Dublin, City Campus, Dublin, Ireland.
| | - Genecy Calado
- Centre for Radiation and Environmental Science, FOCAS Research Institute, Technological University Dublin, City Campus, Dublin, Ireland; School of Physics, Clinical and Optometric Sciences, Technological University Dublin, City Campus, Dublin, Ireland
| | - Anika Vishwakarma
- Centre for Radiation and Environmental Science, FOCAS Research Institute, Technological University Dublin, City Campus, Dublin, Ireland; School of Physics, Clinical and Optometric Sciences, Technological University Dublin, City Campus, Dublin, Ireland
| | - Damien Traynor
- Centre for Radiation and Environmental Science, FOCAS Research Institute, Technological University Dublin, City Campus, Dublin, Ireland; School of Physics, Clinical and Optometric Sciences, Technological University Dublin, City Campus, Dublin, Ireland
| | - Stephen Flint
- Oral Medicine Unit, Dublin Dental University Hospital, Trinity College Dublin, Ireland
| | - Sheila Galvin
- Oral Medicine Unit, Dublin Dental University Hospital, Trinity College Dublin, Ireland
| | - Claire M Healy
- Oral Medicine Unit, Dublin Dental University Hospital, Trinity College Dublin, Ireland
| | - Alison Malkin
- School of Biological, Health and Sport Sciences, Technological University Dublin, City Campus, Dublin, Ireland
| | - Hugh J Byrne
- FOCAS Research Institute, Technological University Dublin, City Campus, Dublin, Ireland
| | - Fiona M Lyng
- Centre for Radiation and Environmental Science, FOCAS Research Institute, Technological University Dublin, City Campus, Dublin, Ireland; School of Physics, Clinical and Optometric Sciences, Technological University Dublin, City Campus, Dublin, Ireland
| |
Collapse
|
2
|
Hanna K, Asiedu AL, Theurer T, Muirhead D, Speirs V, Oweis Y, Abu-Eid R. Advances in Raman spectroscopy for characterising oral cancer and oral potentially malignant disorders. Expert Rev Mol Med 2024; 26:e25. [PMID: 39375841 PMCID: PMC11488342 DOI: 10.1017/erm.2024.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 06/18/2024] [Accepted: 08/16/2024] [Indexed: 10/09/2024]
Abstract
Oral cancer survival rates have seen little improvement over the past few decades. This is mainly due to late detection and a lack of reliable markers to predict disease progression in oral potentially malignant disorders (OPMDs). There is a need for highly specific and sensitive screening tools to enable early detection of malignant transformation. Biochemical alterations to tissues occur as an early response to pathological processes; manifesting as modifications to molecular structure, concentration or conformation. Raman spectroscopy is a powerful analytical technique that can probe these biochemical changes and can be exploited for the generation of novel disease-specific biomarkers. Therefore, Raman spectroscopy has the potential as an adjunct tool that can assist in the early diagnosis of oral cancer and the detection of disease progression in OPMDs. This review describes the use of Raman spectroscopy for the diagnosis of oral cancer and OPMDs based on ex vivo and liquid biopsies as well as in vivo applications that show the potential of this powerful tool to progress from benchtop to chairside.
Collapse
Affiliation(s)
- Katie Hanna
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Scotland, UK
- Aberdeen Cancer Centre, University of Aberdeen, Scotland, UK
| | - Anna-Lena Asiedu
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Scotland, UK
| | - Thomas Theurer
- School of Geoscience, University of Aberdeen, Aberdeen, Scotland, UK
| | - David Muirhead
- School of Geoscience, University of Aberdeen, Aberdeen, Scotland, UK
| | - Valerie Speirs
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Scotland, UK
- Aberdeen Cancer Centre, University of Aberdeen, Scotland, UK
| | - Yara Oweis
- School of Dentistry, University of Jordan, Amman, Jordan
| | - Rasha Abu-Eid
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Scotland, UK
- Aberdeen Cancer Centre, University of Aberdeen, Scotland, UK
| |
Collapse
|
3
|
Dong F, Yan J, Zhang X, Zhang Y, Liu D, Pan X, Xue L, Liu Y. Artificial intelligence-based predictive model for guidance on treatment strategy selection in oral and maxillofacial surgery. Heliyon 2024; 10:e35742. [PMID: 39170321 PMCID: PMC11336844 DOI: 10.1016/j.heliyon.2024.e35742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/27/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
Application of deep learning (DL) and machine learning (ML) is rapidly increasing in the medical field. DL is gaining significance for medical image analysis, particularly, in oral and maxillofacial surgeries. Owing to the ability to accurately identify and categorize both diseased and normal soft- and hard-tissue structures, DL has high application potential in the diagnosis and treatment of tumors and in orthognathic surgeries. Moreover, DL and ML can be used to develop prediction models that can aid surgeons to assess prognosis by analyzing the patient's medical history, imaging data, and surgical records, develop more effective treatment strategies, select appropriate surgical modalities, and evaluate the risk of postoperative complications. Such prediction models can play a crucial role in the selection of treatment strategies for oral and maxillofacial surgeries. Their practical application can improve the utilization of medical staff, increase the treatment accuracy and efficiency, reduce surgical risks, and provide an enhanced treatment experience to patients. However, DL and ML face limitations, such as data drift, unstable model results, and vulnerable social trust. With the advancement of social concepts and technologies, the use of these models in oral and maxillofacial surgery is anticipated to become more comprehensive and extensive.
Collapse
Affiliation(s)
- Fanqiao Dong
- School of Stomatology, China Medical University, Shenyang, China
| | - Jingjing Yan
- Hospital of Stomatology, China Medical University, Shenyang, China
| | - Xiyue Zhang
- School of Stomatology, China Medical University, Shenyang, China
| | - Yikun Zhang
- School of Stomatology, China Medical University, Shenyang, China
| | - Di Liu
- School of Stomatology, China Medical University, Shenyang, China
| | - Xiyun Pan
- School of Stomatology, China Medical University, Shenyang, China
| | - Lei Xue
- School of Stomatology, China Medical University, Shenyang, China
- Hospital of Stomatology, China Medical University, Shenyang, China
| | - Yu Liu
- First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
4
|
Aradhye P, Jha S, Saha P, Patwardhan RS, Noothalapati H, Krishna CM, Patwardhan S. Distinct spectral signatures unfold ECM stiffness-triggered biochemical changes in breast cancer cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 311:123994. [PMID: 38354672 DOI: 10.1016/j.saa.2024.123994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/08/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
Cancer progression often accompanies the stiffening of extracellular matrix (ECM) in and around the tumor, owing to extra deposition and cross-linking of collagen. Stiff ECM has been linked with poor prognosis and is known to fuel invasion and metastasis, notably in breast cancer. However, the underlying biochemical or metabolic changes and the cognate molecular signatures remain elusive. Here, we explored Raman spectroscopy to unveil the spectral fingerprints of breast cancer cells in response to extracellular mechanical cues. Using stiffness-tuneable hydrogels, we showed that cells grown on stiff ECM displayed morphological changes with high proliferation. We further demonstrated that Raman Spectroscopy, a label-free and non-invasive technique, could provide comprehensive information about the biochemical environment of breast cancer cells in response to varying ECM stiffness. Raman spectroscopic analysis classified the cells into distinct clusters based on principal component-based linear discriminant analysis (PC-LDA). Multivariate curve resolution-alternating least squares (MCR-ALS) analysis indicated that cells cultured on stiff ECM exhibited elevated nucleic acid content and lesser lipids. Interestingly, increased intensity of Raman bands corresponding to cytochrome-c was also observed in stiff ECM conditions, suggesting mitochondrial modulation. The key findings harboured by spectral profiles were also corroborated by transmission electron microscopy, confirming altered metabolic status as reflected by increased mitochondria number and decreased lipid droplets in response to ECM stiffening. Collectively, these findings not only give the spectral signatures for mechanoresponse but also provide the landscape of biochemical changes in response to ECM stiffening.
Collapse
Affiliation(s)
- Prasad Aradhye
- Patwardhan Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India
| | - Shubham Jha
- Patwardhan Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Panchali Saha
- Chilakapati Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Raghavendra S Patwardhan
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Hemanth Noothalapati
- Department of Life and Environmental Sciences, Shimane University, Matsue, 690-8504, Japan
| | - C Murali Krishna
- Chilakapati Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Sejal Patwardhan
- Patwardhan Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
5
|
Faur C, Falamas A, Chirila M, Roman R, Rotaru H, Moldovan M, Albu S, Baciut M, Robu I, Hedesiu M. Raman spectroscopy in oral cavity and oropharyngeal cancer: a systematic review. Int J Oral Maxillofac Surg 2022; 51:1373-1381. [DOI: 10.1016/j.ijom.2022.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 12/24/2022]
|
6
|
Zhang Y, Ren L, Wang Q, Wen Z, Liu C, Ding Y. Raman Spectroscopy: A Potential Diagnostic Tool for Oral Diseases. Front Cell Infect Microbiol 2022; 12:775236. [PMID: 35186787 PMCID: PMC8855094 DOI: 10.3389/fcimb.2022.775236] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/17/2022] [Indexed: 12/24/2022] Open
Abstract
Oral diseases impose a major health burden worldwide and have a profound effect on general health. Dental caries, periodontal diseases, and oral cancers are the most common oral health conditions. Their occurrence and development are related to oral microbes, and effective measures for their prevention and the promotion of oral health are urgently needed. Raman spectroscopy detects molecular vibration information by collecting inelastic scattering light, allowing a “fingerprint” of a sample to be acquired. It provides the advantages of rapid, sensitive, accurate, and minimally invasive detection as well as minimal interference from water in the “fingerprint region.” Owing to these characteristics, Raman spectroscopy has been used in medical detection in various fields to assist diagnosis and evaluate prognosis, such as detecting and differentiating between bacteria or between neoplastic and normal brain tissues. Many oral diseases are related to oral microbial dysbiosis, and their lesions differ from normal tissues in essential components. The colonization of keystone pathogens, such as Porphyromonas gingivalis, resulting in microbial dysbiosis in subgingival plaque, is the main cause of periodontitis. Moreover, the components in gingival crevicular fluid, such as infiltrating inflammatory cells and tissue degradation products, are markedly different between individuals with and without periodontitis. Regarding dental caries, the compositions of decayed teeth are transformed, accompanied by an increase in acid-producing bacteria. In oral cancers, the compositions and structures of lesions and normal tissues are different. Thus, the changes in bacteria and the components of saliva and tissue can be used in examinations as special markers for these oral diseases, and Raman spectroscopy has been acknowledged as a promising measure for detecting these markers. This review summarizes and discusses key research and remaining problems in this area. Based on this, suggestions for further study are proposed.
Collapse
Affiliation(s)
- Yuwei Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liang Ren
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qi Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhining Wen
- College of Chemistry, Sichuan University, Chengdu, China
| | - Chengcheng Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Chengcheng Liu, ; Yi Ding,
| | - Yi Ding
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Chengcheng Liu, ; Yi Ding,
| |
Collapse
|
7
|
A New Look into Cancer-A Review on the Contribution of Vibrational Spectroscopy on Early Diagnosis and Surgery Guidance. Cancers (Basel) 2021; 13:cancers13215336. [PMID: 34771500 PMCID: PMC8582426 DOI: 10.3390/cancers13215336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Cancer is a leading cause of death worldwide, with the detection of the disease in its early stages, as well as a correct assessment of the tumour margins, being paramount for a successful recovery. While breast cancer is one of most common types of cancer, head and neck cancer is one of the types of cancer with a lower prognosis and poor aesthetic results. Vibrational spectroscopy detects molecular vibrations, being sensitive to different sample compositions, even when the difference was slight. The use of spectroscopy in biomedicine has been extensively explored, since it allows a broader assessment of the biochemical fingerprint of several diseases. This literature review covers the most recent advances in breast and head and neck cancer early diagnosis and intraoperative margin assessment, through Raman and Fourier transform infrared spectroscopies. The rising field of spectral histopathology was also approached. The authors aimed at expounding in a more concise and simple way the challenges faced by clinicians and how vibrational spectroscopy has evolved to respond to those needs for the two types of cancer with the highest potential for improvement regarding an early diagnosis, surgical margin assessment and histopathology. Abstract In 2020, approximately 10 million people died of cancer, rendering this disease the second leading cause of death worldwide. Detecting cancer in its early stages is paramount for patients’ prognosis and survival. Hence, the scientific and medical communities are engaged in improving both therapeutic strategies and diagnostic methodologies, beyond prevention. Optical vibrational spectroscopy has been shown to be an ideal diagnostic method for early cancer diagnosis and surgical margins assessment, as a complement to histopathological analysis. Being highly sensitive, non-invasive and capable of real-time molecular imaging, Raman and Fourier transform infrared (FTIR) spectroscopies give information on the biochemical profile of the tissue under analysis, detecting the metabolic differences between healthy and cancerous portions of the same sample. This constitutes tremendous progress in the field, since the cancer-prompted morphological alterations often occur after the biochemical imbalances in the oncogenic process. Therefore, the early cancer-associated metabolic changes are unnoticed by the histopathologist. Additionally, Raman and FTIR spectroscopies significantly reduce the subjectivity linked to cancer diagnosis. This review focuses on breast and head and neck cancers, their clinical needs and the progress made to date using vibrational spectroscopy as a diagnostic technique prior to surgical intervention and intraoperative margin assessment.
Collapse
|
8
|
Walsh T, Macey R, Kerr AR, Lingen MW, Ogden GR, Warnakulasuriya S. Diagnostic tests for oral cancer and potentially malignant disorders in patients presenting with clinically evident lesions. Cochrane Database Syst Rev 2021; 7:CD010276. [PMID: 34282854 PMCID: PMC8407012 DOI: 10.1002/14651858.cd010276.pub3] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Squamous cell carcinoma is the most common form of malignancy of the oral cavity, and is often proceeded by oral potentially malignant disorders (OPMD). Early detection of oral cavity squamous cell carcinoma (oral cancer) can improve survival rates. The current diagnostic standard of surgical biopsy with histology is painful for patients and involves a delay in order to process the tissue and render a histological diagnosis; other diagnostic tests are available that are less invasive and some are able to provide immediate results. This is an update of a Cochrane Review first published in 2015. OBJECTIVES Primary objective: to estimate the diagnostic accuracy of index tests for the detection of oral cancer and OPMD, in people presenting with clinically evident suspicious and innocuous lesions. SECONDARY OBJECTIVE to estimate the relative accuracy of the different index tests. SEARCH METHODS Cochrane Oral Health's Information Specialist searched the following databases: MEDLINE Ovid (1946 to 20 October 2020), and Embase Ovid (1980 to 20 October 2020). The US National Institutes of Health Ongoing Trials Register (ClinicalTrials.gov) and the World Health Organization International Clinical Trials Registry Platform were also searched for ongoing trials to 20 October 2020. No restrictions were placed on the language or date of publication when searching the electronic databases. We conducted citation searches, and screened reference lists of included studies for additional references. SELECTION CRITERIA We selected studies that reported the diagnostic test accuracy of the following index tests when used as an adjunct to conventional oral examination in detecting OPMD or oral cavity squamous cell carcinoma: vital staining (a dye to stain oral mucosa tissues), oral cytology, light-based detection and oral spectroscopy, blood or saliva analysis (which test for the presence of biomarkers in blood or saliva). DATA COLLECTION AND ANALYSIS Two review authors independently screened titles and abstracts for relevance. Eligibility, data extraction and quality assessment were carried out by at least two authors, independently and in duplicate. Studies were assessed for methodological quality using the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2). Meta-analysis was used to combine the results of studies for each index test using the bivariate approach to estimate the expected values of sensitivity and specificity. MAIN RESULTS This update included 63 studies (79 datasets) published between 1980 and 2020 evaluating 7942 lesions for the quantitative meta-analysis. These studies evaluated the diagnostic accuracy of conventional oral examination with: vital staining (22 datasets), oral cytology (24 datasets), light-based detection or oral spectroscopy (24 datasets). Nine datasets assessed two combined index tests. There were no eligible diagnostic accuracy studies evaluating blood or salivary sample analysis. Two studies were classed as being at low risk of bias across all domains, and 33 studies were at low concern for applicability across the three domains, where patient selection, the index test, and the reference standard used were generalisable across the population attending secondary care. The summary estimates obtained from the meta-analysis were: - vital staining: sensitivity 0.86 (95% confidence interval (CI) 0.79 to 0.90) specificity 0.68 (95% CI 0.58 to 0.77), 20 studies, sensitivity low-certainty evidence, specificity very low-certainty evidence; - oral cytology: sensitivity 0.90 (95% CI 0.82 to 0.94) specificity 0.94 (95% CI 0.88 to 0.97), 20 studies, sensitivity moderate-certainty evidence, specificity moderate-certainty evidence; - light-based: sensitivity 0.87 (95% CI 0.78 to 0.93) specificity 0.50 (95% CI 0.32 to 0.68), 23 studies, sensitivity low-certainty evidence, specificity very low-certainty evidence; and - combined tests: sensitivity 0.78 (95% CI 0.45 to 0.94) specificity 0.71 (95% CI 0.53 to 0.84), 9 studies, sensitivity very low-certainty evidence, specificity very low-certainty evidence. AUTHORS' CONCLUSIONS At present none of the adjunctive tests can be recommended as a replacement for the currently used standard of a surgical biopsy and histological assessment. Given the relatively high values of the summary estimates of sensitivity and specificity for oral cytology, this would appear to offer the most potential. Combined adjunctive tests involving cytology warrant further investigation. Potentially eligible studies of blood and salivary biomarkers were excluded from the review as they were of a case-control design and therefore ineligible. In the absence of substantial improvement in the tests evaluated in this updated review, further research into biomarkers may be warranted.
Collapse
Affiliation(s)
- Tanya Walsh
- Division of Dentistry, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Richard Macey
- Division of Dentistry, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Alexander R Kerr
- Department of Oral and Maxillofacial Pathology, Radiology and Medicine, New York University College of Dentistry, New York, USA
| | - Mark W Lingen
- Pritzker School of Medicine, Division of Biological Sciences, Department of Pathology, University of Chicago, Chicago, Illinois, USA
| | - Graham R Ogden
- Division of Oral and Maxillofacial Clinical Sciences, School of Dentistry, University of Dundee, Dundee, UK
| | | |
Collapse
|
9
|
Traynor D, Behl I, O'Dea D, Bonnier F, Nicholson S, O'Connell F, Maguire A, Flint S, Galvin S, Healy CM, Martin CM, O'Leary JJ, Malkin A, Byrne HJ, Lyng FM. Raman spectral cytopathology for cancer diagnostic applications. Nat Protoc 2021; 16:3716-3735. [PMID: 34117476 DOI: 10.1038/s41596-021-00559-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 04/19/2021] [Indexed: 02/05/2023]
Abstract
Raman spectroscopy can provide a rapid, label-free, nondestructive measurement of the chemical fingerprint of a sample and has shown potential for cancer screening and diagnosis. Here we report a protocol for Raman microspectroscopic analysis of different exfoliative cytology samples (cervical, oral and lung), covering sample preparation, spectral acquisition, preprocessing and data analysis. The protocol takes 2 h 20 min for sample preparation, measurement and data preprocessing and up to 8 h for a complete analysis. A key feature of the protocol is that it uses the same sample preparation procedure as commonly used in diagnostic cytology laboratories (i.e., liquid-based cytology on glass slides), ensuring compatibility with clinical workflows. Our protocol also covers methods to correct for the spectral contribution of glass and sample pretreatment methods to remove contaminants (such as blood and mucus) that can obscure spectral features in the exfoliated cells and lead to variability. The protocol establishes a standardized clinical routine allowing the collection of highly reproducible data for Raman spectral cytopathology for cancer diagnostic applications for cervical and lung cancer and for monitoring suspicious lesions for oral cancer.
Collapse
Affiliation(s)
- Damien Traynor
- Centre for Radiation and Environmental Science, FOCAS Research Institute, Technological University Dublin, Dublin, Ireland.,School of Physics & Clinical & Optometric Sciences, Technological University Dublin, Dublin, Ireland
| | - Isha Behl
- Centre for Radiation and Environmental Science, FOCAS Research Institute, Technological University Dublin, Dublin, Ireland.,School of Physics & Clinical & Optometric Sciences, Technological University Dublin, Dublin, Ireland
| | - Declan O'Dea
- Centre for Radiation and Environmental Science, FOCAS Research Institute, Technological University Dublin, Dublin, Ireland.,School of Biological and Health Sciences, Technological University Dublin, Dublin, Ireland
| | - Franck Bonnier
- EA 6295 Nanomédicaments et Nanosondes, Université de Tours, Tours, France
| | | | | | | | - Stephen Flint
- Oral Medicine Unit, Dublin Dental University Hospital, Trinity College, Dublin, Ireland
| | - Sheila Galvin
- Oral Medicine Unit, Dublin Dental University Hospital, Trinity College, Dublin, Ireland
| | - Claire M Healy
- Oral Medicine Unit, Dublin Dental University Hospital, Trinity College, Dublin, Ireland
| | - Cara M Martin
- Discipline of Histopathology, University of Dublin Trinity College, Dublin, Ireland.,Emer Casey Molecular Pathology Research Laboratory, The Coombe Women and Infants University Hospital, Dublin, Ireland.,CERVIVA Research Consortium, Dublin, Ireland
| | - John J O'Leary
- Discipline of Histopathology, University of Dublin Trinity College, Dublin, Ireland.,Emer Casey Molecular Pathology Research Laboratory, The Coombe Women and Infants University Hospital, Dublin, Ireland.,CERVIVA Research Consortium, Dublin, Ireland
| | - Alison Malkin
- School of Biological and Health Sciences, Technological University Dublin, Dublin, Ireland
| | - Hugh J Byrne
- FOCAS Research Institute, Technological University Dublin, Dublin, Ireland
| | - Fiona M Lyng
- Centre for Radiation and Environmental Science, FOCAS Research Institute, Technological University Dublin, Dublin, Ireland. .,School of Physics & Clinical & Optometric Sciences, Technological University Dublin, Dublin, Ireland. .,CERVIVA Research Consortium, Dublin, Ireland.
| |
Collapse
|
10
|
Byrne HJ, Behl I, Calado G, Ibrahim O, Toner M, Galvin S, Healy CM, Flint S, Lyng FM. Biomedical applications of vibrational spectroscopy: Oral cancer diagnostics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 252:119470. [PMID: 33503511 DOI: 10.1016/j.saa.2021.119470] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/09/2021] [Accepted: 01/10/2021] [Indexed: 06/12/2023]
Abstract
Vibrational spectroscopy, based on either infrared absorption or Raman scattering, has attracted increasing attention for biomedical applications. Proof of concept explorations for diagnosis of oral potentially malignant disorders and cancer are reviewed, and recent advances critically appraised. Specific examples of applications of Raman microspectroscopy for analysis of histological, cytological and saliva samples are presented for illustrative purposes, and the future prospects, ultimately for routine, chairside in vivo screening are discussed.
Collapse
Affiliation(s)
- Hugh J Byrne
- FOCAS Research Institute, Technological University Dublin, City Campus, Dublin 8, Ireland.
| | - Isha Behl
- School of Physics and Clinical and Optometric Sciences, Technological University Dublin, City Campus, Dublin 8, Ireland; Radiation and Environmental Science Centre, FOCAS Research Institute, Technological University Dublin, City Campus, Dublin 8, Ireland
| | - Genecy Calado
- School of Physics and Clinical and Optometric Sciences, Technological University Dublin, City Campus, Dublin 8, Ireland; Radiation and Environmental Science Centre, FOCAS Research Institute, Technological University Dublin, City Campus, Dublin 8, Ireland
| | - Ola Ibrahim
- School of Dental Science, Trinity College Dublin, Lincoln Place, Dublin 2, Ireland
| | - Mary Toner
- Central Pathology Laboratory, St. James Hospital, James Street, Dublin 8, Ireland
| | - Sheila Galvin
- Oral Medicine Unit, Dublin Dental University Hospital, Trinity College Dublin, Lincoln Place, Dublin 2, Ireland
| | - Claire M Healy
- Oral Medicine Unit, Dublin Dental University Hospital, Trinity College Dublin, Lincoln Place, Dublin 2, Ireland
| | - Stephen Flint
- Oral Medicine Unit, Dublin Dental University Hospital, Trinity College Dublin, Lincoln Place, Dublin 2, Ireland
| | - Fiona M Lyng
- School of Physics and Clinical and Optometric Sciences, Technological University Dublin, City Campus, Dublin 8, Ireland; Radiation and Environmental Science Centre, FOCAS Research Institute, Technological University Dublin, City Campus, Dublin 8, Ireland
| |
Collapse
|
11
|
Behl I, Calado G, Malkin A, Flint S, Galvin S, Healy CM, Pimentel ML, Byrne HJ, Lyng FM. A pilot study for early detection of oral premalignant diseases using oral cytology and Raman micro-spectroscopy: Assessment of confounding factors. JOURNAL OF BIOPHOTONICS 2020; 13:e202000079. [PMID: 32686263 DOI: 10.1002/jbio.202000079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
This study demonstrates the efficacy of Raman micro-spectroscopy of oral cytological samples for differentiating dysplastic, potentially malignant lesions from those of normal, healthy donors. Cells were collected using brush biopsy from healthy donors (n = 20) and patients attending a Dysplasia Clinic (n = 20). Donors were sampled at four different sites (buccal mucosa, tongue, alveolus, gingiva), to ensure matched normal sites for all lesions, while patient samples were taken from clinically evident, histologically verified dysplastic lesions. Spectra were acquired from the nucleus and cytoplasm of individual cells of all samples and subjected to partial least squares-discriminant analysis. Discriminative sensitivities of 94% and 86% and specificity of 85% were achieved for the cytoplasm and nucleus, respectively, largely based on lipidic contributions of dysplastic cells. Alveolar/gingival samples were differentiated from tongue/buccal samples, indicating that anatomical site is potentially a confounding factor, while age, gender, smoking and alcohol consumption were confirmed not to be.
Collapse
Affiliation(s)
- Isha Behl
- Centre for Radiation and Environmental Science, FOCAS Research Institute, Technological University Dublin. City Campus, Dublin, Ireland
- School of Physics & Clinical & Optometric Sciences, Technological University Dublin, City Campus, Dublin, Ireland
| | - Genecy Calado
- Centre for Radiation and Environmental Science, FOCAS Research Institute, Technological University Dublin. City Campus, Dublin, Ireland
- School of Physics & Clinical & Optometric Sciences, Technological University Dublin, City Campus, Dublin, Ireland
| | - Alison Malkin
- School of Biological and Health Sciences, Technological University Dublin, City Campus, Dublin, Ireland
| | - Stephen Flint
- Oral Medicine Unit, Dublin Dental University Hospital, Trinity College Dublin, Dublin, Ireland
| | - Sheila Galvin
- Oral Medicine Unit, Dublin Dental University Hospital, Trinity College Dublin, Dublin, Ireland
| | - Claire M Healy
- Oral Medicine Unit, Dublin Dental University Hospital, Trinity College Dublin, Dublin, Ireland
| | - Marina Leite Pimentel
- Division of Restorative Dentistry and Periodontology, Dublin Dental University Hospital, Trinity College Dublin, Dublin, Ireland
| | - Hugh J Byrne
- FOCAS Research Institute, Technological University Dublin, City Campus, Dublin, Ireland
| | - Fiona M Lyng
- Centre for Radiation and Environmental Science, FOCAS Research Institute, Technological University Dublin. City Campus, Dublin, Ireland
- School of Physics & Clinical & Optometric Sciences, Technological University Dublin, City Campus, Dublin, Ireland
| |
Collapse
|
12
|
Pansare K, Raj Singh S, Chakravarthy V, Gupta N, Hole A, Gera P, Sarin R, Murali Krishna C. Raman Spectroscopy: An Exploratory Study to Identify Post-Radiation Cell Survival. APPLIED SPECTROSCOPY 2020; 74:553-562. [PMID: 32031014 DOI: 10.1177/0003702820908352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Resistance to radiotherapy has been an impediment in the treatment of cancer, and the inability to detect it at an early stage further exacerbates the prognosis. We have assessed the feasibility of Raman spectroscopy as a rapid assay for predicting radiosensitivity of cancer cells in comparison to the conventional biological assays. Cell lines derived from breast adenocarcinoma (MCF7), gingivobuccal squamous cell carcinoma (ITOC-03), and human embryonic kidney (HEK293) were subjected to varying doses of ionizing radiation. Cell viability of irradiated cells was assessed at different time points using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and Raman spectroscopy, and colony-forming capability was evaluated by clonogenic assay. Radiosensitivity observed using MTT assay was limited by the finding of similar cell viability in all the three cell lines 24 h post-irradiation. However, cell survival assessed using clonogenic assay and principal component linear discriminant analysis (PC-LDA) classification of Raman spectra showed correlating patterns. Irradiated cells showed loss of nucleic acid features and enhancement of 750 cm-1 peak probably attributing to resonance Raman band of cytochromes in all three cell lines. PC-LDA analysis affirmed MCF7 to be a radioresistant cell line as compared to ITOC-03 and HEK293 to be the most radiosensitive cell line. Raman spectroscopy is shown to be a rapid and alternative assay for identification of radiosensitivity as compared to the gold standard clonogenic assay.
Collapse
Affiliation(s)
- Kshama Pansare
- Advanced Center for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Center (TMC), Navi Mumbai, India
| | - Saurav Raj Singh
- Advanced Center for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Center (TMC), Navi Mumbai, India
| | - Venkatavaradhan Chakravarthy
- Advanced Center for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Center (TMC), Navi Mumbai, India
| | - Neha Gupta
- Advanced Center for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Center (TMC), Navi Mumbai, India
| | - Arti Hole
- Advanced Center for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Center (TMC), Navi Mumbai, India
| | - Poonam Gera
- Advanced Center for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Center (TMC), Navi Mumbai, India
| | - Rajiv Sarin
- Advanced Center for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Center (TMC), Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Chilakapati Murali Krishna
- Advanced Center for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Center (TMC), Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
13
|
Ralbovsky NM, Lednev IK. Raman spectroscopy and chemometrics: A potential universal method for diagnosing cancer. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 219:463-487. [PMID: 31075613 DOI: 10.1016/j.saa.2019.04.067] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/20/2019] [Accepted: 04/24/2019] [Indexed: 05/14/2023]
Abstract
Cancer is the second-leading cause of death worldwide. It affects an unfathomable number of people, with almost 16 million Americans currently living with it. While many cancers can be detected, current diagnostic efforts exhibit definite room for improvement. It is imperative that a person be diagnosed with cancer as early on in its progression as possible. An earlier diagnosis allows for the best treatment and intervention options available to be presented. Unfortunately, existing methods for diagnosing cancer can be expensive, invasive, inconclusive or inaccurate, and are not always made during initial stages of the disease. As such, there is a crucial unmet need to develop a singular universal method that is reliable, cost-effective, and non-invasive and can diagnose all forms of cancer early-on. Raman spectroscopy in combination with advanced statistical analysis is offered here as a potential solution for this need. This review covers recently published research in which Raman spectroscopy was used for the purpose of diagnosing cancer. The benefits and the risks of the methodology are presented; however, there is overwhelming evidence that suggests Raman spectroscopy is highly suitable for becoming the first universal method to be used for diagnosing cancer.
Collapse
Affiliation(s)
- Nicole M Ralbovsky
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Igor K Lednev
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Avenue, Albany, NY 12222, USA.
| |
Collapse
|
14
|
Sahu A, Gera P, Malik A, Nair S, Chaturvedi P, Murali Krishna C. Raman exfoliative cytology for prognosis prediction in oral cancers: A proof of concept study. JOURNAL OF BIOPHOTONICS 2019; 12:e201800334. [PMID: 30719849 DOI: 10.1002/jbio.201800334] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 01/16/2019] [Accepted: 02/03/2019] [Indexed: 06/09/2023]
Abstract
Oral cancer is associated with high rates of recurrence, attributable to field cancerization. Early detection of advanced field changes that can potentially progress to carcinoma can facilitate timely intervention and can lead to improved prognosis. Previous in vivo studies have successfully detected advanced field effects in oral cancers. Raman exfoliative cytology has previously shown to differentiate normal, oral pre-cancer and cancers. The present study explores Raman-exfoliative-cytology-based detection of field effects. Exfoliated cells were collected from tumor (n = 16) and contralateral-normal appearing mucosa (n = 16) of oral cancer patients, and healthy tobacco habitués (n = 20). After spectral acquisition, specimens were Pap-stained for cytological evaluation. Data analysis, by Principal Component Analysis and Principal Component-Linear Discriminant Analysis, indicate several spectral-misclassifications between contralateral normal and tumor, which were investigated and correlated with spectral, cytological and clinical outcomes. A qualitative analysis by grouping patients with number of misclassifications with tumor (Group 1: 0, Group 2: 1 and Group 3: >1) was explored. Group 3 with highest misclassifications showed spectral and cytological similarity to tumor group - one patient was a case of early inoperable residual disease, despite clear margins on histopathology. Thus, these misclassifications could be indicative of cancer field changes, and can prospectively help to identify patients susceptible to recurrences .
Collapse
Affiliation(s)
- Aditi Sahu
- Chilakapati Laboratory, Tata Memorial Centre, ACTREC, Mumbai, India
- Dermatology Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Poonam Gera
- ACTREC Biorepository, Tata Memorial Centre, ACTREC, Mumbai, India
| | - Akshat Malik
- Head and Neck Surgical Oncology, Tata Memorial Hospital, Mumbai, India
| | - Sudhir Nair
- Head and Neck Surgical Oncology, Tata Memorial Hospital, Mumbai, India
| | - Pankaj Chaturvedi
- Head and Neck Surgical Oncology, Tata Memorial Hospital, Mumbai, India
| | - C Murali Krishna
- Chilakapati Laboratory, Tata Memorial Centre, ACTREC, Mumbai, India
- Homi Baba National Institute, Trombay, Mumbai
| |
Collapse
|
15
|
Ghosh A, Raha S, Dey S, Chatterjee K, Roy Chowdhury A, Barui A. Chemometric analysis of integrated FTIR and Raman spectra obtained by non-invasive exfoliative cytology for the screening of oral cancer. Analyst 2019; 144:1309-1325. [DOI: 10.1039/c8an02092b] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
FTIR spectroscopy and Raman spectroscopy of biological analytes are increasingly explored as screening tools for early detection of cancer.
Collapse
Affiliation(s)
- Aritri Ghosh
- Centre for Healthcare Science and Technology
- Indian Institute of Engineering Science and Technology
- Howrah 711103
- India
| | - Sreyan Raha
- Department of Physics
- Bose Institute
- Kolkata-700009
- India
| | - Susmita Dey
- Centre for Healthcare Science and Technology
- Indian Institute of Engineering Science and Technology
- Howrah 711103
- India
| | - Kabita Chatterjee
- Department of Oral and Maxillofacial Pathology
- Buddha Institute of Dental Sciences
- Patna 800020
- India
| | - Amit Roy Chowdhury
- Department of Aerospace and Applied Mechanics
- Indian Institute of Engineering Science and Technology
- Howrah 711103
- India
| | - Ananya Barui
- Centre for Healthcare Science and Technology
- Indian Institute of Engineering Science and Technology
- Howrah 711103
- India
| |
Collapse
|