1
|
Genin VD, Bucharskaya AB, Kirillin MY, Kurakina DA, Navolokin NA, Terentyuk GS, Khlebtsov BN, Khlebtsov NG, Maslyakova GN, Tuchin VV, Genina EA. Monitoring of optical properties of tumors during laser plasmon photothermal therapy. JOURNAL OF BIOPHOTONICS 2024; 17:e202300322. [PMID: 38221797 DOI: 10.1002/jbio.202300322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/04/2023] [Accepted: 12/25/2023] [Indexed: 01/16/2024]
Abstract
We studied grafted tumors obtained by subcutaneous implantation of kidney cancer cells into male white rats. Gold nanorods with a plasmon resonance of about 800 nm were injected intratumorally for photothermal heating. Experimental irradiation of tumors was carried out percutaneously using a near-infrared diode laser. Changes in the optical properties of the studied tissues in the spectral range 350-2200 nm under plasmonic photothermal therapy (PPT) were studied. Analysis of the observed changes in the absorption bands of water and hemoglobin made it possible to estimate the depth of thermal damage to the tumor. A significant decrease in absorption peaks was observed in the spectrum of the upper peripheral part and especially the tumor capsule. The obtained changes in the optical properties of tissues under laser irradiation can be used to optimize laboratory and clinical PPT procedures.
Collapse
Affiliation(s)
- Vadim D Genin
- Optics and Biophotonics Department, Saratov State University, Saratov, Russia
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russia
| | - Alla B Bucharskaya
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russia
- Core Facility of Experimental Oncology, Saratov State Medical University named after V. I. Razumovsky, Saratov, Russia
| | - Mikhail Yu Kirillin
- Biophotonics Laboratory, Institute of Applied Physics Russian Academy of Sciences, Nizhny Novgorod, Russia
- Applied Mathematics Department, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Daria A Kurakina
- Biophotonics Laboratory, Institute of Applied Physics Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Nikita A Navolokin
- Core Facility of Experimental Oncology, Saratov State Medical University named after V. I. Razumovsky, Saratov, Russia
| | - Georgy S Terentyuk
- Core Facility of Experimental Oncology, Saratov State Medical University named after V. I. Razumovsky, Saratov, Russia
| | - Boris N Khlebtsov
- Laboratory of Nanobiotechnology, Institute of Biochemistry and Physiology of Plants and Microorganisms, Federal Research Centre "Saratov Scientific Centre of the Russian Academy of Sciences" (IBPPM RAS), Saratov, Russia
| | - Nikolai G Khlebtsov
- Optics and Biophotonics Department, Saratov State University, Saratov, Russia
- Laboratory of Nanobiotechnology, Institute of Biochemistry and Physiology of Plants and Microorganisms, Federal Research Centre "Saratov Scientific Centre of the Russian Academy of Sciences" (IBPPM RAS), Saratov, Russia
| | - Galina N Maslyakova
- Core Facility of Experimental Oncology, Saratov State Medical University named after V. I. Razumovsky, Saratov, Russia
| | - Valery V Tuchin
- Optics and Biophotonics Department, Saratov State University, Saratov, Russia
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russia
- Laboratory of Laser Diagnostics of Technical and Living Systems, Institute of Precision Mechanics and Control, Federal Research Centre "Saratov Scientific Centre of the Russian Academy of Sciences", Saratov, Russia
| | - Elina A Genina
- Optics and Biophotonics Department, Saratov State University, Saratov, Russia
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russia
| |
Collapse
|
2
|
Shakhova M, Elagin V, Plekhanov A, Khilov A, Kurakina D, Kamensky V, Kirillin M. Post-Operational Photodynamic Therapy of the Tumor Bed: Comparative Analysis for Cold Knife and Laser Scalpel Resection. Biomedicines 2024; 12:291. [PMID: 38397893 PMCID: PMC11154242 DOI: 10.3390/biomedicines12020291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
In this paper, we report on a study regarding the efficiency of the post-operational phototherapy of the tumor bed after resection with both a cold knife and a laser scalpel in laboratory mice with CT-26 tumors. Post-operational processing included photodynamic therapy (PDT) with a topically applied chlorin-based photosensitizer (PS), performed at wavelengths of 405 or 660 nm, with a total dose of 150 J/cm2. The selected design of the tumor model yielded zero recurrence in the laser scalpel group and 92% recurrence in the cold knife group without post-processing, confirming the efficiency of the laser scalpel in oncology against the cold knife. The application of PDT after the cold knife resection decreased the recurrence rate to 70% and 42% for the 405 nm and 660 nm procedures, respectively. On the other hand, the application of PDT after the laser scalpel resection induced recurrence rates of 18% and 30%, respectively, for the considered PDT performance wavelengths. The control of the penetration of PS into the tumor bed by fluorescence confocal microscopy indicated the deeper penetration of PS in the case of the cold knife, which presumably provided deeper PDT action, while the low-dose light exposure of deeper tissues without PS, presumably, stimulated tumor recurrence, which was also confirmed by the differences in the recurrence rate in the 405 and 660 nm groups. Irradiation-only light exposures, in all cases, demonstrated higher recurrence rates compared to the corresponding PDT cases. Thus, the PDT processing of the tumor bed after resection could only be recommended for the cold knife treatment and not for the laser scalpel resection, where it could induce tumor recurrence.
Collapse
Affiliation(s)
- Maria Shakhova
- Department of Ear, Nose and Throat Diseases, FSBEI HE «Privolzhsky Research Medical University» MOH Russia, 10/1 Minin and Pozharsky Square, Nizhny Novgorod 603005, Russia;
| | - Vadim Elagin
- Institute of Experimental Oncology and Biomedical Technologies, FSBEI HE «Privolzhsky Research Medical University» MOH Russia, 10/1 Minin and Pozharsky Square, Nizhny Novgorod 603005, Russia; (A.P.); (V.K.)
| | - Anton Plekhanov
- Institute of Experimental Oncology and Biomedical Technologies, FSBEI HE «Privolzhsky Research Medical University» MOH Russia, 10/1 Minin and Pozharsky Square, Nizhny Novgorod 603005, Russia; (A.P.); (V.K.)
| | - Aleksandr Khilov
- A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanov St., Nizhny Novgorod 603155, Russia; (A.K.); (D.K.); (M.K.)
| | - Daria Kurakina
- A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanov St., Nizhny Novgorod 603155, Russia; (A.K.); (D.K.); (M.K.)
| | - Vladislav Kamensky
- Institute of Experimental Oncology and Biomedical Technologies, FSBEI HE «Privolzhsky Research Medical University» MOH Russia, 10/1 Minin and Pozharsky Square, Nizhny Novgorod 603005, Russia; (A.P.); (V.K.)
- A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanov St., Nizhny Novgorod 603155, Russia; (A.K.); (D.K.); (M.K.)
| | - Mikhail Kirillin
- A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanov St., Nizhny Novgorod 603155, Russia; (A.K.); (D.K.); (M.K.)
| |
Collapse
|
3
|
Loriette V, Fragola A, Kruglik SG, Sridhar S, Hubert A, Orieux F, Sepulveda E, Sureau F, Bonneau S. Dynamics of mitochondrial membranes under photo-oxidative stress with high spatiotemporal resolution. Front Cell Dev Biol 2023; 11:1307502. [PMID: 38046667 PMCID: PMC10691360 DOI: 10.3389/fcell.2023.1307502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/08/2023] [Indexed: 12/05/2023] Open
Abstract
In our study, we harnessed an original Enhanced Speed Structured Illumination Microscopy (Fast-SIM) imaging setup to explore the dynamics of mitochondrial and inner membrane ultrastructure under specific photo-oxidation stress induced by Chlorin-e6 and light irradiation. Notably, our Fast-SIM system allowed us to observe and quantify a distinct remodeling and shortening of the mitochondrial structure after 60-80 s of irradiation. These changes were accompanied by fusion events of adjacent inner membrane cristae and global swelling of the organelle. Preceding these alterations, a larger sequence was characterized by heightened dynamics within the mitochondrial network, featuring events such as mitochondrial fission, rapid formation of tubular prolongations, and fluctuations in cristae structure. Our findings provide compelling evidence that, among enhanced-resolution microscopy techniques, Fast-SIM emerges as the most suitable approach for non-invasive dynamic studies of mitochondrial structure in living cells. For the first time, this approach allows quantitative and qualitative characterization of successive steps in the photo-induced oxidation process with sufficient spatial and temporal resolution.
Collapse
Affiliation(s)
- Vincent Loriette
- ESPCI, PSL Research University, Sorbonne Université, CNRS, Laboratoire de Physique et D’Étude des Matériaux (LPEM), Paris, France
| | - Alexandra Fragola
- ESPCI, PSL Research University, Sorbonne Université, CNRS, Laboratoire de Physique et D’Étude des Matériaux (LPEM), Paris, France
| | - Sergei G. Kruglik
- Sorbonne Université, CNRS, Laboratoire Jean Perrin (LJP), Paris, France
| | - Susmita Sridhar
- ESPCI, PSL Research University, Sorbonne Université, CNRS, Laboratoire de Physique et D’Étude des Matériaux (LPEM), Paris, France
- Sorbonne Université, CNRS, Laboratoire Jean Perrin (LJP), Paris, France
| | - Antoine Hubert
- ESPCI, PSL Research University, Sorbonne Université, CNRS, Laboratoire de Physique et D’Étude des Matériaux (LPEM), Paris, France
- Sorbonne Université, CNRS, Laboratoire Jean Perrin (LJP), Paris, France
| | - François Orieux
- Centrale Supelec, Université Paris Saclay, CNRS, Laboratoire des Signaux et Systémes (L2S), Gif-sur-Yvette, France
| | - Eduardo Sepulveda
- Sorbonne Université, Université Paris Cité, CNRS, Laboratoire de physique nucléaire et de hautes énergies (LPNHE), Paris, France
| | - Franck Sureau
- Sorbonne Université, CNRS, Laboratoire Jean Perrin (LJP), Paris, France
| | - Stephanie Bonneau
- Sorbonne Université, CNRS, Laboratoire Jean Perrin (LJP), Paris, France
| |
Collapse
|
4
|
Yadav R, Das PP, Sharma S, Sengupta S, Kumar D, Sagar R. Recent advancement of nanomedicine-based targeted delivery for cervical cancer treatment. Med Oncol 2023; 40:347. [PMID: 37930458 DOI: 10.1007/s12032-023-02195-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/11/2023] [Indexed: 11/07/2023]
Abstract
Cervical cancer is a huge worldwide health burden, impacting women in impoverished nations in particular. Traditional therapeutic approaches, such as surgery, radiation therapy, and chemotherapy, frequently result in systemic toxicity and ineffectiveness. Nanomedicine has emerged as a viable strategy for targeted delivery of therapeutic drugs to cancer cells while decreasing off-target effects and increasing treatment success in recent years. Nanomedicine for cervical cancer introduces several novel aspects that distinguish it from previous treatment options such as tailored delivery system, precision targeting, combination therapies, real-time monitoring and diverse nanocarriers to overcome the limitations of one another. This abstract presents recent advances in nanomedicine-based tailored delivery systems for the treatment of cervical cancer. Liposomes, polymeric nanoparticles, dendrimers, and carbon nanotubes have all been intensively studied for their ability to transport chemotherapeutic medicines, nucleic acids, and imaging agents to cervical cancer cells. Because of the way these nanocarriers are designed, they may cross biological barriers and preferentially aggregate at the tumor site, boosting medicine concentration and lowering negative effects on healthy tissues. Surface modification of nanocarriers with targeting ligands like antibodies, peptides, or aptamers improves specificity for cancer cells by identifying overexpressed receptors or antigens on the tumor surface. Furthermore, nanomedicine-based techniques have made it possible to co-deliver numerous therapeutic drugs, allowing for synergistic effects and overcoming drug resistance. In preclinical and clinical investigations, combination treatments comprising chemotherapeutic medicines, gene therapy, immunotherapy, and photodynamic therapy have showed encouraging results, opening up new avenues for individualized and multimodal treatment regimens. Furthermore, the inclusion of contrast agents and imaging probes into nanocarrier systems has enabled real-time monitoring and imaging of treatment response. This enables the assessment of therapy efficacy, the early diagnosis of recurrence, and the optimization of treatment regimens.
Collapse
Affiliation(s)
- Rakhi Yadav
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Priyanku Pradip Das
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Sunil Sharma
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sounok Sengupta
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| | - Ram Sagar
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
5
|
Minhaco VMTR, Maquera Huacho PM, Mancim Imbriani MJ, Tonon CC, Chorilli M, Rastelli ANDS, Spolidorio DMP. Improving antimicrobial activity against endodontic biofilm after exposure to blue light-activated novel curcumin nanoparticle. Photodiagnosis Photodyn Ther 2023; 42:103322. [PMID: 36773754 DOI: 10.1016/j.pdpdt.2023.103322] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/29/2022] [Accepted: 02/03/2023] [Indexed: 02/12/2023]
Abstract
New therapies involving natural products and nanobiotechnology open additional perspectives to reduce endodontic infections. Curcumin is a natural polyphenol extracted from the dry rhizome of curcuma long Linn with therapeutic properties for application in nanobiotechnology and as a photosensitizer for photodynamic therapy. This study aimed to synthesize a novel polymeric nanoparticle of poly (lactic-co-glycolic acid) (PLGA) loaded with curcumin (NP+Cur), and evaluate its antimicrobial activity against endodontic biofilms. Additionally, its biocompatibility using oral keratinocytes was assessed. The polymeric NP+Cur was prepared by the nanoprecipitation method. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were calculated for the three endodontic bacteria (Enterococcus faecalis, Streptococcus oralis and Actinomyces viscosus). Antibacterial activity of NP+Cur against single- and multispecies biofilm pre-formed on the botton 24-well plate and into dentin tubules of bovine teeth were evaluated by colony forming units and confocal laser scanning microscopy. The pre-irradiation time was 5 min followed by exposure to blue light-emitting diode at 450 nm for the photodynamic treatment. Cell viability using oral keratinocytes was assessed by Alamar Blue assay. MIC and MBC showed antibacterial activity of NP+Cur against endodontic bacteria. A treatment of pre-formed biofilms of endodontic bacteria with NP+Cur also significantly decreased bacterial viability. The concentration of 325 μg/mL of photoactivated NP+Cur was the one that most reduced the viability of the endodontic bacteria evaluated. Regarding biocompatibility, NP+Cur 325 μg/mL and pure nanoparticles showed a cell viability greater than 80%. The novel polymeric nanoparticles loaded with curcumin may be a promising adjunct use to treatment of endodontic infections.
Collapse
Affiliation(s)
- Vivian Maria Tellaroli Rodrigues Minhaco
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (Unesp), Rua Humaitá, 1680, Araraquara, SP 14801-903, Brazil; Department of Oral Diagnosis and Surgery, School of Dentistry, São Paulo State University (Unesp), Rua Humaitá, 1680, Araraquara, SP 14801-903, Brazil
| | - Patricia Milagros Maquera Huacho
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (Unesp), Rua Humaitá, 1680, Araraquara, SP 14801-903, Brazil
| | - Maria Júlia Mancim Imbriani
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (Unesp), Rua Humaitá, 1680, Araraquara, SP 14801-903, Brazil; Department of Oral Diagnosis and Surgery, School of Dentistry, São Paulo State University (Unesp), Rua Humaitá, 1680, Araraquara, SP 14801-903, Brazil
| | - Caroline Coradi Tonon
- Wellman Center for Photomedicine, Massachusetts General Hospital, and Harvard Medical School, 40 Blossom St, Boston, MA 02114, United States
| | - Marlus Chorilli
- Department of Drugs and Medicines, International School of Pharmaceuticals Sciences, São Paulo State University (Unesp), Rodovia Araraquara Jaú, Km 01, Araraquara, SP 14800-903, Brazil
| | - Alessandra Nara de Souza Rastelli
- Department of Restorative Dentistry, School of Dentistry, São Paulo State University (Unesp), Rua Humaitá, 1680, Araraquara, SP 14801-903, Brazil
| | - Denise Madalena Palomari Spolidorio
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (Unesp), Rua Humaitá, 1680, Araraquara, SP 14801-903, Brazil.
| |
Collapse
|
6
|
Garcia de Carvalho G, Pacheco Mateo R, Costa E Silva R, Maquera Huacho PM, de Souza Rastelli AN, de Oliveira KT, Chierici Marcantonio RA, Zandim-Barcelos DL, Palomari Spolidorio DM. Chlorin-based photosensitizer under blue or red-light irradiation against multi-species biofilms related to periodontitis. Photodiagnosis Photodyn Ther 2022; 41:103219. [PMID: 36473689 DOI: 10.1016/j.pdpdt.2022.103219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/17/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
In our previous study, Chlorin-e6 (Ce6) demonstrated a significant reduction of microorganisms' viability against single-species biofilm related to periodontitis once irradiated by red light (660 nm). Also, higher bacteria elimination was observed under blue light (450 nm) irradiation. However, the use of blue light irradiation of Ce6 for antimicrobial administration is poorly explored. This study evaluated the effect of chlorin-e6-mediated antimicrobial photodynamic therapy (aPDT) using different wavelengths (450 or 660 nm) against multi-species biofilms related to periodontitis. Streptococcus oralis, Fusobacterium nucleatum, Porphyromonas gingivalis, and Aggregatibacter actinomycetemcomitans composed the mature biofilm developed under proper conditions for five days. aPDT was performed using different concentrations of Ce6 (100 and 200 μM), wavelengths (450 or 660 nm), and comparisons were made after qPCR assay and confocal laser scanning microscopy (CLSM) analysis. The greatest bacterial elimination was observed in the groups where Ce6 was used with blue light, for S. orallis (2.05 Log10 GeQ mL-1, p < 0.0001) and P. gingivalis (1.4 Log10 GeQ mL-1, p < 0.0001), aPDT with red light showed significant bacteria reduction only for S. orallis. aPDT with blue light demonstrated statistically higher elimination in comparison with aPDT with red light. The aPDT did not show a statistically significant effect when tested against A. actinomycetemcomitans and F. nucleatum (p=0.776 and 0.988, respectively). The aPDT using blue light showed a promising higher photobiological effect, encouraging researchers to consider it in the irradiation of Ce6 for further investigations.
Collapse
Affiliation(s)
- Gabriel Garcia de Carvalho
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Rua Humaitá, 1680, Araraquara, SP 14801-903, Brazil
| | - Rafaela Pacheco Mateo
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Rua Humaitá, 1680, Araraquara, SP 14801-903, Brazil
| | - Rodrigo Costa E Silva
- Department of Chemistry, Federal University of São Carlos (UFSCar), São Carlos, SP 13565-905, Brazil
| | - Patricia Milagros Maquera Huacho
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Rua Humaitá, 1680, Araraquara, SP 14801-903, Brazil
| | - Alessandra Nara de Souza Rastelli
- Department of Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Rua Humaitá, 1680, Araraquara, SP 14801-903, Brazil
| | - Kleber Thiago de Oliveira
- Department of Chemistry, Federal University of São Carlos (UFSCar), São Carlos, SP 13565-905, Brazil
| | | | - Daniela Leal Zandim-Barcelos
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Rua Humaitá, 1680, Araraquara, SP 14801-903, Brazil
| | - Denise Madalena Palomari Spolidorio
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Rua Humaitá, 1680, Araraquara, SP 14801-903, Brazil.
| |
Collapse
|
7
|
Kirillin M, Khilov A, Kurakina D, Orlova A, Perekatova V, Shishkova V, Malygina A, Mironycheva A, Shlivko I, Gamayunov S, Turchin I, Sergeeva E. Dual-Wavelength Fluorescence Monitoring of Photodynamic Therapy: From Analytical Models to Clinical Studies. Cancers (Basel) 2021; 13:cancers13225807. [PMID: 34830963 PMCID: PMC8616416 DOI: 10.3390/cancers13225807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Fluorescence imaging is an efficient tool in monitoring photodynamic therapy procedures allowing us to track accumulation and photobleaching of a photosensitizer (PS). Chlorin-based PSs feature high absorption in the red and blue bands of visible spectrum. Due to spectral dispersion of light penetration depth in biotissues, fluorescence signals registered upon excitation by red or blue light are formed in different measurement volumes. We present analytical and numerical models of dual-wavelength fluorescence imaging for evaluation of PS localization depth in the cases of topical administration and intravenous injection. The results of analytical and numerical simulations are in good agreement with the phantom experiments, and are translated to the in vivo imaging, which allows to interpret experimental observations in animal trials, human volunteers, and clinical studies. The proposed approach allows us to noninvasively estimate typical accumulation depths of PS localization which are consistent with the morphologically expected values. Abstract Fluorescence imaging modalities are currently a routine tool for the assessment of marker distribution within biological tissues, including monitoring of fluorescent photosensitizers (PSs) in photodynamic therapy (PDT). Conventional fluorescence imaging techniques provide en-face two-dimensional images, while depth-resolved techniques require complicated tomographic modalities. In this paper, we report on a cost-effective approach for the estimation of fluorophore localization depth based on dual-wavelength probing. Owing to significant difference in optical properties of superficial biotissues for red and blue ranges of optical spectra, simultaneous detection of fluorescence excited at different wavelengths provides complementary information from different measurement volumes. Here, we report analytical and numerical models of the dual-wavelength fluorescence imaging of PS-containing biotissues considering topical and intravenous PS administration, and demonstrate the feasibility of this approach for evaluation of the PS localization depth based on the fluorescence signal ratio. The results of analytical and numerical simulations, as well as phantom experiments, were translated to the in vivo imaging to interpret experimental observations in animal experiments, human volunteers, and clinical studies. The proposed approach allowed us to estimate typical accumulation depths of PS localization which are consistent with the morphologically expected values for both topical PS administration and intravenous injection.
Collapse
Affiliation(s)
- Mikhail Kirillin
- Institute of Applied Physics RAS, 46 Ulyanov St., 603950 Nizhny Novgorod, Russia
| | - Aleksandr Khilov
- Institute of Applied Physics RAS, 46 Ulyanov St., 603950 Nizhny Novgorod, Russia
| | - Daria Kurakina
- Institute of Applied Physics RAS, 46 Ulyanov St., 603950 Nizhny Novgorod, Russia
| | - Anna Orlova
- Institute of Applied Physics RAS, 46 Ulyanov St., 603950 Nizhny Novgorod, Russia
| | - Valeriya Perekatova
- Institute of Applied Physics RAS, 46 Ulyanov St., 603950 Nizhny Novgorod, Russia
| | - Veronika Shishkova
- Institute of Applied Physics RAS, 46 Ulyanov St., 603950 Nizhny Novgorod, Russia
- Institute of Information Technology, Mathematics and Mechanics, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia
| | - Alfia Malygina
- Center for Skin Tumor Diagnostics and Treatment, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia
| | - Anna Mironycheva
- Institute of Applied Physics RAS, 46 Ulyanov St., 603950 Nizhny Novgorod, Russia
- Center for Skin Tumor Diagnostics and Treatment, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia
| | - Irena Shlivko
- Center for Skin Tumor Diagnostics and Treatment, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia
| | - Sergey Gamayunov
- Institute of Applied Physics RAS, 46 Ulyanov St., 603950 Nizhny Novgorod, Russia
- Nizhny Novgorod Regional Oncological Hospital, Delovaya 11/1, 603126 Nizhny Novgorod, Russia
| | - Ilya Turchin
- Institute of Applied Physics RAS, 46 Ulyanov St., 603950 Nizhny Novgorod, Russia
| | - Ekaterina Sergeeva
- Institute of Applied Physics RAS, 46 Ulyanov St., 603950 Nizhny Novgorod, Russia
| |
Collapse
|
8
|
Kirillin M, Kurakina D, Khilov A, Orlova A, Shakhova M, Orlinskaya N, Sergeeva E. Red and blue light in antitumor photodynamic therapy with chlorin-based photosensitizers: a comparative animal study assisted by optical imaging modalities. BIOMEDICAL OPTICS EXPRESS 2021; 12:872-892. [PMID: 33680547 PMCID: PMC7901330 DOI: 10.1364/boe.411518] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 05/10/2023]
Abstract
The goal of this study is a comparative analysis of the efficiency of the PDT protocols for CT26 tumor model treatment in Balb/c mice employing red and blue light with both topical and intravenous administration of chlorin-based photosensitizers (PSs). The considered protocols include the doses of 250 J/cm2 delivered at 660 nm, 200 J/cm2 delivered at 405 nm, and 250 J/cm2 delivered at both wavelengths with equal energy density contribution. Dual-wavelength fluorescence imaging was employed to estimate both photobleaching efficiency, typical photobleaching rates and the procedure impact depth, while optical coherence tomography with angiography modality (OCT-A) was employed to monitor the tumor vasculature response for up to 7 days after the procedure with subsequent histology inspection. Red light or dual-wavelength PDT regimes with intravenous PS injection were demonstrated to provide the most pronounced tumor response among all the considered cases. On the contrary, blue light regimes were demonstrated to be most efficient among topical application and irradiation only regimes. Tumor size dynamics for different groups is in good agreement with the tumor response predictions based on OCT-A taken in 24h after exposure and the results of histology analysis performed in 7 days after the exposure.
Collapse
Affiliation(s)
- Mikhail Kirillin
- Institute of Applied Physics RAS, 46 Ulyanov St., Nizhny Novgorod, 603950, Russia
| | - Daria Kurakina
- Institute of Applied Physics RAS, 46 Ulyanov St., Nizhny Novgorod, 603950, Russia
| | - Aleksandr Khilov
- Institute of Applied Physics RAS, 46 Ulyanov St., Nizhny Novgorod, 603950, Russia
| | - Anna Orlova
- Institute of Applied Physics RAS, 46 Ulyanov St., Nizhny Novgorod, 603950, Russia
| | - Maria Shakhova
- Institute of Applied Physics RAS, 46 Ulyanov St., Nizhny Novgorod, 603950, Russia
- Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Nizhny Novgorod, 603950, Russia
| | - Natalia Orlinskaya
- Institute of Applied Physics RAS, 46 Ulyanov St., Nizhny Novgorod, 603950, Russia
- Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., Nizhny Novgorod, 603950, Russia
| | - Ekaterina Sergeeva
- Institute of Applied Physics RAS, 46 Ulyanov St., Nizhny Novgorod, 603950, Russia
| |
Collapse
|
9
|
Garcia de Carvalho G, Sanchez-Puetate JC, Donatoni MC, Maquera Huacho PM, de Souza Rastelli AN, de Oliveira KT, Palomari Spolidorio DM, Leal Zandim-Barcelos D. Photodynamic inactivation using a chlorin-based photosensitizer with blue or red-light irradiation against single-species biofilms related to periodontitis. Photodiagnosis Photodyn Ther 2020; 31:101916. [PMID: 32645434 DOI: 10.1016/j.pdpdt.2020.101916] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/13/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022]
Abstract
Chlorin-e6 (Ce6), as a photosensitizer (PS), has demonstrated significant reduction of microorganisms' viability when irradiated by red light. However, the main absorption peak of this PS is located at blue light spectrum, which is less investigated. This study aimed to evaluate the effect of pure-chlorin-e6-mediated photodynamic inactivation (PDI) using different light sources (450 or 660 nm) against biofilms related to periodontitis. Streptococcus oralis, Fusobacterium nucleatum, Porphyromonas gingivalis, and Aggregatibacter actinomycetemcomitans single-species biofilms were developed under proper conditions for five days. PDI was performed using different concentrations of Ce6 (100 and 200 mM), wavelengths (450 and 660 nm) and comparisons were made after colony forming unit and confocal laser scanning microscopy (CLSM) analysis. The use of light and PS were also individually tested. The greatest bacterial elimination was observed in the group where PDI was employed with blue light and concentration of 200 mM for all bacterial strains tested (4.01 log10 for A. actinomycetemcomitans, and total elimination for P. gingivalis and S. oralis), except for F. nucleatum, where 3.46 log10 reduction was observed when red light and 200 mM Ce6 were applied (p < 0.05). The antimicrobial effects of PDI mediated by Ce6 for all single pathogenic biofilms were confirmed by live/dead staining under CLSM analysis. For all single-species biofilms, the use of PDI mediated by chlorin-e6 photosensitizer under blue or red-light irradiation (450 and 660 nm) demonstrated a significant reduction in bacterial viability, but blue light showed a promising higher photobiological effect, encouraging its adjuvant use to basic periodontitis treatment.
Collapse
Affiliation(s)
- Gabriel Garcia de Carvalho
- Department of Diagnosis and Surgery, São Paulo State University (Unesp), School of Dentistry, Rua Humaitá, 1680, 14801-903, Araraquara, SP, Brazil.
| | - Julio Cesar Sanchez-Puetate
- Department of Diagnosis and Surgery, São Paulo State University (Unesp), School of Dentistry, Rua Humaitá, 1680, 14801-903, Araraquara, SP, Brazil.
| | - Maria Carolina Donatoni
- Department of Chemistry, Federal University of São Carlos (UFSCar), São Carlos, SP, 13565-905, Brazil.
| | - Patricia Milagros Maquera Huacho
- Department of Physiology and Pathology, São Paulo State University (Unesp), School of Dentistry, Rua Humaitá, 1680, 14801-903, Araraquara, SP, Brazil.
| | - Alessandra Nara de Souza Rastelli
- Department of Restorative Dentistry, São Paulo State University (Unesp), School of Dentistry, Rua Humaitá, 1680, 14801-903, Araraquara, SP, Brazil.
| | - Kleber Thiago de Oliveira
- Department of Chemistry, Federal University of São Carlos (UFSCar), São Carlos, SP, 13565-905, Brazil.
| | - Denise Madalena Palomari Spolidorio
- Department of Physiology and Pathology, São Paulo State University (Unesp), School of Dentistry, Rua Humaitá, 1680, 14801-903, Araraquara, SP, Brazil.
| | - Daniela Leal Zandim-Barcelos
- Department of Diagnosis and Surgery, São Paulo State University (Unesp), School of Dentistry, Rua Humaitá, 1680, 14801-903, Araraquara, SP, Brazil.
| |
Collapse
|
10
|
Kurakina D, Khilov A, Shakhova M, Orlinskaya N, Sergeeva E, Meller A, Turchin I, Kirillin M. Comparative analysis of single- and dual-wavelength photodynamic therapy regimes with chlorin-based photosensitizers: animal study. JOURNAL OF BIOMEDICAL OPTICS 2019; 25:1-17. [PMID: 31872580 PMCID: PMC7013345 DOI: 10.1117/1.jbo.25.6.063804] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/25/2019] [Indexed: 05/25/2023]
Abstract
Two pronounced absorption peaks in blue and red ranges of the chlorin-based photosensitizer (PS) absorption spectrum provide additional benefits in photodynamic therapy (PDT) performance. Differing optical properties of biological tissues in these ranges allow for both dual-wavelength diagnostics and PDT performance. We provide a comparative analysis of different PDT regimes performed with blue and red lights and their combination, with doses varying from 50 to 150 J / cm2. The study was performed on the intact skin of a rabbit ear inner surface, with the use of chlorin e6 as a PS. PDT procedure protocol included monitoring of the treated site with fluorescence imaging technique to evaluate PS accumulation and photobleaching, as well as with optical coherence tomography (OCT) to register morphological and functional responses of the tissue. Optical diagnostic observations were compared with the results of histopathology examination. We demonstrated that PDT procedures with the considered regimes induce weaker organism reaction manifested by edema in normal tissue as compared to irradiation-only exposures with the same light doses. The light doses delivered with red light induce weaker tissue reaction as compared to the same doses delivered with blue light only or with a combination of red and blue lights in equal parts. Results of in-vivo OCT monitoring of tissue reaction are in agreement with the results of histopathology study.
Collapse
Affiliation(s)
- Daria Kurakina
- Institute of Applied Physics RAS, Nizhny Novgorod, Russia
| | | | - Maria Shakhova
- Institute of Applied Physics RAS, Nizhny Novgorod, Russia
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Natalia Orlinskaya
- Institute of Applied Physics RAS, Nizhny Novgorod, Russia
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | | | - Alina Meller
- Institute of Applied Physics RAS, Nizhny Novgorod, Russia
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Ilya Turchin
- Institute of Applied Physics RAS, Nizhny Novgorod, Russia
| | | |
Collapse
|
11
|
Shakhova MA, Sapunov DA, Avdonina YD, Avdonin IS, Shakhov AV, Kirillin MY. A case report of Ramsay Hunt syndrome in a patient with HIV treated by dual-wavelength photodynamic therapy. Photodiagnosis Photodyn Ther 2019; 28:282-285. [PMID: 31622771 DOI: 10.1016/j.pdpdt.2019.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/11/2019] [Accepted: 10/07/2019] [Indexed: 02/03/2023]
Abstract
In this paper we report on the application of dual-wavelength photodynamic therapy with a topical chlorin-based photosensitizer for treatment of Ramsay Hunt syndrome in a patient with HIV. Traditional treatment approach (combination of acyclovir and a glucocorticosteroid) failed to provide a significant outcome, while photodynamic therapy resulted in fast positive dynamics. No recurrence was observed in a 5-month-long follow-up.
Collapse
Affiliation(s)
- M A Shakhova
- Institute of Applied Physics RAS, Nizhny Novgorod, Russia; Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - D A Sapunov
- Institute of Applied Physics RAS, Nizhny Novgorod, Russia; N.A. Semashko Regional Clinical Hospital, Nizhny Novgorod, Russia
| | - Yu D Avdonina
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - I S Avdonin
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - A V Shakhov
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - M Yu Kirillin
- Institute of Applied Physics RAS, Nizhny Novgorod, Russia.
| |
Collapse
|